WO2009113425A1 - トチュウ由来のバイオポリマー - Google Patents

トチュウ由来のバイオポリマー Download PDF

Info

Publication number
WO2009113425A1
WO2009113425A1 PCT/JP2009/053951 JP2009053951W WO2009113425A1 WO 2009113425 A1 WO2009113425 A1 WO 2009113425A1 JP 2009053951 W JP2009053951 W JP 2009053951W WO 2009113425 A1 WO2009113425 A1 WO 2009113425A1
Authority
WO
WIPO (PCT)
Prior art keywords
eucommia
biopolymer
rubber
washing
derived
Prior art date
Application number
PCT/JP2009/053951
Other languages
English (en)
French (fr)
Inventor
慶久 中澤
陽子 中堂薗
小林 昭雄
峻太郎 前田
強 武田
健史 馬場
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to EP09719731A priority Critical patent/EP2258729B1/en
Priority to US12/922,504 priority patent/US8093338B2/en
Priority to CN200980108925.5A priority patent/CN101970543A/zh
Publication of WO2009113425A1 publication Critical patent/WO2009113425A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C3/00Treatment of coagulated rubber
    • C08C3/02Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
    • C09F1/00Obtaining purification, or chemical modification of natural resins, e.g. oleo-resins

Definitions

  • the present invention relates to a novel biopolymer derived from Eucommia.
  • Known plant-derived biopolymers include, for example, natural rubber and milky balata gum extracted from tropical gutta-percanata. Natural rubber is cis-type isoprene rubber made from sap collected from rubber trees. On the other hand, balata rubber is a trans-type polyisoprenoid and is used as, for example, a golf ball or a dental medical material. In addition, as a trans-type polyisoprenoid, there is eucommia rubber. Eucommia rubber, which is an eucommia-derived biopolymer, has been tried to be vulcanized and used for single-vehicle tires and tubes, but has not yet been industrialized.
  • Patent Document 1 discloses that raw eucommia is extracted with ethanol, the extract is removed, the remaining solid is further extracted with toluene, and toluene is concentrated or evaporated to dryness to obtain crude eucommia rubber.
  • An object of the present invention is to provide a novel biopolymer derived from a natural product and a method for producing the same.
  • the present inventors have intensively studied to obtain a novel biopolymer derived from a natural product.
  • the eucommia is decayed biologically to obtain a eucommia degradation product, and the eucommia degradation product can be washed easily and safely to obtain a biopolymer.
  • eucommia rubber obtained by conventional solvent extraction methods it has chain or branching and / or is crosslinked between polymers, and has physical strength such as tensile strength, thermoplasticity, and abrasion resistance.
  • the present invention has been completed.
  • the eucommia-derived biopolymer of the present invention is obtained by biologically decaying eucommia to obtain an eucommia degradation product and washing the eucommia degradation product.
  • the washing is high pressure water washing.
  • the eucommia is at least one part of an eucommia seed and pericarp.
  • the biopolymer has a weight average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 6 .
  • the method for producing a eucommia-derived biopolymer of the present invention includes a step of biologically decaying eucommia to obtain a eucommia degradation product, and a step of washing the eucommia degradation product.
  • the processed eucommia-derived biopolymer of the present invention can be obtained by processing any of the above-described eucommia-derived biopolymers.
  • the present invention can obtain a eucommia-derived biopolymer only by biologically decaying eucommia to obtain a eucommia degradation product and washing the eucommia degradation product. Since the method of the present invention does not use heat or an organic solvent as compared with the conventional extraction method, it is safe and simple and considers the environment. In addition, the actual work time can be shortened. Since a large facility is not required, for example, it is possible to work in a mountain area where eucommia logs are cultivated. Furthermore, the biopolymer obtained mainly contains trans-type isoprenoids and has a relatively high molecular weight. Therefore, it is a solid elastomer and can be used for industrial applications.
  • 2 is a scanning electron micrograph ( ⁇ 1,500) showing a state of purified eucommia rubber 1.
  • 2 is a scanning electron micrograph ( ⁇ 100) showing the state of purified eucommia rubber 1.
  • 2 is a scanning electron micrograph ( ⁇ 10,000) showing the state of purified eucommia rubber 1.
  • 1 is a nuclear magnetic resonance spectrum diagram and a structural formula of purified eucommia rubber 1.
  • It is a scanning electron micrograph (x150) which shows the surface structure of the sheet
  • FIG. It is a scanning electron micrograph (x300) which shows the surface structure of the sheet
  • the eucommia-derived biopolymer of the present invention can be obtained by biologically decaying eucommia to obtain an eucommia degradation product and washing the eucommia degradation product.
  • the eucommia biopolymer of the present invention contains a trans polyisoprenoid as a main component, and this trans polyisoprenoid has a higher molecular weight than eucommia rubber obtained by a conventional solvent extraction method.
  • Eucommia ulmoides O. used in the present invention is a woody cypress. This eucommia contains trans-polyisoprenoid in the whole plant body, and any part may be used. Eucommia seeds, pericarp (each containing about 20% by mass or more), bark (12% by mass or more), and leaves (about 3% by mass) are preferably used in that they contain a large amount of trans-polyisoprenoid. More preferred are seeds and pericarps. Eucommia may be used as it is, or a processed product such as a dried product may be used. In particular, it is possible to use eucommia oil residue as eucommia seeds and pericarps, which is suitable from the viewpoint of effective utilization of waste.
  • the eucommia is biologically decayed. That is, Eucommia is brought into contact with an organism that can disrupt the tissue structure of Eucommia.
  • rot refers to a state in which the eucommia is in its original state, but the structure of the eucommia easily collapses when it is eroded by a living organism such as a white rot fungus and touched by hand. This decaying process disrupts the tissue structure of the eucommia and facilitates the separation of the eucommia-derived biopolymer and the tissue by a physical action such as a subsequent washing process.
  • the organism that can disrupt the tissue structure of eucommia is not particularly limited as long as it is an organism that can corrode and decompose eucommia tissue, cells, or intracellular components (metabolites, etc.). Examples include white rot fungi, brown rot fungi, soft rot fungi (including fungi and slime molds), microbial groups (Bacillus subtilis, actinomycetes, etc.), and insect groups (termites, mites, etc.). . These organisms may be used alone or in combination of two or more. For example, humus may be used as a complex flora of fungi, slime molds, actinomycetes, and the like.
  • humus can occur, for example, between the topsoil and understory vegetation of broadleaf forests such as camphor, arakashi, shii, and tub.
  • broadleaf forests such as camphor, arakashi, shii, and tub.
  • the ratio of eucommia and organisms that can disrupt the eucommia's tissue structure can be appropriately set in consideration of decay processing time and the like.
  • eucommia pericarp
  • the contact method include burying eucommia in a net bag in a humus soil, putting the humus in a net sack into an oil residue (seed and pericarp) of eucommia, and washing the humus soil with water.
  • a method of supplying washing water to the eucommia are examples of the contact method.
  • the contact time and temperature between the eucommia and the organism capable of disrupting the tissue structure of the eucommia are not particularly limited.
  • the contact temperature may be a temperature range in which the organism can survive.
  • the contact time is appropriately set according to the amount of living organisms and eucommia, contact temperature, and the like. For example, when eucommia is rotted on the forest floor of a broad-leaved forest using humus soil of a broad-leaved forest, a decay period of 2 weeks to 3 months, preferably 1 to 2 months is required.
  • the resulting eucommia degradation product is washed.
  • deposits such as tissue mass, cell dry matter, primary metabolite, and secondary metabolite contained in the eucommia degradation product can be removed from the eucommia-derived polymer.
  • a surfactant such as Tween (registered trademark)
  • a polar solvent such as ethanol, methanol, or butanol
  • the cleaning is not particularly limited as long as deposits are removed.
  • it is carried out by repeating washing with water and tacking as appropriate (for example, 2 to 10 times, preferably 2 to 6 times).
  • high pressure that is, under pressure exceeding normal pressure (10 5 Pa).
  • the discharge pressure is 0.1 to 15 MPa, preferably 2 to 8 MPa
  • the discharge water amount is 300 to 400 L / h, preferably 370 L / h.
  • alkali treatment After washing, further alkali treatment may be performed.
  • lignin, phenol and the like are easily removed, and further purification is possible.
  • the alkali treatment is performed by further washing the washed eucommia decomposition product with a 0.1 to 4 N sodium hydroxide aqueous solution or the like.
  • the biopolymer derived from eucommia is obtained through the decay process and the washing process.
  • the yield of biopolymer obtained from dried eucommia is usually 20% or more, preferably about 22 to 35%.
  • the eucommia-derived biopolymer of the present invention contains a trans-isoprenoid as a main component, and may contain cellulose as necessary.
  • the content of the trans-isoprenoid in the eucommia-derived biopolymer of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, still more preferably 90% by mass or more, Most preferably, it is 95 mass% or more. It may be 100% by mass.
  • the biopolymer of the present invention is a mixed rubber of a trans-type isoprenoid and cellulose.
  • the ratio of trans-type isoprenoid to cellulose is usually 5: 5, preferably 6: 4 or more and 8: 2, preferably 7: 3 or less.
  • Such a mixed rubber can be obtained, for example, by performing an alkali treatment after washing with water and thickening in a washing step.
  • the weight average molecular weight of the eucommia-derived biopolymer of the present invention is 1 ⁇ 10 3 to 1 ⁇ 10 6 , preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 5 to 1 ⁇ 10 6 . .
  • Such high molecular biopolymers have solid elastomeric properties and are useful as industrial raw materials.
  • the biopolymer obtained by high-pressure washing is in a fibrous form and there are fiber fusion sites.
  • the eucommia-derived biopolymer of the present invention is a hard rubber, has a high surface hardness, and has various excellent properties such as thermoplasticity, electrical insulation, acid resistance, and alkali resistance.
  • the eucommia-derived biopolymer of the present invention can be used in a wide range of fields such as the automobile industry, home appliance substrates, fuel cells, insulating thin films, seismic isolation materials, soundproof materials, and biofuels.
  • the processed eucommia-derived biopolymer of the present invention can be further processed to obtain a processed eucommia-derived biopolymer.
  • a processed eucommia-derived biopolymer By such processing, it is possible to modify the eucommia-derived biopolymer, and for example, a polymer that is smooth and soft to the touch can be obtained.
  • solvent dissolution processing for example, solvent dissolution processing, heat dissolution processing, and the like are performed.
  • Solvent dissolution processing is performed by, for example, dissolving a eucommia-derived biopolymer in a solvent such as toluene, chloroform, formaldehyde, etc., and placing it in a mold and drying it.
  • the hot melt processing is performed, for example, by heating and shaping a eucommia-derived biopolymer at 75 to 130 ° C. for 5 minutes or more.
  • Example 1 1 kg of eucommia oil residue (including eucommia seeds and pericarp) is placed in a net bag (2 mm square bag of nylon mesh), and a slaughter layer (about 5 cm from the ground) of a broad-leaved forest (such as camphor tree, shii, tab) Buried in depth) and left for 2 months. After confirming that the eucommia in the net bag was decayed by touching with hands, it was washed with water to obtain a crude eucommia rubber product.
  • a net bag 2 mm square bag of nylon mesh
  • a slaughter layer about 5 cm from the ground
  • a broad-leaved forest such as camphor tree, shii, tab
  • this crude purified product was washed with water under conditions of a discharge pressure of 0.2 to 0.9 MPa and a discharge water amount of 370 L / h to obtain a purified product of eucommia rubber (referred to as eucommia rubber purified product 1).
  • the yield of purified eucommia rubber 1 was 0.3 kg, and the yield was about 30%.
  • the working time required to obtain the purified eucommia rubber from the crude eucommia rubber was about 1 hour.
  • the crude eucommia rubber product before washing with high pressure water in FIG. 1 has more deposits than the purified eucommia product 1 in FIG. 2, and thus it has been clarified that the deposits can be easily removed by washing with high pressure water.
  • the obtained purified eucommia rubber 1 is in the form of a fiber having a length of about 1 ⁇ m to 1 mm and a width of 0.5 to 40 ⁇ m.
  • fiber fusion was observed in purified eucommia rubber 1 (see FIG. 4). This fiber fusion is thought to increase the strength of eucommia rubber.
  • Example 2 The crude eucommia rubber prepared in Example 1 was washed six times with water and tacked to remove deposits. Furthermore, it hydrolyzed with 1N sodium hydroxide aqueous solution, and the phenol was removed. The yield of the resulting purified eucommia rubber (referred to as purified eucommia rubber 2) was about 29%.
  • the purified eucommia rubber 2 was placed in a separatory funnel and distributed using chloroform. The obtained chloroform eluate and the weight of the residue were measured, and the eucommia rubber content and the cellulose content in the purified eucommia rubber 2 were determined.
  • the eucommia rubber (trans-isoprenoid) was about 80% by mass, and the cellulose was about 20% by mass. Met.
  • Example 3 100 g of purified eucommia rubber 1 obtained in Example 1 was dissolved in 300 mL of toluene, and then a sheet was formed using this solution (referred to as Sheet 1). The surface of this sheet 1 was very smooth and had a good touch. The sheet 1 was further observed with a scanning electron microscope (SEM). A scanning electron micrograph of the sheet 1 is shown in FIG. As can be seen from FIG. 6, the surface of the sheet 1 has a polygonal scale-like structure.
  • the sheet 2 obtained in the same manner as described above except that chloroform is used in place of toluene, like the sheet 1, has a polygonal scaly surface and is very smooth and soft to the touch. It was good.
  • Example 4 The eucommia rubber purified product 1 obtained in Example 1 was melted by heating at 75 to 130 ° C. for about 5 minutes, and then the melt was rolled to form a sheet (referred to as sheet 3).
  • sheet 3 The surface of the sheet 3 was very smooth and had a good touch.
  • the sheet 3 was further observed with a scanning electron microscope (SEM). A scanning electron micrograph of the sheet 3 is shown in FIG. As can be seen from FIG. 7, the surface of the sheet 3 has a polygonal scale-like structure.
  • the present invention it is possible to obtain a eucommia-derived biopolymer only by biologically decaying eucommia to obtain a eucommia degradation product and washing the eucommia degradation product. Since the method of the present invention does not use heat or an organic solvent as compared with the conventional extraction method, it is safe and simple and considers the environment. In addition, the actual work time can be shortened. Since a large facility is not required, for example, it is possible to work in a mountain area where eucommia logs are cultivated. The resulting biopolymer mainly contains trans-type isoprenoids and has a relatively high molecular weight.
  • biopolymer has solid elastomer characteristics and is useful as an industrial raw material. Furthermore, it is possible to supply the biopolymer in accordance with the required time by storing the raw material.
  • This biopolymer can be used as a carbon neutral polymer in a wide range of fields such as the automobile industry, home appliance substrates, fuel cells, insulating thin films, seismic isolation materials, soundproof materials, and biofuels. Furthermore, by processing this biopolymer, it is also possible to obtain a smooth and soft polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、トチュウ由来のバイオポリマーを提供し、このバイオポリマーは、トチュウを生物学的に腐朽させてトチュウ分解産物を得る工程、およびこのトチュウ分解産物を洗浄する工程により得られる。このような簡便な方法により得られるバイオポリマーは、トランス型イソプレノイドを主として含み、比較的高分子量である。そのため、固形のエラストマー特性を有し、工業原料として有用である。

Description

トチュウ由来のバイオポリマー
 本発明は、トチュウ由来の新規バイオポリマーに関する。
 近年、カーボンニュートラルな資源の活用が社会的に要求されている。植物などの天然物内で代謝され、蓄積されるポリマーは、地球上に残された最後のバイオポリマーである。
 植物由来のバイオポリマーとして、例えば、天然ゴム、熱帯原産のグッタペルカノキから抽出される乳液状のバラタゴムなどが知られている。天然ゴムは、ゴムの木から採取される樹液を原料とするシス型のイソプレンゴムである。一方、バラタゴムは、トランス型ポリイソプレノイドであり、例えば、ゴルフボール、歯科医療用素材などとして利用されている。また、トランス型ポリイソプレノイドとしてはトチュウゴムがある。トチュウ由来バイオポリマーであるトチュウゴムは、加硫して単車用のタイヤ、チューブ類に利用する試みがなされているが、工業化には至っていない。
 ところで、従来、トチュウ由来のバイオポリマーの抽出方法としては、植物組織を有機溶媒などで抽出し溶出する手法が有効な手段であった。例えば、特許文献1には、原料トチュウをエタノールにて抽出処理した後、抽出液を除去し、残った固形分をさらにトルエンにて抽出処理し、トルエンを濃縮するか蒸発乾固して粗トチュウゴムを得ること、さらにこの粗トチュウゴムをトルエン・メタノール混合溶媒中に沈殿させ、得られた沈殿物を熱n-ヘキサンに溶解させた後、冷却により沈殿させることを特徴とするトチュウゴムの製造方法が記載されている。しかし、この方法は、有機溶媒および熱エネルギーを使用するためコストがかかる、有機溶媒が使用されることから環境に負荷がかかる、長時間の連続運転が必要である、スケールアップが困難であるなどの種々の問題点を有する。さらに、得られるトチュウゴムは、抽出溶媒に可溶性のゴムのみを含むため、分子量が低くなる傾向にある。
特開2004-189953号公報
 本発明は、天然物由来の新規バイオポリマー、およびその製造方法を提供することを目的とする。
 本発明者らは、天然物由来の新規バイオポリマーを得るために鋭意検討を行った。その結果、トチュウを生物学的に腐朽させてトチュウ分解産物を得、このトチュウ分解産物を洗浄することによって簡便かつ安全にバイオポリマーが得られること、さらに得られるバイオポリマーは、その構造が、側鎖または分岐を有し、および/またはポリマー間が架橋されていると考えられ、従来の溶媒抽出法によって得られるトチュウゴムに比べて、引っ張り強度、熱可塑性、耐磨耗性などの物理的強度に優れていることを見出して、本発明を完成するに至った。
 本発明のトチュウ由来のバイオポリマーは、トチュウを生物学的に腐朽させてトチュウ分解産物を得る工程、および該トチュウ分解産物を洗浄する工程により得られる。
 ある実施態様においては、上記洗浄は、高圧水洗である。
 ある実施態様においては、上記トチュウは、トチュウの種子および果皮の少なくとも1つの部位である。
 ある実施態様においては、上記バイオポリマーの重量平均分子量は、1×10~1×10である。
 本発明のトチュウ由来のバイオポリマーの製造方法は、トチュウを生物学的に腐朽させてトチュウ分解産物を得る工程、および該トチュウ分解産物を洗浄する工程を包含する。
 本発明のトチュウ由来のバイオポリマー加工製品は、上記のいずれかのトチュウ由来のバイオポリマーを加工する工程により得られる。
 本発明は、トチュウを生物学的に腐朽させてトチュウ分解産物を得、このトチュウ分解産物を洗浄することのみによってトチュウ由来のバイオポリマーを得ることができる。本発明の方法は、従来の抽出方法に比べて、熱や有機溶媒を使用しないので、安全かつ簡便であり、環境にも配慮される。また、実際の作業時間も短縮できる。大型の設備を必要としないので、例えば、トチュウの原木を栽培する山間部での作業も可能である。さらに得られるバイオポリマーは、トランス型イソプレノイドを主として含み、比較的高分子量である。そのため、固形のエラストマー状であり、工業用途に利用可能である。
トチュウゴム粗精製物の状態を示す走査型電子顕微鏡写真(×1,000)である。 トチュウゴム精製物1の状態を示す走査型電子顕微鏡写真(×1,500)である。 トチュウゴム精製物1の状態を示す走査型電子顕微鏡写真(×100)である。 トチュウゴム精製物1の状態を示す走査型電子顕微鏡写真(×10,000)である。 トチュウゴム精製物1の核磁気共鳴スペクトル図および構造式である。 トチュウゴム精製物1から得られたシートの表面構造を示す走査型電子顕微鏡写真(×150)である。 トチュウゴム精製物1から得られたシートの表面構造を示す走査型電子顕微鏡写真(×300)である。
 本発明のトチュウ由来のバイオポリマーは、トチュウを生物学的に腐朽させてトチュウ分解産物を得る工程、およびこのトチュウ分解産物を洗浄する工程により得られる。本発明のトチュウ由来のバイオポリマーは、トランス型ポリイソプレノイドを主成分として含み、このトランス型ポリイソプレノイドは、従来の溶媒抽出法によって得られるトチュウゴムに比べて高分子量である。
 本発明に用いられるトチュウ(Eucommia ulmoides O.)は、木本性の蕎木である。このトチュウは、植物体の全草にトランス型ポリイソプレノイドを含んでおり、いずれの部位を用いてもよい。トランス型ポリイソプレノイドを多く含む点で、トチュウの種子、果皮(それぞれ約20質量%以上含有)、樹皮(12質量%以上)、および葉(約3質量%)が好適に用いられる。より好ましくは種子および果皮である。トチュウは、生のまま用いてもよいし、乾燥物などの加工物を用いてもよい。特にトチュウの種子および果皮として、トチュウの搾油残物を用いることが可能であり、このことは、廃棄物の有効利用の観点から好適である。
 本発明の方法においては、まず、上記トチュウを生物学的に腐朽させる。すなわち、トチュウと、トチュウの組織構造を崩壊され得る生物とを接触させる。本発明において、腐朽とは、トチュウが原形の状態ではあるが、白色腐朽菌などの生物に侵食されて手で接触した場合にトチュウの組織構造が容易に崩壊する状態をいう。この腐朽工程により、トチュウの組織構造を崩壊させ、その後の洗浄工程などの物理的作用によってトチュウ由来のバイオポリマーと組織との分離が容易になる。
 上記トチュウの組織構造を崩壊させ得る生物は、トチュウ組織、細胞、または細胞内成分(代謝産物など)を腐食・分解できる生物であればよく、特に制限されない。例えば、白色腐朽菌、褐色腐朽菌、軟腐朽菌などの腐朽菌類(真菌、粘菌などを含む)、微生物群(枯草菌、放線菌など)、および昆虫群(シロアリ、ダニなど)が挙げられる。これらの生物は単独で用いてもよく、あるいは2種以上を組み合わせて用いてもよい。例えば、真菌、粘菌、放線菌などの複合菌叢として腐葉土を用いてもよい。このような腐葉土は、例えば、クスノキ、アラカシ、シイ、タブなどの広葉樹林の表土と下層植生との間で生じ得る。本発明では、トチュウの組織を効率的に腐食し得る点で、および入手容易な点で、腐葉土を用いることが好ましい。
 トチュウと、トチュウの組織構造を崩壊させ得る生物との割合は、腐朽処理時間などを考慮して適宜設定され得る。例えば、腐葉土を用いる場合、腐葉土1質量部に対して、トチュウ(果皮)を30000質量部の割合で接触させることも可能である。接触方法としては、例えば、網袋などに入れたトチュウを、腐葉土中に埋没させる方法、網袋などに入れた腐葉土を、トチュウの搾油残渣(種子および果皮)内に投入する方法、腐葉土を水洗して得られる洗浄水をトチュウに給水する方法などが挙げられる。
 トチュウと、トチュウの組織構造を崩壊させ得る生物との接触時間および温度についても特に制限されない。接触温度は、生物が生存し得る温度範囲であればよい。接触時間は、生物およびトチュウの量、接触温度などに応じて適宜設定される。例えば、広葉樹林の腐葉土を利用して広葉樹林の林床でトチュウ果皮を腐朽させる場合、2週間~3カ月間、好ましくは1カ月~2カ月間の腐朽期間を要する。
 次いで、得られるトチュウ分解産物を洗浄する。洗浄することによって、トチュウ分解産物中に含まれる組織塊、細胞乾燥物、一次代謝物、二次代謝物などの付着物をトチュウ由来のポリマーから除去し得る。洗浄には、例えば、水、界面活性剤(ツイーン(登録商標)など)を含む水溶液、ポリマーを溶解しない極性溶媒(エタノール、メタノール、ブタノールなど)が用いられる。コストの面および環境の観点から、好ましくは水である。
 洗浄は、付着物が除去されればよく、その方法は特に制限されない。例えば、水洗および揉粘を適宜(例えば、2~10回、好ましくは2~6回)繰り返すことによって行われる。付着物を効率的に除去する観点から、高圧下、すなわち常圧(10Pa)を超える圧力下で行うことが好ましい。例えば、高圧式洗浄機を用いて、吐出圧力0.1~15MPa、好ましくは2~8MPa、および吐出水量300~400L/h、好ましくは370L/hにて行われる。高圧水洗を行う場合、水洗および揉粘を繰り返して行う場合に比べて、短時間で高純度のトチュウ由来のポリマーを得ることができる。
 洗浄後、さらにアルカリ処理を行ってもよい。アルカリ処理を行うことによって、リグニン、フェノールなどが容易に除去され、さらなる精製が可能である。アルカリ処理は、具体的には、洗浄したトチュウ分解産物を0.1~4Nの水酸化ナトリウム水溶液などでさらに洗浄することによって行われる。
 上記のように、腐朽工程および洗浄工程を経ることによって、トチュウ由来のバイオポリマーが得られる。トチュウの乾燥物から得られるバイオポリマーの収率は、通常、20%以上、好ましくは22~35%程度である。
 本発明のトチュウ由来のバイオポリマーは、トランス型イソプレノイドを主成分として含み、必要に応じてセルロースを含み得る。本発明のトチュウ由来のバイオポリマー中のトランス型イソプレノイドの含有量は、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、さらになお好ましくは90質量%以上、最も好ましくは95質量%以上である。100質量%であってもよい。
 本発明のトチュウ由来のバイオポリマー中にセルロースが含まれる場合、本発明のバイオポリマーは、トランス型イソプレノイドとセルロースとの混合ゴムである。この場合、トランス型イソプレノイドとセルロースとの割合は、通常、5:5、好ましくは6:4以上8:2、好ましくは7:3以下の質量構成比である。このような混合ゴムは、例えば、洗浄工程において、水洗および揉粘を行った後、アルカリ処理を行うことによって得られる。
 本発明のトチュウ由来のバイオポリマーの重量平均分子量は、1×10~1×10、好ましくは1×10~1×10、より好ましくは1×10~1×10である。このような高分子のバイオポリマーは、固形のエラストマー特性を有し、工業原料として有用である。特に高圧洗浄により得られるバイオポリマーは、繊維状の形態であり、繊維の融合箇所が存在する。
 本発明のトチュウ由来のバイオポリマーは、硬質ゴムであり、表面硬度が高く、熱可塑性、電気絶縁性、耐酸性、耐アルカリ性などの種々の優れた性質を有している。本発明のトチュウ由来のバイオポリマーは、例えば、自動車産業、家電基板、燃料電池、絶縁性薄膜、免震性素材、防音素材、バイオ燃料などの幅広い分野に利用され得る。
 本発明のトチュウ由来のバイオポリマーは、さらに加工することにより、トチュウ由来のバイオポリマー加工製品が得られる。このような加工によりトチュウ由来のバイオポリマーの改質が可能であり、例えば、滑らかでかつ肌触りがよいポリマーが得られる。加工は、例えば、溶媒溶解加工、熱溶解加工などが行われる。溶媒溶解加工は、例えば、トチュウ由来のバイオポリマーをトルエン、クロロホルム、ホルムアルデヒドなどの溶媒に溶解し、型に入れて乾燥させることによって行われる。熱溶解加工は、例えば、トチュウ由来のバイオポリマーを75~130℃にて5分以上加熱して成形することによって行われる。
 (実施例1)
 1kgのトチュウ由来の搾油残物(トチュウ種子および果皮を含む)を網袋(ナイロンメッシュ2mm角の袋)に入れ、広葉樹林(クスノキ、シイ、タブなど)の腐葉層(地上から約5cmの深さ)に埋没させ、2カ月間放置した。網袋の中のトチュウが腐朽していることを手で触って容易に崩壊することにより確認した後、水洗し、トチュウゴム粗精製物を得た。
 さらに、この粗精製物を吐出圧力0.2~0.9MPaおよび吐出水量370L/hの条件で水洗し、トチュウゴムの精製物を得た(トチュウゴム精製物1とする)。このトチュウゴムの精製物1の収量は、0.3kgであり、収率は約30%であった。なお、トチュウゴム粗精製物からトチュウゴム精製物を得るのに要した作業時間は、約1時間であった。
 次いで、得られたトチュウゴム粗精製物およびトチュウゴム精製物1について走査型電子顕微鏡(SEM)にて観察した。トチュウゴム粗精製物の走査型電子顕微鏡写真を図1に、高圧水洗後のトチュウゴム精製物1の走査型電子顕微鏡写真を図2~図4に示す。
 図1の高圧水洗前のトチュウゴム粗精製物は、図2のトチュウ精製物1に比べて付着物が多いことから、高圧水洗により付着物を容易に除去できることが明らかになった。図2および図3に示す走査型電子顕微鏡写真から、得られたトチュウゴム精製物1は長さ約1μm~1mm、幅0.5~40μmの繊維状であることがわかる。さらにトチュウゴム精製物1において、繊維融合が観察された(図4参照)。この繊維融合がトチュウゴムの強度を高めていると考えられる。
 さらに、得られたトチュウゴム精製物1の平均分子量をサイズ排除クロマトグラフィー(SEC)にて測定したところ、数平均分子量(Mn)が6.6×10、重量平均分子量(Mw)が1.25×10、そして多分散度(Mw/Mn)が1.9であった。
 得られたトチュウゴム精製物1について、H-NMR分析を行ったところ、図5に示すような夾雑物の少ない高純度(約95%以上)のトランス型イソプレノイドであることが確認できた。
 (実施例2)
 実施例1で調製したトチュウゴム粗精製物に対して、水洗および揉粘を6回繰り返して付着物を除去した。さらに、1Nの水酸化ナトリウム水溶液で加水分解してフェノールを除去した。得られたトチュウゴム精製物(トチュウゴム精製物2とする)の収率は約29%であった。
 トチュウゴム精製物2を、分液ロートに入れ、クロロホルムを用いて分配した。得られたクロロホルム溶出物および残渣の重量を測定し、トチュウゴム精製物2中のトチュウゴム含量およびセルロース含量をそれぞれ求めたところ、トチュウゴム(トランス型イソプレノイド)が約80質量%、およびセルロースが約20質量%であった。
 (実施例3)
 実施例1で得られた100gのトチュウゴム精製物1を、300mLのトルエンに溶解した後、この溶液を用いてシートを形成した(シート1とする)。このシート1の表面は非常に滑らかであり、肌触りのよいものであった。シート1をさらに走査型電子顕微鏡(SEM)にて観察した。シート1の走査型電子顕微鏡写真を図6に示す。図6から明らかなようにシート1の表面は、多角形の鱗片様構造を有していることがわかる。
 他方、トルエンの代わりにクロロホルムを用いること以外は上記と同様にして得られたシート2についても、シート1同様、多角形の鱗片様構造の表面を有しており、非常に滑らかであり、肌触りがよかった。
 (実施例4)
 実施例1で得られたトチュウゴム精製物1を、75~130℃にて約5分間加熱して溶融した後、この溶融物を圧延してシートを形成した(シート3とする)。このシート3の表面は非常に滑らかであり、肌触りのよいものであった。シート3をさらに走査型電子顕微鏡(SEM)にて観察した。シート3の走査型電子顕微鏡写真を図7に示す。図7から明らかなようにシート3の表面は、多角形の鱗片様構造を有していることがわかる。
 実施例3および4の結果から、本発明のトチュウ由来のポリマーは、有機溶媒処理または加熱処理などの加工を行うことによって、形状変化を生じることがわかる。このようなポリマーは、工業製品としての種々の分野に利用できる。
 本発明によれば、トチュウを生物学的に腐朽させてトチュウ分解産物を得、このトチュウ分解産物を洗浄することのみによってトチュウ由来のバイオポリマーを得ることができる。本発明の方法は、従来の抽出方法に比べて、熱や有機溶媒を使用しないので、安全かつ簡便であり、環境にも配慮される。また、実際の作業時間も短縮できる。大型の設備を必要としないので、例えば、トチュウの原木を栽培する山間部での作業も可能である。得られるバイオポリマーは、トランス型イソプレノイドを主として含み、比較的高分子量である。そのため、固形のエラストマー特性を有し、工業原料として有用である。さらに、このバイオポリマーを原料保管することにより必要な時期に合わせて供給が可能である。このバイオポリマーは、カーボンニュートラルなポリマーとして自動車産業、家電基板、燃料電池、絶縁性薄膜、免震性素材、防音素材、バイオ燃料などの幅広い分野に利用され得る。さらにこのバイオポリマーを加工することにより、滑らかでかつ肌触りがよいポリマーを得ることも可能である。

Claims (6)

  1.  トチュウを生物学的に腐朽させてトチュウ分解産物を得る工程、および該トチュウ分解産物を洗浄する工程により得られる、トチュウ由来のバイオポリマー。
  2.  前記洗浄が、高圧水洗である、請求項1に記載のバイオポリマー。
  3.  前記トチュウが、トチュウの種子および果皮の少なくとも1つの部位である、請求項1または2に記載のバイオポリマー。
  4.  前記バイオポリマーの重量平均分子量が、1×10~1×10である、請求項1から3のいずれかの項に記載のバイオポリマー。
  5.  トチュウを生物学的に腐朽させてトチュウ分解産物を得る工程、および該トチュウ分解産物を洗浄する工程を包含する、トチュウ由来のバイオポリマーの製造方法。
  6.  請求項1から4のいずれかの項に記載のトチュウ由来のバイオポリマーを加工する工程により得られる、トチュウ由来のバイオポリマー加工製品。
PCT/JP2009/053951 2008-03-14 2009-03-03 トチュウ由来のバイオポリマー WO2009113425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09719731A EP2258729B1 (en) 2008-03-14 2009-03-03 Method for obtaining biopolymer orginating in Eucommia Ulmoides
US12/922,504 US8093338B2 (en) 2008-03-14 2009-03-03 Biopolymer originating in Eucommia ulmoides
CN200980108925.5A CN101970543A (zh) 2008-03-14 2009-03-03 来自杜仲的生物聚合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008065800A JP5554897B2 (ja) 2008-03-14 2008-03-14 トチュウ由来のバイオポリマー
JP2008-065800 2008-03-14

Publications (1)

Publication Number Publication Date
WO2009113425A1 true WO2009113425A1 (ja) 2009-09-17

Family

ID=41065093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053951 WO2009113425A1 (ja) 2008-03-14 2009-03-03 トチュウ由来のバイオポリマー

Country Status (5)

Country Link
US (1) US8093338B2 (ja)
EP (1) EP2258729B1 (ja)
JP (1) JP5554897B2 (ja)
CN (1) CN101970543A (ja)
WO (1) WO2009113425A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755976A (zh) * 2014-01-10 2014-04-30 吉首大学 一种有利于杜仲胶提取的杜仲翅果壳处理方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9858925B2 (en) * 2009-06-05 2018-01-02 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
CN102643610A (zh) * 2011-02-16 2012-08-22 严晓敏 从杜仲果皮中提取天然高分子材料的生产方法
US9637864B2 (en) 2013-04-26 2017-05-02 Pacific Nano Products, Inc. Fibrous structured amorphous silica including precipitated calcium carbonate, compositions of matter made therewith, and methods of use thereof
JP6099481B2 (ja) * 2013-05-28 2017-03-22 日立造船株式会社 抗菌性組成物およびその製造方法
JP6487746B2 (ja) * 2015-03-26 2019-03-20 住江織物株式会社 布帛電極
WO2017002818A1 (ja) * 2015-06-30 2017-01-05 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP6706813B2 (ja) * 2015-06-30 2020-06-10 住友ゴム工業株式会社 膜結合蛋白質を結合させたゴム粒子の製造方法、空気入りタイヤの製造方法及びゴム製品の製造方法
JP6586693B2 (ja) 2015-06-30 2019-10-09 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP6471067B2 (ja) * 2015-08-20 2019-02-13 日立造船株式会社 イソプレン系バイオポリマーに含まれる不純物含量を推定するための方法
JP6557102B2 (ja) * 2015-09-17 2019-08-07 日立造船株式会社 ポリイソプレンの製造方法
JP6646323B2 (ja) 2015-12-24 2020-02-14 日立造船株式会社 ポリ乳酸樹脂組成物およびその製造方法
CN106084252B (zh) * 2016-08-12 2018-08-14 广州存正生物科技有限公司 一种杜仲叶皮中提取杜仲胶的方法
WO2019208028A1 (ja) * 2018-04-27 2019-10-31 日立造船株式会社 樹脂成形用組成物およびそれを用いた樹脂成形体
CN110591188B (zh) * 2019-08-26 2021-12-14 青岛科技大学 一种含有杜仲橡胶的形状记忆高分子材料及其制备方法
CN111808335A (zh) * 2020-07-31 2020-10-23 重庆盾之王安防设备技术研究院有限公司 一种同步增强增韧改性的全生物基弹性体及其制备方法
CN113426156B (zh) * 2021-07-19 2022-08-12 李保刚 一种用杜仲叶大规模连续生产杜仲橡胶的方法
CN113912866A (zh) * 2021-10-08 2022-01-11 吉首大学 一种杜仲胶水相/有机相两相萃取-层析的纯化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100216A (zh) * 1986-01-16 1986-09-10 中国科学院化学研究所 由杜仲叶或皮提取杜仲胶的方法
CN1356153A (zh) * 2000-12-06 2002-07-03 陕西安康志朗生物资源应用研究所 一种杜仲胶和杜仲叶浸出粉的制取方法
JP2004189953A (ja) 2002-12-13 2004-07-08 Hitachi Zosen Corp 杜仲ゴムの抽出方法
CN1948410A (zh) * 2006-11-08 2007-04-18 贵州大学 溶剂循环提取杜仲胶的方法
CN101157827A (zh) * 2007-09-27 2008-04-09 贵州大学 从杜仲叶和皮中提取长丝杜仲胶的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212272A (zh) * 1998-08-31 1999-03-31 贵阳黔人中药材种植发展有限责任公司 从杜仲中提取橡胶粗胶的工艺方法
JP5030377B2 (ja) * 2004-11-08 2012-09-19 ニッタ株式会社 変性ラテックス、及び天然ポリイソプレノイド水素添加物又はその変性体含有製品
JP5090617B2 (ja) * 2004-08-24 2012-12-05 小林製薬株式会社 ポリイソプレンを含有する消臭剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100216A (zh) * 1986-01-16 1986-09-10 中国科学院化学研究所 由杜仲叶或皮提取杜仲胶的方法
CN1356153A (zh) * 2000-12-06 2002-07-03 陕西安康志朗生物资源应用研究所 一种杜仲胶和杜仲叶浸出粉的制取方法
JP2004189953A (ja) 2002-12-13 2004-07-08 Hitachi Zosen Corp 杜仲ゴムの抽出方法
CN1948410A (zh) * 2006-11-08 2007-04-18 贵州大学 溶剂循环提取杜仲胶的方法
CN101157827A (zh) * 2007-09-27 2008-04-09 贵州大学 从杜仲叶和皮中提取长丝杜仲胶的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. AGRIC. FOOD CHEM., vol. 56, 30 August 2008 (2008-08-30), pages 8936 - 43, XP008141344 *
J. BIOSCI. BIOENG., vol. 105, no. 4, 1 May 2008 (2008-05-01), pages 355 - 9, XP022672650 *
See also references of EP2258729A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755976A (zh) * 2014-01-10 2014-04-30 吉首大学 一种有利于杜仲胶提取的杜仲翅果壳处理方法

Also Published As

Publication number Publication date
US8093338B2 (en) 2012-01-10
JP2009221306A (ja) 2009-10-01
EP2258729B1 (en) 2012-10-31
EP2258729A1 (en) 2010-12-08
US20110003958A1 (en) 2011-01-06
EP2258729A4 (en) 2011-12-14
CN101970543A (zh) 2011-02-09
JP5554897B2 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5554897B2 (ja) トチュウ由来のバイオポリマー
Corno et al. Arundo donax L.: a non-food crop for bioenergy and bio-compound production
EP3209700B1 (en) Integrated process for processing and utilising the guayule plant
CN104429706B (zh) 一种可降解漂浮育苗盘及其制造方法
CN101659760B (zh) 一种沼渣纤维地膜及其制造方法
Sampedro et al. Organic matter evolution and partial detoxification in two-phase olive mill waste colonized by white-rot fungi
CN113242694A (zh) 植物生长促进剂组合物、用于制备其的方法及其用途
JP6099481B2 (ja) 抗菌性組成物およびその製造方法
CN103254445A (zh) 一种杜仲胶的精制方法
CN108456643A (zh) 一种降解玉米杆的复合菌剂的制备方法
CN106612727A (zh) 一种棉花种子的处理方法
Rojas-Valencia et al. Isolation of cellulose nanofibrils from coconut waste for the production of sewing thread
Angelini et al. Spanish broom (Spartium junceum L.) as new fiber for biocomposites: the effect of crop age and microbial retting on fiber quality
CN106003311A (zh) 一种黄麻杆的表面防腐处理方法
Gnanasekaran et al. Effect of steam and bleaching treatment on the characteristics of pineapple leaves fibre derived cellulose
CN112913372A (zh) 一种基于氢气的农作物种子质量改良方法
CN114805878B (zh) 一种利用农林废弃物制备可降解生物膜的方法及其应用
KR101031614B1 (ko) 복령 추출물의 제조 방법
Chan et al. Thermal and biodegradability study for garden waste cellulose fibre in thermoplastic starch composite
Hartoyo et al. Peatland plants growth performance of valorized oil palm microfibers infiltrated in chitosan/NPK and chitosan/PMAA/NPK composite
이소윤 et al. Fabrication of Nanofibrous Patch Functionalized with Catechol for Wound Healing
Wibowo et al. Effect of Tithonia diversifolia extract on the biodegradability of the bioplastics in plantation soil (Pengaruh ekstrak Tithonia diversifolia terhadap biodegradabilitas bioplastik di tanah perkebunan)
Yin et al. Rhizosphere priming effects of mature trees: are they determined by mycorrhizal association?
JP2021052741A (ja) 培養材の製造方法、植物の栽培方法、培養土、および苗
RU2216142C1 (ru) Способ предпосевной обработки семян

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108925.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009719731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12922504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE