WO2009107719A1 - マスターバッチ及びその製造方法、並びに成形物の成形方法 - Google Patents

マスターバッチ及びその製造方法、並びに成形物の成形方法 Download PDF

Info

Publication number
WO2009107719A1
WO2009107719A1 PCT/JP2009/053557 JP2009053557W WO2009107719A1 WO 2009107719 A1 WO2009107719 A1 WO 2009107719A1 JP 2009053557 W JP2009053557 W JP 2009053557W WO 2009107719 A1 WO2009107719 A1 WO 2009107719A1
Authority
WO
WIPO (PCT)
Prior art keywords
master batch
organic acid
resin
metal salt
thermoplastic resin
Prior art date
Application number
PCT/JP2009/053557
Other languages
English (en)
French (fr)
Inventor
大橋 和彰
杏 笠井
大佑 平塚
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to KR1020107018895A priority Critical patent/KR101509845B1/ko
Priority to CN200980106678.5A priority patent/CN101959940B/zh
Priority to EP09716077.4A priority patent/EP2248844B1/en
Priority to US12/866,595 priority patent/US8916634B2/en
Publication of WO2009107719A1 publication Critical patent/WO2009107719A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • the present invention relates to a masterbatch, a method for producing the masterbatch, and a method for molding a molded product obtained by blending the masterbatch, and more particularly to a masterbatch for an adsorbent resin composition and a method for producing the masterbatch.
  • the present invention relates to a masterbatch capable of exhibiting adsorption performance in a state where it is blended and molded in a resin without exhibiting adsorption performance in the state and a manufacturing method thereof.
  • VOC volatile organic compounds
  • activated carbon silica gel
  • porous materials such as zeolite
  • Patent Document 1 listed below discloses inorganic fillers such as activated carbon, porous zeolite, and sepiolite.
  • titanium oxide using photocatalytic action it has heat resistance capable of deodorizing a wide range of odor components and melt kneading with a thermoplastic resin.
  • a deodorant using ultrafine metal particles has been proposed.
  • a deodorant containing a metal ultrafine particle colloid liquid obtained by reducing a metal ion-containing liquid as an active ingredient has been proposed (Patent Document). 2).
  • a deodorant using photocatalytic action has a problem that the surface of titanium oxide must always be irradiated with ultraviolet rays in order to decompose and deodorize odor components.
  • a deodorant using ultrafine metal particles when such a deodorant is used in a resin, the resin is decomposed by the ultrafine metal particles having high surface activity, and the moldability is significantly inhibited.
  • a dispersion liquid is necessary from the viewpoint of handling properties, and it is not fully satisfactory for blending into a resin.
  • Patent Document 3 An adsorbent metal ultrafine particle that can reduce a decrease in molecular weight and the like and does not hinder formability has been proposed (Patent Document 3).
  • the adsorbing substance as described above is blended in the resin, it is common to prepare a master batch for blending the adsorbing substance at a high concentration in advance and blend this with the resin.
  • the resin and the adsorptive substance are kneaded in advance before being processed into a desired molded article, and the adsorptive substance is dispersed in the resin, thereby facilitating the processing process of the molded article, and
  • the main purpose is to improve the dispersibility in the resin.
  • the metal ultrafine particles described above are used as the adsorptive substance, since the surface area is extremely high, uniform dispersion is difficult, and handling with metal ultrafine particles alone is difficult. It is particularly effective to use a masterbatch.
  • the thermoplastic resin contains an organic acid metal salt, and the metal of the organic acid metal salt is Cu, Ag, Au, In, Pd, Pt, Fe, Ni, Co,
  • a masterbatch is provided that is selected from the group consisting of Zn, Nb, Sn, Ru, and Rh and that is used to form ultrafine metal particles.
  • the metal comprises at least Ag, 2.
  • the difference between the maximum value and the minimum value of the absorbance peak height at a plasmon absorption wavelength of 300 to 700 nm is less than 0.1; 3.
  • the organic acid is a fatty acid, 4).
  • the fatty acid has 3 to 30 carbon atoms, 5).
  • the thermoplastic resin is a polyolefin resin; Is preferred.
  • thermoplastic resin and the organic acid metal salt are kneaded at a temperature at which the organic acid metal salt is not thermally decomposed in the resin.
  • the above masterbatch is further blended with a thermoplastic resin, and the mixture is heated and kneaded at a temperature at which the organic acid metal salt is thermally decomposable in the resin and below the heat deterioration temperature of the thermoplastic resin.
  • a method for forming a molded product in which fine particles are dispersed is provided.
  • the average particle diameter of the ultrafine metal particles is 1 to 100 nm.
  • the adsorbing metal ultrafine particles characterized by the above have a high surface activity and a large surface area. Therefore, the adsorptive metal ultrafine particles have excellent reactivity to odor components, VOCs or microproteins, and have a larger adsorption rate and adsorption amount than ordinary particles.
  • the organic acid component is present on the metal ultrafine particle surface, the direct contact between the metal surface and the resin is reduced, and the decomposition of the resin is effectively suppressed. It has the characteristics that the lowering of the molecular weight of the resin is reduced and the moldability is not hindered.
  • the feature of the present invention is that in the thermoplastic resin, the organic acid metal salt that can be formed into the above-mentioned ultrafine metal particles is blended in the master batch as a precursor of the ultrafine metal particles. And in the state of the said masterbatch, since it exists as an organic acid metal salt, adsorption performance hardly expresses. Then, by blending the master batch of the present invention into a resin and molding it into a molded product under heating conditions, ultrafine metal particles having an average particle diameter of 1 to 100 nm can be uniformly dispersed in the resin. As described above, the adsorption performance is remarkably exhibited in the state in which the metal ultrafine particles are formed in the resin, that is, in the state of the molded product. Therefore, according to the master batch of the present invention, it is possible to control the expression of the adsorption performance.
  • the difference between the maximum value and the minimum value of the absorbance peak height at a plasmon absorption wavelength of 300 to 700 nm is preferably less than 0.1. That is, whether or not the organic acid metal salt is made into ultrafine metal particles and uniformly dispersed in the resin can be confirmed by the presence of plasmon absorption of the ultrafine metal particles.
  • the difference between the maximum value and the minimum value of the absorbance peak height is less than 0.1, it can be confirmed that the metal of the organic acid metal salt is not an ultrafine metal particle capable of exhibiting adsorption performance.
  • the absorbance peak height referred to in this specification is the height from the baseline obtained by drawing both hems of the absorbance peak at a plasmon absorption wavelength of 300 to 700 nm in a straight line, and the average particle diameter is the difference between metal and metal.
  • An average value is defined as one particle having no gap between them.
  • the master batch of the present invention hardly exhibits the adsorption performance for the above-mentioned malodorous component or VOC, and the adsorption performance of the molded product such as the final molded product or the secondary molded product is the storage / management / master batch of the master batch.
  • the molded product can exhibit stable adsorption performance without being affected by the passage of time or the like.
  • the masterbatch of the present invention has an organic acid metal salt that is a precursor of metal ultrafine particles dispersed in the resin. As a result, the ultrafine metal particles are more uniformly dispersed in the molded product, and excellent adsorptivity is exhibited.
  • Organic acid metal salt The metal of the organic acid metal salt blended in the masterbatch of the present invention is selected from the group consisting of Cu, Ag, Au, In, Pd, Pt, Fe, Ni, Co, Zn, Nb, Ru and Rh. Au, Ag, Cu, Pt, Sn, particularly Ag is preferred. These metal components may be used alone or in combination with a plurality of metal salts. If the synthesis is possible, it can be used as a composite organic acid metal salt.
  • organic acid of the organic acid metal salt used myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoylic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid are used.
  • Aliphatic carboxylic acids such as acids, adipic acid and acetic acid, aromatic carboxylic acids such as phthalic acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid and naphthenic acid, and alicyclic carboxylic acids such as cyclohexanedicarboxylic acid be able to.
  • the organic acid used is particularly preferably a higher fatty acid having 3 to 30 carbon atoms, such as myristic acid, stearic acid, and palmitic acid. Moreover, by using a thing with many carbon atoms, an organic acid component itself can adsorb
  • the organic acid metal salt to be used is not particularly limited, but the average particle diameter is in the range of 1 to 100 ⁇ m, particularly 20 to 50 ⁇ m, and the water content is 200 ppm or less. Since it is obtained, it can be suitably used.
  • thermoplastic resin in the masterbatch of the present invention, any conventionally known thermoplastic resin that can be melt-molded can be used.
  • any conventionally known thermoplastic resin that can be melt-molded can be used.
  • polyethylene and polypropylene can be suitably used.
  • the masterbatch of the present invention is not limited to this, but the amount of the organic acid metal salt described above is 0.1 to 50 parts by weight, particularly 1 to 10 parts by weight per 100 parts by weight of the resin in the thermoplastic resin. It is preferable to contain. When the amount is less than the above range, sufficient adsorption performance cannot be imparted to the molded product formed by blending the master batch, while when the amount is more than the above range, aggregation of the organic acid metal salt is not possible. As a result, it becomes difficult to make the average particle diameter of the organic acid metal salt in the range of 1 to 200 ⁇ m.
  • the masterbatch of the present invention comprises the above-mentioned thermoplastic resin and organic acid metal salt, particularly an organic acid metal salt having an average particle diameter of 1 to 100 ⁇ m above the melting point of the thermoplastic resin, and the organic acid metal salt does not thermally decompose in the resin. It can be prepared by heating and mixing at a temperature.
  • the temperature at which the organic acid metal salt is not thermally decomposed is a temperature lower than the decomposition start temperature of the organic acid metal salt, but actually, it is affected by the shear heat generated by the screw or the residence time in addition to the set temperature of the extruder. Therefore, it is important not to decompose the organic acid metal salt by adjusting processing conditions such as residence time, heating time, and screw rotation speed.
  • the heating conditions necessary for preparing the masterbatch are different depending on the organic acid metal salt used, and thus cannot be defined unconditionally.
  • the temperature is 130 to 220 ° C., particularly 140 to 200 ° C. It is desirable to heat for 1 to 1800 seconds, particularly 5 to 300 seconds.
  • the mixing of the thermoplastic resin and the organic acid metal salt is not limited to this.
  • a mixer such as a tumbler blender, a Henschel mixer or a super mixer, a single-screw extruder or a multi-screw
  • a mixer such as a tumbler blender, a Henschel mixer or a super mixer
  • a single-screw extruder or a multi-screw examples thereof include a method of melt kneading and granulating with an extruder, and a method of granulating with an extruder after melt kneading with a kneader or a Banbury mixer.
  • the masterbatch is known for various compounding agents known per se, such as fillers, plasticizers, leveling agents, thickeners, thickeners, stabilizers, antioxidants, ultraviolet absorbers, etc. You may mix
  • the molded product obtained by blending the masterbatch of the present invention in a thermoplastic resin and heating and mixing is uniformly dispersed with ultrafine metal particles having an average particle diameter of 1 to 100 nm in which ultrafine metal particles are formed. It becomes possible to express performance. That is, by blending the masterbatch of the present invention into a thermoplastic resin and heating and mixing, the metal fine particles contained in the masterbatch are made into ultrafine metal particles in the thermoplastic resin and uniformly dispersed with an average particle size of 1
  • An adsorptive molded product in which ultrafine metal particles of 100 nm to 100 nm are dispersed can be molded.
  • the molding temperature is heated and mixed at a temperature at which the organic acid metal salt is thermally decomposed in the resin and a temperature lower than the heat deterioration temperature of the thermoplastic resin.
  • the temperature at which the organic acid metal salt is thermally decomposed may be a temperature that is higher than or equal to the decomposition start temperature of the organic acid metal salt, but need not necessarily be a temperature that is higher than the decomposition start temperature. Since it is affected by the shear heat generated by the screw of the screw extruder or the residence time, the organic acid metal salt is decomposed by adjusting the processing conditions such as the residence time, heating time and screw rotation speed in the twin screw extruder. To form ultrafine metal particles.
  • the decomposition start temperature of the fatty acid metal salt here is a temperature at which the fatty acid part begins to desorb or decompose from the metal part, and the start temperature is generally defined by JIS K 7120. According to this, the mass of the organic compound (fatty acid metal salt) is measured, and thermogravimetry (TG) is performed to measure the change in weight when the temperature is raised in an inert atmosphere using a thermogravimetry apparatus.
  • the decomposition start temperature is calculated from the thermogravimetric curve (TG curve) obtained by the measurement. It is defined that the temperature at the point where the line parallel to the horizontal axis passing through the mass before the start of test heating and the tangent line at which the gradient between the bending points in the TG curve becomes maximum is the starting temperature.
  • the specific molding temperature for a resin molded product cannot be generally defined by the molding method, the type of thermoplastic resin and organic acid metal salt used, the average particle size of the ultrafine metal particles in the masterbatch, etc. It is desirable to heat at a temperature of 120 to 230 ° C., particularly 160 to 220 ° C. for 1 to 1800 seconds, particularly 5 to 300 seconds.
  • the blending amount with respect to the thermoplastic resin cannot be generally specified depending on the content of the organic acid metal salt in the masterbatch, the required adsorption performance and use, the form of the molded product, etc., but is generally 0.00 per 100 parts by weight of the thermoplastic resin. It is desirable to blend in an amount of 0001 to 5 parts by weight from the viewpoint of the dispersibility of the ultrafine metal particles.
  • the thermoplastic resin to be blended with the master batch the thermoplastic resin used for forming the master batch can be used.
  • the oxygen permeability coefficient is 1.0 ⁇ 10 ⁇ 4 cc ⁇ m / m.
  • the thermoplastic resin is preferably 2 ⁇ day ⁇ atm or more.
  • suction of the odor component or VOC to an adsorptive metal ultrafine particle can be made easy, and adsorption
  • various preparations known per se such as fillers, plasticizers, leveling agents, thickeners, thickeners, stabilizers, antioxidants, UV absorbers, as well as the preparation of masterbatches, depending on the application. Etc. can also be blended according to a known formulation.
  • the adsorptive molded product using the masterbatch of the present invention is shaped according to the use of the final molded product by subjecting it to conventionally known melt molding such as a two-roll method, injection molding, extrusion molding and compression molding.
  • melt molding such as a two-roll method, injection molding, extrusion molding and compression molding.
  • an absorptive (deodorant) resin molded product such as a granular shape, a pellet shape, a film, a sheet, a container, a building material, and wallpaper can be formed.
  • the ultrafine metal particles in the molded product molded using the masterbatch of the present invention preferably have a maximum diameter of 1 ⁇ m or less and an average particle diameter in the range of 1 to 100 nm.
  • Example 1 A blend of 3 kg of low density polyethylene resin with a silver stearate content of 5 wt% is introduced from the resin inlet, the extrusion temperature is equal to or higher than the melting point of the resin, and the thermal decomposition start temperature of silver stearate.
  • a master batch was produced by extruding from a twin screw extruder at 140 ° C., which is lower than the temperature. Subsequently, the confirmation of plasmon absorption by the spectrophotometer of the obtained master batch and the difference in absorbance peak height were calculated, and the methyl mercaptan deodorization rate was calculated.
  • Example 2 A master batch was prepared in the same manner as in Example 1 except that the content of silver stearate was 2 wt%, and measurement and calculation were performed.
  • Example 3 A master batch was prepared in the same manner as in Example 1 except that the silver stearate charging position was changed to a cylinder near the discharge port, and measurement and calculation were performed.
  • Example 4 A master batch was prepared in the same manner as in Example 3 except that the content of silver stearate was 2 wt%, and measurement and calculation were performed.
  • Example 5 A master batch was prepared in the same manner as in Example 1 except that silver myristate was used, and measurement and calculation were performed.
  • Example 1 A master batch was prepared in the same manner as in Example 1 except that the extrusion molding temperature was 240 ° C., which was higher than the thermal decomposition start temperature of the organic acid metal salt, and measurement and calculation were performed.
  • Example 2 A master batch was prepared and measured and calculated in the same manner as in Example 1 except that silver myristate was used and the extrusion molding temperature was 260 ° C., which is higher than the thermal decomposition start temperature of the organic acid metal salt.
  • Example 8 A metal particle-containing film was prepared in the same manner as in Example 6 except that the master batch prepared in Example 3 was used, and measurement and calculation were performed.
  • Example 9 A metal particle-containing film was prepared in the same manner as in Example 6 except that the master batch prepared in Example 4 was used, and measurement and calculation were performed.
  • Comparative Example 4 A metal particle-containing film was prepared in the same manner as in Comparative Example 3 except that the master batch prepared in Comparative Example 2 was used, and measurement and calculation were performed.
  • the deodorization rates of the master batches in Examples 1 to 5 of the present invention are smaller than those in Comparative Examples 1 and 2, and it is clear that the master batch itself has almost no adsorption performance.
  • the nano-sized ultrafine metal particle-containing films of Examples 6 to 10 that were formed using the master batches of Examples 1 to 5 had high deodorization rates and exhibited excellent adsorption performance.
  • Comparative Example 1 The deodorization rate of the organic acid metal salt-containing films of Comparative Examples 3 to 4 formed as moldings using the master batches of 2 to 2 is low. Therefore, in Examples 1 to 5 and Examples 6 to 10 showing the master batch of the present invention, the adsorption performance is not expressed in the state of the master batch, and it is expressed when a molded product is used.
  • the expression can also be controlled.
  • the heating and kneading temperature of the thermoplastic resin and the organic acid metal salt at the time of producing the master batch is a temperature at which the organic acid metal salt is thermally decomposed in the thermoplastic resin. It can be seen that ultrafine metal particles are formed in the batch, and the adsorption performance appears in the state of the master batch.
  • the master batch of the present invention does not exhibit adsorption performance for malodorous components or VOCs in the state of the master batch, so the adsorption performance of the molded product such as the final molded product or the secondary molded product is the storage and management of the master batch.
  • -It is not affected by the passage of time such as distribution, and can impart excellent adsorption performance to a molded product such as a final molded product or a secondary molded product, and the obtained molded product is, for example, granular, pellet-shaped, fibrous It can be efficiently produced in various forms such as a film, a sheet, and a container, and can be used in various industrial fields.
  • the masterbatch of the present invention has an organic acid metal salt that is a precursor of metal ultrafine particles dispersed in the resin. Since the ultrafine metal particles are more uniformly dispersed in the molded product, it is possible to efficiently provide a molded product having excellent adsorptivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、吸着性物質である金属超微粒子の形成に用いられるマスターバッチ及びその製造方法、並びにこのマスターバッチを用いた金属超微粒子含有成形物の成形方法に関するものであり、熱可塑性樹脂中に、有機酸金属塩を含有して成り、且つ該有機酸金属塩の金属がCu、Ag、Au、In、Pd、Pt、Fe、Ni、Co、Zn、Nb、Sn、Ru及びRhから成る群から選択されて成ることにより、マスターバッチの状態で吸着性能を発現することなく、マスターバッチを樹脂と配合して成形した成形品の状態で吸着性能を発現せしめることが可能になる。

Description

マスターバッチ及びその製造方法、並びに成形物の成形方法
 本発明は、マスターバッチ及びその製造方法並びにこのマスターバッチを配合して得る成形物の成形方法に関し、特に吸着性樹脂組成物用マスターバッチ及びその製造方法に関するものであり、より詳細にはマスターバッチの状態では吸着性能を発現することなく、樹脂に配合して成形された状態で吸着性能を発現可能なマスターバッチ及びその製造方法に関する。
 従来より、メチルメルカプタン等の悪臭成分、或いはホルムアルデヒド等の揮発性有機化合物(Volatile Organic Compounds 以下「VOC」という)を吸着可能な消臭剤或いは吸着剤は種々提案されており、一般に、活性炭、シリカゲル、ゼオライト等の多孔質物質を利用したものが一般的である。
 熱可塑性樹脂に配合して成形品に、上記成分を吸着可能な性能を付加させたものも種々提案されており、例えば下記特許文献1には、活性炭や、多孔質ゼオライトやセピオライト等の無機フィラーや、或いは光触媒作用を応用した酸化チタンが記載されているように、広範な臭気成分を消臭可能であると共に熱可塑性樹脂との溶融混練も可能な耐熱性を有している。
 また金属の超微粒子を用いた消臭剤も提案されており、例えば金属イオン含有液を還元して得られた金属超微粒子コロイド液を有効成分とする消臭剤が提案されている(特許文献2)。
 しかしながら、多孔性物質を利用したものは、臭い成分或いはVOCを吸着して吸着効果(消臭効果)を発現しているため、その吸着サイトが飽和状態になると効果は消失するという問題がある。また無機フィラーは分散性を向上させるために、熱可塑性樹脂と溶融混練する際に分散剤を用いる必要があり、このため無機フィラー表面の吸着サイトが樹脂や分散剤で覆われて吸着効果が著しく低下するという問題がある。
 また光触媒作用を応用した消臭剤は、臭気成分を分解、無臭化させるために酸化チタン表面に常に紫外線が照射されていなければならないという問題がある。
 更に金属超微粒子を用いる消臭剤において、かかる消臭剤を樹脂に配合して使用する場合には、表面活性の高い金属超微粒子によって樹脂が分解されてしまい、成形性が著しく阻害されてしまうという問題があると共に、ハンドリング性の点から分散液が必要であり、樹脂に配合するには十分満足するものではない。
 このような観点から、本発明者等は、金属超微粒子表面に有機酸成分を存在させることにより、金属表面と樹脂との直接接触を低減させ、樹脂の分解を有効に抑制して、樹脂の分子量の低下等を低減することができ、成形性を阻害することがない、吸着性金属超微粒子を提案した(特許文献3)。
特開平9-75434号公報 特開2006-109902号公報 国際公開第2006/080319
 樹脂中に上記のような吸着性物質を配合させる際、吸着性物質を高濃度で配合するマスターバッチを予め作製し、これを樹脂に配合するのが一般的である。これは所望の成形品に加工する前に、予め樹脂と吸着性物質を混練し、吸着性物質を樹脂中に分散させることにより、成形品の加工工程を容易にすること、及び吸着性物質の樹脂中での分散性を向上させることを主たる目的としている。特に、吸着性物質として上述した金属超微粒子を用いる場合、表面積が極めて高いため均一分散が困難であること、金属超微粒子単独でのハンドリングが困難であることから、所望の成形品に加工する際にマスターバッチを使用することは特に効果的である。
 しかしながら、これら吸着性物質はマスターバッチの状態でも臭気成分を吸着するため、前記マスターバッチを樹脂に配合して成形した成形物の吸着量が低下してしまうという問題が生じる。この問題は、吸着性物質として上述した金属超微粒子を用いる場合、その吸着能力の高さ故に、より顕著である。
 また、樹脂中の金属超微粒子は、加熱を繰り返す度に、凝集や粒子成長する傾向があり、その為、加熱条件下で樹脂と混練を行うマスターバッチ化の工程は、最終製品、即ち成形品の吸着性能を低減させる要因となる。
 従って本発明の目的は、マスターバッチの状態で吸着性能を発現することなく、マスターバッチを樹脂と配合して成形した成形品の状態で吸着性能を発現せしめることを可能としたものであり、吸着性物質である金属超微粒子の形成に用いられるマスターバッチ及びその製造方法を提供することである。
 また、本発明の他の目的は、上述したマスターバッチを用いて、吸着性物質である金属超微粒子が、樹脂中に均一分散してなる成形物の製造方法を提供することである。
 本発明によれば、熱可塑性樹脂中に、有機酸金属塩を含有して成り、且つ、該有機酸金属塩の金属がCu、Ag、Au、In、Pd、Pt、Fe、Ni、Co、Zn、Nb、Sn、Ru及びRhから成る群から選択され、金属超微粒子形成に用いるマスターバッチが提供される。
 本発明のマスターバッチにおいては、
1.金属が、少なくともAgからなること、
2.プラズモン吸収波長300乃至700nmにおける吸光度ピーク高さの最大値と最小値の差が0.1未満であること、
3.有機酸が、脂肪酸であること、
4.脂肪酸が、3~30の炭素数を有すること、
5.熱可塑性樹脂が、ポリオレフィン系樹脂であること、
が好適である。
 本発明によればまた、熱可塑性樹脂と有機酸金属塩との混練を、有機酸金属塩が該樹脂中で熱分解しない温度で行う上記マスターバッチの製造方法が提供される。
 本発明によれば更に、熱可塑性樹脂に上記マスターバッチを配合し、有機酸金属塩が樹脂中で熱分解可能な温度、且つ熱可塑性樹脂の熱劣化温度以下で加熱混練することで、金属超微粒子が分散された成形物を成形する方法が提供される。
 本発明の成形方法においては、金属超微粒子の平均粒径が1乃至100nmであること、が好適である。
 前述の本発明者等が提案した、有機酸成分と金属間で結合を有する金属超微粒子であって、前記有機酸成分と金属間の結合に由来する1518cm-1付近赤外吸収ピークを有することを特徴とする吸着性金属超微粒子は、表面活性が高くしかも表面積が大きいことから、臭気成分、VOC或いは微小蛋白質への反応性に優れ、通常の粒子よりも大きな吸着速度及び吸着量を有し、優れた吸着効果等を発現すると共に、金属超微粒子表面に有機酸成分が存在していることから、金属表面と樹脂との直接接触が低減されており、樹脂の分解を有効に抑制して、樹脂の分子量の低下等を低減し、成形性が阻害されることがないという、特徴を有している。
 本発明の特徴は、熱可塑性樹脂中において、上述の金属超微粒子に形成し得る有機酸金属塩が、前記金属超微粒子の前駆体としてマスターバッチに配合されることである。そして、前記マスターバッチの状態では、有機酸金属塩として存在する為に、吸着性能はほとんど発現しない。
 そして、本発明のマスターバッチを、樹脂に配合して加熱条件下で成形加工して成形物とすることにより、平均粒径1~100nmの金属超微粒子を樹脂中に均一分散させることができる。このように、樹脂中に金属超微粒子が形成された状態、即ち成形物となった状態で、顕著に吸着性能が発現される。従って、本発明のマスターバッチによれば、吸着性能の発現を制御することが可能となる。
 本発明のマスターバッチにおいては、プラズモン吸収波長300乃至700nmにおける吸光度ピーク高さの最大値と最小値の差が0.1未満であることが好ましい。すなわち、有機酸金属塩が樹脂中で金属超微粒子化及び均一分散しているか否かは、金属超微粒子のプラズモン吸収の存在により確認することができ、本発明のマスターバッチにおいては、上記範囲の吸光度ピーク高さの最大値と最小値の差が0.1未満であることにより、有機酸金属塩の金属が吸着性能を発現し得る金属超微粒子になっていないことが確認できる。
 尚、本明細書でいう吸光度ピーク高さとは、プラズモン吸収波長300乃至700nmにおける吸光度ピークの両裾を直線に引いたベースラインからの高さであり、平均粒子径とは、金属と金属との間に隙間がないものを一つの粒子とし、その平均値をいう。
 本発明のマスターバッチ自体は、ほとんど上述した悪臭成分、或いはVOC等に対して吸着性能を発現せず、最終成形品或いは二次成形品等の成形物の吸着性能がマスターバッチの保管・管理・流通等の経時による影響を受けず、成形物が安定した吸着性能を発現することができる。
 また、本発明のマスターバッチは、金属超微粒子の前駆体となる有機酸金属塩が樹脂中に分散しているため、樹脂に直接有機酸金属塩を配合して加熱成形した成形物に比して、成形物中に金属超微粒子がより均一に分散され、優れた吸着性が発現される。
発明を実施するための形態
(有機酸金属塩)
 本発明のマスターバッチに配合される有機酸金属塩の金属は、Cu、Ag、Au、In、Pd、Pt、Fe、Ni、Co、Zn、Nb、Ru及びRhから成る群から選択され、中でもAu、Ag、Cu、Pt、Sn、特にAgが好適である。これらの金属成分は、単独で使用しても良く、複数の金属塩を併用しても良い。また合成が可能であれば複合有機酸金属塩として使用することも可能である。
 本発明においては、使用される有機酸金属塩の有機酸としては、ミリスチン酸,ステアリン酸,オレイン酸,パルミチン酸,n-デカン酸,パラトイル酸,コハク酸,マロン酸,酒石酸,リンゴ酸,グルタル酸,アジピン酸、酢酸等の脂肪族カルボン酸、フタル酸,マレイン酸,イソフタル酸,テレフタル酸,安息香酸、ナフテン酸等の芳香族カルボン酸、シクロヘキサンジカルボン酸等の脂環式カルボン酸等を挙げることができる。
 本発明においては、用いる有機酸が、ミリスチン酸、ステアリン酸、パルミチン酸等に代表される脂肪酸が炭素数3~30である高級脂肪酸であることが特に好ましい。また、炭素数の多いものを使用することにより、有機酸成分自体も臭気成分或いはVOC等を吸着することができ、吸着効果(消臭効果)等をより向上することが可能となる。
 用いる有機酸金属塩は特に限定を受けないが、平均粒径は、1乃至100μm、特に20乃至50μmの範囲にあり、含水率が200ppm以下であるものが、良好な吸着性能を有する成形物が得られることから好適に使用可能である。
(熱可塑性樹脂)
 本発明のマスターバッチにおいて、有機酸金属塩を含有する熱可塑性樹脂としては、溶融成形が可能な熱可塑性樹脂であれば従来公知のものをすべて使用でき、例えば、低-,中-,高-密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、プロピレン-エチレン共重合体、ポリブテン-1、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体、エチレン-プロピレン-ブテン-1共重合体等のオレフィン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタエート等のポリエステル樹脂、ナイロン6、ナイロン6,6、ナイロン6,10等のポリアミド樹脂、ポリカーボネート樹脂等を挙げることができる。特にポリエチレン、ポリプロピレンを好適に用いることができる。
(マスターバッチ)
 本発明のマスターバッチは、これに限定されるものではないが、上述した有機酸金属塩を熱可塑性樹脂中に樹脂100重量部当たり0.1乃至50重量部、特に1乃至10重量部の量で含有させることが好ましい。上記範囲よりも少ない場合には、マスターバッチを配合して成形された成形品に十分な吸着性能を付与することができず、その一方上記範囲よりも多い場合には有機酸金属塩の凝集が生じて、有機酸金属塩の平均粒径を1乃至200μmの範囲とすることが困難になる。
 本発明のマスターバッチは、上記熱可塑性樹脂と有機酸金属塩、特に平均粒径1乃至100μmの有機酸金属塩を、熱可塑性樹脂の融点以上、且つ有機酸金属塩が樹脂中で熱分解しない温度で加熱混合することにより、調製することができる。
 尚、有機酸金属塩が熱分解しない温度は、有機酸金属塩の分解開始温度未満の温度であるが、実際には押出機の設定温度以外にスクリューによる剪断発熱、或いは滞留時間等による影響を受けるため、滞留時間、加熱時間、スクリュー回転数等の加工条件を調整して、有機酸金属塩を分解しないことが重要である。
 マスターバッチを調製するために必要な加熱条件は、用いる有機酸金属塩によっても相違するので、一概には規定できないが、一般的には130乃至220℃、特に140乃至200℃の温度で、1乃至1800秒、特に5乃至300秒加熱されることが望ましい。
 熱可塑性樹脂と有機酸金属塩の混合は、これに限定されるものではないが、例えばタンブラーブレンダー、ヘンシェルミキサー又はスーパーミキサーのような混合機で予め均一に混合後、単軸押出機や多軸押出機で溶融混練造粒する方法や、ニーダーやバンバリーミキサー等で溶融混練した後に押出機を用いて造粒する方法等が挙げられる。
 マスターバッチは、その用途に応じて、それ自体公知の各種配合剤、例えば、充填剤、可塑剤、レベリング剤、増粘剤、減粘剤、安定剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合してもよい。
(吸着性成形物)
 本発明のマスターバッチを熱可塑性樹脂中に配合し、加熱混合されてなる成形物は、金属超微粒子が形成された平均粒径1乃至100nmの金属超微粒子が均一分散されており、優れた吸着性能を発現することが可能となる。
 すなわち、本発明のマスターバッチを熱可塑性樹脂に配合し、加熱混合することにより、マスターバッチに含有されていた金属微粒子が熱可塑性樹脂中で金属超微粒子化すると共に均一分散し、平均粒径1乃至100nmの金属超微粒子が分散された吸着性成形物を成形することができる。また、成形温度は、有機酸金属塩が樹脂中で熱分解する温度、且つ熱可塑性樹脂の熱劣化温度以下の温度で加熱混合することが望ましい。
 尚、有機酸金属塩が熱分解する温度は、有機酸金属塩の分解開始温度以上の温度であってもよいが、必ずしも分解開始温度以上の温度である必要はなく、前述したように、二軸押出機のスクリューによる剪断発熱、或いは滞留時間等による影響を受けるため、二軸押出機における滞留時間や加熱時間、スクリュー回転数等の加工条件を調整することで、有機酸金属塩を分解し、金属超微粒子を形成する。
 ここでいう脂肪酸金属塩の分解開始温度は、脂肪酸部分が金属部分から脱離あるいは分解し始める温度であり、一般的に開始温度はJIS K 7120により定義されている。これによれば、有機化合物(脂肪酸金属塩)の質量を計測し、熱重量測定装置を用いて不活性雰囲気下で昇温した際の重量変化を測定する熱重量測定(TG)を行う。測定により得られた熱重量曲線(TG曲線)から分解開始温度を算出する。試験加熱開始前の質量を通る横軸に平行な線とTG曲線における屈曲点間の勾配が最大になるような接線とが交わる点の温度を開始温度とすると定義づけられている。
 樹脂成形品への具体的な成形温度は、成形方法や用いる熱可塑性樹脂及び有機酸金属塩の種類、マスターバッチ中の金属超微粒子の平均粒径等によって一概に規定できないが、一般的には120乃至230℃、特に160乃至220℃の温度で、1乃至1800秒、特に5乃至300秒加熱されることが望ましい。
 熱可塑性樹脂に対する配合量は、マスターバッチ中の有機酸金属塩の含有量、要求される吸着性能や用途、成形物の形態などによって一概に規定できないが、一般に熱可塑性樹脂100重量部当たり0.0001乃至5重量部の量で配合することが、金属超微粒子の分散性の点から望ましい。
 またマスターバッチを配合すべき熱可塑性樹脂は、マスターバッチの形成に用いられた熱可塑性樹脂を用いることができるが、好適には、酸素透過係数が1.0×10-4cc・m/m・day・atm以上の熱可塑性樹脂であることが好ましい。これにより、吸着性金属超微粒子への臭気成分或いはVOCの吸着を容易にすることができ、吸着性能をより向上することができる。
 更にその用途に応じて、マスターバッチの調製同様、それ自体公知の各種配合剤、例えば、充填剤、可塑剤、レベリング剤、増粘剤、減粘剤、安定剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合することもできる。
 本発明のマスターバッチを用いて成る吸着性成形物は、二本ロール法、射出成形、押出成形、圧縮成形等の従来公知の溶融成形に賦することにより、最終成形品の用途に応じた形状、例えば、粒状、ペレット状、フィルム、シート、容器、建材、壁紙等の吸着性(消臭性)樹脂成形品を成形することができる。
 本発明のマスターバッチを用いて成形された成形物中の金属超微粒子は、その最大径が1μm以下で、その平均粒径は特に1乃至100nmの範囲にあることが望ましい。
1.分光光度計によるプラズモン吸収の確認と吸光度ピーク高さの差
 マスターバッチ及び該マスターバッチからなる金属粒子含有フィルムの吸光度を分光光度計(島津製作所UV-3100PC)を用いて測定し、300~700nmのプラズモン吸収の有無を確認すると共に、前記波長内の吸光度ピークの最大値から最小値の差を算出した。マスターバッチが粒状であるため測定の便宜上、熱可塑性樹脂の融点以上、且つ有機酸金属塩の熱分解温度未満の温度でホットプレスすることにより厚み50μmのシートを成形し、このシートの分光光度計による分光透過率をマスターバッチの吸光度とした。
2.未消臭時メチルメルカプタン濃度の測定
 口部をゴム栓で密封した窒素ガス置換した500mLガラス製瓶(GL-サイエンス社製)内に、悪臭物質メチルメルカプタン5μLをマイクロシリンジにて注入し、室温(25℃)で1日放置した。1日放置後、瓶中へ検知管(ガステック社製)を挿入し、残存メチルメルカプタン濃度を測定して未消臭時メチルメルカプタン濃度(A)とした。
3.消臭後メチルメルカプタン濃度の測定
(1)マスターバッチ
 マスターバッチを0.5g計量し、窒素ガス置換した500mLガラス製瓶内に入れてゴム栓で密封した後、前記瓶内の濃度が10ppmになるように調整された悪臭物質メチルメルカプタン5μLをマイクロシリンジにて注入し、室温(25℃)で1日放置した。1日放置後、瓶中へ検知管(ガステック社製)を挿入し残存メチルメルカプタン濃度を測定し、消臭後メチルメルカプタン濃度(B)とした。
(2)二次成形時の金属粒子含有フィルム
 金属粒子含有フィルムを5cm四方の大きさに切り取り、樹脂糸を用いて、500mLのガラス製瓶内に吊り下げた。次いで、窒素ガス置換しガラス製瓶内を密封した後、前記瓶内の濃度が10ppmになるように濃度を調整した悪臭物質メチルメルカプタン5μLをマイクロシリンジにて注入し、室温(25℃)で一日放置した。1日放置後、瓶中へ検知管(ガステック社製)を挿入し残存メチルメルカプタン濃度を測定し、消臭後メチルメルカプタン濃度(C)とした。
4.メチルメルカプタン消臭率の算出
 前記未消臭時メチルメルカプタン濃度(A)から消臭後メチルメルカプタン濃度(B)或いは(C)を引いた値を未消臭時メチルメルカプタン濃度(A)で割り百分率で表した値を消臭率とした。
[実施例1]
 低密度ポリエチレン樹脂3kgに、ステアリン酸銀が5wt%の含有率となるように配合したものを樹脂投入口から投入し、押出成形温度が前記樹脂の融点以上、且つステアリン酸銀の熱分解開始温度未満である140℃にて、二軸押出機から押し出し、マスターバッチを作製した。
 次いで、得られたマスターバッチの分光光度計によるプラズモン吸収の確認と吸光度ピーク高さの差を算出、メチルメルカプタン消臭率の算出、を行った。
[実施例2]
 ステアリン酸銀の含有率が2wt%のマスターバッチとした以外は、実施例1と同様にマスターバッチを作製し、測定と算出を行った。
[実施例3]
 ステアリン酸銀の投入位置を吐出口近くのシリンダとした以外は、実施例1と同様にマスターバッチを作製し、測定と算出を行った。
[実施例4]
 ステアリン酸銀の含有率が2wt%のマスターバッチとした以外は、実施例3と同様にマスターバッチを作製し、測定と算出を行った。
[実施例5]
 ミリスチン酸銀を用いた以外は、実施例1と同様にマスターバッチを作製し、測定と算出を行った。
[比較例1]
 押出成形温度を、有機酸金属塩の熱分解開始温度以上である240℃とした以外は、実施例1と同様にマスターバッチを作製し、測定と算出を行った。
[比較例2]
 ミリスチン酸銀を用い、押出成形温度を有機酸金属塩の熱分解開始温度以上である260℃とした以外は、実施例1と同様にマスターバッチを作製し、測定と算出を行った。
[実施例6]
 実施例1で作製したマスターバッチを、室温37℃、湿度50%の環境暴露下にてそれぞれ1、2、3ヶ月間経時保管し、低密度ポリエチレン:マスターバッチ=9:1になるよう混合・配合後、押出成形温度200℃で二軸押出機にて押し出して厚み50μmの3種類の金属粒子含有フィルムを作成し、それぞれのフィルムの消臭後のメチルメルカプタン濃度を測定し消臭率の算出を行った。
[実施例7]
 実施例2で作製したマスターバッチを用いて、低密度ポリエチレン:マスターバッチ=3:1になるように混合・配合した以外は、実施例6と同様に金属粒子含有フィルムを作成し、測定と算出を行った。
[実施例8]
 実施例3で作製したマスターバッチを用いた以外は、実施例6と同様に金属粒子含有フィルムを作成し、測定と算出を行った。
[実施例9]
 実施例4で作製したマスターバッチを用いた以外は、実施例6と同様に金属粒子含有フィルムを作成し、測定と算出を行った。
[実施例10]
 実施例5で作製したマスターバッチを用いて、低密度ポリエチレン:マスターバッチ=3:1になるように混合・配合した以外は、実施例6と同様に金属粒子含有フィルムを作成し、測定と算出を行った。
[比較例3]
 比較例1で作製したマスターバッチを用いて、低密度ポリエチレン:マスターバッチ=9:1になるよう混合・配合した以外は、実施例6と同様に金属粒子含有フィルムを作成し、測定と算出を行った。
[比較例4]
 比較例2で作製したマスターバッチを用いた以外は比較例3と同様に金属粒子含有フィルムを作成し、測定と算出を行った。
 上記結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例から明らかなように、本発明の実施例1~5におけるマスターバッチの消臭率は比較例1~2よりも小さく、マスターバッチ自体はほとんど吸着性能を有しないことが明白である。
 また、実施例1~5のマスターバッチを用いた成形物とした実施例6~10のナノ化された金属超微粒子含有フィルムの消臭率は高く、優れた吸着性能を発現し、比較例1~2のマスターバッチを用いた成形物とした比較例3~4の有機酸金属塩含有フィルムの消臭率は低い。
 従って、本発明のマスターバッチを示す実施例1~5、実施例6~10においては、マスターバッチの状態では吸着性能が発現されず、これを用いて成形物とした時に発現されており、その発現も制御可能であることがわかる。
 一方、比較例においては、マスターバッチを製造する際の熱可塑性樹脂と有機酸金属塩の加熱混練温度が、上記有機酸金属塩が熱可塑性樹脂中で熱分解する温度であり、このため、マスターバッチ中に金属超微粒子が形成され、マスターバッチの状態で吸着性能が発現しまうことがわかる。
 本発明のマスターバッチは、マスターバッチの状態では、悪臭成分やVOC等に対して吸着性能を発現しないので、最終成形品或いは二次成形品等の成形物の吸着性能がマスターバッチの保管・管理・流通等の経時による影響を受けず、最終成形品或いは二次成形品等の成形物に優れた吸着性能を付与することができ、得られた成形物は例えば、粒状、ペレット状、繊維状、フィルム、シート、容器等の種々の形態に効率よく製造することができ、さまざまな産業分野で利用することが可能となる。
 また本発明のマスターバッチは、金属超微粒子の前駆体となる有機酸金属塩が樹脂中に分散しているため、樹脂に直接有機酸金属塩を配合して加熱成形した成形物に比して、成形物中に金属超微粒子がより均一に分散されるため、優れた吸着性を有する成形物を効率よく提供することが可能となる。

Claims (9)

  1.  熱可塑性樹脂中に、有機酸金属塩を含有して成り、且つ、該有機酸金属塩の金属がCu、Ag、Au、In、Pd、Pt、Fe、Ni、Co、Zn、Nb、Sn、Ru及びRhから成る群から選択され、金属超微粒子形成に用いることを特徴とするマスターバッチ。
  2.  前記金属が、少なくともAgからなる請求項1に記載のマスターバッチ。
  3.  プラズモン吸収波長300乃至700nmにおける吸光度ピーク高さの最大値と最小値の差が0.1未満である請求項2に記載のマスターバッチ。
  4.  前記有機酸が、脂肪酸である請求項1記載のマスターバッチ。
  5.  前記脂肪酸が、3~30の炭素数を有する請求項4記載のマスターバッチ。
  6.  前記熱可塑性樹脂が、ポリオレフィン系樹脂である請求項1記載のマスターバッチ。
  7.  前記熱可塑性樹脂と有機酸金属塩との混練を、有機酸金属塩が該樹脂中で熱分解しない温度で行う請求項1記載のマスターバッチの製造方法。
  8.  熱可塑性樹脂に請求項1記載のマスターバッチを配合し、有機酸金属塩が樹脂中で熱分解可能な温度、且つ熱可塑性樹脂の熱劣化温度以下で加熱混練することで、金属超微粒子が分散された成形物を成形することを特徴とする成形方法。
  9.  前記金属超微粒子の平均粒径が1乃至100nmである請求項8に記載の成形方法。
PCT/JP2009/053557 2008-02-29 2009-02-26 マスターバッチ及びその製造方法、並びに成形物の成形方法 WO2009107719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107018895A KR101509845B1 (ko) 2008-02-29 2009-02-26 마스터 배치 및 그 제조 방법 그리고 성형물의 성형 방법
CN200980106678.5A CN101959940B (zh) 2008-02-29 2009-02-26 母料、其生产方法及其制品的成型方法
EP09716077.4A EP2248844B1 (en) 2008-02-29 2009-02-26 Master batch, process for production thereof, and process for production of molded articles
US12/866,595 US8916634B2 (en) 2008-02-29 2009-02-26 Master batch, method of producing the same and method of molding articles thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-050981 2008-02-29
JP2008050981 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009107719A1 true WO2009107719A1 (ja) 2009-09-03

Family

ID=41016106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053557 WO2009107719A1 (ja) 2008-02-29 2009-02-26 マスターバッチ及びその製造方法、並びに成形物の成形方法

Country Status (6)

Country Link
US (1) US8916634B2 (ja)
EP (1) EP2248844B1 (ja)
JP (1) JP4948556B2 (ja)
KR (1) KR101509845B1 (ja)
CN (1) CN101959940B (ja)
WO (1) WO2009107719A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139094A1 (ja) * 2018-01-11 2019-07-18 東洋製罐グループホールディングス株式会社 銅含有マスターバッチ及び銅超微粒子含有樹脂組成物並びにそれらの製造方法
JP2019119836A (ja) * 2018-01-11 2019-07-22 東洋製罐グループホールディングス株式会社 銅含有マスターバッチ及びその製造方法
JP2019119837A (ja) * 2018-01-11 2019-07-22 東洋製罐グループホールディングス株式会社 銅超微粒子含有樹脂組成物及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656541B2 (ja) * 2010-10-05 2015-01-21 東洋製罐グループホールディングス株式会社 銀含有樹脂組成物及びその製造方法
JP5656540B2 (ja) * 2010-10-05 2015-01-21 東洋製罐グループホールディングス株式会社 銀含有樹脂組成物及びその製造方法
JP2012087243A (ja) * 2010-10-21 2012-05-10 Kureha Corp 銅塩微粒子分散樹脂の製造方法、銅塩微粒子分散樹脂およびマスターバッチ
JP6106380B2 (ja) * 2012-08-14 2017-03-29 東洋製罐グループホールディングス株式会社 抗菌性マスターバッチ及びそれを用いた成形体
US10373279B2 (en) * 2014-02-24 2019-08-06 Mindojo Ltd. Dynamic knowledge level adaptation of e-learning datagraph structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975434A (ja) 1995-09-07 1997-03-25 Kuraray Chem Corp 光触媒を使用した脱臭剤
JPH09188778A (ja) * 1995-12-29 1997-07-22 Japan Exlan Co Ltd 金属微粒子含有ポリマー粒子とその製造方法
JPH09286817A (ja) * 1996-04-23 1997-11-04 Japan Exlan Co Ltd 抗菌・抗黴pan系ポリマー粒子とそのエマル ジョンおよびその製造方法
JP2006109902A (ja) 2004-10-12 2006-04-27 Chemiprokasei Kaisha Ltd 消臭剤およびその表面に少なくとも該消臭剤を存在させた物品
WO2006080319A1 (ja) 2005-01-25 2006-08-03 Kaneka Corporation 金属超微粒子含有樹脂組成物及び該組成物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287355A (ja) * 1993-04-02 1994-10-11 Asahi Chem Ind Co Ltd 超微粒子分散成形物
JP2001048992A (ja) 1999-08-06 2001-02-20 Nippon Plast Co Ltd 成形用マスターバッチ組成物とその製造方法
JP2005048145A (ja) * 2003-07-31 2005-02-24 Ishizuka Glass Co Ltd 難燃性および抗菌性付与用材料、抗菌難燃性樹脂
WO2005085358A1 (ja) * 2004-03-03 2005-09-15 Kaneka Corporation 超微粒子含有熱可塑性樹脂組成物の製造方法
JP5229602B2 (ja) * 2006-02-27 2013-07-03 大日本印刷株式会社 マスターバッチとそれを用いて製造したプラスチック製容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975434A (ja) 1995-09-07 1997-03-25 Kuraray Chem Corp 光触媒を使用した脱臭剤
JPH09188778A (ja) * 1995-12-29 1997-07-22 Japan Exlan Co Ltd 金属微粒子含有ポリマー粒子とその製造方法
JPH09286817A (ja) * 1996-04-23 1997-11-04 Japan Exlan Co Ltd 抗菌・抗黴pan系ポリマー粒子とそのエマル ジョンおよびその製造方法
JP2006109902A (ja) 2004-10-12 2006-04-27 Chemiprokasei Kaisha Ltd 消臭剤およびその表面に少なくとも該消臭剤を存在させた物品
WO2006080319A1 (ja) 2005-01-25 2006-08-03 Kaneka Corporation 金属超微粒子含有樹脂組成物及び該組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2248844A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139094A1 (ja) * 2018-01-11 2019-07-18 東洋製罐グループホールディングス株式会社 銅含有マスターバッチ及び銅超微粒子含有樹脂組成物並びにそれらの製造方法
JP2019119836A (ja) * 2018-01-11 2019-07-22 東洋製罐グループホールディングス株式会社 銅含有マスターバッチ及びその製造方法
JP2019119837A (ja) * 2018-01-11 2019-07-22 東洋製罐グループホールディングス株式会社 銅超微粒子含有樹脂組成物及びその製造方法
JP7021956B2 (ja) 2018-01-11 2022-02-17 東洋製罐グループホールディングス株式会社 銅超微粒子含有樹脂組成物及びその製造方法
JP2022063289A (ja) * 2018-01-11 2022-04-21 東洋製罐グループホールディングス株式会社 銅超微粒子含有繊維又は不織布、及びその製造方法
JP7141216B2 (ja) 2018-01-11 2022-09-22 東洋製罐グループホールディングス株式会社 銅含有マスターバッチ及びその製造方法

Also Published As

Publication number Publication date
EP2248844A4 (en) 2012-12-19
KR20100131441A (ko) 2010-12-15
KR101509845B1 (ko) 2015-04-06
CN101959940A (zh) 2011-01-26
EP2248844A1 (en) 2010-11-10
JP4948556B2 (ja) 2012-06-06
EP2248844B1 (en) 2013-10-02
JP2009227990A (ja) 2009-10-08
US8916634B2 (en) 2014-12-23
CN101959940B (zh) 2014-03-19
US20110003924A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP4948556B2 (ja) マスターバッチ及びその製造方法、並びに成形物の成形方法
JP4820416B2 (ja) 吸着性金属超微粒子含有吸着剤
JP5415784B2 (ja) 吸着性組成物及び吸着性成形体
KR101544259B1 (ko) 은 초미립자 함유 수지 조성물
JP2001200107A (ja) ポリオレフィン系樹脂組成物およびその成形体
JP5656541B2 (ja) 銀含有樹脂組成物及びその製造方法
JP5656540B2 (ja) 銀含有樹脂組成物及びその製造方法
WO2010098309A1 (ja) 銀ナノ微粒子含有の組成物、銀ナノ微粒子含有のマスターバッチおよびその成形品
JP2010132774A (ja) 吸着性成形体の製造方法
JP5693974B2 (ja) 金属超微粒子含有樹脂組成物の製造方法
JP2009209200A (ja) 変色性金属超微粒子含有組成物及び消臭判定方法
CN114716751A (zh) 一种聚烯烃材料及其制备方法和应用
JP4190128B2 (ja) 紫外線吸収性ポリマー組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106678.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12866595

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107018895

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009716077

Country of ref document: EP