WO2009110218A1 - ホエイ蛋白質の改質方法 - Google Patents

ホエイ蛋白質の改質方法 Download PDF

Info

Publication number
WO2009110218A1
WO2009110218A1 PCT/JP2009/000946 JP2009000946W WO2009110218A1 WO 2009110218 A1 WO2009110218 A1 WO 2009110218A1 JP 2009000946 W JP2009000946 W JP 2009000946W WO 2009110218 A1 WO2009110218 A1 WO 2009110218A1
Authority
WO
WIPO (PCT)
Prior art keywords
whey protein
protein solution
shearing
solution
test
Prior art date
Application number
PCT/JP2009/000946
Other languages
English (en)
French (fr)
Inventor
荒瀬寛
鈴木学
浅野祐三
Original Assignee
森永乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森永乳業株式会社 filed Critical 森永乳業株式会社
Priority to DK09717846.1T priority Critical patent/DK2250906T3/en
Priority to US12/865,959 priority patent/US20110003975A1/en
Priority to CN200980107536.0A priority patent/CN101959423B/zh
Priority to NZ587167A priority patent/NZ587167A/en
Priority to EP09717846.1A priority patent/EP2250906B1/en
Priority to KR1020107022199A priority patent/KR101223190B1/ko
Priority to CA2712978A priority patent/CA2712978C/en
Priority to AU2009220682A priority patent/AU2009220682B2/en
Publication of WO2009110218A1 publication Critical patent/WO2009110218A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/08Dairy proteins

Definitions

  • the present invention relates to a method for modifying a whey protein characterized by improving thermal stability, and a whey protein modified by the method.
  • Whey protein is a protein present in milk and is well known as a by-product in the production of cheese and casein. Whey protein is a high-quality protein ingredient and is rich in minerals, so it is used in various foods. In addition to food, it is also used in cosmetics such as shampoos, rinses and creams.
  • Non-patent Document 1 whey proteins are known to have low thermal stability and to be quickly denatured by heating at 70 to 90 ° C.
  • Non-patent Document 1 whey proteins are known to have low thermal stability and to be quickly denatured by heating at 70 to 90 ° C.
  • the temperature range for this heat sterilization usually exceeds the denaturation temperature range of whey protein.
  • the whey protein is denatured by heating in the denaturing temperature range, causing an increase in viscosity, gelation, aggregation, etc., and adversely affects the flavor and appearance of the product, so the whey protein content in the product is limited. It was necessary to replace it with other protein raw materials.
  • whey protein after being denatured in advance by physical treatment or chemical treatment is known. That is, by using a pre-denatured whey protein, the ratio of new heat denaturation of whey protein due to heating at the time of sterilization is reduced, and the effects of viscosity increase, gelation, aggregation, etc. due to heat denaturation are reduced. It has been known.
  • Patent Document 1 discloses a method in which whey protein is denatured by performing treatment such as pH adjustment and pre-heat treatment, followed by heating using transglutaminase, which is an enzyme.
  • Patent Document 2 discloses a method for producing proteinaceous microparticles obtained by removing insolubles from a whey protein solution containing a metal element and then mixing with an organic solvent.
  • whey protein denaturation treatment by heating and whey protein particle atomization treatment by shearing are combined.
  • the purpose of protein atomization is to prevent whey protein from agglomerating and precipitating, and generating a rich feeling.
  • Patent Document 3 a solid containing substantially non-aggregated denatured protein spherical particles or aggregates thereof obtained by heating the whey protein concentrate to a temperature higher than the protein denaturation temperature while applying high shear. Yogurt is disclosed.
  • Patent Document 1 does not provide a method for producing a modified whey protein using a whey protein alone, such as using a raw material containing an enzyme or a metal element, and Patent Document 2 using an organic solvent.
  • enzymes and organic solvents it is necessary to secure work equipment and implement rigorous management to safely and reliably implement this in order to achieve sufficient removal from the product. There wasn't.
  • Patent Document 3 Japanese Patent Publication No. Hei 6-509475 is cited as a method for producing denatured protein spherical particles, and Shinpress 100 (manufactured by CP Kelco) is used as the denatured protein spherical particles corresponding thereto.
  • Shinpress 100 manufactured by CP Kelco
  • this is mixed with other ingredients at the time of food production, pasteurized at high temperature to produce ice cream, soup, etc., the texture (roughness, powderiness, richness, etc.)
  • a flavor test sensor evaluation
  • the appearance gel, agglomeration, etc.
  • whey protein is heat-denatured to be heated in the denaturation temperature range when subjected to heat sterilization required in the process of food production, viscosity increase, gelation, aggregation, etc. Produce. These phenomena are undesirable for the flavor and appearance of the product, and when a product containing a large amount of whey protein is passed through a plate sterilizer, the modified whey protein tends to adhere and accumulate in the plate. There has been a problem that the care to remove is complicated.
  • the object of the present invention is to modify the whey protein without using an additive such as an enzyme or an organic solvent to improve the thermal stability, that is, by heat treatment after the modification.
  • An object of the present invention is to provide a method for modifying a whey protein (a method for producing a modified whey protein) and a modified whey protein obtained by the method, which make it possible to prevent adverse effects on flavor and appearance.
  • the present inventors have mixed a whey protein solution swirling into a thin-film cylinder and a whey protein solution that flows radially from the center of the whey protein solution by contact mixing.
  • the whey protein solution was swirled into a thin film cylinder in a cylindrical fixed stirring tank and heated while being sheared at high speed to arrive at a method for modifying the whey protein.
  • this modification method appropriate modification and atomization of the whey protein can be achieved, and this modified whey protein can be heated or sterilized at a high temperature required for production of foods and the like.
  • there is no increase in viscosity, gelation, protein aggregation, etc. there is no adverse effect on the flavor and appearance of the product. That is, according to this method, the thermal stability of the whey protein can be remarkably improved.
  • a first invention of the present application for solving the above-mentioned problems is a method for modifying a whey protein characterized by improving thermal stability, and includes the following steps 1) to 4). 1) a step of preparing whey protein into a whey protein solution; 2) Aside from the whey protein solution flowing while rotating around the outer periphery of the cylinder in a thin film at a predetermined shear rate, and the whey protein solution flowing while rotating, contact the whey protein solution flowing radially from the center of the cylinder. Mixing, 3) heating the mixed whey protein solution to 76 to 120 ° C.
  • the whey protein solution is preferably a 5 to 18% by mass solution of whey protein.
  • the above steps 2), 3) and 4) are performed simultaneously and continuously.
  • the first invention of the present application is also a reforming method including the following steps 1) to 4). 1) a step of preparing whey protein into a whey protein solution; 2) Aside from the whey protein solution flowing while rotating around the outer periphery of the cylinder in a thin film at a predetermined shear rate, and the whey protein solution flowing while rotating, contact the whey protein solution flowing radially from the center of the cylinder. Adding whey protein to the mixing device; 3) heating the charged whey protein solution to 76 to 120 ° C.
  • the whey protein solution is preferably a 5 to 18% by mass solution of whey protein.
  • the above steps 2), 3) and 4) are performed simultaneously and continuously.
  • the first invention of the present application is provided with a perforated cylindrical portion provided on the outer peripheral side, in which shearing is provided concentrically with a rotating shaft in a cylindrical stirring tank, and a plurality of small holes in the radial direction are provided in the cylindrical body.
  • shearing is provided concentrically with a rotating shaft in a cylindrical stirring tank, and a plurality of small holes in the radial direction are provided in the cylindrical body.
  • the whey protein solution is sheared while diffusing into the inner surface of the stirring tank in the form of a thin-film cylinder. This is a preferred embodiment.
  • the second invention of the present application that solves the above problem is a whey protein modified by the modification method of the first invention of the present application.
  • the present invention includes the following [1] to [7].
  • a modified whey protein is produced by modifying a whey protein, including a step of shearing at a temperature in the range of 120 ° C. at a shear rate of 5,000 s ⁇ 1 to 25,000 s ⁇ 1 for 8 minutes to 0.1 seconds. how to.
  • Shearing A device in which a rotating shaft is concentrically provided in a cylindrical fixed stirring vessel and a rotating blade having a slightly smaller diameter than the fixed stirring vessel is attached to the rotating shaft. Using a device equipped with a porous cylindrical part provided through a large number of holes on the outer peripheral side, By rotating the rotating blade at high speed, the whey protein solution is sheared while swirling in a thin film cylinder between the fixed stirring tank and the porous cylindrical portion by rotating the rotating blade at high speed. ] The method in any one of. [4] The method according to any one of [1] to [3], wherein the whey protein solution is a 5 to 18% by mass solution of whey protein.
  • [5] The method according to any one of [1] to [4], wherein the modification of the whey protein is to maintain and / or improve the flavor and / or appearance after the heat treatment compared to before the modification.
  • [6] A modified whey protein produced by the method according to any one of [1] to [5], wherein the average particle size after heat treatment at 85 ° C. for 10 minutes is 0.3 to 13.8 ⁇ m.
  • the modified whey protein according to the present invention does not cause aggregation, gelation or precipitation of whey protein particles by heat sterilization treatment (heating) even when blended in food and drink, and provides a product having a good texture and flavor Is possible. That is, as food materials, suitable for food groups such as jelly, pudding, ice cream, drink yogurt, juice, milk drink, processed milk, coffee, sports drink, soup, baked food, milk powder, infant formula, and liquid food Can be used. In addition, it can be suitably used as a substitute for fat for low-fat foods or in cosmetics such as shampoos, rinses and creams.
  • the modified whey protein according to the present invention is particularly suitable for beverages such as drink yoghurt because it has good dispersibility, does not precipitate, and does not have a rough surface and can be passed through the throat.
  • the modified whey protein according to the present invention does not use additives such as enzymes and organic solvents, it can be used in foods and drinks with a high degree of security. In addition, there is no need for any manufacturing device to remove additives such as enzymes and organic solvents from the product.
  • FIG. 1 is a schematic cross-sectional view of an example of a shearing device used in the present invention.
  • FIG. 2 is a view showing a scanning probe microscope image of the surface of the modified whey protein particle according to the present invention.
  • FIG. 3 is a diagram showing a scanning probe microscope image of the surface of whey protein particles as a control sample.
  • Shearing device 2.
  • Fixed stirring tank Rotating blade 3a.
  • Rotating shaft 3b Porous cylindrical portion 3c of the rotary blade.
  • Rotary blade arm Supply pipe 5.
  • whey protein Any whey protein can be used as the raw material in the present invention as long as it is a whey protein derived from milk.
  • whey obtained by refining from a raw material containing whey such as cow's milk, skim milk, whole milk powder, skim milk powder and the like by a conventional method.
  • the whey purification method includes a method of removing casein and milk fat by adding rennet or the like to milk or nonfat dry milk, and a method of further processing from the above steps by gel filtration, ultrafiltration, ion exchange, etc.
  • WPC whey protein concentrate
  • WPI whey protein isolate
  • Various whey proteins such as commercially available WPC and WPI can also be used.
  • normal dairy products containing whey protein such as raw milk, skim milk, and skim milk powder can be used as they are.
  • the solvent for dissolving the powder is not particularly limited, but water, raw milk, skim milk and the like are preferably used.
  • a whey protein concentrate having a high protein content is considered in view of the fact that protein-based prices are inexpensive and easily available and the whey protein can be efficiently processed. It is preferable to use WPC80 (made by Mirai Co., Ltd., trade name: Mirai 80).
  • WPC80 made by Mirai Co., Ltd., trade name: Mirai 80
  • the numerical value of WPC80 and WPC50 used in the present invention is the whey protein content in the blown-up product. In the case of WPC80, the whey protein is about 80%, and in the case of WPC50, the whey protein is about 50%. Is done.
  • modified of whey protein means one having a “good” state in the determination of “thermal stability” defined below. That is, “modified” whey protein (modified whey protein) means a whey protein having “good” “thermal stability”.
  • the good heat stability specifically means that the flavor and / or appearance after the heat treatment is maintained and / or improved as compared with that before the modification.
  • the reforming method of the present invention comprises a reforming method including the following steps 1) to 4). 1) a step of preparing whey protein into a whey protein solution, preferably a 5 to 18% by weight solution of whey protein; 2) Aside from the whey protein solution flowing while rotating around the outer periphery of the cylinder in a thin film at a predetermined shear rate, and the whey protein solution flowing while rotating, contact the whey protein solution flowing radially from the center of the cylinder. Mixing, 3) heating the mixed whey protein solution to 76 to 120 ° C.
  • the above steps 2) to 4) are performed simultaneously and continuously.
  • the modification method of the present invention (a method for producing a modified whey protein) includes the following steps 1) and 2A): 1) a step of preparing a whey protein solution (preferably a 5 to 18% by weight solution of whey protein) from whey protein; 2A) While the whey protein solution is swirled into a thin-film cylinder, the whey protein solution that is swirled into a thin-film cylinder is continuously contact-mixed with the whey protein solution swirling into the thin-film cylinder.
  • a modified whey protein comprising a step of shearing at a temperature in the range of 76 to 120 ° C. at a shear rate of 5,000 s ⁇ 1 to 25,000 s ⁇ 1 for 8 minutes to 0.1 seconds to modify the whey protein Is in the method of manufacturing.
  • the concentration of the whey protein solution is preferably 5 to 18% by mass in terms of protein, preferably 10 to 18% by mass, and more preferably 10 to 16% by mass in consideration of shear efficiency. That is, by shearing the whey protein solution in this concentration range, the whey protein can be efficiently modified without causing gelation or aggregation.
  • the pH of the whey protein solution can be neutral, but can be performed even in a slightly weakly acidic region.
  • the pH may be in the range of 5.5 to 7.5, preferably in the range of pH 6.0 to 7.0, and more preferably in the range of pH 6.0 to 6.5.
  • the whey protein solution prepared to the above concentration is put into a predetermined shearing device and sheared.
  • the temperature of the stirring tank of the shearing device may be kept at room temperature, or may be in a state of being preliminarily heated with hot water in the stirring tank jacket and kept at an arbitrary temperature of 60 ° C. or less.
  • the shearing After introducing the whey protein solution into the shearing device, the shearing is started and the shear rate is maintained at 5,000 s ⁇ 1 to 25,000 s ⁇ 1 , preferably 10,000 s ⁇ 1 to 25,000 s ⁇ 1.
  • a step of raising the temperature of the stirring tank of the apparatus (preheating step) is performed. In a preferred embodiment, this temperature increase is performed in a very short time, and the preheating and the heat treatment time can be combined and viewed as the heat treatment holding time.
  • the whey protein solution After the temperature of the whey protein solution is raised to a predetermined temperature in the preheating step, the whey protein solution is held at the temperature after the temperature rise for a predetermined time while continuing the shearing treatment (main heating step). .
  • the shear rate is preferably sheared in the range where gelation and aggregation are not confirmed in the heating test of the whey protein after the shearing treatment, in the range of 5,000 s ⁇ 1 to 25,000 s ⁇ 1 , range of 500s -1 ⁇ 25,000s -1, particularly preferably in a range of 10,000s -1 ⁇ 25,000s -1.
  • the holding time for performing the heat treatment can be appropriately set depending on the holding temperature, but is generally in the range of 45 minutes (2700 seconds) to 0.1 seconds, preferably 30 minutes (1800 seconds) to 0.00. 1 second, more preferably 20 minutes (1200 seconds) to 0.1 seconds, more preferably 10 minutes (600 seconds) to 0.1 seconds, more preferably 8 minutes (480 seconds) to 0 In the range of 1 second, more preferably in the range of 360 seconds to 0.1 seconds, more preferably in the range of 240 seconds to 0.1 seconds, still more preferably in the range of 120 seconds to 0.1 seconds, still more preferably 60 seconds.
  • the shearing treatment and the heat treatment are performed simultaneously.
  • the average particle size of the whey protein particles was measured based on the measurement conditions of the average particle size in the present invention described later, and the result was in the range of 0.3 to 13.8 ⁇ m, preferably 0.5 to 13.
  • the range of 4 ⁇ m more preferably in the range of 0.5 to 10 ⁇ m, more preferably in the range of 0.6 to 6 ⁇ m, still more preferably in the range of 0.6 to 3.42 ⁇ m, still more preferably in the range of 0.6 to 1.87 ⁇ m.
  • the whey protein after the modification has less richness than the conventional whey protein and has a smooth touch.
  • the shearing step performed in the shearing device is the most characteristic step of the reforming method of the present invention.
  • the prepared whey protein solution is supplied from the vicinity of the center of the bottom of the fixed stirring tank and is already swirled by the high-speed rotation of the rotating blade, It scatters radially from the vicinity of the center of the circle, reaches the inner surface of the porous cylindrical portion provided in the rotary blade, receives centrifugal force due to the high-speed rotation of the rotary blade, and passes through a small number of holes provided through the porous cylindrical portion.
  • the whey protein solution is flown into the rotating whey protein solution that has been formed into a thin-film cylinder, contacts, is mixed, and is diffused therein.
  • the whey protein solution that has reached the inner peripheral surface of the perforated cylindrical portion of the rotary vane becomes a thin film on the inner peripheral surface due to centrifugal force, and rotates through small holes that are penetrated many times during high-speed rotation.
  • the whey protein solution is continuously supplied to the outer peripheral surface of the porous cylindrical portion of the blade.
  • the prepared whey protein solution is subjected to centrifugal force due to the high-speed rotation of the rotating blades, and rotates through small holes provided in a large number of holes in the porous cylindrical portion.
  • a whey protein solution that flows into a cylindrical space provided between the outer surface of the porous cylindrical portion of the blade and the inner surface of the fixed agitation tank and swirls into a thin-film cylinder by high-speed rotation of the rotating blade; Mixed in contact and diffused into it.
  • the whey protein solution that continuously flows out from the circular direction of the porous cylindrical portion through a large number of small holes provided through it receives a strong centrifugal force, and the outer peripheral surface of the porous cylindrical portion of the rotary blade and the fixed stirring tank Mixing while radially ejecting into the whey protein solution swirling in a thin film cylindrical shape with the inner peripheral surface. At this time, the flow in different directions is contact-mixed to produce a stirring action, effectively promoting the shearing action.
  • the shearing step of the present invention can take any aspect of the shearing method.
  • the whey protein solution that continuously flows out from the circular direction of the porous cylindrical portion through a large number of small holes provided through it receives a strong centrifugal force, and the outer peripheral surface of the porous cylindrical portion of the rotary blade and the fixed stirring tank Mixing while radially ejecting into the whey protein solution swirling in a thin film cylindrical shape with the inner peripheral surface.
  • a turbulent flow is generated, and a stirring action is generated to effectively promote the shearing action.
  • the whey protein solution in the form of a thin film on the inner peripheral surface of the porous cylindrical portion has the same amount of liquid as the amount of liquid flowing out to the outer peripheral surface of the porous cylindrical portion through a small number of through holes.
  • the upper and lower ends of the porous cylindrical portion of the whey protein solution in the form of a thin-film cylinder in a cylindrical space provided between the outer surface (outer peripheral surface) of the portion and the inner surface (inner peripheral surface) of the fixed stirring tank In order to flow again into the inside of the porous cylindrical portion, the contact mixing is continuously performed while continuing high-speed rotation.
  • the whey protein solution supplied from the supply pipe is also added to this liquid flow. As a result, the generation of turbulent flow, the stirring action, and the promotion of the shearing action thereby are continuously performed while continuing high-speed rotation.
  • the liquid temperature rises after the start of shearing and is maintained at a constant temperature after reaching the target temperature.
  • the temperature can be maintained by hot water or chilled water in a jacket provided in the stirring tank. After completion of the holding time, the whey protein solution is quickly cooled by chilled water in the shearing device and collected from the outlet.
  • the shear rate in the present invention is the ratio of the distance (clearance: C) from the tip of the stirring blade of the shearing device for applying a shearing action to the cylinder wall surface, and the tangential speed (V) of the stirring blade.
  • C distance
  • V tangential speed
  • the shear temperature can be adjusted to any temperature up to 130 ° C., but in the present invention, in order to maintain the quality of the whey protein, it is in the range of 76 ° C. to 120 ° C., preferably in the range of 80 to 120 ° C., It is particularly desirable to use in the range of 85 to 120 ° C. Further, from the viewpoint of workability at atmospheric pressure, a temperature in the range of 76 ° C. to 100 ° C., preferably in the range of 80 ° C. to 100 ° C., particularly in the range of 85 to 100 ° C. is preferable. If a high temperature is selected as the shearing temperature, the present invention can be suitably implemented even if the treatment is performed with a shorter holding time.
  • a holding time of 8 minutes (480 seconds) or more is preferable.
  • a holding time of 1 minute (60 seconds) or more is preferable.
  • the holding time is preferably 0.1 seconds or more.
  • the holding time can be in the range of 480 seconds to 60 seconds at a temperature in the range of 80 ° C. to 120 ° C.
  • a holding time in the range of 480 seconds to 0.1 seconds can be obtained at a temperature in the range of 85 ° C. to 120 ° C.
  • a holding time in the range of 480 seconds to 60 seconds can be obtained at a temperature in the range of 80 ° C. to 100 ° C.
  • a holding time in the range of 480 seconds to 0.1 seconds can be achieved at a temperature in the range of 85 ° C. to 100 ° C.
  • a holding time in the range of 8 minutes to 30 minutes at a temperature in the range of 76 ° C. to less than 80 ° C., and a temperature in the range of 80 ° C. to less than 85 ° C. for 60 seconds to less than 8 minutes.
  • a holding time in the range of 480 seconds to 0.1 seconds at a temperature in the range of 85 ° C. to 120 ° C.
  • the shearing device used in the present invention is a fixed agitation, in which a rotating shaft is concentrically provided in a cylindrical fixed agitation tank, and a porous cylindrical part provided with a large number of small radial holes in the cylindrical body is provided on the outer peripheral side.
  • a rotating blade having a diameter slightly smaller than that of the tank is attached to the rotating shaft, the whey protein solution is sheared while diffusing in the form of a thin film cylinder on the inner surface of the fixed stirring tank by the high-speed rotation of the rotating blade.
  • the inner peripheral surface of the fixed stirring tank is provided with irregularities.
  • the shearing device 1 includes a rotary blade 3 and supply pipes 4 and 5 inside a cylindrical fixed stirring tank 2.
  • the rotary blade 3 includes a rotary shaft 3a, an arm 3c, and a porous cylindrical portion 3b that is rotatably integrated with the rotary shaft 3a by the arm 3c.
  • a large number of small holes (not shown) penetrate the porous cylindrical portion 3b in the radial direction, and a plurality of communication holes (not shown) penetrate the arm 3c in the axial direction of the rotation shaft.
  • the supply pipes 4 and 5 are located near the center of the bottom of the fixed stirring tank 2, and the prepared whey protein solution is supplied from here to the shearing device 1.
  • the supplied whey protein solution scatters radially from the vicinity of the outlets of the supply pipes 4 and 5 with respect to the whey protein solution already swirled by the high-speed rotation of the rotary blade 3, and reaches the inner surface of the porous cylindrical portion 3b. It is provided between the outer surface of the porous cylindrical portion 3b and the inner surface of the fixed agitation tank 2 through small holes provided in a large number through the porous cylindrical portion 3b in response to centrifugal force due to the high-speed rotation of the rotary blade 3.
  • the whey protein solution flows out into the cylindrical space and turns into a thin-film cylinder by the high-speed rotation of the rotary blade 3, and the continuously supplied whey protein solution is the first of the whey protein solution that has been turned into a thin-film cylinder. It flows out into, touches, mixes and diffuses into it.
  • the whey protein solution that continuously flows out from the circular direction of the porous cylindrical portion 3b through a large number of small holes is subjected to strong centrifugal force, and the outer peripheral surface of the porous cylindrical portion 3b and the fixed stirring tank 2 Mixing while radially ejecting into the whey protein solution swirling in a thin film cylindrical shape with the inner peripheral surface.
  • a turbulent flow is generated, and a stirring action is generated to effectively promote the shearing action.
  • the whey protein solution in the form of a thin film on the inner peripheral surface of the porous cylindrical portion 3b has the same amount of liquid as the amount of liquid flowing out to the outer peripheral surface of the porous cylindrical portion 3b through a small number of through holes.
  • a whey protein solution and / or supply in a thin cylindrical shape in a cylindrical space provided between the outer surface (outer peripheral surface) of the porous cylindrical portion 3b and the inner surface (inner peripheral surface) of the fixed stirring tank 2 In order to flow in from the tube, the contact mixing is carried out continuously while continuing high speed rotation. As a result, the generation of turbulent flow, the stirring action, and the promotion of the shearing action thereby are continuously performed while continuing high-speed rotation.
  • the fixed agitation tank 2 includes a temperature control device (not shown), for example, a jacket capable of circulating water at a desired temperature.
  • the shearing device 1 includes a discharge pipe (not shown) for discharging the modified whey protein solution.
  • the shearing device 1 includes a dam plate (not shown) inside the fixed stirring tank 2. This unillustrated weir plate is located above the upper end of the porous cylindrical portion 3b on the inner surface of the fixed stirring tank 2, extends from the inner surface of the fixed stirring tank 2 to the vicinity of the rotary shaft 3a in the center direction, and has an annular shape. It is a dam.
  • the barrier plate prevents the thin-film cylindrical whey protein solution from reaching an undesired upper portion of the inner surface of the fixed stirring tank 2, or guides the whey protein solution beyond the barrier plate to a discharge pipe (not shown).
  • the modified whey protein solution after shearing can be continuously discharged.
  • the outside of the fixed agitation tank is a jacket, and the temperature of the liquid to be treated can be adjusted by heating and cooling by supplying cooling water and hot water.
  • the series of sample liquid paths including the liquid inlet / outlet of the fixed agitation tank can be a closed system, and a pressure pump and a pressure valve are installed.
  • the pressure pump is used as a pressurizing pump in order to prevent boiling when the sample liquid is heated to 100 ° C. or higher, or when the sample liquid is heated to around 100 ° C.
  • the temperature of the treatment liquid can be raised to 130 ° C. by adjusting the pressure pump.
  • this apparatus since this apparatus generates heat due to friction between the rotating blade and the processing liquid during shearing, the whey protein solution can be heated using this heat when the shearing force exceeds 10,000 s ⁇ 1. .
  • the heat generated by the energy during the shearing process is called “shear heat”.
  • “Filmix FM-80-50” registered trademark, manufactured by Primix
  • the high-speed stirring apparatus described in Japanese Patent Application Laid-Open No. 2007-125454, particularly the apparatus exemplified as FIGS. 1 and 2 of the same publication can be exemplified.
  • the shearing device is not limited to this, and any device can be used as long as the same shearing effect can be obtained.
  • the modified whey protein has a property that the whey protein does not cause aggregation, gelation, precipitation, etc. even when reheated at a temperature exceeding the denaturation temperature of the whey protein, that is, has good thermal stability. Therefore, it can be suitably used as a raw material for foods and drinks including a heat sterilization step during food production.
  • whey protein does not cause aggregation, gelation, precipitation, etc. even when reheating is performed.
  • a heat test assuming heating sterilization during food production (heating at 85 ° C. for 10 minutes) To maintain the average particle size in the range of 0.3 to 13.8 ⁇ m without agglomeration of whey protein particles, and the texture (roughness, powderiness, richness, etc.) and appearance in sensory evaluation It means that (gel, aggregation, etc.) is good (the texture and appearance are maintained in a good state).
  • the heat stability of the whey protein according to the present invention is prepared by dissolving a sample containing whey protein so that the solid content is 12.5% by mass, and preparing the sample solution.
  • the prepared sample solution is at 85 ° C. for 10 minutes. It is possible to perform the heat treatment and determine the sample solution after the heat treatment by a method of performing sensory evaluation and measuring an average particle diameter.
  • a sample solution containing 5 to 10 panelists was prepared by dissolving a sample containing whey protein so that the solid content would be 12.5% by mass.
  • the solution is subjected to a heat treatment at 85 ° C. for 10 minutes, and a flavor test and an appearance test are performed on the sample solution after the heat treatment.
  • the score is in 1-point increments, with 3 being the highest rating and 0 being the lowest rating. And calculate the average score of the panelists.
  • the calculated average score A is evaluated as 2 ⁇ A ⁇ 3 is “good”, 1 ⁇ A ⁇ 2 is “slightly good”, and 0 ⁇ A ⁇ 1 is “bad”, and each evaluation is evaluated as thermal stability. It is possible to determine “good”, “slightly good”, and “bad”.
  • the average particle size is measured as described above by preparing a sample solution by dissolving the prepared whey protein-containing sample to 12.5% by mass as a solid content, and preparing the prepared sample solution at 85 ° C.
  • the sample solution after the heat treatment is possible by measuring the average particle size of the whey protein using a laser diffraction particle size distribution measuring device or the like.
  • a sample solution containing whey protein is dissolved to a solid content of 12.5% by mass to prepare a sample solution, and the prepared sample solution is heated at 85 ° C. for 10 minutes.
  • the relationship between the evaluation and the average particle diameter of the whey protein particles as physical properties of the whey protein after the heat treatment was examined.
  • the average particle size in the present invention is measured using a laser diffraction particle size distribution measuring device (trade name: LA-500, manufactured by Horiba, Ltd.) for the sample solution after the heat treatment, with a circulation flow rate of 2, a stirring speed.
  • the measurement was performed by measuring the value of the average particle size (particle size corresponding to 50% of the cumulative particle size distribution) when measured under the condition of 2.
  • the thermal stability can be judged as “good” when the average particle size of the whey protein after the heat treatment is less than 13.9 ⁇ m, particularly in the range of 0.3 to 13.8 ⁇ m. is there. Therefore, when the average particle size of the whey protein produced in the present invention is included in the range of 0.3 to 13.8 ⁇ m, it can be determined that the whey protein has been modified, which has a good effect on the flavor and appearance. It can be defined as having a fine particle size.
  • the sensory evaluation test and the average particle diameter measurement test capable of determining the thermal stability of the whey protein may be abbreviated as “heating test”.
  • the whey protein modified by the method of the present invention can be used as a raw material for foods that place emphasis on touch and throat, and specifically, jelly, pudding, ice cream, drink yogurt , Juice, milk drink, processed milk, coffee, sports drink, soup, baked food, powdered milk, infant formula, and liquid foods.
  • the whey protein modified by the method of the present invention can be suitably used for cosmetics such as shampoos, rinses, creams, and emulsions in addition to being used for the food group.
  • the modified whey protein according to the present invention when the modified whey protein according to the present invention is observed with a scanning probe microscope, fine protrusions are observed on the surface of the modified whey protein particle.
  • the number of the fine protrusions is present in the range of 100 to 100,000 on the particle surface in the range of 5 ⁇ m ⁇ 5 ⁇ m.
  • the diameter of the fine protrusion is in the range of 10 to 200 nm.
  • the height (maximum part) of this fine protrusion is in the range of 10 to 500 nm.
  • Example 1 (Production method) WPC 35 (Germany, Mirai, trade name: Mirai 35) and WPC60 (Germany, Mirai, trade name: Mirai 60) mixed in a one-to-one ratio (hereinafter referred to as “WPC50 equivalent”) And whey protein solution having a solid content of 12.5% by mass (10% by mass as whey protein) was prepared. Subsequently, the whey protein solution was put into a shearing device “Filmix FM-80-50”. Shearing was started by setting the shear rate of the shearing device to 25,000 s ⁇ 1, and preheating was performed until the temperature of the whey protein solution reached 85 ° C.
  • the whey protein subjected to the shearing treatment was subjected to heat treatment at 85 ° C. for 10 minutes, and as a result of performing a heating test consisting of measurement of average particle size and sensory evaluation, the average particle size of the whey protein was 1.21 ⁇ m. It was found that it had a good texture without feeling rough, and it was confirmed that the thermal stability of the whey protein was improved. In addition, when the average particle diameter of the whey protein in a whey protein solution was measured at the time of finishing a shearing process, it was confirmed that it was 0.89 micrometer.
  • Example 2 Corn soup blended with the modified whey protein obtained by the same method as in Example 1 was produced at the blending ratio shown in Table 2.
  • the whey protein modified product is a product obtained by modifying WPC80 (manufactured by Mirai Co., Ltd., trade name: Mirai 80) based on the modification method of the present invention, followed by spray drying (modified WPC80 spray dried product ( 97% solids)).
  • butter was added to dissolved water and heated to 50 ° C.
  • the modified WPC80 spray-dried product and other raw materials such as skim milk powder, corn puree, chicken extract, vegetable extract, salt and glycerin fatty acid ester were added thereto.
  • a homomixer manufactured by Primex
  • heat sterilization was performed at 110 ° C. for 2 seconds. Thereafter, it was homogenized with a homogenizer (manufactured by Sanmaru Kikai Kogyo Co., Ltd.) under the condition of 12 MPa and cooled to 10 ° C. to produce corn soup.
  • the produced corn soup was free from aggregation and gel, and had good appearance and flavor.
  • Example 3 Ice creams blended with the modified whey protein obtained by the same method as in Example 1 were produced at the blending ratios shown in Table 3.
  • the whey protein modified product is a product obtained by modifying WPC35 (manufactured by Mirai Co., Ltd., trade name: Mirai 35) based on the modification method of the present invention and further spray drying (modified WPC35 spray dried product ( 97% solids)).
  • a modified WPC35 spray-dried product (solid content 97%), sweetened defatted condensed milk, salt-free butter, granulated sugar, flour, glycerin fatty acid ester, guar gum, carrageenan are added to dissolved water heated to 50 ° C. Dispersion and dissolution were performed at 8000 rpm for 2 minutes using a mixer (manufactured by PRIMIX). Next, the mixture was homogenized with a homogenizer (manufactured by Sanmaru Kikai Kogyo Co., Ltd.) at 12 MPa, sterilized at 85 ° C. for 10 seconds, and then cooled to 10 ° C. to prepare an ice cream mix. The prepared ice cream mix was frozen using an ice cream freezer (L12 / C manufactured by CARPIGIANI) and adjusted to an overrun of 30% to produce an ice cream.
  • a homogenizer manufactured by Sanmaru Kikai Kogyo Co., Ltd.
  • the produced ice cream had a smooth texture, no roughness, and a good flavor.
  • Test Example 1 This test was conducted to examine the average particle size and sensory evaluation after the heating test for the whey protein modified by the method of the present invention and the whey protein sheared by the conventional method.
  • Sample A modified whey protein (corresponding to modified WPC50) prepared by the same method as in Example 1 was used as test sample 1.
  • Control is made of “Simplesse 100” (CP Kelco: whey protein content of about 50%), which is a whey protein subjected to the shearing treatment described in Patent Document 6 (Japanese Patent No. 3798249).
  • Sample 1 was obtained.
  • whey protein treated by the method described in JP-T-2003-535609 was used as control sample 2.
  • the preparation method of the control sample 2 is as follows. That is, Shinpress 100 (control sample 1) was dissolved in room temperature water to prepare a 20 mass% solution. K. Heating was performed at 77 ° C.
  • a whey protein that had not been subjected to any modification treatment was designated as negative sample 1.
  • the component composition of the sympress 100 used in the control samples 1 and 2 has the same whey protein content as that of WPC50, and is almost the same as the component of the test sample 1.
  • Test method A heating test was performed on each sample. That is, in the sensory evaluation test, about 5 to 10 panelists dissolved each sample to 12.5% by mass as a solid content to prepare a sample solution, and the prepared sample solution was at 85 ° C. for 10 minutes. 1 point with the highest rating of 3 points and the lowest rating of 0 points for the texture (roughness, powderiness, richness, etc.) and appearance (gelation, aggregation, etc.) Add the number of ticks and calculate the average score of the panel. The calculated average score A was evaluated as 2 ⁇ A ⁇ 3 as “good”, 1 ⁇ A ⁇ 2 as “slightly good”, and 0 ⁇ A ⁇ 1 as “bad”.
  • the average particle size measurement test was performed on the sample solution after the heat treatment using a laser diffraction particle size distribution analyzer (trade name: LA-500, manufactured by HORIBA, Ltd.) with a circulation flow rate of 2 and an agitation speed of 2. The measurement was carried out by measuring the value of the average particle size (particle size corresponding to 50% of the cumulative particle size distribution) when measured under the above conditions.
  • a laser diffraction particle size distribution analyzer trade name: LA-500, manufactured by HORIBA, Ltd.
  • Test results The results of this test are as shown in Table 4.
  • Table 4 shows the average particle diameter and sensory evaluation of each sample by the heating test.
  • the test sample 1 which is a whey protein modified by the method of the present invention had a good sensory evaluation such as flavor and appearance as a result of a heat test (heat treatment at 85 ° C. for 10 minutes).
  • the average particle size was 1.21 ⁇ m, and it was found that a fine particle size that has a good effect on flavor and appearance was maintained.
  • the thermal stability of the test sample 1 was determined to be good.
  • control sample 1 and the control sample 2 the average particle diameter is increased as compared with the test sample 1 after the heating test (control sample 1: 94.02 ⁇ m, control sample 2: 15.03 ⁇ m). Aggregation occurred, and a rich feeling was felt, so the evaluation was poor. As a result, both the control sample 1 and the control sample 2 were evaluated as poor ( ⁇ ) in overall thermal stability evaluation. In the negative sample 1, whey protein was gelled by the heat test, the average particle size was not measurable, and the sensory evaluation was poor.
  • Test Example 2 This test was performed to confirm the thermal stability of the whey protein raw materials having different whey protein concentrations when subjected to the shear heating treatment described in Example 1.
  • Example 1 (1) Preparation of Sample A modified whey protein (corresponding to modified WPC50) prepared by the same method as in Example 1 was used as test sample 1.
  • Table 5 shows the average particle diameter and sensory evaluation of each sample by the heating test.
  • the modification method according to the present invention has a good effect on the flavor and appearance. It was found that the fine particle diameter was maintained, the sensory evaluation was all good, and the thermal stability was improved (thermal stability: good).
  • Example 2 Test method In Example 1, using a sample prepared by adjusting the concentration of the whey protein solution in the heat shear treatment to a protein content in the range of 5% by mass to 20% by mass, the shear rate was 25, 000 s ⁇ 1 , a modified whey protein was prepared based on the same method except that the heating temperature in this heating step was set to 85 ° C. and the heating and holding time was set to 30 seconds. Went.
  • Table 6 shows the average particle diameter and sensory evaluation of each sample by the heating test.
  • the average particle size does not change significantly as a result of the heating test, and all maintain a fine particle size that has a good effect on flavor and appearance. The flavor was also good, and the overall thermal stability evaluation was determined to be good.
  • the protein content was 20% by mass, the whey protein gelled immediately after the modification step, and the average particle size after the heating test could not be measured, resulting in poor sensory evaluation.
  • Test method A modified whey protein was prepared based on the same method as described in Example 1, except that the shear rate was 3,000 s -1 to 25,000 s -1. The same heating test as in Test Example 1 was performed.
  • Table 7 shows the average particle size and sensory evaluation of each sample by the heating test.
  • shear rate is in the range of 5,000 s ⁇ 1 to 25,000 s ⁇ 1 , there is no significant change in the average particle size even in the heating test, and both have a fine particle size that has a good effect on the flavor and appearance. It was maintained and the flavor was good.
  • the shear rate was set to 3,000 s ⁇ 1 , gelation occurred immediately after shearing, the average particle size after the heating test could not be measured, and the sensory evaluation also resulted in poor results.
  • shear rates is preferably 5,000s -1 ⁇ 25,000s -1, more preferably a 10,000s -1 ⁇ 25,000s -1 because it can be heated only by shear heat.
  • Table 8 shows the average particle size and sensory evaluation of each sample by the heating test.
  • the result of the heating test shows that the average particle diameter is not significantly changed and the flavor is good, so that the overall thermal stability evaluation is good. It was judged.
  • the heating temperature was 95 ° C., 110 ° C., and 120 ° C.
  • the result of the heating test was good in all cases where the heating holding time was 0.1 second. Therefore, if the set temperature is 85 ° C. or higher, the present reforming method can be applied even if the heat holding time is 0.1 second.
  • the whey protein was gelated by the heating test under the conditions of a set temperature of 74 ° C. and a heating time of 3600 seconds (60 minutes), resulting in poor sensory evaluation. From these results, the heating temperature and heating holding time of the main heating in the reforming method of the present invention are increased to an arbitrary set temperature of 76 to 120 ° C., and the set temperature is 8 minutes to 0.1 seconds. It is preferable to process. In particular, for efficient treatment in a short time, the whey protein solution is preferably heated to 85 to 120 ° C. and held for 0.1 second.
  • Sample Test Sample 1 was a dried product of a modified whey protein solution (corresponding to modified WPC50) prepared in the same manner as in Example 1.
  • a powder of Simple Press 100 (Simplesse 100, CP Kelco: whey protein content of about 50%) was used as a control sample 1.
  • the whey protein powder mixture described in Example 1 whey protein content of about 50% dissolved in 6% by mass as a solid content was subjected to heat treatment at 85 ° C. for 360 seconds, and then a high-pressure homogenizer ( A control sample 2 was obtained by homogenizing at 100 MPa using APV) and spray-drying it.
  • Test results In this test the measurement area was 5 ⁇ m ⁇ 5 ⁇ m.
  • the obtained images are shown in FIG. 2 (test sample 1) and FIG. 3 (control sample 1 and control sample 2).
  • FIG. 2 test sample 1
  • FIG. 3 control sample 1 and control sample 2.
  • FIG. 2 the fine protrusions confirmed in the test sample 1 are not observed, and the shape of the particle surface is different from the modified whey protein of the present invention. It has been shown.
  • the fine protrusions confirmed on the surface of the modified whey protein particles of the present invention are modified even if reheating is performed at a temperature exceeding the denaturation temperature of the whey protein assuming a heat sterilization process during food production. It is inferred that the whey protein does not cause aggregation, gelation, precipitation, etc., and contributes to the property that the texture (roughness, powderiness, richness, etc.) is good.
  • the whey protein modified by the modification method of the present invention has significantly improved thermal stability compared to conventional whey proteins, and prevents viscosity increase, gelation, protein aggregation, etc. due to high temperature sterilization. Therefore, it can be suitably used as a raw material for various foods and drinks and cosmetics including a heat treatment step.
  • the modified whey protein of the present invention can be used as a liquid as it is, it can be concentrated as necessary to obtain a concentrated liquid, and further, the concentrated liquid can be dried to obtain a powder. It is possible to cope with distance transportation and long-term storage.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)

Abstract

 本発明は、有機溶媒等の添加物を使用することなく、熱安定性が向上した改質ホエイ蛋白質を製造する方法、及び該方法によって製造された改質ホエイ蛋白質を提供する。   本発明は、ホエイ蛋白質溶液を、薄膜円筒状に旋回して流れるホエイ蛋白質溶液へ、接触混合し、76~120°Cの範囲にある温度で、剪断速度5,000s-1~25,000s-1で8分~0.1秒間剪断する、改質ホエイ蛋白質の製造方法、及び該方法により得られる改質ホエイ蛋白質に関する。

Description

ホエイ蛋白質の改質方法
 本発明は、熱安定性を向上させることを特徴とするホエイ蛋白質の改質方法、及び当該方法によって改質されたホエイ蛋白質に関する。
 ホエイ蛋白質は乳中に存在する蛋白質であり、主にチーズやカゼインを製造する際の副生成物としてよく知られている。ホエイ蛋白質は良質な蛋白質成分であり、ミネラル分も豊富なことから、様々な食品に使用されている。また、食品以外でもシャンプー、リンス及びクリーム等の化粧品にも利用されている。
 幅広い用途に利用される一方で、ホエイ蛋白質は熱安定性が低く、70~90℃の加熱ですみやかに変性することが知られている(非特許文献1)。ところが、例えば、食品の製造の工程では、熱殺菌を行う場合が多いが、この熱殺菌のための温度域は、ホエイ蛋白質の変性温度域を超えることが通常である。このため、変性温度域での加熱によりホエイ蛋白質が変性し、粘度上昇、ゲル化、凝集などの発生をきたして、製品の風味や外観に悪影響を及ぼすため、製品中のホエイ蛋白質配合量を制限したり、他の蛋白質原料に代替したりする必要があった。
 熱殺菌による製品に対する悪影響を減少させるために、従来から、ホエイ蛋白質は物理的処理、あるいは化学的処理等によって予め変性させてから使用する方法が知られている。すなわち、あらかじめ変性させたホエイ蛋白質を使用することにより、殺菌時の加熱によるホエイ蛋白質の新たな熱変性の割合を減少させて、加熱変性による粘度上昇、ゲル化、凝集などの影響を少なくする方法が知られている。
 特許文献1では、pH調整や予熱処理等の処理を行った後、酵素であるトランスグルタミナーゼを用いて加熱することにより、ホエイ蛋白質を変性させる方法が開示されている。特許文献2では、金属元素を含むホエイ蛋白質溶液に対し、不溶物を除去した後に、有機溶媒と混合して得られる蛋白質性微小粒子の製造方法が開示されている。
 その他、加熱によるホエイ蛋白質の変性処理と、剪断によるホエイ蛋白質粒子の微粒化処理を組み合わせた方法が知られている。ここで蛋白質の微粒化は、ホエイ蛋白質の凝集や沈殿、濃厚感の発生を防止することを目的とするものである。
 例えば、特許文献3においては、ホエイ蛋白濃縮物に高剪断をかけながら蛋白の変性温度以上に加熱することによって得られる、実質的に非凝集性の変性蛋白球状粒子またはその凝集体を含有する固形ヨーグルトが開示されている。
 しかし、特許文献1は酵素や金属元素を含む原料を使用する点、特許文献2は有機溶媒を使用する点など、ホエイ蛋白質単独による変性ホエイ蛋白質の製造方法を提供するものではなかった。また、酵素や有機溶媒を使用する場合には、製品からの十分な除去を行うために、これを安全、確実に実施する作業設備の確保、及び厳格な管理が必要であり、簡便な方法ではなかった。
 特許文献3においては、変性蛋白球状粒子の製造方法として「特表平6-509475号公報」が挙げられており、これに該当する変性蛋白球状粒子として、シンプレス100(CPケルコ社製)を挙げているが、これは、食品製造時に他の原料と混合し、高温殺菌して、アイスクリームやスープ等を製造した場合、製品について食感(ざらつき、粉っぽさ、濃厚感など)や外観(ゲル、凝集など)を指標とした風味試験(官能評価)において、食品の種類によって、過度の濃厚感や、ざらつき感の残った不良の評価となってしまうという問題点が生じていた。
特開2000-4786号公報 特開平7-184556号公報 特許第3798249号公報 山内、横山編集、「ミルク総合事典」、第3版、朝倉書店、1998年、第61頁
 上述のように、ホエイ蛋白質は、食品の製造の工程において必要とされる熱殺菌を行った場合に、変性温度域での加熱となるために熱変性して、粘度上昇、ゲル化、凝集などを生じる。これらの現象は製品の風味や外観に好ましくなく、さらに、ホエイ蛋白質を多量に配合した製品をプレート式殺菌機に通液する場合、プレート内に変性したホエイ蛋白質が付着、堆積しやすく、これを除去する手入れが煩雑であるという問題が生じていた。
 このように、ホエイ蛋白質が好ましくない変性を生じることがないようにするためには、ホエイ蛋白質に対してあらかじめ処理(改質処理)を行って改質ホエイ蛋白質とすることが必要である。
 しかし、従来の技術によって、ホエイ蛋白質に改質を行って改質ホエイ蛋白質を製造する方法、及び得られた改質ホエイ蛋白質は、上述のように、いずれも十分なものではなかった。
 従って、本発明の目的は、酵素や有機溶媒等の添加物を使用することなく、ホエイ蛋白質を改質して、熱安定性を向上可能な改質方法、すなわち、改質後の加熱処理によって風味や外観に悪影響を生じないことを可能とする、ホエイ蛋白質の改質方法(改質ホエイ蛋白質の製造方法)、及び該方法によって得られる改質ホエイ蛋白質を提供することにある。
 そこで、本発明者らは、前記課題を解決するために鋭意検討した結果、薄膜円筒状に旋回するホエイ蛋白質溶液と、これに対して円心方向から放射状に流れるホエイ蛋白質溶液を接触混合によって混合したホエイ蛋白質溶液を、円筒状の固定攪拌槽内に薄膜円筒状に旋回させて、高速剪断しながら加熱することによって、ホエイ蛋白質を改質する方法に到達した。この改質方法によれば、ホエイ蛋白質の適切な変性と微粒化を達成することができ、この改質ホエイ蛋白質は、食品等の製造時に必要とされる高温での加熱や殺菌を行っても、粘度上昇、ゲル化、蛋白凝集等が生じることが無く、製品の風味や外観に悪影響を与えることがない。すなわち、この方法によれば、ホエイ蛋白質の熱安定性を顕著に向上させることができる。
 前記課題を解決する本願第一の発明は、熱安定性を向上させることを特徴とするホエイ蛋白質の改質方法であって、以下の1)~4)の工程を含む改質方法である。
1)ホエイ蛋白質をホエイ蛋白質溶液に調製する工程、
2)円筒の外周を、所定の剪断速度にて薄膜状に旋回しながら流れる前記ホエイ蛋白質溶液と、旋回しながら流れるホエイ蛋白質溶液とは別に、円筒の円心から放射状に流れる前記ホエイ蛋白質溶液を接触混合する工程、
3)混合したホエイ蛋白質溶液を剪断速度5,000s-1~25,000s-1で剪断しながら76~120℃に昇温する工程、
4)昇温したホエイ蛋白質溶液を当該温度で保温しながら、剪断速度5,000s-1~25,000s-1で8分~0.1秒剪断する工程。
 ホエイ蛋白質溶液は、好ましくはホエイ蛋白質の5~18質量%溶液である。好適な実施の態様において、上記工程2)、3)、4)は、同時に連続して行われる。
 また、本願第一の発明は、以下の1)~4)の工程を含む改質方法でもある。
1)ホエイ蛋白質をホエイ蛋白質溶液に調製する工程、
2)円筒の外周を、所定の剪断速度にて薄膜状に旋回しながら流れる前記ホエイ蛋白質溶液と、旋回しながら流れるホエイ蛋白質溶液とは別に、円筒の円心から放射状に流れる前記ホエイ蛋白質溶液を接触混合する装置に、ホエイ蛋白質を投入する工程、
3)投入したホエイ蛋白質溶液を剪断速度5,000s-1~25,000s-1で剪断しながら76~120℃に昇温する工程、
4)昇温したホエイ蛋白質溶液を当該温度で保温しながら、剪断速度5,000s-1~25,000s-1で8分~0.1秒剪断する工程。
 ホエイ蛋白質溶液は、好ましくはホエイ蛋白質の5~18質量%溶液である。好適な実施の態様において、上記工程2)、3)、4)は、同時に連続して行われる。
 さらに、本願第一の発明は、剪断が、円筒状の攪拌槽内に回転軸を同心に設け、円筒体に半径方向の小孔を多数貫通して設けた多孔円筒部を外周側に備えたことを特徴とする、攪拌槽より僅かに小径の回転羽根を該回転軸に取り付けられた装置において、回転羽根の高速回転によりホエイ蛋白質溶液を攪拌槽の内面に薄膜円筒状に拡散しながら剪断することを好ましい態様としている。
 前記課題を解決する本願第二の発明は、本願第一の発明における改質方法によって改質されたホエイ蛋白質である。
 また、本願発明は、以下の[1]~[7]にある。
[1]
 以下の1)、2A)の工程:
1)ホエイ蛋白質からホエイ蛋白質溶液を調製する工程、
2A)ホエイ蛋白質溶液を、薄膜円筒状に旋回して流れるホエイ蛋白質溶液へ、連続的に接触混合しながら、連続的に接触混合されて薄膜円筒状に旋回して流れるホエイ蛋白質溶液を、76~120℃の範囲にある温度で、剪断速度5,000s-1~25,000s-1で8分~0.1秒間剪断する工程
を含む、ホエイ蛋白質を改質して、改質ホエイ蛋白質を製造する方法。
[2]
 接触混合が、
 円筒状の固定攪拌槽内に回転軸を同心に設け、固定攪拌槽より僅かに小径の回転羽根を該回転軸に取り付けられた装置であって、前記回転羽根が、円筒体に半径方向の小孔を多数貫通して設けた多孔円筒部を外周側に備えた装置を使用して、
 多孔円筒部内部に導入されたホエイ蛋白質溶液が多孔円筒部の小孔を通じて、回転羽根の高速回転により固定攪拌槽と多孔円筒部の間を薄膜円筒状に旋回して流れるホエイ蛋白質溶液へと、接触混合することによって行われる、[1]に記載の方法。
[3]
 剪断が、
 円筒状の固定攪拌槽内に回転軸を同心に設け、固定攪拌槽より僅かに小径の回転羽根を該回転軸に取り付けられた装置であって、前記回転羽根が、円筒体に半径方向の小孔を多数貫通して設けた多孔円筒部を外周側に備えた装置を使用して、
 回転羽根の高速回転により、ホエイ蛋白質溶液を、回転羽根の高速回転により固定攪拌槽と多孔円筒部の間を薄膜円筒状に旋回して流しながら剪断することによって行われる、[1]~[2]の何れかに記載の方法。
[4]
 ホエイ蛋白質溶液が、ホエイ蛋白質の5~18質量%溶液である、[1]~[3]の何れかに記載の方法。
[5]
 ホエイ蛋白質の改質が、加熱処理した後の風味及び/又は外観を、改質前と比較して維持及び/又は向上させることである、[1]~[4]の何れかに記載の方法。
[6]
 85℃、10分間加熱処理後の平均粒子径が0.3~13.8μmである[1]~[5]の何れかに記載の方法で製造された、改質ホエイ蛋白質。
 本発明による改質ホエイ蛋白質は、飲食品に配合した場合においても、加熱殺菌処理(加熱)によるホエイ蛋白粒子の凝集、ゲル化、沈殿などを生じず、食感や風味の良好な製品を提供することが可能である。すなわち、食品素材として、ゼリー、プリン、アイスクリーム、ドリンクヨーグルト、ジュース、乳飲料、加工乳、コーヒー、スポーツドリンク、スープ、焼成食品、粉乳、育児用調製粉乳、及び流動食等の食品群に好適に使用することが可能である。その他、低脂肪食品用の脂肪代替原料として、あるいはシャンプー、リンスやクリーム等の化粧品にも好適に使用することが可能である。本発明による改質ホエイ蛋白質は、分散性がよくて沈殿せず、ざらつき等がなく喉越しもよいために、例えばドリンクヨーグルトなどの飲料に特に適したものである。
 さらに、本発明による改質ホエイ蛋白質は、酵素や有機溶媒等の添加物を使用することがないために、極めて安心して飲食品に使用することができる。また、酵素や有機溶媒等の添加物を製品から除去するための製造上の工夫も全く必要がない。
図1は本発明で用いる剪断装置の一例の断面の模式図である。 図2は本発明による改質ホエイ蛋白質粒子表面の走査型プローブ顕微鏡画像を示す図である。 図3は対照試料であるホエイ蛋白質粒子表面の走査型プローブ顕微鏡画像を示す図である。
符号の説明
1.  剪断装置
2.  固定攪拌槽
3.  回転羽根
3a. 回転羽根の回転軸
3b. 回転羽根の多孔円筒部
3c. 回転羽根のアーム
4.  供給管
5.  供給管
 次に、本発明の好ましい実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されず、本発明の範囲内で自由に変更することができる。なお、本明細書において百分率は特に断りのない限り質量による表示である。
〔ホエイ蛋白質〕
 本発明で原料として使用するホエイ蛋白質は、牛乳由来の蛋白質であるホエイであれば、如何なるものでも使用することができる。例えば、牛乳、脱脂乳、全脂粉乳、脱脂粉乳等のホエイを含有する原料から、常法により精製して得られるホエイである。
 ホエイの精製法としては、牛乳または脱脂粉乳にレンネット等を加えてカゼインと乳脂肪を取り除く方法や、前記工程からさらにゲル濾過法、限外濾過法、イオン交換法等により処理する方法があり、これらの方法で得られるWPC(ホエイ蛋白濃縮物)、またはWPI(ホエイ蛋白分離物)などを使用することができる。また、市販のWPCやWPIなどの各種ホエイ蛋白質を使用することもできる。その他、生乳、脱脂乳、脱脂粉乳などのホエイ蛋白質を含有する通常の乳製品をそのまま使用することもできる。
 なお、粉体物を溶解する際の溶媒は特に制限されるものではないが、水、生乳、脱脂乳などが好適に用いられる。
 本発明の改質方法に用いられるホエイ蛋白質(原料)としては、蛋白質ベースの価格が安価で入手しやすく、ホエイ蛋白質の効率的な処理が行える点を考慮して、蛋白質含量の高いホエイ蛋白濃縮物のWPC80(独、ミライ社製。商品名:ミライ80)を使用することが好ましい。なお、本発明にて使用するWPC80やWPC50の数値は吹上製品中のホエイ蛋白質含有量であり、WPC80であればホエイ蛋白質が約80%とされ、WPC50であれば、ホエイ蛋白質が約50%とされる。
〔改質〕
 本明細書におけるホエイ蛋白質の「改質」とは、以下に定義する「熱安定性」の判定において「良好」である状態を具備したものを意味する。すなわち、「改質」されたホエイ蛋白質(改質ホエイ蛋白質)とは、「熱安定性」が「良好」であるホエイ蛋白質を意味する。この熱安定性の良好とは、具体的には、加熱処理した後の風味及び/又は外観を、改質前と比較して維持及び/又は向上させることである。
〔ホエイ蛋白質の改質方法〕
 本発明の改質方法は、以下の1)~4)の工程を含む改質方法を含んでなる。
1)ホエイ蛋白質をホエイ蛋白質溶液、好ましくはホエイ蛋白質の5~18質量%溶液に調製する工程、
2)円筒の外周を、所定の剪断速度にて薄膜状に旋回しながら流れる前記ホエイ蛋白質溶液と、旋回しながら流れるホエイ蛋白質溶液とは別に、円筒の円心から放射状に流れる前記ホエイ蛋白質溶液を接触混合する工程、
3)混合したホエイ蛋白質溶液を剪断速度5,000s-1~25,000s-1で剪断しながら76~120℃に昇温する工程、
4)昇温したホエイ蛋白質溶液を当該温度で保温しながら、剪断速度5,000s-1~25,000s-1で8分~0.1秒剪断する工程。
 本発明の好適な実施の態様において、上記2)~4)の工程は、同時に連続して行われる。
 また、本発明の改質方法(改質ホエイ蛋白質の製造方法)は、以下の1)、2A)の工程:
1)ホエイ蛋白質からホエイ蛋白質溶液(好ましくはホエイ蛋白質の5~18質量%溶液)を調製する工程、
2A)ホエイ蛋白質溶液を、薄膜円筒状に旋回して流れるホエイ蛋白質溶液へ、接触混合連続的に接触混合しながら、連続的に接触混合されて薄膜円筒状に旋回して流れるホエイ蛋白質溶液を、76~120℃の範囲にある温度で、剪断速度5,000s-1~25,000s-1で8分~0.1秒間剪断する工程
を含む、ホエイ蛋白質を改質して、改質ホエイ蛋白質を製造する方法にある。
 本発明の改質方法において、ホエイ蛋白質溶液の濃度は、蛋白質換算で5~18質量%が好ましく、剪断効率を考慮すると10~18質量%が好ましく、さらに10~16質量%が好ましい。すなわち、この濃度範囲でホエイ蛋白質溶液を剪断することによって、ホエイ蛋白質をゲル化や凝集を起こさずに効率よく改質することが可能である。
 本発明の改質方法では、ホエイ蛋白質溶液のpHは、中性とすることができるが、やや弱酸性の領域であっても行うことができる。好ましい実施の態様において、pH5.5~7.5の範囲、好ましくはpH6.0~7.0の範囲、さらに好ましくはpH6.0~6.5の範囲とすることができる。
 前記濃度に調製したホエイ蛋白質溶液は、所定の剪断装置に投入して剪断を行う。この際、剪断装置の撹拌槽の温度は常温のままでもよく、攪拌槽ジャケット内の温湯による予備加熱を行って、60℃以下の任意の温度に保持した状態であってもよい。
 剪断装置にホエイ蛋白質溶液を投入した後、剪断を開始し、剪断速度を5,000s-1~25,000s-1、好ましくは10,000s-1~25,000s-1に保持しながら、剪断装置の撹拌槽の温度を昇温させる工程(予備加熱工程)を行う。好適な実施の態様において、この昇温は極めて短時間で行われ、予備加熱と加熱処理の時間をあわせて、加熱処理の保持時間として見ることができる。
 前記予備加熱の工程でホエイ蛋白質溶液を所定の温度に昇温した後、剪断処理を継続しながら、昇温後の温度でホエイ蛋白質溶液を所定時間保持して加熱処理(本加熱工程)を行う。この際、剪断速度については、剪断処理後のホエイ蛋白質の加熱テストにおいてゲル化や凝集が確認されない範囲で剪断することが好ましく、5,000s-1~25,000s-1の範囲、さらに7,500s-1~25,000s-1の範囲、特に10,000s-1~25,000s-1の範囲で行うことが好ましい。また、加熱処理を行う保持時間は、保持温度によって適宜設定することが可能であるが、一般に、45分(2700秒)~0.1秒の範囲、好ましくは30分(1800秒)~0.1秒の範囲、さらに好ましくは20分(1200秒)~0.1秒の範囲、さらに好ましくは10分(600秒)~0.1秒の範囲、さらに好ましくは8分(480秒)~0.1秒の範囲、さらに好ましくは360秒~0.1秒の範囲、さらに好ましくは240秒~0.1秒の範囲、さらに好ましくは120秒~0.1秒の範囲、さらに好ましくは60秒~0.1秒の範囲、さらに好ましくは30秒~0.1秒の範囲、さらに好ましくは20秒~0.1秒の範囲、特に好ましくは10秒~0.1秒の範囲の時間で保持することが望ましい。
 本発明のホエイ蛋白質の改質方法は、前記のとおり、剪断処理と加熱処理を同時進行で行うことが好ましい。これによって、ホエイ蛋白質の粒子の平均粒子径は、後記する本発明における平均粒子径の測定条件に基づいて測定した結果が、0.3~13.8μmの範囲、好ましくは0.5~13.4μmの範囲、さらに好ましくは0.5~10μmの範囲、さらに好ましくは0.6~6μmの範囲、さらに好ましくは0.6~3.42μmの範囲、さらに好ましくは0.6~1.87μmの範囲となり、また、改質後のホエイ蛋白質は、従来のホエイ蛋白質に比して濃厚感が少なく、滑らかな触感を有するものである。
〔剪断工程〕
 剪断装置にて実施される剪断工程は、本発明の改質方法の最も特徴的な工程である。
 剪断工程の好適な実施の一態様において、調製したホエイ蛋白質溶液は、固定された攪拌槽の底部の円心付近から供給され、回転羽根の高速回転により既に旋回しているホエイ蛋白質溶液に対し、円心付近から放射状に散って、回転羽根が備えている多孔円筒部の内面に到達し、回転羽根の高速回転による遠心力を受けて、多孔円筒部に多数貫通して設けられた小孔を通じて、回転羽根の多孔円筒部の外面と固定攪拌槽の内面との間に設けられている円筒型の空間へと流出し、回転羽根の高速回転によって薄膜円筒状となって旋回し、続けて供給されるホエイ蛋白質溶液は先に薄膜円筒状となって旋回しているホエイ蛋白質溶液の中へと流出し、接触して混合されて、その中に拡散される。回転羽根の多孔円筒部の内周面に到達しているホエイ蛋白質溶液は、遠心力によって内周面上に薄膜状となり、高速回転の続く間、多数貫通して設けられた小孔を通じて、回転羽根の多孔円筒部の外周面へとホエイ蛋白質溶液を供給し続ける。回転羽根の多孔円筒部の外面(外周面)と固定攪拌槽の内面(内周面)との間に設けられている円筒型の空間で薄膜円筒状となっているホエイ蛋白質溶液は、回転羽根の高速回転に連れて旋回し、遠心力で薄膜円筒状を保持しながら、固定攪拌槽内面と回転羽根の多孔円筒部外面との速度差によって剪断作用を受ける。
 また、剪断工程の好適な実施の別な一態様において、調製したホエイ蛋白質溶液は、回転羽根の高速回転による遠心力を受けて、多孔円筒部に多数貫通して設けられた小孔を通じて、回転羽根の多孔円筒部の外面と固定攪拌槽の内面との間に設けられている円筒型の空間へと流出し、回転羽根の高速回転によって薄膜円筒状となって旋回しているホエイ蛋白質溶液と接触して混合されて、その中に拡散される。回転羽根の多孔円筒部の外面(外周面)と固定攪拌槽の内面(内周面)との間に設けられている円筒型の空間で薄膜円筒状となっているホエイ蛋白質溶液は、回転羽根の高速回転に連れて旋回し、遠心力で薄膜円筒状を保持しながら、固定攪拌槽内面と回転羽根の多孔円筒部外面との速度差によって剪断作用を受ける。多孔円筒部の円心方向から、多数貫通して設けられた小孔を通じて、連続して流出するホエイ蛋白質溶液は、強い遠心力を受け、回転羽根の多孔円筒部の外周面と固定攪拌槽の内周面との間で、薄膜円筒状となって旋回して流れるホエイ蛋白質溶液内に放射状に噴出しながら混合される。このとき異なる方向の流れが接触混合されることによって攪拌作用を生じ、剪断作用を効果的に助長する。
 本発明の剪断工程は前記剪断方法のいずれの態様をとることも可能である。
 多孔円筒部の円心方向から、多数貫通して設けられた小孔を通じて、連続して流出するホエイ蛋白質溶液は、強い遠心力を受け、回転羽根の多孔円筒部の外周面と固定攪拌槽の内周面との間で、薄膜円筒状となって旋回して流れるホエイ蛋白質溶液内に放射状に噴出しながら混合される。このとき異なる方向の流れが接触混合されることによって、乱流が発生し、攪拌作用を生じて、剪断作用を効果的に助長する。
 多孔円筒部の内周面上で薄膜状となっているホエイ蛋白質溶液は、多数貫通して設けられた小孔を通じて多孔円筒部の外周面へと流出した液量と同じ液量が、多孔円筒部の外面(外周面)と固定攪拌槽の内面(内周面)との間に設けられている円筒型の空間で薄膜円筒状となっているホエイ蛋白質溶液の多孔円筒部の上端及び下端を越えて再度多孔円筒部の内側に流入するために、高速回転を続ける間、上記接触混合は連続的に行われる。供給管から供給されるホエイ蛋白質溶液もこの液の流れに加わる。これによって、乱流の発生と攪拌作用、それによる剪断作用の助長は、高速回転を続ける間、継続して行われる。
 剪断開始後液温が上昇し、目標温度に達した後に一定温度に保持される。温度の保持は攪拌槽に備えられたジャケット内の温湯あるいはチルド水によって調整することができる。保持時間終了後、ホエイ蛋白質溶液は剪断装置内のチルド水によってすみやかに冷却され、排出口より回収される。
 なお、本発明における剪断速度は、剪断作用を与える剪断装置の攪拌羽根の先端からシリンダー壁面までの距離(クリアランス:C)と、攪拌羽根の接線方向の速度(V)との比で、1/秒(sec)の次元を有する物理量である。クリアランスが短く、攪拌羽根の接線方向の速度が大きいほど剪断速度は大きくなる。この剪断速度は次式によって求めることができる。
 剪断速度(s-1)=V/C
 剪断温度は、130℃までの任意の温度に調整することができるが、本発明においては、ホエイ蛋白質の品質を保持するため、76℃~120℃の範囲、好ましくは80~120℃の範囲、特に85~120℃の範囲で使用することが望ましい。また、大気圧下での作業性の観点からは、76℃~100℃の範囲、好ましくは80℃~100℃の範囲、特に85~100℃の範囲の温度が好ましい。剪断温度として高い温度を選択すれば、より短い保持時間で処理しても、本発明を好適に実施することができる。最低温度として76℃を含む温度範囲とする場合には、8分(480秒)以上の保持時間とすることが好ましい。最低温度として80℃を含む温度範囲とする場合には、1分(60秒)以上の保持時間とすることが好ましい。最低温度として85℃を含む温度範囲とする場合には、0.1秒以上の保持時間とすることが好ましい。本発明の好適な態様において、80℃~120℃の範囲の温度で、480秒~60秒の範囲の保持時間とすることができる。本発明の別の好適な態様において、85℃~120℃の範囲の温度で、480秒~0.1秒の範囲の保持時間とすることができる。本発明の別の好適な態様において、80℃~100℃の範囲の温度で、480秒~60秒の範囲の保持時間とすることができる。本発明の別の好適な態様において、85℃~100℃の範囲の温度で、480秒~0.1秒の範囲の保持時間とすることができる。本発明の好適な実施の態様において、76℃以上80℃未満の範囲の温度で8分以上30分以下の範囲の保持時間、80℃以上85℃未満の範囲の温度で60秒以上8分未満の範囲の保持時間、85℃以上120℃以下の範囲の温度で480秒~0.1秒の範囲の保持時間の組み合わせとすることができる。
〔剪断装置〕
 本発明で用いる剪断装置は、円筒状の固定攪拌槽内に回転軸を同心に設け、円筒体に半径方向の小孔を多数貫通して設けた多孔円筒部を外周側に備えた、固定攪拌槽より僅かに小径の回転羽根を該回転軸に取り付けられた装置において、回転羽根の高速回転によりホエイ蛋白質溶液を固定攪拌槽の内面に薄膜円筒状に拡散しながら剪断するものである。好適な態様において、固定攪拌槽内周面には凹凸が設けられている。図1は、本発明で用いる剪断装置の一例の断面の模式図である。剪断装置1は、円筒状の固定攪拌槽2の内部に、回転羽根3と、供給管4及び5を備えている。回転羽根3は、回転軸3aと、アーム3cと、アーム3cによって回転軸3aと回転可能に一体となっている多孔円筒部3bとを有している。多孔円筒部3bは図示されない多数の小孔が半径方向に貫通しており、アーム3cは図示されない連通孔が回転軸の軸方向に複数貫通している。供給管4及び5は、固定攪拌槽2の底部の円心付近に位置し、ここから剪断装置1へ、調製したホエイ蛋白質溶液が供給される。供給されたホエイ蛋白質溶液は、回転羽根3の高速回転により既に旋回しているホエイ蛋白質溶液に対し、供給管4及び5の出口付近から放射状に散って、多孔円筒部3bの内面に到達し、回転羽根3の高速回転による遠心力を受けて、多孔円筒部3bに多数貫通して設けられた小孔を通じて、多孔円筒部3bの外面と固定攪拌槽2の内面との間に設けられている円筒型の空間へと流出し、回転羽根3の高速回転によって薄膜円筒状となって旋回し、続けて供給されるホエイ蛋白質溶液は先に薄膜円筒状となって旋回しているホエイ蛋白質溶液の中へと流出し、接触して混合されて、その中に拡散される。多孔円筒部3bの外面(外周面)と固定攪拌槽2の内面(内周面)との間に設けられている円筒型の空間で薄膜円筒状となっているホエイ蛋白質溶液は、回転羽根3の高速回転に連れて旋回し、遠心力で薄膜円筒状を保持しながら、固定攪拌槽2の内面と多孔円筒部3bの外面との速度差によって剪断作用を受ける。多孔円筒部3bの円心方向から、多数貫通して設けられた小孔を通じて、連続して流出するホエイ蛋白質溶液は、強い遠心力を受け、多孔円筒部3bの外周面と固定攪拌槽2の内周面との間で、薄膜円筒状となって旋回して流れるホエイ蛋白質溶液内に放射状に噴出しながら混合される。このとき異なる方向の流れが接触混合されることによって、乱流が発生し、攪拌作用を生じて、剪断作用を効果的に助長する。多孔円筒部3bの内周面上で薄膜状となっているホエイ蛋白質溶液は、多数貫通して設けられた小孔を通じて多孔円筒部3bの外周面へと流出した液量と同じ液量が、多孔円筒部3bの外面(外周面)と固定攪拌槽2の内面(内周面)との間に設けられている円筒型の空間で薄膜円筒状となっているホエイ蛋白質溶液、及び/又は供給管から流入するために、高速回転を続ける間、上記接触混合は連続的に行われる。これによって、乱流の発生と攪拌作用、それによる剪断作用の助長は、高速回転を続ける間、継続して行われる。好適な実施の態様において、固定攪拌槽2は、図示されない温度調節装置、例えば所望の温度の水を循環可能なジャケットを備えている。好適な実施の態様において、剪断装置1は、改質処理済みのホエイ蛋白質溶液を排出するために、図示されない排出管を備えている。好適な実施の態様において、剪断装置1は、固定攪拌槽2の内部に、図示されない堰板を備えている。この図示されない堰板は、固定攪拌槽2の内面において多孔円筒部3bの上端よりも上部に位置して、固定攪拌槽2の内面から円心方向に回転軸3a付近まで伸びて、円環状の堰板となっている。この堰板は、薄膜円筒状となったホエイ蛋白質溶液が固定攪拌槽2の内面の所望しない上部にまで至ることを防ぎ、あるいは、この堰板を越えたホエイ蛋白質溶液を図示されない排出管に導いて、剪断後の改質ホエイ蛋白質溶液を連続的に流出させることを可能にする。
 好適な実施の態様において、固定攪拌槽の外部はジャケットになっており、冷却水及び熱水を供給することで被処理液の加熱、冷却等の温度調整が可能である。
 好適な実施の対応において、固定攪拌槽の液体出入口を含めた試料液体の一連の経路は、密閉系にすることができ、圧力ポンプ及び圧力弁が設置されている。この圧力ポンプと圧力弁の調整によって密閉系内部を任意の圧力に設定することができる。圧力ポンプは、試料液体を100℃以上に加熱する場合や、試料液体を100℃付近に加熱した際の沸騰を防止するために加圧用ポンプとして使用される。圧力ポンプの調整により、処理液の温度は130℃まで昇温することができる。
 さらに、本装置は、剪断時に回転羽根と処理液の摩擦によって発熱が生じることから、剪断力が10,000s-1を超えるときは、この熱を利用してホエイ蛋白質溶液を加熱することができる。この剪断工程時のエネルギーによって発生する熱を「剪断熱」という。
 本発明の攪拌工程で使用する装置としては、「フィルミックスFM-80-50」(登録商標。プライミクス社製。)を例示することができる。詳細には、特開2007-125454号公報に記載の高速攪拌装置、特に同公報の図1及び図2として挙げられた装置を例示することができる。なお、剪断装置はこれに限定されるものではなく、同様の剪断効果が得られる装置であれば、如何なるものでも使用することができる。
〔ホエイ蛋白質の熱安定性〕
 改質されたホエイ蛋白質は、ホエイ蛋白質の変性温度を超える温度で再加熱を行っても、ホエイ蛋白質が凝集、ゲル化、沈殿等を引き起こさない性質、つまり良好な熱安定性を有していることから、食品製造時に加熱殺菌工程を含む飲食品の原料として好適に使用できる。
 ここで、再加熱を行っても、ホエイ蛋白質が凝集、ゲル化、沈殿等を引き起こさない性質とは、具体的には食品製造時の加熱殺菌を想定した加熱テスト(85℃、10分間加熱)により、ホエイ蛋白質の粒子が凝集せずに、平均粒子径が0.3~13.8μmの範囲を維持すること、及び官能評価における食感(ざらつき、粉っぽさ、濃厚感など)や外観(ゲル、凝集など)が良好であること(食感や外観が良好な状態で維持されていること)を意味する。
 なお、本発明におけるホエイ蛋白質の熱安定性は、ホエイ蛋白質を含む試料を固形分として12.5質量%となるように溶解して試料溶液を調製し、調製した試料溶液を85℃で10分間加熱処理を行い、加熱処理後の試料溶液について、官能評価と平均粒子径の測定を行う方法によって判定することが可能である。
〔官能評価〕
 本発明における官能評価とは、5~10名のパネラーにより、前記の通り、ホエイ蛋白質を含む試料を固形分として12.5質量%となるように溶解して試料溶液を調製し、調製した試料溶液を85℃で10分間加熱処理を行い、加熱処理後の試料溶液について風味試験及び外観試験を行うものである。具体的には、食感(ざらつき、粉っぽさ、濃厚感等)及び外観(ゲル化、凝集)について、それぞれ最高の評価を3点、最低の評価を0点とする1点刻みの点数を付け、パネラーの平均点を算出する。算出した平均点Aが2<A≦3を「良」、1<A≦2を「やや良」、0≦A≦1を「不良」として評価し、これをもって、各々の評価を熱安定性「良」、「やや良」、「不良」とする判定を行うことが可能である。
〔平均粒子径〕
 本発明において平均粒子径の測定は、前記の通り、製造したホエイ蛋白質を含む試料を固形分として12.5質量%となるように溶解して試料溶液を調製し、調製した試料溶液を85℃で10分間加熱処理を行い、加熱処理後の試料溶液について、レーザー回折式粒度分布測定装置等を使用してホエイ蛋白質の平均粒子径を測定することによって可能である。
 ここで、官能評価に基づく熱安定性について、ホエイ蛋白質が有する物性との関係を確認した結果を参考例として記載する。
〔参考例〕
 ホエイ蛋白質を含む試料を固形分として12.5質量%となるように溶解して試料溶液を調製し、調製した試料溶液を85℃で10分間加熱処理を行い、加熱処理後の試料溶液における官能評価と、加熱処理後のホエイ蛋白質における物性としてホエイ蛋白質粒子の平均粒子径との関係を検討した。
 なお、本発明における平均粒子径の測定は、加熱処理後の試料溶液について、レーザー回折式粒度分布測定装置(堀場製作所製、商品名:LA-500)を使用して、循環流量2、攪拌速度2の条件で測定した時の平均粒子径(粒度累積分布の50%に相当する粒子径)の値を測定することによって行った。
 その結果、表1に示されるとおり、加熱処理後のホエイ蛋白質の平均粒子径が13.9μm未満であるとき、官能評価は「良」であることが判明し、特に平均粒子径が0.3~13.8μm以下であるときに好ましい食感・外観を有することが明らかとなった。
 この結果は、加熱処理後のホエイ蛋白質の平均粒子径が13.9μm未満、特に0.3~13.8μmの範囲であるときに、熱安定性が「良」と判定できることを意味するものである。
 したがって、本発明において製造されたホエイ蛋白質の平均粒子径が0.3~13.8μmの範囲に含まれる時、ホエイ蛋白質は改質されたと判断することができ、風味や外観に良好な効果を及ぼす微細な粒子径を有していると規定することができる。
Figure JPOXMLDOC01-appb-T000001
 なお、本発明において、ホエイ蛋白質の熱安定性を判定することが可能な前記官能評価試験や平均粒子径の測定試験は、「加熱テスト」と略記することがある。
〔改質されたホエイ蛋白質を含む食品等〕
 本発明方法によって改質されたホエイ蛋白質は、舌触りや喉ごし等を重要視するような食品の原料として利用することが可能であり、具体的には、ゼリー、プリン、アイスクリーム、ドリンクヨーグルト、ジュース、乳飲料、加工乳、コーヒー、スポーツドリンク、スープ、焼成食品、粉乳、育児用調製粉乳、及び流動食等の食品群の原料として好適に使用することが可能である。
 なお、本発明方法によって改質されたホエイ蛋白質は前記食品群に利用される以外に、シャンプー、リンス、クリーム、乳液等の化粧品等にも好適に使用することが可能である。
 好ましい実施の態様において、本発明による改質されたホエイ蛋白質は、走査型プローブ顕微鏡によって観察した場合に、その改質ホエイ蛋白質粒子表面に微細な突起物が観察される。好ましい実施の態様において、この微細な突起の数は、5μm×5μmの範囲の粒子表面に、100~100,000個の範囲で存在する。また、好ましい実施の態様において、この微細な突起の直径は、10~200nmの範囲にもある。さらに、好ましい実施の態様において、この微細な突起の高さ(最大部)は、10~500nmの範囲にもある。この微細な突起は、食品製造時の加熱殺菌工程を想定したホエイ蛋白質の変性温度を超える温度での再加熱を行っても、改質ホエイ蛋白質が凝集、ゲル化、沈殿等を引き起こさず、食感が良好(ざらつき、粉っぽさ、不快な濃厚感が感じられない等)であるという性質に寄与しているものと推察される。
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
〔実施例1〕
(製造方法)
 ホエイ蛋白質としてWPC35(独、ミライ社製。商品名:ミライ35)及びWPC60(独、ミライ社製。商品名:ミライ60)を一対一の割合で混合したもの(以降、これを「WPC50相当」と記載することがある)を常温水に溶解して、固形分濃度が12.5質量%(ホエイ蛋白質として10質量%)のホエイ蛋白質溶液を調製した。次いで、当該ホエイ蛋白質溶液を剪断装置「フィルミックスFM-80-50」に投入した。剪断装置の剪断速度を25,000s-1に設定して剪断を開始し、ホエイ蛋白質溶液の温度が85℃に達するまで予備加熱を行い(昇温工程)、85℃に到達してから1分間保持した後、剪断を終了した。剪断終了後は、撹拌槽の外側に設置されたジャケット内にチルド水を通液し、撹拌槽を冷却した後、剪断装置からホエイ蛋白質溶液を回収した。なお、前記剪断処理工程における85℃での保持時間は0.1秒(加熱保持工程)であった。
 そこで、当該剪断処理を実施したホエイ蛋白質について85℃で10分間加熱処理を行い、平均粒子径測定と官能評価からなる加熱テストを行った結果、ホエイ蛋白質の平均粒子径が1.21μmであり、ざらつき感の感じられない良好な食感を有することが判明し、ホエイ蛋白質の熱安定性が向上していることが確認された。
 なお、剪断処理を終了した時点でホエイ蛋白質溶液におけるホエイ蛋白質の平均粒子径を測定したところ、0.89μmであることが確認された。
〔実施例2〕
 実施例1と同様の方法で得られたホエイ蛋白質改質品を配合したコーンスープを表2に記載の配合割合で製造した。なお、ホエイ蛋白質改質品は、WPC80(独、ミライ社製。商品名:ミライ80)を本発明の改質方法に基づいて改質し、さらに噴霧乾燥したもの(改質WPC80噴霧乾燥品(固形分97%))である。
(製造方法)
 はじめにバターを溶解水に投入して、50℃に加温した。これに、改質WPC80噴霧乾燥品、及びその他の原料である脱脂粉乳、コーンピューレ、チキンエキス、野菜エキス、食塩、及びグリセリン脂肪酸エステルを投入した。原料を投入した後、ホモミキサー(プライミクス社製)で8000rpm、3分の条件で分散溶解した。さらに、110℃、2秒の加熱殺菌を行った。
 その後、ホモジナイザー(三丸機械工業社製)で、12MPaの条件で均質化し、10℃に冷却して、コーンスープを製造した。
 製造したコーンスープは、凝集やゲル等の発生がなく、外観、風味がいずれも良好であった。
Figure JPOXMLDOC01-appb-T000002
〔実施例3〕
 実施例1と同様の方法で得られたホエイ蛋白質改質品を配合したアイスクリームを表3に記載の配合割合で製造した。なお、ホエイ蛋白質改質品は、WPC35(独、ミライ社製。商品名:ミライ35)を本発明の改質方法に基づいて改質し、さらに噴霧乾燥したもの(改質WPC35噴霧乾燥品(固形分97%))である。
(製造方法)
 50℃に加温した溶解水に、改質WPC35噴霧乾燥品(固形分97%)、及び加糖脱脂練乳、無塩バター、グラニュー糖、粉飴、グリセリン脂肪酸エステル、グアーガム、カラギナンを添加し、ホモミキサー(プライミクス社製)にて8000rpm、2分の条件で分散溶解した。
 次いで、ホモジナイザー(三丸機械工業社製)で12MPaの条件で均質し、85℃、10秒間の条件で殺菌した後、10℃に冷却してアイスクリームミックスを調製した。
 調製したアイスクリームミックスは、アイスクリームフリーザー(カルピジャーニ(CARPIGIANI)社製L12/C)を用いてフリージングし、オーバーラン30%になるように調整してアイスクリームを製造した。
 製造したアイスクリームは、組織が滑らかでざらつき等が感じられず、風味は良好であった。
Figure JPOXMLDOC01-appb-T000003
 次に試験例を示して本発明を詳細に説明する。
〔試験例1〕
 本試験は、本発明の方法によって改質されたホエイ蛋白質と、従来の方法で剪断処理されたホエイ蛋白質について、加熱テスト後の平均粒子径と官能評価を検討するために行った。
(1)試料の調製
 実施例1と同様の方法で調製した改質ホエイ蛋白質(改質WPC50相当)を試験試料1とした。
 前記特許文献6(特許第3798249号公報)に記載された剪断処理が実施されたホエイ蛋白質である「シンプレス100(Simplesse 100)」(CPケルコ社製:ホエイ蛋白質含有量約50%)を対照試料1とした。
 さらに、特表2003-535609号公報に記載された方法により処理されたホエイ蛋白質を対照試料2とした。対照試料2の調製方法は次のとおりである。すなわち、シンプレス100(対照試料1)を常温水に溶解して20質量%溶液を調製し、調製した溶液を、T.K.ホモミキサー・マークII(プライミクス社製)を使用して剪断速度10,000s-1で剪断しながら、77℃で加熱処理し、30分間保持した。加熱処理後、常温まで冷却した後、ホモジナイザー(APV社)を用いて50MPaの単段にて3回均質化処理を実施して対照試料2を調製した。
 なお、改質処理を一切実施していないホエイ蛋白質(実施例1にて使用したWPC50相当)を陰性試料1とした。
 尚、対照試料1及び2で使用するシンプレス100の成分組成は、WPC50相当と同様のホエイ蛋白質含有量であり、試験試料1の成分とほぼ同様である。
(2)試験方法
 各試料について、加熱テスト(官能評価試験と平均粒子径の測定試験)を実施した。
 すなわち、官能評価試験は、5~10名程度のパネラーにより、各試料を固形分として12.5質量%となるように溶解して試料溶液を調製し、調製した試料溶液を85℃で10分間加熱処理を行い、その後、食感(ざらつき、粉っぽさ、濃厚感等)及び外観(ゲル化、凝集等)について、それぞれ最高の評価を3点、最低の評価を0点とする1点刻みの点数を付け、パネラーの平均点を算出する。算出した平均点Aが2<A≦3を「良」、1<A≦2を「やや良」、0≦A≦1を「不良」として評価した。
 また、平均粒子径の測定試験は、前記加熱処理後の試料溶液について、レーザー回折式粒度分布測定装置(堀場製作所製、商品名:LA-500)を使用して、循環流量2、攪拌速度2の条件で測定した時の平均粒子径(粒度累積分布の50%に相当する粒子径)の値を測定することによって行った。
(3)試験結果
 本試験の結果は表4に示すとおりである。表4は、加熱テストによる各試料の平均粒子径と官能評価を示すものである。
 その結果、本発明の方法で改質されたホエイ蛋白質である試験試料1は、加熱テスト(85℃、10分の加熱処理)の結果、風味、外観等の官能評価は良であった。また、平均粒子径は、1.21μmであり、風味や外観に良好な効果を及ぼす微細な粒子径を維持していることが判明した。その結果、試験試料1の熱安定性は良と判定された。
 しかしながら、対照試料1や対照試料2においては、平均粒子径が加熱テスト後に試験試料1に比して増大(対照試料1:94.02μm、対照試料2:15.03μm)し、官能評価においても、凝集が発生し、濃厚感も感じられたため、評価は不良であった。その結果、対照試料1および対照試料2のいずれも熱安定性総合評価は不良(×)と判定された。
 なお、陰性試料1は、加熱テストによってホエイ蛋白質のゲル化が生じ、平均粒子径は測定不能であり、官能評価も不良であった。
Figure JPOXMLDOC01-appb-T000004
(4)考察
 なお、試験試料1については、改質処理した溶液を、NIROドライヤー(NIRO社製)を用いて噴霧乾燥した。得られた噴霧乾燥品を固形分として12.5質量%溶液に調製して、加熱テストを実施したところ、平均粒子径はほとんど変化せず、官能評価も良の評価が得られた。よって、本試験例の設定条件であれば、減圧濃縮、噴霧乾燥による熱安定性への影響(変化)は生じないことが確認された。
〔試験例2〕
 本試験は、ホエイ蛋白質濃度が異なるホエイ蛋白質原料について、実施例1に記載の剪断加熱処理した際の熱安定性を確認するために行った。
(1)試料の調製
 実施例1と同様の方法で調製した改質ホエイ蛋白質(改質WPC50相当)を試験試料1とした。
 また、ホエイ蛋白質原料にWPC80(ホエイ蛋白質含量:80質量%)を使用して実施例1と同様に調製した改質ホエイ蛋白質を試験試料2とし、ホエイ蛋白質原料にWPC35(ホエイ蛋白質含量:35質量%)を使用して実施例1と同様に調製した改質ホエイ蛋白質を試験試料3としてそれぞれ調製した。
(2)試験方法
 各試料は、試験例1と同様の加熱テストを行った。
(3)試験結果
 本試験の結果は表5に示すとおりである。表5は、加熱テストによる各試料の平均粒子径と官能評価を示すものである。
 その結果、ホエイ蛋白質原料(粉末)において、ホエイ蛋白質含量が35質量%、50質量%、80質量%のいずれであっても、本発明による改質方法によって、風味や外観に良好な効果を及ぼす微細な粒子径を維持し、官能評価も全て良好であり、熱安定性が向上(熱安定性:良)することが判明した。
Figure JPOXMLDOC01-appb-T000005
〔試験例3〕
 本試験は、ホエイ蛋白質を加熱剪断処理する際の蛋白質濃度を検討するために行った。
(1)試料の調製
 試料として、ホエイ蛋白質原料で蛋白質含量の高いWPC80(独、ミライ社製)を使用した。
(2)試験方法
 加熱剪断処理を行う際のホエイ蛋白質溶液の濃度を、蛋白質含量として5質量%から20質量%の範囲に調製した試料を使用して、実施例1において、剪断速度を25,000s-1とし、本加熱工程における加熱温度を85℃、加熱保持時間を30秒に設定したこと以外は同様の方法に基づいて改質ホエイ蛋白質を調製し、それぞれ試験例1と同様の加熱テストを行った。
(3)試験結果
 本試験の結果は表6に示すとおりである。表6は、加熱テストによる各試料の平均粒子径と官能評価を示すものである。
 その結果、ホエイ蛋白質の蛋白質含量が5質量%~18質量%の場合、加熱テストの結果、平均粒子径に大きな変化はなく、いずれも風味や外観に良好な効果を及ぼす微細な粒径を維持しており、風味も良好であり、熱安定性総合評価は良好と判定された。
 これに対し、蛋白質含量が20質量%の場合、改質工程終了直後において、ホエイ蛋白質はゲル化し、加熱テスト後の平均粒子径は測定できず、官能評価も不良の結果となった。
Figure JPOXMLDOC01-appb-T000006
〔試験例4〕
 本試験は、ホエイ蛋白質の加熱剪断処理工程における剪断速度を検討するために行った。
(1)試料の調製
 試料として、ホエイ蛋白質原料で蛋白質含量の高いWPC80(独、ミライ社製)を使用した。
(2)試験方法
 実施例1に記載の改質方法において、剪断速度を3,000s-1~25,000s-1の条件で実施した以外は同様の方法に基づいて改質ホエイ蛋白質を調製し、それぞれ試験例1と同様の加熱テストを行った。
(3)試験結果
 本試験の結果は表7に示すとおりである。表7は、加熱テストによる各試料の平均粒子径と官能評価を示すものである。
 剪断速度を5,000s-1~25,000s-1の範囲にした場合は、加熱テストにおいても平均粒子径の大きな変化はなく、いずれも風味や外観に良好な効果を及ぼす微細な粒径を維持しており、風味も良好であった。しかし、剪断速度を3,000s-1に設定した条件においては剪断直後においてゲル化を生じ、加熱テスト後の平均粒子径は測定できず、官能評価も不良の結果となった。
 従って、剪断速度については、5,000s-1~25,000s-1であることが好ましく、剪断熱のみで加熱できることから10,000s-1~25,000s-1であることがさらに好ましい。
Figure JPOXMLDOC01-appb-T000007
〔試験例5〕
 本試験は、ホエイ蛋白質の加熱剪断処理工程における加熱保持温度と保持時間を検討するために行った。
(1)試料の調製
 試料として、ホエイ蛋白質原料に蛋白質含量の高いWPC80(独、ミライ社製)を使用した。
(2)試験方法
 実施例1に記載の改質方法において、剪断速度を15,000s-1とし、さらに本加熱工程における加熱温度を74~120℃とし、加熱保持時間を0.1~3600秒(60分)として実施した以外は同様の方法に基づいて改質ホエイ蛋白質を調製し、それぞれ試験例1と同様の加熱テストを行った。
(3)試験結果
 本試験の結果は表8に示すとおりである。表8は、加熱テストによる各試料の平均粒子径と官能評価を示すものである。
 その結果、加熱温度85℃、加熱保持時間0.1秒の設定において、加熱テストの結果は、平均粒子径に大きな変化はなく、風味も良好であることから、熱安定性総合評価は良好と判定された。また、加熱温度が95℃、110℃及び120℃のときは、加熱保持時間が0.1秒の場合においていずれも加熱テストの結果は良好であった。
 よって、設定温度が85℃以上の場合であれば、加熱保持時間が0.1秒であっても、本改質方法を適用することができる。
 続いて、加熱温度を80℃、加熱時間を60秒にしたときの加熱テストの結果は平均粒子径、風味共に良好であった。しかし、加熱温度80℃、加熱時間0.1秒に短縮すると、加熱テストの官能評価の結果において凝集が発生した。よって、加熱時間を80℃に設定した場合は、少なくとも60秒以上の加熱であれば本改質方法を適用できる。
 また、加熱温度を76℃にした場合は、加熱保持時間が480秒では、加熱テストの結果が平均粒子径、風味共に良好であった。しかし、加熱保持時間420秒のときは、加熱テスト後において平均粒子径の増大がみられ、官能評価も不良であった。
 最後に、設定温度74℃、加熱時間3600秒(60分)の条件において、加熱テストによりホエイ蛋白質がゲル化し、官能評価においても不良の結果となった。
 これらの結果より、本発明の改質方法における本加熱の加熱温度及び加熱保持時間は、76~120℃の任意の設定温度に昇温し、その設定温度にて8分~0.1秒の処理をすることが好ましい。中でも、短時間で効率的に処理するには、ホエイ蛋白質溶液を85~120℃に昇温し、0.1秒保持することが好ましい。
Figure JPOXMLDOC01-appb-T000008
〔試験例6〕
 本試験は、本発明の改質方法による改質ホエイ蛋白質の乾燥品と、従来のホエイ蛋白質の乾燥品との粒子表面の形状を比較検討するために行った。
(1)試料の調製
 実施例1と同様の方法で調製した改質ホエイ蛋白質溶液(改質WPC50相当)の乾燥品を試験試料1とした。
 また、シンプレス100(Simplesse 100、CPケルコ社製:ホエイ蛋白質含有量約50%)の粉末を対照試料1とした。
 そして、実施例1に記載されたホエイ蛋白質粉末混合品(ホエイ蛋白質含有量約50%)を固形分として6質量%に溶解したものに85℃、360秒の加熱処理を行い、次いで高圧ホモジナイザー(APV社製)を用いて100MPaで均質処理し、これを噴霧乾燥したものを対照試料2とした。
(2)試験方法
 走査型プローブ顕微鏡を用いて各試料を観察した。以下に測定方法の条件を示す。
使用機器  :SFT-3500(商品名:島津製作所製)
動作モード :ダイナミックモード
カンチレバー:OMCL-AC240TS
走査範囲  :5μm×5μm
(3)試験結果
 本試験では測定エリアを5μm×5μmとした。得られた画像を図2(試験試料1)および図3(対照試料1および対照試料2)に示す。
 図2から明らかなように、画像から確認される試験試料1の粒子表面には、直径200nm以下、高さ500nm以下の微細な突起物が約150個観察された。一方、図3から明らかなように、対照試料1、対照試料2では、試験試料1で確認された微細な突起物は観察されず、粒子表面の形状が本発明の改質ホエイ蛋白質と異なることが示された。
 なお、本発明の改質ホエー蛋白質の粒子表面に確認された微細な突起は、食品製造時の加熱殺菌工程を想定したホエイ蛋白質の変性温度を超える温度での再加熱を行っても、改質ホエイ蛋白質が凝集、ゲル化、沈殿等を引き起こさず、食感(ざらつき、粉っぽさ、濃厚感など)が良好であるという性質に寄与しているものと推察される。
 本発明の改質方法によって改質されたホエイ蛋白質は、従来のホエイ蛋白質と比較して顕著に熱安定性が向上したものであり、高温殺菌等による粘度上昇、ゲル化、蛋白凝集等を防止できるため、熱処理工程を含む様々な飲食品、化粧品等の原料として好適に使用することができる。本発明の改質ホエイ蛋白質はそのまま液体として使用することができるが、必要に応じて濃縮して濃縮液を得ることもでき、さらには濃縮液を乾燥し、粉末を得ることもできるため、長距離輸送や長期保存にも対応することが可能である。

Claims (6)

  1.  以下の1)、2A)の工程:
    1)ホエイ蛋白質からホエイ蛋白質溶液を調製する工程、
    2A)ホエイ蛋白質溶液を、薄膜円筒状に旋回して流れるホエイ蛋白質溶液へ、連続的に接触混合しながら、連続的に接触混合されて薄膜円筒状に旋回して流れるホエイ蛋白質溶液を、76~120℃の範囲にある温度で、剪断速度5,000s-1~25,000s-1で8分~0.1秒間剪断する工程
    を含む、ホエイ蛋白質を改質して、改質ホエイ蛋白質を製造する方法。
  2.  接触混合が、
     円筒状の固定攪拌槽内に回転軸を同心に設け、固定攪拌槽より僅かに小径の回転羽根を該回転軸に取り付けられた装置であって、前記回転羽根が、円筒体に半径方向の小孔を多数貫通して設けた多孔円筒部を外周側に備えた装置を使用して、
     多孔円筒部内部に導入されたホエイ蛋白質溶液が多孔円筒部の小孔を通じて、回転羽根の高速回転により固定攪拌槽と多孔円筒部の間を薄膜円筒状に旋回して流れるホエイ蛋白質溶液へと、接触混合することによって行われる、請求項1に記載の方法。
  3.  剪断が、
     円筒状の固定攪拌槽内に回転軸を同心に設け、固定攪拌槽より僅かに小径の回転羽根を該回転軸に取り付けられた装置であって、前記回転羽根が、円筒体に半径方向の小孔を多数貫通して設けた多孔円筒部を外周側に備えた装置を使用して、
     回転羽根の高速回転により、ホエイ蛋白質溶液を、回転羽根の高速回転により固定攪拌槽と多孔円筒部の間を薄膜円筒状に旋回して流しながら剪断することによって行われる、請求項1~2の何れかに記載の方法。
  4.  ホエイ蛋白質溶液が、ホエイ蛋白質の5~18質量%溶液である、請求項1~3の何れかに記載の方法。
  5.  ホエイ蛋白質の改質が、加熱処理した後の風味及び/又は外観を、改質前と比較して維持及び/又は向上させることである、請求項1~4の何れかに記載の方法。
  6.  85℃、10分間加熱処理後の平均粒子径が0.3~13.8μmである、請求項1~5の何れかに記載の方法で製造された、改質ホエイ蛋白質。
PCT/JP2009/000946 2008-03-04 2009-03-03 ホエイ蛋白質の改質方法 WO2009110218A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK09717846.1T DK2250906T3 (en) 2008-03-04 2009-03-03 PROCEDURE FOR DENATURING WHEEL PROTEIN
US12/865,959 US20110003975A1 (en) 2008-03-04 2009-03-03 Method of denaturing whey protein
CN200980107536.0A CN101959423B (zh) 2008-03-04 2009-03-03 乳清蛋白的改性方法
NZ587167A NZ587167A (en) 2008-03-04 2009-03-03 Method of denaturing whey protein
EP09717846.1A EP2250906B1 (en) 2008-03-04 2009-03-03 Method of denaturing whey protein
KR1020107022199A KR101223190B1 (ko) 2008-03-04 2009-03-03 유청 단백질의 개질 방법
CA2712978A CA2712978C (en) 2008-03-04 2009-03-03 Method of denaturing whey protein
AU2009220682A AU2009220682B2 (en) 2008-03-04 2009-03-03 Method of denaturing whey protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-053626 2008-03-04
JP2008053626A JP4431181B2 (ja) 2008-03-04 2008-03-04 ホエイ蛋白質の改質方法

Publications (1)

Publication Number Publication Date
WO2009110218A1 true WO2009110218A1 (ja) 2009-09-11

Family

ID=41055783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000946 WO2009110218A1 (ja) 2008-03-04 2009-03-03 ホエイ蛋白質の改質方法

Country Status (11)

Country Link
US (1) US20110003975A1 (ja)
EP (1) EP2250906B1 (ja)
JP (1) JP4431181B2 (ja)
KR (1) KR101223190B1 (ja)
CN (1) CN101959423B (ja)
AU (1) AU2009220682B2 (ja)
CA (1) CA2712978C (ja)
DK (1) DK2250906T3 (ja)
NZ (1) NZ587167A (ja)
RU (1) RU2453128C2 (ja)
WO (1) WO2009110218A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429305B1 (en) 2009-04-15 2020-05-27 Fonterra Co-Operative Group Limited Dairy product and process

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641282B2 (ja) * 2010-02-01 2014-12-17 国立大学法人広島大学 飲食物のざらつき感測定方法及びその測定装置
JP5329506B2 (ja) * 2010-09-24 2013-10-30 森永乳業株式会社 ホエイ蛋白質組成物の製造方法
NL2006182C2 (en) * 2011-02-11 2012-08-14 Friesland Brands Bv Liquid, heat gellable food.
AU2013200268B2 (en) * 2011-11-02 2014-10-30 Fonterra Co-Operative Group Limited Dairy product and process
EA029154B1 (ru) * 2012-02-06 2018-02-28 Арла Фудс Амба Низкобелковое замороженное кондитерское изделие
RU2586154C2 (ru) 2012-03-02 2016-06-10 Пепсико, Инк. Способ изготовления белковых напитков и устройство и система контура денатурирования
WO2014017525A1 (ja) * 2012-07-24 2014-01-30 株式会社明治 低脂肪または無脂肪の気泡含有乳化物
EP2901865B1 (en) * 2012-09-28 2018-01-17 Morinaga Milk Industry Co., Ltd. Method for manufacturing denatured whey protein
RS57631B1 (sr) * 2013-10-23 2018-11-30 Arla Foods Amba Visoko proteinski napitak voćnog ukusa i odnosni postupak
AU2014338893B2 (en) * 2013-10-23 2018-02-08 Arla Foods Amba High protein denatured whey protein composition, related products, method of production and uses thereof
ES2682037T5 (es) 2013-10-23 2023-05-30 Arla Foods Amba Composiciones de proteína de suero lácteo desnaturalizada con alto contenido proteico, que contienen caseinomacropéptidos, productos que las contienen y usos de las mismas
US10384855B2 (en) 2014-02-07 2019-08-20 Yeti Coolers, Llc Insulating device and method for forming insulating device
USD732349S1 (en) 2014-02-07 2015-06-23 Yeti Coolers, Llc Insulating device
US10781028B2 (en) 2014-02-07 2020-09-22 Yeti Coolers, Llc Insulating device backpack
USD732350S1 (en) 2014-02-07 2015-06-23 Yeti Coolers, Llc Insulating device
USD732348S1 (en) 2014-02-07 2015-06-23 Yeti Coolers, Llc Insulating device
US9139352B2 (en) 2014-02-07 2015-09-22 Yeti Coolers, Llc Insulating container
US10029842B2 (en) 2014-02-07 2018-07-24 Yeti Coolers, Llc Insulating device
US10143282B2 (en) 2014-02-07 2018-12-04 Yeti Coolers, Llc Insulating device
CN104186699B (zh) * 2014-08-26 2016-08-17 光明乳业股份有限公司 一种乳清布丁及其制备方法
USD934636S1 (en) 2014-09-08 2021-11-02 Yeti Coolers, Llc Insulating device
USD948954S1 (en) 2014-09-08 2022-04-19 Yeti Coolers, Llc Insulating device
USD787187S1 (en) 2014-09-23 2017-05-23 Yeti Coolers, Llc Insulating device
CN114224052B (zh) 2015-11-02 2024-02-06 野醍冷却器有限责任公司 封闭系统和容器
USD809869S1 (en) 2016-02-05 2018-02-13 Yeti Coolers, Llc Insulating device
US12012274B2 (en) 2016-02-05 2024-06-18 Yeti Coolers, Llc Insulating device backpack
USD798670S1 (en) 2016-02-05 2017-10-03 Yeti Coolers, Llc Insulating device
CN109068822A (zh) 2016-02-05 2018-12-21 野醍冷却器有限责任公司 绝热装置
USD801123S1 (en) 2016-02-05 2017-10-31 Yeti Coolers, Llc Insulating device
USD799276S1 (en) 2016-02-05 2017-10-10 Yeti Coolers, Llc Insulating device
USD799905S1 (en) 2016-02-05 2017-10-17 Yeti Coolers, Llc Insulating device
USD802373S1 (en) 2016-02-05 2017-11-14 Yeti Coolers, Llc Insulating device
USD799277S1 (en) 2016-02-05 2017-10-10 Yeti Coolers, Llc Insulating device
USD808730S1 (en) 2016-06-01 2018-01-30 Yeti Coolers, Llc Cooler
USD821825S1 (en) 2016-06-01 2018-07-03 Yeti Coolers, Llc Cooler
USD830134S1 (en) 2016-06-01 2018-10-09 Yeti Coolers, Llc Cooler
USD805851S1 (en) 2016-06-01 2017-12-26 Yeti Coolers, Llc Cooler
USD824731S1 (en) 2016-06-01 2018-08-07 Yeti Coolers, Llc Cooler
USD830133S1 (en) 2016-06-01 2018-10-09 Yeti Coolers, Llc Cooler
USD815496S1 (en) 2016-10-14 2018-04-17 Yeti Coolers, Llc Insulating device
USD817106S1 (en) 2016-10-14 2018-05-08 Yeti Coolers, Llc Insulating device
USD814879S1 (en) 2016-10-14 2018-04-10 Yeti Coolers, Llc Insulating device
USD817107S1 (en) 2016-10-14 2018-05-08 Yeti Coolers, Llc Insulating device
JP7139312B2 (ja) * 2017-03-22 2022-09-20 株式会社明治 微粒化ホエイたんぱく質及びその製造方法
USD829244S1 (en) 2017-04-25 2018-09-25 Yeti Coolers, Llc Insulating device
CN110709337B (zh) 2017-06-09 2023-10-27 野醍冷却器有限责任公司 隔热装置
USD848222S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD848221S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD848223S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD848220S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD848798S1 (en) 2017-10-30 2019-05-21 Yeti Coolers, Llc Backpack cooler
USD848219S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD849486S1 (en) 2017-10-30 2019-05-28 Yeti Coolers, Llc Backpack cooler
CN110604213A (zh) * 2019-09-09 2019-12-24 苏州恒瑞健康科技有限公司 一种提高蛋白质稳定性的工艺方法
US11242189B2 (en) 2019-11-15 2022-02-08 Yeti Coolers, Llc Insulating device
USD929191S1 (en) 2019-11-15 2021-08-31 Yeti Coolers, Llc Insulating device
USD929192S1 (en) 2019-11-15 2021-08-31 Yeti Coolers, Llc Insulating device
NL2024317B1 (en) * 2019-11-27 2021-08-30 Meyn Food Processing Tech Bv A cell for making an anisotropic-structured product from a starting material when being subjected to a shear force and heated and a method
NL2024603B1 (en) * 2020-01-03 2021-09-06 Plant Meat Makers B V Food production device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187143A (en) * 1975-10-01 1980-02-05 Basf Aktiengesellschaft Manufacture of fibrids from poly(amide-imide) resins
JPH06509475A (ja) 1991-10-25 1994-10-27 ザ ヌトラスウィート カンパニー 乾燥微粒子タン白生成物
JPH07184556A (ja) 1993-11-16 1995-07-25 Takeda Shokuhin Kogyo Kk 蛋白質性微小粒子およびその製造法
JPH07213232A (ja) * 1986-06-20 1995-08-15 Nutrasweet Co:The 蛋白製品ベース
JP2000004786A (ja) 1998-06-24 2000-01-11 Ajinomoto Co Inc 食感が改善されたチーズホエイ蛋白、その製造方法及びその利用
JP2003535609A (ja) 2000-06-22 2003-12-02 ザ プロクター アンド ギャンブル カンパニー 不溶性タンパク質粒子
JP2005506174A (ja) * 2001-10-17 2005-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 粒子形成のための回転子固定子装置および方法
JP3798249B2 (ja) 2001-02-16 2006-07-19 株式会社ヤクルト本社 安定な固形ヨーグルトおよびその製造方法
JP2007125454A (ja) 2005-11-01 2007-05-24 Primix Copr 高速攪拌装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724819A (en) * 1987-01-23 1988-02-16 Precision National Plating Services, Inc. Cylinder liner reconditioning process and cylinder liner produced thereby
NO170313C (no) * 1987-12-02 1992-10-07 Labatt Ltd John Fremgangsmaate for fremstilling av et proteinholdige, vanndispergerbare makrokolloider
EP0412590A1 (en) * 1989-08-10 1991-02-13 Quest International B.V. Edible compositions of denatured whey proteins
US5217741A (en) * 1991-01-25 1993-06-08 Snow Brand Milk Products Co., Ltd. Solution containing whey protein, whey protein gel, whey protein powder and processed food product produced by using the same
US5750183A (en) * 1993-11-16 1998-05-12 Takeda Food Products, Ltd. Process for producing proteinaceous microparticles
US7897186B2 (en) * 2001-11-06 2011-03-01 Novozymes North America, Inc. Modified whey protein compositions having improved foaming properties
US20050118311A1 (en) * 2003-12-02 2005-06-02 Best Eric T. Reduced-fat flavored coating and methods of using same
JP4327613B2 (ja) * 2004-01-21 2009-09-09 アサヒビール株式会社 運搬具
CN1261029C (zh) * 2004-08-30 2006-06-28 江南大学 一种酶法改性乳蛋白的方法及其应用
WO2006058538A1 (en) * 2004-11-30 2006-06-08 Cp Kelco Aps Method for producing a denatured protein material
EP1775542B1 (en) * 2005-10-05 2019-04-17 SPX Flow Technology Danmark A/S A scraped surface heat exchanger and a method for producing whey protein concentrate
CN100469426C (zh) * 2006-05-19 2009-03-18 中国科学院过程工程研究所 一种高通量连续化均匀乳滴制备装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187143A (en) * 1975-10-01 1980-02-05 Basf Aktiengesellschaft Manufacture of fibrids from poly(amide-imide) resins
JPH07213232A (ja) * 1986-06-20 1995-08-15 Nutrasweet Co:The 蛋白製品ベース
JPH06509475A (ja) 1991-10-25 1994-10-27 ザ ヌトラスウィート カンパニー 乾燥微粒子タン白生成物
JPH07184556A (ja) 1993-11-16 1995-07-25 Takeda Shokuhin Kogyo Kk 蛋白質性微小粒子およびその製造法
JP2000004786A (ja) 1998-06-24 2000-01-11 Ajinomoto Co Inc 食感が改善されたチーズホエイ蛋白、その製造方法及びその利用
JP2003535609A (ja) 2000-06-22 2003-12-02 ザ プロクター アンド ギャンブル カンパニー 不溶性タンパク質粒子
JP3798249B2 (ja) 2001-02-16 2006-07-19 株式会社ヤクルト本社 安定な固形ヨーグルトおよびその製造方法
JP2005506174A (ja) * 2001-10-17 2005-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 粒子形成のための回転子固定子装置および方法
JP2007125454A (ja) 2005-11-01 2007-05-24 Primix Copr 高速攪拌装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAUCHI AND YOKOYAMA,: "Comprehensive Encyclopedia of Milk, 3rd edition,", 1998, ASAKURA PUBLISHING CO., LTD., pages: 61

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429305B1 (en) 2009-04-15 2020-05-27 Fonterra Co-Operative Group Limited Dairy product and process

Also Published As

Publication number Publication date
NZ587167A (en) 2011-11-25
CN101959423A (zh) 2011-01-26
AU2009220682B2 (en) 2011-11-03
CN101959423B (zh) 2014-10-15
RU2010140359A (ru) 2012-04-10
EP2250906A4 (en) 2012-08-15
KR101223190B1 (ko) 2013-01-17
US20110003975A1 (en) 2011-01-06
JP2009207419A (ja) 2009-09-17
DK2250906T3 (en) 2018-10-08
JP4431181B2 (ja) 2010-03-10
EP2250906B1 (en) 2018-07-04
RU2453128C2 (ru) 2012-06-20
AU2009220682A1 (en) 2009-09-11
KR20100123898A (ko) 2010-11-25
CA2712978C (en) 2012-10-02
CA2712978A1 (en) 2009-09-11
EP2250906A1 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4431181B2 (ja) ホエイ蛋白質の改質方法
US10888100B2 (en) Dairy product and process
US5350590A (en) Protein fat replacer and method of manufacture thereof
RU2736154C1 (ru) Способ получения дисперсного пищевого продукта, предпочтительно веганского, дисперсный пищевой продукт, предпочтительно веганский, а также готовый продукт питания, предпочтительно веганский
JP2007259784A (ja) 豆腐ピューレを含有する冷菓
JP5132539B2 (ja) 濃厚乳及び濃厚乳用乳化剤
JP3417513B2 (ja) ホエーの調製方法
JP2007300925A (ja) 低カゼインプロセスチーズ用改質ホエータンパク質
Salunke et al. Functional properties of milk protein concentrate and micellar casein concentrate as affected by transglutaminase treatment
Ann Augustin et al. Dry milk ingredients
JP4290713B2 (ja) 豆腐ピューレを含有するホイップクリーム
EP0352144A1 (en) Protein product
JP5329506B2 (ja) ホエイ蛋白質組成物の製造方法
JP2003102449A (ja) 豆腐ピューレを含有する酸性飲料
WO2019189551A1 (ja) 殺菌発酵乳の製造方法
JP5877569B2 (ja) 変性ホエイ蛋白質の製造方法
RU2803511C2 (ru) Способ получения ингредиента, содержащего комбинацию по меньшей мере трех молочных протеинов, и применение этого полученного ингредиента
RU2662956C2 (ru) Способ отделения фазы истинного раствора полидисперсной системы молока и получение малолактозной или безлактозной продукции
JPH02227035A (ja) タンパク組成物およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107536.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2712978

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 587167

Country of ref document: NZ

Ref document number: 12865959

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009717846

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009220682

Country of ref document: AU

Date of ref document: 20090303

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107022199

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010140359

Country of ref document: RU