WO2009110356A1 - セメントキルン抽気ガスの処理システム及び処理方法 - Google Patents

セメントキルン抽気ガスの処理システム及び処理方法 Download PDF

Info

Publication number
WO2009110356A1
WO2009110356A1 PCT/JP2009/053323 JP2009053323W WO2009110356A1 WO 2009110356 A1 WO2009110356 A1 WO 2009110356A1 JP 2009053323 W JP2009053323 W JP 2009053323W WO 2009110356 A1 WO2009110356 A1 WO 2009110356A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
extraction
cement kiln
kiln
Prior art date
Application number
PCT/JP2009/053323
Other languages
English (en)
French (fr)
Inventor
淳一 寺崎
紳一郎 齋藤
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to CN2009801066215A priority Critical patent/CN101959824A/zh
Priority to JP2010501859A priority patent/JPWO2009110356A1/ja
Publication of WO2009110356A1 publication Critical patent/WO2009110356A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Definitions

  • the present invention relates to a processing system and processing method for a cement kiln extraction gas, and in particular, removes organic pollutants contained in the extraction gas extracted from the kiln exhaust gas flow path from the bottom of the cement kiln to the bottom cyclone.
  • a processing system and the like related to a processing system and the like.
  • a chlorine bypass system for extracting a part of combustion gas and removing chlorine from the kiln exhaust gas flow path is used.
  • Chlorine bypass exhaust may also contain persistent organic pollutants (POPs) such as dioxins (PCDD, PCDF, co-PCB), polychlorinated biphenyls (PCBs), and volatile organic pollutants (VOC).
  • POPs persistent organic pollutants
  • PCDD dioxins
  • PCDF polychlorinated biphenyls
  • VOC volatile organic pollutants
  • the present invention has been made in view of the above problems in the prior art, and minimizes poisoning of the catalyst by acid gas when purifying the cement kiln extraction gas using a catalyst device. Meanwhile, an object is to efficiently remove organic pollutants contained in the extracted gas.
  • the present invention is a cement kiln extraction gas processing system, and an extraction means for extracting a part of combustion gas from a kiln exhaust gas passage from the bottom of the cement kiln to the lowermost cyclone.
  • a first heat exchanger that recovers heat while cooling the extraction gas extracted by the extraction unit, a separation unit that separates dust from the extraction gas cooled by the first heat exchanger, and the first
  • a second heat exchanger that heats the extraction gas from which the dust has been separated using heat recovered by the heat exchanger
  • a catalyst device that removes organic pollutants from the extraction gas heated by the second heat exchanger It is characterized by providing.
  • Organic pollutants refer to residual organic pollutants (POPs) such as dioxins (PCDD, PCDF, co-PCB), polychlorinated biphenyls (PCBs), and volatile organic pollutants (VOC).
  • the poisoning of the catalyst by acidic gas is restrained low. Can do.
  • the cooled extraction gas is reheated by the second heat exchanger, adjusted to a temperature suitable for decomposition of the organic pollutant, and then introduced into the catalyst device, so that the organic pollutant is efficiently removed. Is possible.
  • the extraction gas can be heated by effectively using the recovered heat amount, thereby reducing the operation cost. It is also possible to plan.
  • the separation means can be constituted by a dry dust collector, and is cooled by the first heat exchanger between the dry dust collector and the first heat exchanger.
  • An adding means for adding a desulfurizing agent to the extracted gas can also be provided.
  • the addition means when the addition means is provided, the acidic gas in the extracted gas can be more reliably removed, and the poisoning of the catalyst by the acidic gas can be minimized.
  • the separation means can be constituted by a wet dust collector, whereby the acidic gas in the extraction gas can be more reliably removed, and the catalyst is covered with the acidic gas. Poison can be minimized.
  • the first heat exchanger can be constituted by a corrosion-resistant heat exchanger whose inner wall is subjected to a corrosion-resistant treatment, and a dust collector and the like after the first heat exchanger are also included. Corrosion-resistant treatment can be performed. As the corrosion resistance treatment, a coating such as a fluororesin can be used.
  • the present invention is a method for treating a cement kiln extraction gas, wherein a part of the combustion gas is extracted from a kiln exhaust gas flow path from the bottom of the cement kiln to the bottom cyclone, and the extracted extraction gas is Heat is recovered while cooling with the first heat exchanger, dust is separated from the cooled extracted gas, and the extracted gas from which the dust has been separated is introduced into the second heat exchanger, and the first heat exchanger
  • the heat extracted in step (b) is used for heating, and the heated extraction gas is introduced into the catalyst device to remove organic pollutants from the extraction gas.
  • poisoning of the catalyst by acidic gas can be minimized, and organic pollutants in the chlorine bypass exhaust can be efficiently removed.
  • the extraction gas extracted can be cooled to 200 ° C. or less by the first heat exchanger, and according to this, the sulfur oxide in the extraction gas is efficiently removed. And more heat can be recovered from the first heat exchanger.
  • the minimum of cooling will be about 20 degreeC which is normal temperature.
  • the extraction gas from which the dust has been separated can be heated to 150 ° C. or more and 500 ° C. or less by the second heat exchanger. It is possible to efficiently decompose and remove harmful pollutants in the gas.
  • the temperature of the extraction gas is less than 150 ° C., it is difficult to desire a sufficient decomposition rate of harmful pollutants, and when it is higher than 500 ° C., there is a problem that the catalyst life is adversely affected.
  • the cement kiln extraction gas when the cement kiln extraction gas is purified using the catalyst device, it is possible to minimize the poisoning of the catalyst by the acid gas, and the organic contamination contained in the extraction gas. Substances can be removed efficiently.
  • FIG. 1 shows a first embodiment of a cement kiln extraction gas processing system according to the present invention.
  • This processing system 1 is roughly composed of a gas extraction unit 2 and a gas processing unit 3.
  • the gas extraction unit 2 is a facility for extracting a part of the combustion gas from the kiln exhaust gas flow path from the bottom of the cement kiln 4 to the lowermost cyclone (not shown).
  • the gas extraction unit 2 separates a probe 5 for extracting combustion gas, a cooling fan 6 for supplying cold air into the probe 5 to quench the extraction gas G1, and coarse dust D1 contained in the extraction gas G1. It is composed of a cyclone 10 as a classifier.
  • the gas processing unit 3 is a facility for removing harmful substances in the extracted gas.
  • the gas processing unit 3 collects the first heat exchanger 11 that cools the extraction gas G2 discharged from the cyclone 10 and the fine dust D2 in the extraction gas G2 that is cooled by the first heat exchanger 11.
  • Bag filter 12, a dust tank 13 for collecting the fine dust D2 discharged from the first heat exchanger 11 and the bag filter 12, an induction fan 16 for inducing the exhaust gas G3 of the bag filter 12, and an induction fan 16 includes a second heat exchanger 17 that heats the exhaust gas G3 attracted by 16, a catalyst device 18 that removes organic pollutants from the exhaust gas G4 heated by the second heat exchanger 17, and the like.
  • the first heat exchanger 11 is provided for cooling the extraction gas G2 and removing the acid gas in the extraction gas G2.
  • cooling the extraction gas G2 it is preferable to cool it to 200 ° C. or less, thereby promoting the reaction between calcium and sulfur contained in the extraction gas and removing sulfur oxides (SOx). Is possible.
  • the blowing device 14 may be installed on the pipe line 11a connecting the first heat exchanger 11 and the bag filter 12, and a desulfurizing agent may be added as necessary.
  • the desulfurizing agent slaked lime, quick lime, calcined cement material (cement material separated from the lowermost cyclone of the preheater, etc.), coal ash or the like can be used.
  • the corrosion-resistant heat exchanger by which coating, such as a fluororesin, was given to the 1st heat exchanger 11 at the inner wall.
  • the second heat exchanger 17 is provided to reheat the exhaust gas G3 in the front stage of the catalyst device 18 and adjust the temperature of the exhaust gas G3 to a temperature suitable for the catalyst activity. Between the 2nd heat exchanger 17 and the 1st heat exchanger 11, the connecting pipe line 17a for circulating a heat medium is provided, and the 2nd heat exchanger 17 is the 1st heat exchange.
  • the exhaust gas G3 is heated using the heat recovered by the vessel 11. When the exhaust gas G3 is heated, it is preferably heated to 150 ° C. or higher and 500 ° C. or lower, whereby the organic pollutant removal efficiency in the catalyst device 18 can be improved.
  • a heater (not shown) or the like may be installed on the connecting pipe line 17a to supplementarily heat the heat medium.
  • the catalyst device 18 is provided for decomposing and removing organic pollutants such as persistent organic pollutants (POPs) and volatile organic pollutants (VOC) contained in the exhaust gas G4.
  • the catalyst device 18 is configured in a honeycomb shape, and can be configured to be relatively small even when a large amount of exhaust gas is processed.
  • any catalyst capable of removing POPs and VOC such as an oxide catalyst such as a titanium / vanadium catalyst, a noble metal catalyst having a noble metal selected from platinum, palladium, rhodium and ruthenium, can be disposed.
  • the upstream titanium / vanadium catalyst efficiently decomposes NOx and the like in addition to POPs and VOC, and the downstream side.
  • a platinum-based catalyst can efficiently remove CO, odor, and the like.
  • the titanium / vanadium catalyst means a catalyst essentially including titanium (Ti) and vanadium (V). This catalyst exhibits a high function for decomposing and removing organic pollutants, and has a high decomposition activity (denitration activity) of NOx, which is a harmful substance.
  • the extraction gas G1 exhausted from the probe 5 is separated into the coarse powder D1 and the gas G2 containing the fine powder D2, and the coarse powder D1 is returned to the cement kiln system while being 250 to 600 ° C.
  • the extracted gas G2 is introduced into the first heat exchanger 11.
  • the sulfur content (SOx) and the acid gas are removed while cooling the extraction gas G2 to 200 ° C. or less.
  • the bag filter 12 the fine powder D2 in the gas G2 is collected and collected in the dust tank 13 as chlorine bypass dust.
  • the exhaust gas G3 of the bag filter 12 is attracted by the attracting fan 16 and reheated to 150 ° C. or more and 500 ° C. or less in the second heat exchanger 17.
  • the heated exhaust gas G4 is introduced into the catalyst device 18, and organic pollutants such as POPs and VOC are decomposed to purify the exhaust gas G4.
  • the exhaust gas G5 purified by the catalyst device 18 may be released to the atmosphere via an exhaust fan (not shown), or may be returned to the cement process for heat recovery.
  • the extraction gas G1 extracted by the probe 5 is cooled by the first heat exchanger 11, and the acidic gas in the extraction gas G1 is removed. 18 poisoning can be suppressed to a low level.
  • the cooled exhaust gas G3 is reheated by the second heat exchanger 17 and adjusted to a temperature suitable for the decomposition of the organic pollutant, and then introduced into the catalyst device 18, so that the organic pollutant is efficiently removed. It becomes possible.
  • the heat recovered by the first heat exchanger 11 is used when the exhaust gas G3 is heated, the exhaust gas G3 can be heated by effectively using the recovered heat amount, thereby reducing the operating cost. It becomes possible.
  • this processing system 20 includes a first heat exchanger 11 that cools the extraction gas G2 in the gas processing unit 3, and a wet extraction gas G2 that is cooled by the first heat exchanger 11.
  • Wet dust collector 21 that collects dust
  • an induction fan 16 that attracts exhaust gas G3 of wet dust collector 21
  • a second heat exchanger 17 that heats exhaust gas G3 attracted by induction fan 16, and a second heat exchanger 17
  • the structure of the gas extraction part 2 is the same as the case of the processing system 1 of FIG.
  • the wet dust collector 21 is provided to collect water-soluble components and dust contained in the extraction gas G2 cooled by the first heat exchanger 11, and includes dust and water-soluble chlorine containing sulfur oxide (SOx) and the like. Collect the compound.
  • a circulating liquid tank 22 is provided below the wet dust collector 21, and a mist separator 23 is disposed on the downstream side of the circulating liquid tank 22.
  • the extraction gas G1 extracted by the probe 5 is cooled to 200 ° C. or less by the first heat exchanger 11, and after removing SOx contained in the extraction gas G2, the extraction gas G1 is further extracted by the wet dust collector 21. Wet dust collection of SOx remaining in the gas G2. Therefore, the acidic gas in the extracted gas G2 can be more reliably removed, and poisoning of the catalyst device 18 by the acidic gas can be minimized.
  • the exhaust gas G3 from the wet dust collector 21 is reheated to 150 ° C. or more and 500 ° C. or less by the second heat exchanger 17, and then the catalyst device 18 is passed through.
  • Organic pollutants such as POPs and VOCs can be efficiently decomposed and removed.
  • the exhaust gas G3 is heated using the heat recovered by the first heat exchanger 11, so that it is possible to reduce the operating cost, as in the first embodiment. The effect of this can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】セメントキルン抽気ガスを触媒を用いて浄化処理するにあたり、酸性ガスによる触媒の被毒を最小限に抑えつつ、抽気ガスに含まれる有機汚染物質を効率的に除去する。 【解決手段】セメントキルン4の窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を抽気するプローブ5と、プローブ5で抽気した抽気ガスG2を冷却しながら熱回収する第1の熱交換器11と、第1の熱交換器11で冷却した抽気ガスG2からダストを分離するバグフィルタ12と、第1の熱交換器11で回収した熱を利用して、ダストを分離した抽気ガスG3を加熱する第2の熱交換器17と、第2の熱交換器17で加熱した抽気ガスG4から有機汚染物質を分解、除去する触媒装置18とを備えるセメントキルン抽気ガスの処理システム1。

Description

セメントキルン抽気ガスの処理システム及び処理方法
 本発明は、セメントキルン抽気ガスの処理システム及び処理方法に関し、特に、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より抽気した抽気ガスに含まれる有機汚染物質等を除去するための処理システム等に関する。
 従来、セメント製造設備におけるプレヒータの閉塞等の問題を引き起こす原因となる塩素、硫黄、アルカリ等の中で、塩素が特に問題となることに着目し、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より、燃焼ガスの一部を抽気して塩素を除去する塩素バイパスシステムが用いられている。
 この塩素バイパスシステムでは、例えば、特許文献1に記載のように、抽気した燃焼ガスを冷却して生成したダストの微粉側に塩素が偏在しているため、ダストを分級機によって粗粉と微粉とに分離し、粗粉をセメントキルン系に戻すとともに、分離された塩化カリウム等を含む微粉(塩素バイパスダスト)を回収していた。
 上記のように、塩素バイパスシステムにおいては、抽気した燃焼ガスから塩素を含むダストを分離して回収するが、ダストを分離した後の抽気ガスには、相当量の硫黄酸化物(SOx)が気体の状態で含まれるため、塩素バイパスからの排気をそのまま大気に放出することはできない。また、塩素バイパス排気には、ダイオキシン類(PCDD、PCDF、co-PCB)、ポリ塩化ビフェニル(PCBs)等の残留性有機汚染物質(POPs)や揮発性有機汚染物質(VOC)が含まれる場合もあり、それらについても適切に処理する必要がある。
国際公開第97/21638号パンフレット
 POPsやVOC等の有機汚染物質を除去する方法の1つとして、触媒を用いて分解処理する方法が知られており、塩素バイパスシステムにおいても、排気路上に触媒装置を設けることにより、塩素バイパス排気から有機汚染物質を除去することが考えられる。
 しかし、塩素バイパス排気中にはSOxに由来する酸性ガスが多量に存在し、これらは触媒を被毒して触媒活性を低下させるため、単に触媒装置を排気路上に設置するのみでは実用化が困難である。また、今後、廃棄物のセメント原料化又は燃料化によるリサイクルが増加し続けると、塩素バイパス排気中のPOPs、VOC成分の含有量の増加が懸念される。このため、将来的には、酸性ガスによる触媒の失活を抑制し、有機汚染物質のより効率的な除去を求められることが予想される。
 そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、セメントキルン抽気ガスを触媒装置を用いて浄化処理するにあたり、酸性ガスによる触媒の被毒を最小限に抑えつつ、抽気ガスに含まれる有機汚染物質を効率的に除去することを目的とする。
 上記課題を解決するため、本発明は、セメントキルン抽気ガスの処理システムであって、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を抽気する抽気手段と、該抽気手段で抽気した抽気ガスを冷却しながら熱回収する第1の熱交換器と、該第1の熱交換器で冷却した抽気ガスからダストを分離する分離手段と、前記第1の熱交換器で回収した熱を利用して該ダストを分離した抽気ガスを加熱する第2の熱交換器と、該第2の熱交換器で加熱した抽気ガスから有機汚染物質を除去する触媒装置とを備えることを特徴とする。尚、有機汚染物質とは、ダイオキシン類(PCDD、PCDF、co-PCB)、ポリ塩化ビフェニル(PCBs)等の残留性有機汚染物質(POPs)や揮発性有機汚染物質(VOC)をいう。
 そして、本発明によれば、抽気手段で抽気した抽気ガスを第1の熱交換器で冷却し、抽気ガス中の酸性ガスを除去するため、酸性ガスによる触媒の被毒を低度に抑えることができる。また、冷却した抽気ガスを第2の熱交換器により再加熱し、有機汚染物質の分解に適した温度に調温してから触媒装置に導入するため、効率的に有機汚染物質を除去することが可能になる。加えて、この際、第1の熱交換器で回収した熱を利用して抽気ガスを加熱するため、回収した熱量を有効に活用して抽気ガスを加熱することができ、運転コストの削減を図ることも可能になる。
 上記セメントキルン抽気ガスの処理システムにおいて、前記分離手段を乾式集塵機により構成することができ、また、該乾式集塵機と前記第1の熱交換器との間に、該第1の熱交換器で冷却した抽気ガスに脱硫剤を添加する添加手段を備えることもできる。特に、添加手段を備えた場合には、抽気ガス中の酸性ガスをより確実に除去することができ、酸性ガスによる触媒の被毒を最小限に抑えることが可能になる。
 上記セメントキルン抽気ガスの処理システムにおいて、前記分離手段を湿式集塵機により構成することができ、これによれば、抽気ガス中の酸性ガスをより確実に除去することができ、酸性ガスによる触媒の被毒を最小限に抑えることができる。
 上記セメントキルン抽気ガスの処理システムにおいて、内壁に耐食処理が施された耐食型熱交換器により前記第1の熱交換器を構成することができ、第1の熱交換器以降の集塵機等についても耐食処理を施すことができる。尚、耐食処理としては、フッ素樹脂等のコーティングを用いることができる。
 また、本発明は、セメントキルン抽気ガスの処理方法であって、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を抽気し、該抽気した抽気ガスを第1の熱交換器で冷却しながら熱回収し、該冷却した抽気ガスからダストを分離し、該ダストを分離した抽気ガスを第2の熱交換器に導入し、前記第1の熱交換器で回収した熱を利用して加熱し、該加熱した抽気ガスを触媒装置に導入し、該抽気ガスから有機汚染物質を除去することを特徴とする。本発明によれば、前記発明と同様に、酸性ガスによる触媒の被毒を最小限に抑えることができるとともに、塩素バイパス排気中の有機汚染物質を効率的に除去することが可能になる。
 上記セメントキルン抽気ガスの処理方法において、前記第1の熱交換器で、前記抽気した抽気ガスを200℃以下に冷却することができ、これによれば、抽気ガス中の硫黄酸化物を効率的に除去することができるとともに、第1の熱交換器からより多くの熱を回収することもできる。尚、冷却の下限は、常温である20℃程度となる。
 上記セメントキルン抽気ガスの処理方法において、前記第2の熱交換器で、前記ダストを分離した抽気ガスを150℃以上500℃以下に加熱することができ、これによれば、触媒装置において、抽気ガス中の有害汚染物質を効率的に分解、除去することが可能になる。尚、抽気ガスの温度が150℃未満の場合には、有害汚染物質の十分な分解率を望むことが難しく、また、500℃より高い場合には、触媒寿命に悪影響を及ぼすという不具合がある。
 以上のように、本発明によれば、セメントキルン抽気ガスを触媒装置を用いて浄化処理するにあたって、酸性ガスによる触媒の被毒を最小限に抑えることができるとともに、抽気ガスに含まれる有機汚染物質を効率的に除去することが可能になる。
  次に、本発明の実施の形態について、図面を参照しながら説明する。
 図1は、本発明にかかるセメントキルン抽気ガスの処理システムの第1の実施形態を示し、この処理システム1は、大別して、ガス抽気部2と、ガス処理部3とで構成される。
 ガス抽気部2は、セメントキルン4の窯尻から最下段サイクロン(不図示)に至るまでのキルン排ガス流路より、燃焼ガスの一部を抽気するための設備である。このガス抽気部2は、燃焼ガスを抽気するプローブ5と、プローブ5内に冷風を供給して抽気ガスG1を急冷する冷却ファン6と、抽気ガスG1に含まれるダストの粗粉D1を分離する分級機としてのサイクロン10等から構成される。
 ガス処理部3は、抽気ガス中の有害物質を除去するための設備である。このガス処理部3は、サイクロン10から排出された抽気ガスG2を冷却する第1の熱交換器11と、第1の熱交換器11で冷却された抽気ガスG2中の微粉ダストD2を集塵するバグフィルタ12と、第1の熱交換器11及びバグフィルタ12から排出された微粉ダストD2を回収するダストタンク13と、バグフィルタ12の排ガスG3を誘引するための誘引ファン16と、誘引ファン16により誘引された排ガスG3を加熱する第2の熱交換器17と、第2の熱交換器17で加熱された排ガスG4から有機汚染物質を除去する触媒装置18等から構成される。
 第1の熱交換器11は、抽気ガスG2を冷却して抽気ガスG2中の酸性ガスを除去するために備えられる。抽気ガスG2の冷却に際しては、200℃以下にまで冷却することが好ましく、これにより、抽気ガス中に含まれるカルシウム分と硫黄分との反応を促進し、硫黄酸化物(SOx)を除去することが可能になる。尚、脱硫作用が不足する場合には、第1の熱交換器11とバグフィルタ12を連結する管路11a上に吹き込み装置14を設置し、必要に応じて脱硫剤を添加してもよい。脱硫剤としては、消石灰、生石灰、仮焼したセメント原料(プレーヒータの最下段サイクロン等から分取したセメント原料)、石炭灰等を用いることができる。また、第1の熱交換器11には、酸性ガスに対する耐食性を向上させるため、フッ素樹脂等のコーティングが内壁に施された耐食型熱交換器を用いることが好ましい。
 第2の熱交換器17は、触媒装置18の前段で排ガスG3を再加熱し、排ガスG3の温度を触媒活性に適した温度に調温するために備えられる。第2の熱交換器17と第1の熱交換器11との間には、熱媒を循環させるための連絡管路17aが設けられ、第2の熱交換器17は、第1の熱交換器11で回収した熱を利用して排ガスG3を加熱する。排ガスG3の加熱に際しては、150℃以上500℃以下に加熱することが好ましく、これにより、触媒装置18での有機汚染物質の除去効率を向上させることができる。尚、第2の熱交換器17での熱量が不足する場合には、連絡管路17a上にヒータ(不図示)等を設置し、熱媒を補助的に加熱してもよい。
 触媒装置18は、排ガスG4に含まれる残留性有機汚染物質(POPs)や揮発性有機汚染物質(VOC)等の有機汚染物質を分解して除去するために備えられる。この触媒装置18は、ハニカム状に構成され、大量の排ガスを処理する場合でも比較的小型に構成することができる。触媒装置18では、チタン・バナジウム触媒等の酸化物系触媒や、白金、パラジウム、ロジウム及びルテニウムから選択された貴金属を有する貴金属系触媒等、POPs、VOCを除去できる何れの触媒を配置できる。また、上流側に酸化物系触媒、下流側に貴金属系触媒を備えるように構成することによって、上流側のチタン・バナジウム触媒によってPOPs、VOCに加え、NOxなどを効率よく分解し、下流側の白金系触媒によって、CO、臭気等を効率よく除去することができる。ここで、チタン・バナジウム触媒とは、チタン(Ti)及びバナジウム(V)を必須とする触媒を意味する。この触媒は、有機汚染物質の分解除去に高い機能を発揮する他、有害物質であるNOxの高い分解活性(脱硝活性)を有する。
 次に、上記処理システム1の動作について、図1を参照しながら説明する。
 セメントキルン4の窯尻から最下段サイクロンに至るまでのキルン排ガス流路より、燃焼ガスの一部をプローブ5によって抽気すると同時に、冷却ファン6からの冷風によって、塩素化合物の融点である600~700℃以下にまで急冷する。次いで、サイクロン10において、プローブ5から排気される抽気ガスG1を、粗粉D1と、微粉D2を含むガスG2とに分離し、粗粉D1をセメントキルン系に戻す一方で、250~600℃の抽気ガスG2を第1の熱交換器11に導入する。
 そして、第1の熱交換器11において、抽気ガスG2を200℃以下にまで冷却しながら硫黄分(SOx)及び酸性ガスを除去する。次いで、バグフィルタ12において、ガスG2中の微粉D2を集塵し、塩素バイパスダストとしてダストタンク13に回収する。次に、バグフィルタ12の排ガスG3を誘引ファン16により誘引し、第2の熱交換器17において、150℃以上500℃以下に再加熱する。その後、加熱した排ガスG4を触媒装置18に導入し、POPsやVOC等の有機汚染物質を分解して排ガスG4を浄化する。尚、触媒装置18により浄化処理された排ガスG5は、排気ファン(不図示)を介して大気に放出してもよいし、熱回収のためにセメント工程内に戻してもよい。
 以上のように、本実施の形態においては、プローブ5により抽気された抽気ガスG1を第1の熱交換器11で冷却し、抽気ガスG1中の酸性ガスを除去するため、酸性ガスによる触媒装置18の被毒を低度に抑えることができる。また、冷却した排ガスG3を第2の熱交換器17により再加熱し、有機汚染物質の分解に適した温度に調温した後に触媒装置18に導入するため、効率的に有機汚染物質を除去することが可能になる。加えて、排ガスG3を加熱する際、第1の熱交換器11で回収した熱を利用するため、回収した熱量を有効に活用して排ガスG3を加熱することができ、運転コストの削減を図ることも可能になる。
 次に、本発明にかかるセメントキルン抽気ガスの処理システムの第2の実施形態について、図2を参照しながら説明する。尚、この図において、図1の処理システム1と同一の構成要素については、同一符号を付し、その説明を省略する。
 同図に示すように、この処理システム20は、ガス処理部3において、抽気ガスG2を冷却する第1の熱交換器11と、第1の熱交換器11で冷却された抽気ガスG2を湿式集塵する湿式集塵機21と、湿式集塵機21の排ガスG3を誘引する誘引ファン16と、誘引ファン16により誘引された排ガスG3を加熱する第2の熱交換器17と、第2の熱交換器17で加熱された排ガスG4から有機汚染物質を除去する触媒装置18とを備える。尚、ガス抽気部2の構成は、図1の処理システム1の場合と同一である。
 湿式集塵機21は、第1の熱交換器11で冷却された抽気ガスG2に含まれる水溶性成分及びダストを捕集するために備えられ、硫黄酸化物(SOx)等を含むダスト及び水溶性塩素化合物を捕集する。湿式集塵機21の下方には、循環液槽22が設けられ、また、循環液槽22の下流側には、ミストセパレータ23が配置される。
 上記処理システム20では、プローブ5により抽気した抽気ガスG1を第1の熱交換器11で200℃以下に冷却し、抽気ガスG2に含まれるSOxを除去した後に、さらに、湿式集塵機21において、抽気ガスG2中に残留するSOxを湿式集塵する。従って、より確実に抽気ガスG2中の酸性ガスを除去することができ、酸性ガスによる触媒装置18の被毒を最小限に抑えることができる。
 また、湿式集塵機21により湿式集塵した後は、湿式集塵機21からの排ガスG3を第2の熱交換器17で150℃以上500℃以下に再加熱し、その後、触媒装置18を通過させるため、POPsやVOC等の有機汚染物質を効率的に分解、除去することができる。さらに、第2の熱交換器17において、第1の熱交換器11で回収した熱を利用して排ガスG3を加熱するため、運転コストの削減を図ることもでき、第1の実施形態と同様の作用効果を得ることができる。
本発明にかかるセメントキルン抽気ガスの処理システムの第1の実施形態を示すフローチャートである。 本発明にかかるセメントキルン抽気ガスの処理システムの第2の実施形態を示すフローチャートである。
符号の説明
1 セメントキルン抽気ガスの処理システム
2 ガス抽気部
3 ガス処理部
4 セメントキルン
5 プローブ
6  冷却ファン
10 サイクロン
11 第1の熱交換器
11a 管路
12 バグフィルタ
13 ダストタンク
14 吹き込み装置
16 誘引ファン
17 第2の熱交換器
17a 連絡管路
18 触媒装置
20 セメントキルン抽気ガスの処理システム
21 湿式集塵機
22 循環液層
23 ミストセパレータ

Claims (7)

  1.  セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を抽気する抽気手段と、
     該抽気手段で抽気した抽気ガスを冷却しながら熱回収する第1の熱交換器と、
     該第1の熱交換器で冷却した抽気ガスからダストを分離する分離手段と、
     前記第1の熱交換器で回収した熱を利用して該ダストを分離した抽気ガスを加熱する第2の熱交換器と、
     該第2の熱交換器で加熱した抽気ガスから有機汚染物質を除去する触媒装置とを備えることを特徴とするセメントキルン抽気ガスの処理システム。
  2.  前記分離手段は、乾式集塵機であることを特徴とする請求項1に記載のセメントキルン抽気ガスの処理システム。
  3.  前記第1の熱交換器と前記乾式集塵機との間に、該第1の熱交換器で冷却した抽気ガスに脱硫剤を添加する添加手段を備えることを特徴とする請求項2に記載のセメントキルン抽気ガスの処理システム。
  4.  前記分離手段は、湿式集塵機であることを特徴とする請求項1に記載のセメントキルン抽気ガスの処理システム。
  5.  セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を抽気し、
     該抽気した抽気ガスを第1の熱交換器で冷却しながら熱回収し、
     該冷却した抽気ガスからダストを分離し、
     該ダストを分離した抽気ガスを第2の熱交換器に導入し、前記第1の熱交換器で回収した熱を利用して加熱し、
     該加熱した抽気ガスを触媒装置に導入し、該抽気ガスから有機汚染物質を除去することを特徴とするセメントキルン抽気ガスの処理方法。
  6.  前記第1の熱交換器において、前記抽気した抽気ガスを200℃以下に冷却することを特徴とする請求項5に記載のセメントキルン抽気ガスの処理方法。
  7.  前記第2の熱交換器において、前記ダストを分離した抽気ガスを150℃以上500℃以下に加熱することを特徴とする請求項5又は6に記載のセメントキルン抽気ガスの処理方法。
PCT/JP2009/053323 2008-03-07 2009-02-25 セメントキルン抽気ガスの処理システム及び処理方法 WO2009110356A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801066215A CN101959824A (zh) 2008-03-07 2009-02-25 水泥窑抽出气体之处理系统及处理方法
JP2010501859A JPWO2009110356A1 (ja) 2008-03-07 2009-02-25 セメントキルン抽気ガスの処理システム及び処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008057818 2008-03-07
JP2008-057818 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009110356A1 true WO2009110356A1 (ja) 2009-09-11

Family

ID=41055916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053323 WO2009110356A1 (ja) 2008-03-07 2009-02-25 セメントキルン抽気ガスの処理システム及び処理方法

Country Status (5)

Country Link
JP (1) JPWO2009110356A1 (ja)
KR (1) KR20110000620A (ja)
CN (2) CN103933836A (ja)
TW (1) TW200940158A (ja)
WO (1) WO2009110356A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298677A (ja) * 2008-06-17 2009-12-24 Taiheiyo Cement Corp セメントキルン抽気ガスの処理システム及び処理方法
CN102102944A (zh) * 2009-09-07 2011-06-22 厦门热工环保系统工程有限公司 一种回转窑烟气余热回收方法
JP2011195339A (ja) * 2010-03-17 2011-10-06 Taiheiyo Cement Corp 燃焼ガス抽気プローブ及びその運転方法
JP2012140313A (ja) * 2011-01-06 2012-07-26 Taiheiyo Cement Corp 塩素バイパスシステム及び塩素バイパス抽気ガスの処理方法
JP2012171098A (ja) * 2011-02-17 2012-09-10 Seiko Epson Corp 液体噴射装置
WO2015179892A1 (de) * 2014-05-27 2015-12-03 Scheuch Gmbh Vorrichtung zur herstellung von zementklinker
JP2016023108A (ja) * 2014-07-23 2016-02-08 太平洋セメント株式会社 セメントキルン排ガス処理装置及び処理方法
JP2016022439A (ja) * 2014-07-23 2016-02-08 太平洋セメント株式会社 セメントキルン排ガス処理装置及び処理方法
CN106524773A (zh) * 2011-01-31 2017-03-22 太平洋水泥株式会社 氯旁通系统和氯旁通抽气气体的处理方法
JP2017060905A (ja) * 2015-09-24 2017-03-30 太平洋セメント株式会社 セメントキルン排ガス処理装置及び処理方法
WO2019072957A1 (de) * 2017-10-12 2019-04-18 Thyssenkrupp Industrial Solutions Ag Verfahren und anlage zur herstellung von zementklinker oder eines anderen mineralischen produkts
EP3513885A1 (en) * 2013-06-07 2019-07-24 Milli Spanovic Facility and procedure for treatment of a solidificate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102243955B1 (ko) * 2013-09-25 2021-04-26 다이헤이요 세멘토 가부시키가이샤 추기 냉각 장치, 염소 바이패스 시스템, 시멘트 킬른 추기 가스의 처리 방법 및 시멘트 소성 장치
CN103644744B (zh) * 2013-12-25 2015-07-22 巨石集团有限公司 一种窑炉烟气余热梯级利用方法
CN105062573A (zh) * 2015-09-21 2015-11-18 七台河宝泰隆煤化工股份有限公司 一种用于旋风除尘器及废热锅炉集中除尘的装置
KR101985068B1 (ko) * 2017-02-17 2019-05-31 두산중공업 주식회사 열교환기 분진오염 방지 시스템
CN116147371A (zh) * 2023-02-22 2023-05-23 中国中材国际工程股份有限公司 一种提高水泥工业化石燃料替代率的系统及方法
CN116688745B (zh) * 2023-08-08 2023-10-31 杭州尚善若水环保科技有限公司 一种组合脱硫剂及其垃圾焚烧系统脱硫提标改造的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219335A (ja) * 2001-01-30 2002-08-06 Babcock Hitachi Kk 排ガス処理装置
WO2005005025A1 (ja) * 2003-07-10 2005-01-20 Taiheiyo Cement Corporation 燃焼排ガス処理装置及び処理方法
WO2006073083A1 (ja) * 2005-01-06 2006-07-13 Taiheiyo Cement Corporation セメントキルン燃焼排ガス処理装置及び処理方法
JP2006239492A (ja) * 2005-03-01 2006-09-14 Taiheiyo Cement Corp 熱回収装置及び塩素バイパス設備

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255205C (zh) * 2003-10-31 2006-05-10 中国石油化工股份有限公司 一种高浓度有机废气的净化方法
CN1242839C (zh) * 2003-12-05 2006-02-22 杭州天人环保设备有限公司 烘房废气净化处理和能源回收利用的装置
US7351392B2 (en) * 2004-03-03 2008-04-01 Shell Oil Company Process for the high recovery efficiency of sulfur from an acid gas stream

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219335A (ja) * 2001-01-30 2002-08-06 Babcock Hitachi Kk 排ガス処理装置
WO2005005025A1 (ja) * 2003-07-10 2005-01-20 Taiheiyo Cement Corporation 燃焼排ガス処理装置及び処理方法
WO2006073083A1 (ja) * 2005-01-06 2006-07-13 Taiheiyo Cement Corporation セメントキルン燃焼排ガス処理装置及び処理方法
JP2006239492A (ja) * 2005-03-01 2006-09-14 Taiheiyo Cement Corp 熱回収装置及び塩素バイパス設備

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298677A (ja) * 2008-06-17 2009-12-24 Taiheiyo Cement Corp セメントキルン抽気ガスの処理システム及び処理方法
CN102102944A (zh) * 2009-09-07 2011-06-22 厦门热工环保系统工程有限公司 一种回转窑烟气余热回收方法
JP2011195339A (ja) * 2010-03-17 2011-10-06 Taiheiyo Cement Corp 燃焼ガス抽気プローブ及びその運転方法
JP2012140313A (ja) * 2011-01-06 2012-07-26 Taiheiyo Cement Corp 塩素バイパスシステム及び塩素バイパス抽気ガスの処理方法
CN106524773A (zh) * 2011-01-31 2017-03-22 太平洋水泥株式会社 氯旁通系统和氯旁通抽气气体的处理方法
JP2012171098A (ja) * 2011-02-17 2012-09-10 Seiko Epson Corp 液体噴射装置
EP3513885A1 (en) * 2013-06-07 2019-07-24 Milli Spanovic Facility and procedure for treatment of a solidificate
WO2015179892A1 (de) * 2014-05-27 2015-12-03 Scheuch Gmbh Vorrichtung zur herstellung von zementklinker
JP2016023108A (ja) * 2014-07-23 2016-02-08 太平洋セメント株式会社 セメントキルン排ガス処理装置及び処理方法
JP2016022439A (ja) * 2014-07-23 2016-02-08 太平洋セメント株式会社 セメントキルン排ガス処理装置及び処理方法
JP2017060905A (ja) * 2015-09-24 2017-03-30 太平洋セメント株式会社 セメントキルン排ガス処理装置及び処理方法
WO2019072957A1 (de) * 2017-10-12 2019-04-18 Thyssenkrupp Industrial Solutions Ag Verfahren und anlage zur herstellung von zementklinker oder eines anderen mineralischen produkts

Also Published As

Publication number Publication date
CN103933836A (zh) 2014-07-23
KR20110000620A (ko) 2011-01-04
TW200940158A (en) 2009-10-01
JPWO2009110356A1 (ja) 2011-07-14
CN101959824A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
WO2009110356A1 (ja) セメントキルン抽気ガスの処理システム及び処理方法
JP5522740B2 (ja) セメントキルン排ガスの処理装置及び処理方法
KR101207958B1 (ko) 시멘트 킬른 연소 배기 가스 처리 장치 및 처리 방법
JP4615443B2 (ja) 燃焼排ガス処理装置及び処理方法
JP5961514B2 (ja) 飛灰循環型排ガス処理方法
JP5877578B2 (ja) 燃焼排ガス処理装置及び処理方法
JP5917190B2 (ja) 排ガス中の水銀回収装置
JP2007039296A (ja) セメント製造装置の排ガスの処理方法及び処理システム
JP2009298677A (ja) セメントキルン抽気ガスの処理システム及び処理方法
JP5068698B2 (ja) セメントキルン抽気ガスの処理システム及び処理方法
JP2014091058A (ja) 排ガス処理装置と排ガス処理方法
JP5808072B2 (ja) セメントキルン抽気ガスの処理システム及び処理方法
JP4124584B2 (ja) 廃棄物処理炉の排ガス中ダイオキシン類除去方法
JP2017057122A (ja) セメントキルン排ガス処理装置及び処理方法
JP5528743B2 (ja) セメントキルン抽気ガスの処理システム及び処理方法
JP2001017833A (ja) 乾式排ガス処理方法及び装置
JP5060776B2 (ja) 排ガスからの水銀回収方法および装置
JP4891887B2 (ja) 白金系触媒装置又はパラジウム系触媒装置を用いた有機ハロゲン化合物を含む廃棄物の加熱処理方法及び加熱処理装置
JPH11239706A (ja) 焼却炉排ガスの集塵方法および装置
JP2012200627A (ja) 塩素バイパス排ガスの処理装置及び処理方法
JP2001272023A (ja) 焼却炉排ガスの処理方法
JP2008093596A (ja) 廃棄物処理設備の排ガス処理装置及び方法
JP2000107564A (ja) 排ガス処理方法及び装置
JP2008023484A (ja) バグフィルタによる乾式脱塩方法
JP2002011329A (ja) 排気ガスの浄化方法及び浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106621.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716462

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010501859

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107017312

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09716462

Country of ref document: EP

Kind code of ref document: A1