WO2009107647A1 - 金属の回収方法 - Google Patents

金属の回収方法 Download PDF

Info

Publication number
WO2009107647A1
WO2009107647A1 PCT/JP2009/053388 JP2009053388W WO2009107647A1 WO 2009107647 A1 WO2009107647 A1 WO 2009107647A1 JP 2009053388 W JP2009053388 W JP 2009053388W WO 2009107647 A1 WO2009107647 A1 WO 2009107647A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
group
periodic table
acid
metal component
Prior art date
Application number
PCT/JP2009/053388
Other languages
English (en)
French (fr)
Inventor
正和 伊達
忠博 藤谷
野村 勝裕
蔭山 博之
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US12/919,724 priority Critical patent/US8568509B2/en
Priority to JP2010500709A priority patent/JP5339302B2/ja
Publication of WO2009107647A1 publication Critical patent/WO2009107647A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G47/00Compounds of rhenium
    • C01G47/006Compounds containing, besides rhenium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • C01G7/006Compounds containing, besides gold, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for efficiently recovering a metal component contained in a metal-containing material.
  • Precious metals and rare metals are widely used industrially because they are excellent in stability and catalytic activity, but they are rare and expensive resources.
  • Waste materials containing rare metals such as waste catalysts for automobile exhaust gas purification, waste catalysts for chemical industry, waste materials for manufacturing electronic substrates, waste electronic components, waste electrodes for electrolysis, etc. It is important to efficiently recover and reuse the precious metals and rare metals contained.
  • Typical methods for recovering such precious metals and rare metals include wet methods such as acid dissolution methods and dry methods using molten metals (see Non-Patent Document 1). In either case, a liquid phase of strong acid or molten metal is used. It elutes precious and rare metals.
  • waste materials containing precious metals and rare metals cover a wide variety of types such as electronic parts, batteries, catalysts, mobile phones, automotive parts, etc., even if they are collected using either the wet method or the dry method, It is necessary to construct a suitable method and system according to the properties of each material.
  • the material of the waste material itself is destroyed by pulverization to improve the recovery efficiency, the acid used in the wet method, and the molten metal used in the dry method, even if the precious metal etc. can be recovered, Reuse is impossible, and post-treatment of the elution residue is troublesome.
  • the extraction rate of noble metals and rare metals during acid leaching is low, and in particular, the lower the content of noble metals and rare metals in the waste material, the more eluate is required. Because there is a need to pay attention to the environment and there is an environmental load, capital investment increases.
  • the absorption efficiency of the precious metal / rare metal is not so high and the equipment cost is high because it is carried out at high temperature. There are many problems such as requiring expensive equipment and molten lead being an environmentally hazardous metal.
  • the present invention has been made in view of the actual state of the prior art, and does not directly process a material (waste material) containing a metal such as a noble metal or a rare metal directly by a wet method or a dry method. To provide a method for efficiently occluding and recovering metals contained in these materials by concentrating the precious metals and rare metals contained in the waste material only in other materials. Objective.
  • the present inventors placed a perovskite complex oxide powder on a platinum foil and heated it at a high temperature to elute platinum into the perovskite in a solid phase. And the phenomenon that the complex oxide containing a platinum ion is formed in a crystal lattice is found (nonpatent literature 2). As a result of examining this phenomenon in more detail, the present inventors have found that noble metals such as platinum are eluted into the composite oxide even when they are not in contact with the perovskite.
  • the perovskite type complex oxide has the property of incorporating noble metals into the crystal lattice as ions. It was inferred that the phenomenon of occlusion of noble metal into the composite oxide occurs because the generated metal or metal oxide vapor is irreversibly absorbed by the composite oxide in the presence of.
  • the present inventor even when a metal such as platinum is heated in a non-contact state with the composite oxide, the composite oxide is converted into the composite oxide via the gas phase. I found out that it was occluded. Further, even if a simulated waste material containing only a few percent of metal is used instead of a pure metal material such as platinum foil, the noble metal is occluded in the composite oxide, and the composite oxide is It has been found that it has the ability to occlude about 10% of noble metals and the like with respect to its weight.
  • Composition formula (1) [Perovskite complex oxide] ABH a O 3-b (1)
  • A is at least one element selected from the group consisting of a lanthanoid element and an element of Group 2 of the periodic table
  • B is an element of Group 3 of the periodic table, an element of Group 4 of the periodic table, and periodic table 13
  • the following range is indicated: 0 ⁇ a ⁇ 1.0, 0 ⁇ b ⁇ 0.5) ⁇ 2>
  • t (r A + r O ) / (2 1/2 ⁇ (r B + r O )) (Where r A is the arithmetic mean of the ionic radius of A, r B is the arithmetic mean of the ionic radius of B, and r O is the ionic radius (1.40 ⁇ ) of the oxide ion (O 2 ⁇ ))
  • the tolerance factor (t) defined in (1) is in the range of 0.75 to 1.15.
  • ⁇ 3> The metal storage material according to ⁇ 1> or ⁇ 2>, wherein the metal-containing material is in a solid phase.
  • the metal component is at least one element selected from Group 6, Group 7, Group 8, Group 9, Group 10 and Group 11 of the Periodic Table, ⁇ 1> to The metal storage material in any one of ⁇ 3>.
  • ⁇ 5> A method in which a metal component is occluded in the perovskite complex oxide by performing a heat treatment on the metal-containing material in the presence of the following perovskite complex oxide.
  • Composition formula (1) [Perovskite complex oxide] ABH a O 3-b (1)
  • A is at least one element selected from the group consisting of a lanthanoid element and an element of Group 2 of the periodic table
  • B is an element of Group 3 of the periodic table, an element of Group 4 of the periodic table, and periodic table 13
  • the following range is indicated: 0 ⁇ a ⁇ 1.0, 0 ⁇ b ⁇ 0.5)
  • t (r A + r O ) / (2 1/2 ⁇ (r B + r O )) (Where r A is the arithmetic mean of the ionic radius of A, r B is the arithmetic mean of the ionic radius of B, and r O is the ionic radius (1.40 ⁇ ) of the oxide ion (O 2 ⁇ ))
  • the tolerance factor (t) defined in (1) is in the range of 0.75 to 1.15.
  • ⁇ 8> The method for occluding a metal component according to any one of ⁇ 5> to ⁇ 7>, wherein the metal-containing material and the perovskite complex oxide are contained in the same container and heated.
  • ⁇ 9> The method for occluding a metal component according to any one of ⁇ 5> to ⁇ 8>, wherein the metal-containing material and the perovskite complex oxide are heated in a non-contact state.
  • ⁇ 10> The method for occluding a metal component according to any one of ⁇ 5> to ⁇ 9>, wherein the heating temperature is 900 to 1750 ° C.
  • ⁇ 11> The method for occluding a metal component according to any one of ⁇ 5> to ⁇ 10>, wherein the metal-containing material is in a solid phase.
  • the metal component is at least one element selected from Groups 6, 7, 8, 9, 10, and 11 of the periodic table ⁇ 5> to ⁇ 5>11>
  • the method for occluding a metal component according to any one of ⁇ 13> A method of treating the composite oxide according to any one of ⁇ 5> to ⁇ 12> in which the metal component is occluded with an acid, and eluting the metal component in the acid.
  • ⁇ 14> The method for eluting a metal component according to ⁇ 13>, wherein the acid is at least one acid selected from hydrochloric acid, nitric acid, aqua regia, sulfuric acid, and acetic acid.
  • a method for recovering a metal component wherein the metal component eluted in the acid according to ⁇ 13> or ⁇ 14> is recovered from the acid.
  • ⁇ 16> A method for producing a metal, the method for occluding a metal component according to any one of ⁇ 5> to ⁇ 12>, the method for eluting a metal component according to ⁇ 13> or ⁇ 14>, and ⁇ 15> A method for producing a metal, which is a combination of the metal component recovery methods described in 1.
  • the method for recovering a metal such as a noble metal / rare metal of the present invention is to first heat a waste material containing these metals together with a safe and simple predetermined composite oxide, and the noble metal or rare metal contained in the material is simply heated. It is characterized in that the composite oxide is efficiently occluded through the gas phase. Further, even when the composite oxide is used even in a non-contact state, noble metals and rare metals contained in the material are combined through the gas phase even if the composite oxide is separated from the composite oxide. Since it is occluded by the oxide, it is possible to recover the noble metal and rare metal by a simple operation, and the composite oxide that occludes the material and the noble metal or rare metal has a form that is easy to separate.
  • waste materials and the like containing only a few ppm to several percent of the metal concentration can be stored in the composite oxide after the metal is concentrated in the composite oxide and then treated with an acid. Since the amount of strong acid used in the wet method and the amount of molten metal used in the dry method can be greatly reduced as compared with the method of directly treating the metal, it is particularly useful industrially. Furthermore, the composite oxide that occludes metals such as noble metals and rare metals can be easily dissolved in acids commonly used in general industrial processes such as nitric acid and hydrochloric acid without using aqua regia. An eluate containing can be obtained.
  • Example 1 Palladium-supported alumina powder (left) and perovskite complex oxide powder (right) before firing at 1525 ° C. for 10 hours in Example 1 Alumina powder (left) and palladium-containing composite oxide powder (right) after calcination at 1525 ° C.
  • Example 18 X-ray diffraction pattern of perovskite complex oxide powder obtained in Example 13 X-ray diffraction pattern of perovskite complex oxide powder obtained in Example 16 X-ray diffraction pattern of the perovskite complex oxide powder obtained in Example 17
  • the rhodium-containing composite oxide powder was heated in concentrated hydrochloric acid (left), aqua regia (middle), and concentrated nitric acid (right) at 60 ° C. for 1 hour.
  • the rhodium-containing composite oxide powder was heated in concentrated hydrochloric acid (left), aqua regia (middle), and concentrated nitric acid (right) at 60 ° C. for 6 hours.
  • the method for occluding a metal such as a noble metal or a rare metal contained therein from a material containing a metal such as a noble metal or a rare metal according to the present invention first, the material in the presence of the following specific perovskite complex oxide. It is characterized by heat treatment.
  • composition formula (1) ABH a O 3-b (1)
  • A is at least one element selected from the group consisting of a lanthanoid element and an element of Group 2 of the periodic table
  • B is an element of Group 3 of the periodic table, an element of Group 4 of the periodic table, and periodic table 13
  • t (r A + r O ) / (2 1/2 ⁇ (r B + r O )) (Where r A is the arithmetic mean of the ionic radius of A, r B is the arithmetic mean of the ionic radius of B, and r 2 O is the i
  • the material containing the metal to be occluded in the composite oxide includes the metal to be occluded and other substances such as oxides and nitrides. , Carbon materials, ceramics, organic materials and the like are included.
  • the form and shape of the target metal-containing material are not particularly limited. For example, any form such as powder, net, line, foil, or honeycomb can be treated. There is no particular limitation on the presence state of the metal in the metal-containing material to be treated as long as it is contained in the material as a single metal, alloy, compound, or the like.
  • waste materials containing precious or rare metals as metals such as waste catalyst for purification of automobile exhaust gas, waste catalyst for chemical industry, waste gas sensor substrate, electronic substrate manufacturing process waste, waste electronic component, waste electrode product for electrolysis, dental
  • the perovskite type complex oxide of the present invention not only a material having a high content of noble metals and rare metals but also a material containing only a few ppm of noble metals or rare metals can be efficiently used. And can store rare metals.
  • the noble metal or rare metal to be treated include metals belonging to Group 6, Group 7, Group 8, Group 9, Group 10, Group 11 and the like of the periodic table. Examples of such noble metals and rare metals include Mo, Re, Ru, Rh, Ir, Pd, Pt, and Au.
  • the metal to be occluded is not particularly limited, but at least one noble metal or rare metal selected from Group 6, Group 7, Group 8, Group 9, Group 10 and Group 11 of the periodic table is preferable.
  • noble metals and rare metals include Mo, Re, Ru, Rh, Ir, Pd, Pt, and Au.
  • the aforementioned noble metals and rare metals can be used singly or in combination of two or more.
  • the perovskite complex oxide used in the present invention has the following composition formula (1): ABH a O 3-b (1) (In the formula, A is at least one element selected from the group consisting of a lanthanoid element and an element of Group 2 of the periodic table, and B is an element of Group 3 of the periodic table, an element of Group 4 of the periodic table, and periodic table 13) And at least one element selected from the group consisting of a group element and a transition metal element of the fourth period of the periodic table, wherein each symbol of a and b is the amount of hydrogen and oxygen vacancies, The numerical values in the following range are shown: 0 ⁇ a ⁇ 1.0, 0 ⁇ b ⁇ 0.5).
  • examples of the lanthanoid element that is the component A include La, Ce, Pr, Nd, and the like. It can be illustrated.
  • a lanthanoid element and an element of Group 2 of the periodic table can be used alone or in combination of two or more.
  • examples of the elements of Group 3 of the periodic table that are B components include Sc and Y.
  • examples of elements of Group 4 of the periodic table include Ti, Zr, and Hf.
  • Elements of Group 13 of the periodic table include Al. , Ga, In, etc., and examples of transition metal elements in the fourth period of the periodic table include Cr, Mn, Fe, Co, Ni, Cu, Zn, and the like.
  • the group 3 element of the periodic table, the group 4 element of the periodic table, the group 13 element of the periodic table, and the transition metal element of the 4th period of the periodic table can be used alone or in combination of two or more.
  • a is 0 ⁇ a ⁇ 1.0, preferably 0 ⁇ a ⁇ 0.5, and more preferably 0 ⁇ a ⁇ 0.3.
  • b is 0 ⁇ b ⁇ 0.5, preferably 0 ⁇ b ⁇ 0.25, and more preferably 0 ⁇ b ⁇ 0.15.
  • compositional formula (1) when a highly basic alkaline earth metal such as Ba or Sr is contained, the composite oxide is brought into contact with a material containing a noble metal / rare metal at a high temperature.
  • a material containing a noble metal / rare metal When heat-treated, alkaline earth metals and precious metals / rare metals react relatively easily to form alloys, resulting in a lower melting point and higher temperature (partial pressure) precious metal / rare metal vapor at lower temperatures.
  • r A is the cation of the A site in the composition formula (1), that is, the arithmetic mean of the ionic radius of A
  • r B is the cation of the B site in the composition formula (1). It is the arithmetic mean of the ionic radius of ions, ie B.
  • r 2 O is the ionic radius of the oxide ion (O 2 ⁇ ) and is 1.40 ⁇ .
  • the tolerance factor (t) defined by the above formula indicates the degree of distortion of the crystal structure of the perovskite complex oxide.
  • the tolerance factor is 1, an ideal perovskite structure (cubic system) )it is conceivable that.
  • the tolerance factor is larger than 1, it means that the size of the A-site cation is too large relative to that of the B-site cation, and a perovskite structure with distortion is obtained.
  • the tolerance factor is smaller than 1, it means that the size of the cation at the B site is too large relative to that of the cation at the A site, and a perovskite structure having a distortion is obtained.
  • a noble metal When a noble metal is occluded in a composite oxide having a perovskite structure, it is desirable that noble metal ions diffuse at high speed in the perovskite crystal structure and move to a stable site in a short time. It is desirable to use a perovskite type compound close to a cubic crystal and having a tolerance factor close to 1 as the occlusion material. To calculate the tolerance factor, for example, based on the paper describing the size of the ionic radius (RD Shannon, Acta Cryst., A32, 751 ⁇ (1976)) do it.
  • a perovskite type complex oxide having a tolerance factor (t) in the range of 0.75 to 1.15 but in order to have a relatively stable crystal structure, 0.8% is required. Is preferably in the range of ⁇ 1.10, and more preferably in the range of 0.9 to 1.05.
  • the composite oxide represented by the above composition formula (1) is a known substance represented by K. Nomura et al., J. Mater. Res., 22, 2647 (2007). It can be obtained by a known method such as a solid phase reaction method or a coprecipitation method according to the method described in Edition, Volume 16, Inorganic Compound, edited by The Chemical Society of Japan, Maruzen, 1993.
  • a compound containing a metal element included in the above composition formula for example, an oxide, a carbonate, an organic compound, or the like is used as a starting material, and the same metal element ratio as the target oxide is obtained.
  • the desired perovskite type complex oxide can be obtained by mixing and firing in this manner.
  • the specific firing temperature and firing time are not particularly limited as long as the target complex oxide is formed. For example, firing is performed for about 10 to 40 hours in a temperature range of about 1200 to 1500 ° C. do it.
  • a carbonate when used as the raw material, it may be calcined at about 1000 to 1200 ° C. for about 10 hours and then calcined under the conditions described above.
  • the firing means is not particularly limited, and any means such as an electric heating furnace or a gas heating furnace can be adopted.
  • the firing atmosphere may be usually an oxidizing atmosphere such as in an oxygen stream or in the air. However, if the source material contains a sufficient amount of oxygen, for example, it may be fired in an inert atmosphere. .
  • the method for occluding a metal component from a metal-containing material according to the present invention is to first contact a metal vapor generated from the metal-containing material or a vapor of the oxide of the metal with the predetermined perovskite complex oxide.
  • the composite oxide may be occluded by heating in a possible state.
  • the heating temperature is not particularly limited, but may be a temperature at which a metal such as a noble metal or a rare metal contained in the above material becomes vapor, and is usually about 800 ° C. or higher, and the decomposition of the predetermined complex oxide.
  • the temperature may be less than the temperature. Specifically, the temperature is preferably about 900 to 1750 ° C., more preferably about 1050 to 1650 ° C.
  • the mechanism by which a metal such as a noble metal or a rare metal contained in a metal-containing material is occluded in the perovskite complex oxide is not clear at present, but [1] oxygen is present.
  • oxygen is present.
  • the oxide vapor of the same partial pressure may be generated at a lower temperature than the case of the noble metal or the rare metal alone.
  • a basic alkaline earth metal is contained in the predetermined complex oxide, the alkaline earth metal that has been vaporized by heating comes into contact with the noble metal or rare metal to be recovered, and the alloy or complex oxide.
  • the predetermined composite oxide includes noble metal / rare metal ion.
  • the noble metals and rare metals are partly replaced with the constituent elements of the composite oxide and are taken in and absorbed by the elements. It is assumed that rare metals are occluded.
  • the present invention in order to allow the metal occlusion reaction to proceed in a shorter time, it is preferable to efficiently bring the composite oxide into contact with the vapor of the metal or the noble metal. Specifically, it is preferable that a vapor of a metal or metal oxide having the highest possible pressure (partial pressure) is brought into contact at the highest possible temperature.
  • the noble metal / rare metal-containing material is brought into contact with the composite oxide powder, more preferably, the noble metal / rare metal-containing material is brought into contact with the composite oxide powder, and the decomposition temperature of the composite oxide is below.
  • the heating of the metal-containing material and the composite oxide may be in a contact state or a non-contact state.
  • pretreatment such as pulverization for ensuring contact between the metal-containing material and the perovskite complex oxide of the present invention is unnecessary, and the metal-containing material is contained.
  • the material and the composite oxide are easy to separate, and this is an advantageous method in that they can be easily separated after heating.
  • the distance between the metal-containing material and the composite oxide is shortened, so that recovery efficiency can be increased.
  • the pressure (partial pressure) of the vapor of the metal or metal oxide in the container is not particularly limited, but is usually preferably about 10 ⁇ 3 Pa or more, more preferably about 1 Pa or more. At this time, the reaction time can be shortened by increasing the pressure (partial pressure) of the vapor of the metal or metal oxide.
  • the reaction time is not particularly limited, but when heating in the above temperature range, it is preferably about 5 to 20 hours, more preferably about 10 to 15 hours.
  • a composite oxide represented by the composition formula (1) and a metal, a metal-containing mixture or a metal-containing compound are accommodated in the same container, and metal vapor or metal oxidation is performed.
  • the composite oxide can be brought into contact with the metal vapor or the metal oxide vapor.
  • the reaction vessel may not be completely sealed as long as the metal vapor or the vapor of the metal-containing oxide can sufficiently contact the composite oxide.
  • the shape of the composite oxide is not particularly limited.
  • a powdered material may be used, a porous body obtained by press molding a powder, or a sintered body. May be used.
  • the reaction vessel may not be completely sealed as long as the metal vapor or the metal oxide vapor contained in the metal-containing material can sufficiently contact the composite oxide. Although it is good, it is necessary to maintain a sealing property that does not dissipate the generated steam.
  • metal vapor or metal oxide vapor generated from the metal-containing material may be in contact with the composite oxide, and the metal-containing material to be treated and the composite oxide are in contact with each other, Or a non-contact state may be sufficient.
  • a method of heating the composite oxide on a material containing a noble metal / rare metal, or a non-contact state between the material and the composite oxide at an arbitrary interval in a container The method of arrange
  • the acid is not particularly limited, and specific examples include one or more acids selected from the group consisting of hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, formic acid, and acetic acid.
  • a mixture of acids such as aqua regia can also be used.
  • a strong acid such as hydrochloric acid, nitric acid, aqua regia and the like that are highly reactive with the composite oxide.
  • a halogen-free acid or a weak acid such as acetic acid is preferred.
  • Noble metals usually only dissolve with strong oxidizing power such as aqua regia, while iridium and ruthenium are poorly soluble even in aqua regia.
  • the metal-containing composite oxide formed from the perovskite-type composite oxide of the present invention can be easily dissolved by an acid other than aqua regia, the noble metal occluded in the composite oxide may be various types, even iridium and ruthenium. Elution is easy with acid.
  • the concentration of the acid is not limited, but is preferably as high as possible in view of the reaction time and elution efficiency. However, if the acid concentration is too high, the content of water is relatively reduced, so that the reaction may be delayed due to the formation of a precipitate. In view of environmental load, a low concentration of acid is preferable. In consideration of these points, the acid concentration may be determined as appropriate.
  • the method of bringing the composite oxide containing the metal into contact with the acid is not particularly limited, but it is usually sufficient to immerse the composite oxide in an acid and heat the acid as necessary.
  • the heating temperature is a temperature at which the perovskite structure of the composite oxide collapses in the acid, the constituent components of the composite oxide are dispersed in the acid, and the metal contained in the composite oxide elutes in the solution. That's fine.
  • the temperature can be from room temperature to less than the boiling point of the acid. However, considering the reaction time and elution efficiency, it is preferably about 30 to 100 ° C.
  • the metal eluted in the acid by the above-described method is adsorbed on, for example, a method of reducing with a reducing agent described in Non-Patent Document 3, a recovery method using a cementation method with a metal such as Zn, an ion exchange resin or activated carbon. It can be regenerated as a solid metal by a known method such as a recovery method by a solvent extraction method, a method from recovery to separation purification by a solvent extraction method, a recovery method by an electrolysis method.
  • a recovery method by a solvent extraction method a method from recovery to separation purification by a solvent extraction method
  • a recovery method by an electrolysis method a known method such as a recovery method by a solvent extraction method, a method from recovery to separation purification by a solvent extraction method, a recovery method by an electrolysis method.
  • this is a very advantageous method in that a high-value-added metal can be reused efficiently at a low cost by a simple method.
  • Example 1 [Preparation of perovskite complex oxide powder] La 2 O 3 , SrCO 3 , BaCO 3 and Sc 2 O 3 are used as raw materials, and these raw materials have an element ratio of La: Sr: Ba: Sc of 0.7: 0.2: 0.1: 1.0. After being mixed so as to be fired, calcination and pulverization were repeated several times in the air, and finally in the air at 1400 ° C. for 10 hours to obtain a composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) A pale yellow oxide powder represented by ScH 0.05 O 2.875 was produced. The tolerance factor of the composite oxide powder is 0.92. FIG.
  • Example 2 [Occlusion of platinum contained in platinum-supported oxide catalyst powder using perovskite-type composite oxide powder]
  • a (La 0.7 Sr 0.2 Ba 0.1) ScH 0.05 pale yellow oxide powder represented by O 2.875 (2 g) Put it in the same lidded container (made of alumina, rectangular parallelepiped, volume: about 30 cm 3 ) without contacting with 1% by weight of platinum-supported alumina powder (1 g, pale yellow), in air at 1525 ° C Is fired at 10 hours to obtain blue platinum represented by the composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.994 Pt 0.006 ) H 0.05 O 2.878 Containing composite oxide powder and colorless alumina powder were obtained.
  • Example 3 [Occlusion of rhodium contained in rhodium-supported oxide catalyst powder using perovskite complex oxide powder]
  • Example 4 [Occlusion of ruthenium in ruthenium-supported oxide catalyst powder using perovskite-type composite oxide powder]
  • the ruthenium of orange color represented by the composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.995 Ru 0.005 ) H 0.05 O 2.8775 Containing composite oxide powder and colorless alumina powder were obtained.
  • Example 5 [Occlusion of iridium contained in iridium-supported oxide catalyst powder using perovskite complex oxide powder]
  • Example 6 [Occlusion of palladium contained in a palladium-supported oxide honeycomb catalyst using perovskite-type composite oxide powder]
  • the composition obtained in the same manner as in Example 1 Formula: a (La 0.7 Sr 0.2 Ba 0.1) ScH 0.05 pale yellow oxide powder represented by O 2.875 (2 g) , Put it in a container with the same lid (made of alumina, rectangular parallelepiped, volume: about 30 cm 3 ) without contacting with cordierite honeycomb (0.2 g, black) carrying 0.5% by weight of palladium.
  • Example 7 [Occlusion of platinum contained in platinum-supported oxide honeycomb catalyst using perovskite-type composite oxide powder]
  • the cordierite honeycomb is melted by firing at a temperature of 10 ° C. for 10 hours, and the composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.999 Pt 0.001 ) H 0.05 O2 .
  • a blue platinum-containing composite oxide powder represented by 8755 was obtained.
  • Example 8 [Occlusion of platinum contained in platinum-supported carbon electrode catalyst powder using perovskite-type composite oxide powder]
  • Example 9 [Occlusion of platinum-rhodium in platinum-rhodium-containing furnace material using perovskite complex oxide powder]
  • put it in the same lidded container alumina, rectangular parallelepiped, volume: about 30 cm 3
  • the noble metal component on the surface of the furnace material transitioned to obtain a blue platinum-rhodium-containing composite oxide powder.
  • Example 10 [Occlusion of molybdenum from molybdenum foil using perovskite complex oxide powder]
  • Example 11 [Occlusion of gold contained in gold-supported oxide catalyst powder using perovskite complex oxide powder]
  • a light brown gold represented by the composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (ScAu 0.000006 ) H 0.05 O 2.875 Containing composite oxide powder and green titania powder were obtained.
  • Example 12 [Occlusion of rhenium from rhenium foil using perovskite complex oxide powder]
  • Light yellow oxide powder (1.5 g) represented by the same compositional formula obtained in the same manner as in Example 1: (La 0.7 Sr 0.2 Ba 0.1 ) ScH 0.05 O 2.875 Is placed in the same lidded container (alumina, rectangular parallelepiped, volume: about 30 cm 3 ) without contacting with rhenium foil (thickness 0.025 mm, weight 0.096 g), and in air at 1600 ° C. for 10 hours.
  • the rhenium foil disappears and is represented by the composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.965 Re 0.035 ) H 0.05 O 2.8925 An orange rhenium-containing composite oxide powder was obtained.
  • Example 13 [Preparation of perovskite complex oxide powder] SrCO 3 , ZrO 2 and Y 2 O 3 were used as raw materials, and these raw materials were mixed so that the element ratio of Sr: Zr: Y was 1.0: 0.9: 0.1, and then in the air By repeating firing and pulverization several times and finally firing in air at 1600 ° C. for 10 hours, the composition formula is represented by Sr (Zr 0.9 Y 0.1 ) H 0.05 O 2.975. A pale yellow oxide powder was produced. The tolerance factor of the composite oxide powder is 0.94. FIG.
  • Example 14 [Occlusion of ruthenium from ruthenium foil using perovskite complex oxide]
  • Example 15 [Occlusion of iridium from iridium foil using perovskite complex oxide]
  • Example 16 [Preparation of perovskite complex oxide powder] La 2 O 3 , CaO and Al 2 O 3 were used as raw materials, and these raw materials were mixed so that the element ratio of La: Ca: Al was 0.9: 0.1: 1.0, and then in the air Baked and pulverized several times, and finally baked in air at 1600 ° C. for 20 hours, whereby a light red oxidation represented by the composition formula: (La 0.9 Ca 0.1 ) AlO 2.95 A product powder was prepared. The tolerance factor of the composite oxide powder is 1.01.
  • FIG. 5 is an X-ray diffraction pattern of the obtained powder sample, and it was confirmed that a single-phase perovskite complex oxide powder having good crystallinity was obtained.
  • Example 17 [Preparation of perovskite complex oxide powder] After using La 2 O 3 , Sc 2 O 3 and ZnO as raw materials, these raw materials were mixed so that the element ratio of La: Sc: Zn was 1.0: 0.95: 0.05, and then in the air The composition formula is expressed by La (Sc 0.95 Zn 0.05 ) H 0.02 O 2.985 by repeating firing and pulverization several times and finally in air at 1600 ° C. for 10 hours. A light red oxide powder was prepared. The tolerance factor of the composite oxide powder is 0.91.
  • FIG. 6 is an X-ray diffraction pattern of the obtained powder sample, and it was confirmed that a single-phase perovskite complex oxide powder having good crystallinity was obtained.
  • Example 18 [Elution of rhodium in rhodium-containing composite oxide powder by concentrated hydrochloric acid] Composition formula: concentrated on (La 0.7 Sr 0.2 Ba 0.1) (Sc 0.937 Rh 0.063) H 0 ⁇ 05 O rhodium-containing complex oxide of the black represented by 2.875 powder 20mg
  • hydrochloric acid was added and heated at 60 ° C.
  • dissolution gradually proceeded as shown in FIGS. 7 and 8, and after 6 hours, the precipitate disappeared and a pale red solution was obtained.
  • ICP inductively coupled plasma
  • Example 19 [Elution of rhodium in rhodium-containing composite oxide powder by aqua regia] Composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.937 Rh 0.063 ) H 0 .05 O 2.875
  • ICP inductively coupled plasma
  • Example 20 [Elution of rhodium contained in rhodium-containing composite oxide powder by concentrated nitric acid] Composition formula: concentrated on (La 0.7 Sr 0.2 Ba 0.1) (Sc 0.937 Rh 0.063) H 0 ⁇ 05 O rhodium-containing complex oxide of the black represented by 2.875 powder 20mg
  • nitric acid nitric acid
  • dissolution gradually proceeds as shown in FIGS. 7 and 8, and after 12 hours a pale yellow solution containing a colorless precipitate is obtained. Dissolved.
  • ICP inductively coupled plasma
  • Example 21 [Elution of palladium in palladium-containing composite oxide powder by concentrated hydrochloric acid] Composition formula: in (La 0.7 Sr 0.2 Ba 0.1) (Sc 0.981 Pd 0.019) H 0 ⁇ 05 O palladium-containing composite oxide of pale brown represented by 2.8655 powder 20mg When 4 ml of concentrated hydrochloric acid was added and heated at 60 ° C. for 6 hours, the precipitate disappeared and a light brown solution was obtained.
  • Example 22 [Elution of platinum contained in platinum-containing composite oxide powder by concentrated hydrochloric acid] Composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.993 Pt 0.007 ) H 0 .05 O 2.8785 Concentrated in 20 mg of blue platinum-containing composite oxide powder When 4 ml of hydrochloric acid was added and heated at 60 ° C. for 6 hours, the precipitate disappeared and a colorless solution was obtained. In addition, a colorless precipitate was obtained 30 minutes after the heating, but when a small amount of water was added at this stage, it completely dissolved and a colorless solution was obtained.
  • Example 23 [Elution of platinum in platinum-containing composite oxide powder by dilute hydrochloric acid] Composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.993 Pt 0.007 ) H 0 ⁇ 05 O 2.8785 1 in 20 mg of the blue platinum-containing composite oxide powder When 4 ml of normal dilute hydrochloric acid was added and heated at 60 ° C. for 3 hours, the precipitate disappeared and a colorless solution was obtained.
  • Example 24 [Elution of platinum in platinum-containing composite oxide powder by dilute nitric acid] Composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.993 Pt 0.007 ) H 0 ⁇ 05 O 2.8785 1 in 20 mg of the blue platinum-containing composite oxide powder When 4 ml of normal dilute nitric acid was added and heated at 60 ° C. for 4 hours, the precipitate disappeared and a colorless solution was obtained.
  • Example 25 [Elution of platinum in platinum-containing composite oxide powder by acetic acid] Composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.993 Pt 0.007 ) H 0 .05 O 2.8785 to 20 mg of blue platinum-containing composite oxide powder When 4 ml of% acetic acid was added and heated at 60 ° C. for 40 hours, the precipitate disappeared and a colorless solution was obtained.
  • Example 26 [Elution of ruthenium in ruthenium-containing composite oxide powder by concentrated hydrochloric acid] Composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.93 Ru 0.07 ) H 0 .05 O 2.91 When 4 ml of concentrated hydrochloric acid was added and heated at 60 ° C. for 8 hours, a dark brown solution containing a colorless precipitate was obtained, and when a small amount of water was added, the precipitate was dissolved.
  • Example 27 [Elution of ruthenium contained in ruthenium-containing composite oxide powder by sulfuric acid] Composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.93 Ru 0.07 ) H 0 .05 O 2.91 When 4 ml of 6N sulfuric acid was added and heated at 60 ° C. for 6 hours, a dark brown solution containing a colorless precipitate was obtained.
  • Example 28 [Elution of iridium contained in iridium-containing composite oxide powder by concentrated hydrochloric acid] Dark brown iridium-containing composite oxidation represented by the composition formula: (La 0.66 Sr 0.19 Ba 0.08 Ir 0.07 ) (Sc 0.93 Ir 0.07 ) H 0 .05 O 2.89 When 4 ml of concentrated hydrochloric acid was added to 20 mg of the product powder and heated at 60 ° C. for 6 hours, the precipitate disappeared and a light brown solution was obtained.
  • Example 29 [Elution of molybdenum in molybdenum-containing composite oxide powder by concentrated hydrochloric acid] 20 mg of blue-green molybdenum-containing composite oxide powder represented by the composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.75 Mo 0.25 ) H 0.02 O 2.985
  • 4 ml of concentrated hydrochloric acid was added and heated at 60 ° C. for 8 hours, a colorless solution containing a colorless precipitate was obtained, and when a small amount of water was added, the precipitate was dissolved.
  • Example 30 [Elution of gold contained in gold-containing composite oxide powder by concentrated hydrochloric acid] Composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (ScAu 0.000006 ) H 0.05 O 2.875 mg of light brown gold-containing composite oxide powder represented by 2.875 and 4 ml of concentrated hydrochloric acid In addition, when heated at 60 ° C. for 6 hours, the precipitate disappeared and a colorless solution was obtained.
  • Example 31 [Elution of rhenium contained in rhenium-containing composite oxide powder by concentrated hydrochloric acid] Concentrated in 20 mg of the orange rhenium-containing composite oxide powder represented by the composition formula: (La 0.7 Sr 0.2 Ba 0.1 ) (Sc 0.965 Re 0.035 ) H 0.05 O 2.8925 When 4 ml of hydrochloric acid was added and heated at 60 ° C. for 6 hours, the precipitate disappeared and a colorless solution was obtained.
  • Example 32 [Elution of platinum contained in platinum-containing composite oxide powder by concentrated hydrochloric acid] 4 ml of concentrated hydrochloric acid is added to 20 mg of a blue platinum-containing composite oxide powder represented by a composition formula: Sr (Zr 0.899 Y 0.099 Pt 0.002 ) H 0.05 O 2.9755 , and 1 at 60 ° C. Upon heating for a period of time, the precipitate disappeared and a colorless solution was obtained.
  • Example 33 [Elution of ruthenium in ruthenium-containing composite oxide powder by concentrated hydrochloric acid] 4 ml of concentrated hydrochloric acid was added to 20 mg of the dark brown ruthenium-containing composite oxide powder represented by the composition formula: Sr (Zr 0.838 Y 0.038 Ru 0.124 ) H 0.03 O 2.996 , and the mixture was added at 60 ° C. When heated for 1 hour, a dark brown solution containing a colorless precipitate was obtained, and when a small amount of water was added, the precipitate dissolved.
  • Example 34 [Elution of iridium contained in iridium-containing composite oxide powder by concentrated hydrochloric acid] 4 ml of concentrated hydrochloric acid is added to 20 mg of a brown iridium-containing composite oxide powder represented by a composition formula: Sr (Zr 0.889 Y 0.089 Ir 0.022 ) H 0.05 O 2.9695 , and 1 at 60 ° C. Upon heating for a period of time, the precipitate disappeared and a light brown solution was obtained.
  • Example 35 [Elution of platinum contained in platinum-containing composite oxide powder by concentrated hydrochloric acid] Composition formula: (La 0.9 Ca 0.1 ) (AlPt 0.000002 ) O 2.95 mg of light brown platinum-containing composite oxide powder represented by 2.95 is added with 4 ml of concentrated hydrochloric acid and heated at 60 ° C. for 6 hours. Then, the precipitate disappeared and a colorless solution was obtained.
  • Example 36 [Elution of platinum contained in platinum-containing composite oxide powder by concentrated hydrochloric acid] Composition formula: La (Sc 0.9498 Zn 0.0498 Pt 0.0004 ) H 0.02 O 2. 2053 of light brown platinum-containing composite oxide powder represented by 2.9853 , 4 ml of concentrated hydrochloric acid is added, and at 60 ° C. Upon heating for 2 hours, the precipitate disappeared and a colorless solution was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

 下記組成式(1): ABH3-b (1) (式中、Aは、ランタノイド元素及び周期表2族の元素からなる群から選ばれた少なくとも一種の元素であり、Bは、周期表3族の元素、周期表4族の元素、周期表13族の元素、及び元素周期表の第4周期の遷移金属元素からなる群から選ばれた少なくとも一種の元素である。また、a及びbの各記号は、水素及び酸素空孔の量であり、下記範囲の数値を示す:0≦a≦1.0、0≦b≦0.5)で表され、  下記式:  t=(r+r)/(21/2・(r+r)) (式中、rはAのイオン半径の相加平均、rは、Bのイオン半径の相加平均、rは酸化物イオン(O2-)のイオン半径(1.40Å)である)で定義されるトレランスファクター(t)が0.75~1.15の範囲内にあるペロブスカイト型複合酸化物の存在下で、加熱処理する。金属を吸収した該複合酸化物を酸で溶解させ、金属の溶出液を得、この溶出液から金属を回収する。  この方法によれば、貴金属・希少金属等の金属を含む材料を安全で簡便な所定の複合酸化物と共に接触しない状態で単に加熱するだけで、それに含まれる金属を気相を介して効率よく該複合酸化物に吸収することができ、しかも該材料と該複合酸化物粉末とを非接触の状態で簡単に分離することも可能であり、加えて該金属が吸蔵された該複合酸化物は、酸により容易に溶解し、該貴金属・希少金属が溶液中に溶出されるため、効率よく回収することができる。

Description

金属の回収方法
 本発明は、金属を含有する材料からそれに含まれる金属成分を効率的に回収する方法に関する。
 貴金属・希少金属は安定性、触媒活性等に優れることから、工業的に幅広く用いられているが、希少で高価な資源であるため、これを有効活用することが必要であり、使用済みの貴金属・希少金属を含有する廃棄材料、例えば、自動車排気ガス浄化用廃触媒、化学工業用廃触媒、電子基板製造工程廃棄物、廃電子部品、電解用廃電極等の廃棄材料製品や材料からこれに含まれる貴金属・希少金属を効率よく回収して再利用することが重要である。
 このような貴金属・希少金属の回収法としては、酸溶解法等の湿式法や溶融金属を用いる乾式法が代表的で(非特許文献1参照)、いずれの場合も強酸や溶融金属の液相に貴金属・希少金属を溶出させている。
藤原紀久夫、「貴金属のリサイクル」、化学工学、55巻1号21頁、1991年、化学工学会
 しかし、貴金属・希少金属を含む廃棄材料は、電子部品、電池、触媒、携帯電話、自動車用部品等多岐の種類にわたっているため、湿式法や乾式法のいずれを用いて回収を行うにしても、それぞれの素材の性質に合わせた、好適な方法やシステムを構築するする必要がある。また、回収効率を上げるための粉砕や、湿式法で用いる酸や、乾式法で用いる溶融金属によって、廃棄材料自体の素材を破壊してしまうため、貴金属等が回収できても、その素材自体の再利用は不可能であり、また溶出残渣の後処理が面倒である。
 湿式法では、酸浸出における貴金属・希少金属の抽出率が低く、特に、廃棄材料中の貴金属・希少金属の含有率が少なくなるほど相対的に多くの溶出液が必要となり、この場合、強酸は取扱いに注意が必要で環境負荷もあるため、設備投資が嵩むことになる。一方、貴金属・希少金属吸収材として、鉄、銅、鉛等の溶融金属を用いる乾式法では、貴金属・希少金属の吸収効率があまり高くない上、高温度下で実施するために装置コストが高く、高価な設備を必要とし、また、溶融鉛は環境有害金属であるといった多くの問題点がある。
 本発明は、上記従来技術の実状に鑑みなされたものであって、貴金属・希少金属等の金属を含む材料(廃棄材料)を直接、湿式法や乾式法で処理するのではなくて、いったん、廃棄材料中に含有される貴金属や希少金属等の金属のみを、他の材料に濃縮的に吸収させることにより、これらの材料に含まれる金属を効率的に吸蔵・回収する方法を提供することを目的とする。
 本発明者らはプロトン導電性を有するペロブスカイト型複合酸化物を開発する過程において、ペロブスカイト型複合酸化物の粉末を、白金箔の上に置いて高温で加熱すると、白金がペロブスカイトに固相で溶出し、結晶格子中に白金イオンを含有する複合酸化物が形成されるという現象を見出している(非特許文献2)。
 本発明者らは、この現象について更に詳細に検討した結果、白金等の貴金属はペロブスカイトと接触していない状態でも、該複合酸化物中に溶出することを知見した。
 そして、この現象は、白金等を酸素存在下で加熱すると、金属または金属酸化物の蒸気となって一部が蒸発するが、貴金属をイオンとして結晶格子中に取り込む性質を有するペロブスカイト型複合酸化物の存在下では、生じた金属または金属酸化物の蒸気が不可逆的に該複合酸化物に吸収されるため、貴金属の該複合酸化物への吸蔵という現象が起こるものと推論した。
K. Nomura, M.Date, H.Kageyama and S.Tsubota, J. Mater. Res., 22, 2647 (2007)
 さらに、本発明者は、上記の知見を基にして鋭意工夫した結果、白金等の金属を該複合酸化物と非接触の状態において加熱しても、気相を介して、該複合酸化物に吸蔵されることを見出した。また、白金箔等のような金属純物質ではなく、金属を僅か数%程度含有する模擬廃棄材料を用いても、該貴金属が該複合酸化物に吸蔵されること、及び該複合酸化物は、その重量に対して10%程度の貴金属等を吸蔵する能力を有することを見出した。
 さらに、該複合酸化物が無機酸等に容易に溶解して、貴金属・希少金属を含む溶出液が容易に得られることを見出した。以上の知見により効率よく貴金属及び希少金属を回収できる本発明を完成するに至った。
 すなわち、この出願は以下の発明を提供するものである。
〈1〉金属を含有する材料中の金属成分を吸蔵する材料であって、下記のペロブスカイト型複合酸化物を含む金属吸蔵材。
 組成式(1):
 [ペロブスカイト型複合酸化物]
     ABH3-b             (1)
(式中、Aは、ランタノイド元素及び周期表2族の元素からなる群から選ばれた少なくとも一種の元素であり、Bは、周期表3族の元素、周期表4族の元素、周期表13族の元素、及び元素周期表の第4周期の遷移金属元素からなる群から選ばれた少なくとも一種の元素である。また、a及びbの各記号は、水素及び酸素空孔の量であり、下記範囲の数値を示す:0≦a≦1.0、0≦b≦0.5)
〈2〉上記ペロブスカイト型複合酸化物が下記式の条件を満たすことを特徴とする、〈1〉に記載の金属吸蔵材。
下記式:
t=(r+r)/(21/2・(r+r))
(式中、rはAのイオン半径の相加平均、rはBのイオン半径の相加平均、rは酸化物イオン(O2-)のイオン半径(1.40Å)である)で定義されるトレランスファクター(t)が0.75~1.15の範囲内にあるもの。
〈3〉上記金属を含有する材料が、固相状態にあるものであることを特徴とする〈1〉または〈2〉に記載の金属吸蔵材。
〈4〉上記金属成分が、周期律表の6族、7族、8族、9族、10族及び11族から選ばれた少なくとも1種の元素であることを特徴とする、〈1〉~〈3〉のいずれかに記載の金属吸蔵材。
〈5〉金属を含有する材料を下記のペロブスカイト型複合酸化物の存在下で、加熱処理を行うことにより、該材料中の金属成分を該ペロブスカイト型複合酸化物に吸蔵する方法。
 組成式(1):
 [ペロブスカイト型複合酸化物]
     ABH3-b             (1)
(式中、Aは、ランタノイド元素及び周期表2族の元素からなる群から選ばれた少なくとも一種の元素であり、Bは、周期表3族の元素、周期表4族の元素、周期表13族の元素、及び元素周期表の第4周期の遷移金属元素からなる群から選ばれた少なくとも一種の元素である。また、a及びbの各記号は、水素及び酸素空孔の量であり、下記範囲の数値を示す:0≦a≦1.0、0≦b≦0.5)
〈6〉上記ペロブスカイト型複合酸化物が、下記式の条件を満たすことを特徴とする〈5〉に記載の金属成分の吸蔵方法。
下記式:
t=(r+r)/(21/2・(r+r))
(式中、rはAのイオン半径の相加平均、rはBのイオン半径の相加平均、rは酸化物イオン(O2-)のイオン半径(1.40Å)である)で定義されるトレランスファクター(t)が0.75~1.15の範囲内にあるもの。
〈7〉上記金属を含有する材料と、上記ペロブスカイト型複合酸化物とを加熱した際に生じる金属の蒸気または金属酸化物の蒸気と該複合酸化物とが接触する状態において、加熱することを特徴とする、〈5〉または〈6〉に記載の金属成分の吸蔵方法。
〈8〉上記金属を含有する材料と、上記ペロブスカイト型複合酸化物を、同一の容器内に収容して加熱する〈5〉~〈7〉のいずれかに記載の金属成分の吸蔵方法。
〈9〉上記金属を含有する材料と上記ペロブスカイト型複合酸化物とを非接触の状態で加熱することを特徴とする〈5〉~〈8〉のいずれかに記載の金属成分の吸蔵方法。
〈10〉加熱温度が900~1750℃であることを特徴とする〈5〉~〈9〉のいずれかに記載の金属成分の吸蔵方法。
〈11〉金属を含有する材料が、固相状態にあるものであることを特徴とする〈5〉~〈10〉のいずれかに記載の金属成分の吸蔵方法。
〈12〉上記金属成分が、周期律表の6族、7族、8族、9族、10族及び11族から選ばれた少なくとも1種の元素であることを特徴とする〈5〉~〈11〉のいずれかに記載の金属成分の吸蔵方法。
〈13〉上記金属成分が吸蔵された〈5〉~〈12〉のいずれかに記載の複合酸化物を酸で処理し、該酸中に金属成分を溶出する方法。
〈14〉上記酸が、塩酸、硝酸、王水、硫酸、酢酸から選ばれた少なくとも1種の酸であることを特徴とする、〈13〉に記載の金属成分の溶出方法。
〈15〉〈13〉または〈14〉に記載の酸中に溶出した金属成分を酸から回収することを特徴とする金属成分の回収方法。
〈16〉金属を製造する方法であって、〈5〉~〈12〉のいずれかに記載の金属成分の吸蔵方法と〈13〉または〈14〉に記載の金属成分の溶出方法と〈15〉に記載の金属成分の回収方法を組み合わせたことを特徴とする金属の製造方法。
 本発明の貴金属・希少金属等の金属の回収方法は、まず、これらの金属を含有する廃棄材料等を安全で簡便な所定の複合酸化物と共に単に加熱するだけで、それに含まれる貴金属や希少金属を気相を介して効率よく該複合酸化物に吸蔵することに特徴がある。
 また、非接触の状態であっても、該複合酸化物を用いれば、該材料と該複合酸化物がたとえ離間した状態にあっても、気相を通じて該材料に含まれる貴金属や希少金属が複合酸化物に吸蔵されるので、簡便な操作で貴金属や希少金属を回収することができ、しかも該材料と貴金属や希少金属を吸蔵した複合酸化物とはその分離しやすい形態となっているので、加熱後の両者の分離や材料の再利用が容易となるといったメリットがある。
 また、金属の濃度が数ppm~数%程度しか含まない廃棄材料等を、該複合酸化物に濃縮的に金属を吸蔵させてから、該複合酸化物について酸による処理を行えば、廃棄材料等を直接処理する方法に比べて、湿式法で用いる強酸や乾式法で用いる溶融金属の量を大幅に減らすことができるため、産業上特に有用である。
 さらに、貴金属や希少金属等の金属を吸蔵した該複合酸化物は、王水を用いなくても、硝酸、塩酸等一般的な工業工程に汎用される酸に容易に溶解し、貴金属・希少金属を含む溶出液を得ることができる。特に、イリジウムやルテニウム等の貴金属は、王水に対しても溶解度は低いため、可溶性の塩に変換する等の前処理が必要とされていたが、本方法によれば、イリジウムやルテニウム等を吸蔵させた該複合酸化物は王水以外の酸でも容易にイリジウムやルテニウム等を溶出するため、従来のような溶解度を向上させる前処理は不要となる。
実施例1で得たペロブスカイト型複合酸化物粉末のX線回折図 実施例1に於いて1525℃で10時間焼成する前の、パラジウム担持アルミナ粉末(左)とペロブスカイト型複合酸化物粉末(右) 実施例1に於いて1525℃で10時間焼成した後の、アルミナ粉末(左)とパラジウム含有複合酸化物粉末(右) 実施例13で得たペロブスカイト型複合酸化物粉末のX線回折図 実施例16で得たペロブスカイト型複合酸化物粉末のX線回折図 実施例17で得たペロブスカイト型複合酸化物粉末のX線回折図 実施例18、19、20に於いて、ロジウム含有複合酸化物粉末を濃塩酸(左)、王水(中)、及び濃硝酸(右)中60℃で1時間加熱した後の状態 実施例18、19、20に於いて、ロジウム含有複合酸化物粉末を濃塩酸(左)、王水(中)、及び濃硝酸(右)中60℃で6時間加熱した後の状態 実施例18、19、20で得たロジウム含有複合酸化物粉末の濃塩酸、王水、及び濃硝酸溶液を、25倍希釈した溶液中に含まれるロジウム濃度のICP測定結果、及びロジウムの回収率
発明を実施するための形態
 本発明の貴金属・希少金属等の金属を含む材料からそれに含まれる該貴金属・希少金属等の金属を吸蔵する方法は、まず、該材料を、下記の特有なペロブスカイト型複合酸化物の存在下で、加熱処理することを特徴としている。
[ペロブスカイト型複合酸化物]
 下記組成式(1):
     ABH3-b             (1)
(式中、Aは、ランタノイド元素及び周期表2族の元素からなる群から選ばれた少なくとも一種の元素であり、Bは、周期表3族の元素、周期表4族の元素、周期表13族の元素、及び元素周期表の第4周期の遷移金属元素からなる群から選ばれた少なくとも一種の元素である。また、a及びbの各記号は、水素及び酸素空孔の量であり、下記範囲の数値を示す:0≦a≦1.0、0≦b≦0.5)で表され、
 下記式:
 t=(r+r)/(21/2・(r+r))
(式中、rはAのイオン半径の相加平均、rは、Bのイオン半径の相加平均、rは酸化物イオン(O2-)のイオン半径(1.40Å)である)で定義されるトレランスファクター(t)が0.75~1.15の範囲内にあるもの。
 本発明において、該複合酸化物に吸蔵させる金属を含有する材料(以下、単に「金属含有材料」ということがある)には、吸蔵対象金属と、それ以外の物質、例えば、酸化物、窒化物、炭素材料、セラミックス、有機物等とからなる材料が包含される。
 対象となる金属含有材料の形態及び形状は特に限定はなく、例えば、粉末状、網状、線状、箔状、ハニカム状等の任意の形態のものを処理対象とすることができる。処理対象の金属含有材料における金属の存在状態についても特に限定はなく、単独の金属または合金、化合物等として材料に含まれていればよい。例えば、酸化物等の材料に金属が担持された状態のものや、金属が被膜状態で存在するもの等、各種の存在状態の金属を吸蔵することができる。また、金属は二種以上含まれていてもよい。
 特に、金属として貴金属または希少金属を含む廃材、例えば、自動車排気ガス浄化用廃触媒、化学工業用廃触媒、ガスセンサ廃基板、電子基板製造工程廃棄物、廃電子部品、電解用廃電極製品、歯科用等医療用廃材等の廃材を処理対象とする場合には、この様な廃材から貴金属または希少金属を吸蔵する方法として、特に有効である。この場合、本発明のペロブスカイト型複合酸化物を用いることによって、貴金属や希少金属の含量が高い材料だけでなく、貴金属または希少金属を僅か数ppm程度しか含有しない材料であっても、効率よく貴金属や希少金属を吸蔵できる。処理対象とする貴金属や希少金属としては、例えば、周期律表の6族、7族、8族、9族、10族、11族等に属する金属を挙げることができる。この様な貴金属及び希少金属の例としては、Mo, Re, Ru, Rh, Ir, Pd, Pt, Au等を挙げることができる。
 吸蔵対象とする金属としては、特に制限はないが、周期律表の6族、7族、8族、9族、10族及び11族から選ばれた少なくとも1種の貴金属や希少金属が好ましい。
 このような貴金属や希少金属の例としては、例えば、Mo, Re, Ru, Rh, Ir, Pd, Pt, Au等が挙げられる。上記した貴金属や希少金属は、一種単独または二種以上混合して用いることができる。
 次に、本発明で用いるペロブスカイト型複合酸化物について具体的に説明する。
 本発明で用いるペロブスカイト型複合酸化物は、下記組成式(1):
     ABH3-b     (1)
(式中、Aは、ランタノイド元素及び周期表2族の元素からなる群から選ばれた少なくとも一種の元素であり、Bは、周期表3族の元素、周期表4族の元素、周期表13族の元素、及び元素周期表の第4周期の遷移金属元素からなる群から選ばれた少なくとも一種の元素である。また、a及びbの各記号は、水素及び酸素空孔の量であり、下記範囲の数値を示す:0≦a≦1.0、0≦b≦0.5)で表されるものである。
 組成式(1)で表される該複合酸化物において、A成分であるランタノイド元素としては、La, Ce, Pr, Nd等を例示でき、周期表2族の元素としては、Ca, Sr等を例示できる。ランタノイド元素と周期表2族の元素は、一種単独または二種以上併用することができる。B成分である周期表3族の元素としては、Sc, Y等を例示でき、周期表4族の元素としては、Ti, Zr, Hf等を例示でき、周期表13族の元素としては、Al, Ga, In等を例示でき、周期表の第4周期の遷移金属元素としては、Cr, Mn, Fe, Co, Ni, Cu, Zn等を例示できる。周期表3族の元素、周期表4族の元素、周期表13族の元素、及び元素周期表の第4周期の遷移金属元素は、一種単独または二種以上併用することができる。
 上記組成式(1)において、aは、0≦a≦1.0であり、好ましくは0≦a≦0.5であり、より好ましくは0≦a≦0.3である。また、bは、0≦b≦0.5であり、好ましくは0≦b≦0.25であり、より好ましくは0≦b≦0.15である。
 なお、上記組成式(1)において、Ba、Srなどの塩基性の高いアルカリ土類金属が含まれる場合には、該複合酸化物を貴金属・希少金属を含む材料と接触させた状態で高温で熱処理すると、アルカリ土類金属と貴金属・希少金属とが比較的容易に反応して合金を生成し、その結果融点が低下して、より低温でより高い圧力(分圧)の貴金属・希少金属蒸気、或いは貴金属・希少金属酸化物蒸気を生成することができるので好ましい。
 更に、上記組成式(1)で表される複合酸化物は、下記式
   t=(r+r)/(21/2・(r+r))
で定義されるトレランスファクター(t)が0.75~1.15の範囲内にあることが必要である。
 上記トレランスファクターの定義式において、rは、組成式(1)におけるAサイトの陽イオン、即ち、Aのイオン半径の相加平均であり、rは組成式(1)におけるBサイトの陽イオン、即ち、Bのイオン半径の相加平均である。rは酸化物イオン(O2-)のイオン半径であり、1.40Åである。
 上記式で定義されるトレランスファクター(t)は、ペロブスカイト型複合酸化物について、結晶構造の歪みの程度を示すものであり、トレランスファクターが1の場合に、理想的なペロブスカイト型構造(立方晶系)と考えられる。トレランスファクターが1より大きい場合は、Aサイト陽イオンの大きさがBサイト陽イオンのそれに対して大きすぎることを意味し、歪みを持ったペロブスカイト型構造となる。また、トレランスファクターが1より小さい場合は、Bサイトの陽イオンの大きさがAサイトの陽イオンのそれに対して大きすぎることを意味し、同様に歪みを持ったペロブスカイト型構造となる。ペロブスカイト型構造を持つ複合酸化物に貴金属が吸蔵される際には、貴金属イオンがペロブスカイト型結晶構造中を高速に拡散し、安定サイトまで短時間で移動できることが望ましく、このためには理想的な立方晶に近い、トレランスファクターが1に近いペロブスカイト型化合物を吸蔵材として用いるのが望ましい。トレランスファクターの算出方法としては、例えば、イオン半径の大きさについて記載された論文(R.D. Shannon, Acta Cryst., A32, 751 (1976))に基づいて、各イオンのイオン半径より上記定義式より算出すればよい。
 本発明では、トレランスファクター(t)が0.75~1.15の範囲にあるペロブスカイト型複合酸化物を用いることが必要であるが、比較的安定な結晶構造を有するためには、0.8~1.10の範囲にあることが好ましく、0.9~1.05の範囲にあることがより好ましい。この様なペロブスカイト型複合酸化物を用いることよって、貴金属や希少金属等の金属を含有する材料からそれに含まれる貴金属・希少金属を容易に吸蔵することができる。
 上記組成式(1)で表される複合酸化物は、K. Nomura et al., J. Mater. Res., 22, 2647 (2007)で示された公知物質であり、例えば実験化学講座第4版、16巻、無機化合物、日本化学会編、丸善、1993に記載された方法にしたがって、固相反応法、共沈法等の公知の方法によって得ることができる。例えば、固相反応法では、上記組成式に含まれる金属元素を含む化合物、例えば、酸化物、炭酸塩、有機化合物等を出発原料として用い、目的とする酸化物と同様の金属元素比となるように混合し、焼成することによって目的とするペロブスカイト型複合酸化物を得ることができる。具体的な焼成温度及び焼成時間については、目的とする複合酸化物が形成される条件とすればよく、特に限定されないが、例えば、1200~1500℃程度の温度範囲において、10~40時間程度焼成すればよい。なお、原料物質として炭酸塩や有機化合物等を用いる場合には、焼成する前に予め仮焼きして原料物質を分解させた後、焼成して目的の複合酸化物を形成することが好ましい。例えば、原料物質として炭酸塩を用いる場合には、1000~1200℃程度で10時間程度仮焼きした後、上記した条件で焼成すればよい。焼成手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。焼成雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、原料物質が十分量の酸素を含む場合には、例えば、不活性雰囲気中で焼成することも可能である。
金属の吸蔵方法
 本発明の金属を含む材料からの金属成分の吸蔵方法は、まず、該金属含有材料から生じる金属の蒸気またはこの金属の酸化物の蒸気と上記所定ペロブスカイト型複合酸化物とが接触できる状態において加熱し、金属を該複合酸化物に吸蔵させればよい。
 加熱温度は、特に制約されないが、上記した材料に含まれる貴金属や希少金属等の金属が蒸気となる温度とすればよく、通常、800℃程度以上であって、上記所定の複合酸化物の分解温度未満とすればよい。具体的には、900~1750℃程度とすることが好ましく、1050~1650℃程度とすることがより好ましい。
 本発明において、このような加熱により、金属含有材料中に含まれる貴金属や希少金属等の金属がペロブスカイト型複合酸化物に吸蔵される機構は、現時点では定かではないが、[1]酸素が存在する状態で貴金属や希少金属等の金属を加熱すると、貴金属や希少金属単体の場合よりも低い温度で、同程度の分圧の貴金属や希少金属の酸化物蒸気が生じる場合があること、また、[2]上記所定の複合酸化物中に塩基性のアルカリ土類金属が含まれる場合、加熱により蒸気となったアルカリ土類金属が回収対象の貴金属・希少金属と接触して合金や複合酸化物を生成する結果、貴金属・希少金属の融点が低下するため、貴金属・希少金属の蒸気が発生しやすい環境となること、さらに[3]上記所定の複合酸化物には貴金属・希少金属イオンを安定に収容するサイトを有しており、貴金属・希少金属は複合酸化物の構成元素と一部置換固溶しこれに取り込まれ吸収されること、以上により金属含有材料中に含まれる貴金属・希少金属が吸蔵されるものと推測している。
 本発明においては、金属の吸蔵反応をより短時間で進行させるために、金属または貴金属の蒸気と該複合酸化物を効率よく接触させることが好ましい。具体的には、可能な限り高い圧力(分圧)の金属または金属酸化物の蒸気を、可能な限り高温で接触させることが好ましい。そのためには、好ましくは貴金属・希少金属含有材料を複合酸化物粉末に接触させ、より好ましくは貴金属・希少金属含有材料を複合酸化物粉末に接触させ、かつ該複合酸化物の分解温度未満であって、分解温度にできるだけ近い温度で反応させることが望ましい。
 また、金属含有材料と上記複合酸化物との加熱は接触状態、或いは非接触状態のいずれでもよい。これらの方法の内で、非接触状態で加熱する方法によれば、金属含有材料と本発明ペロブスカイト型複合酸化物との接触を確保するための粉砕等の前処理が不要であり、しかも金属含有材料と複合酸化物とは分離しやすい形態となっており、加熱後の両者の分離が容易である点で有利な方法である。一方、接触状態で加熱する場合には、金属含有材料と複合酸化物との距離が短くなるため、回収効率を上げることができる。
 容器内における金属または金属酸化物の蒸気の圧力(分圧)については、特に限定的ではないが、通常、10-3Pa程度以上とすることが好ましく,1Pa程度以上とすることがより好ましい。この際、金属または金属酸化物の蒸気の圧力(分圧)を高くすることにより、反応時間を短縮することができる。
 反応時間については、特に限定的ではないが、上記した温度範囲で加熱する場合には、5~20時間程度とすることが好ましく、10~15時間程度とすることがより好ましい。
 具体的な吸蔵方法の例としては、例えば、組成式(1)で表される複合酸化物と金属、金属含有混合物または金属含有化合物とを、同一の容器内に収容し、金属蒸気または金属酸化物の蒸気が生じる温度まで加熱することによって、該複合酸化物と、金属蒸気または金属酸化物の蒸気とを接触させることができる。この場合、金属蒸気または金属含有酸化物の蒸気が複合酸化物と十分に接触できる状態であれば、反応容器は完全な密閉状態ではなくてもよい。
 このような吸蔵方法において、前記複合酸化物の形状については特に限定はなく、例えば、粉末状のものを用いてもよく、粉末をプレス成形した多孔体を用いてもよく、或いは、焼結体を用いてもよい。
 前記したように、反応容器内では、金属含有材料に含まれる金属蒸気または金属酸化物の蒸気が該複合酸化物と十分に接触できる状態であれば、反応容器は完全な密閉状態ではなくてもよいが、発生した蒸気が散逸しない程度の密閉性が保たれていることが必要である。反応容器内では、金属含有材料から生じる金属の蒸気または金属酸化物の蒸気が、該複合酸化物と接触できればよく、処理対象とする金属含有材料と該複合酸化物とは、接触した状態でも、或いは、非接触状態でもよい。例えば、貴金属・希少金属を含む材料の上に、前記複合酸化物を載せた状態で加熱する方法、或いは、容器内に、該材料と該複合酸化物とを任意の間隔をあけて非接触状態で配置しで加熱する方法が採られる。
 特に後者の非接触加熱方式によれば、該材料と該複合酸化物がたとえ離間した状態にあっても、該材料に含まれる貴金属や希少金属等の金属が複合酸化物に吸蔵されるので、簡便な操作でありながら、金属を回収することができ、しかも金属含有材料と金属を吸蔵した複合酸化物とはその分離しやすい形態となっているので、加熱後の両者の分離が容易となるといったメリットがある。
金属の溶出、再生方法
 次に、金属を吸蔵した該ペロブスカイト型複合酸化物から、金属を酸に溶出させる方法について述べる。ここで酸とは、特に限定しないが、具体的には、フッ酸、塩酸、硝酸、硫酸、燐酸、ギ酸、及び酢酸からなる群から選択される一または二以上の酸が挙げられ、またこれらの酸の混合物、例えば王水等も用いることができる。短時間で効率よく溶出させるためには、該複合酸化物との反応性が高い塩酸、硝酸、王水等の強酸を用いることが好ましいが、環境負荷の点を考慮すると硝酸、硫酸のようにハロゲンを含まない酸や、酢酸のような弱酸が好ましい。
 貴金属は通常、王水のような酸化力の強い酸でなければ溶けないが、イリジウムやルテニウムは、王水に対してさえも溶解性は低い。しかし本発明ペロブスカイト型複合酸化物から形成される金属含有複合酸化物は王水以外の酸でも容易に溶解するため、該複合酸化物に吸蔵された貴金属については、イリジウムやルテニウムであっても各種酸によって容易に溶出できる。これは、貴金属原子同士が強固な金属結合を作っている状態では酸に冒されにくいのに対し、貴金属が個別にイオンとして複合酸化物の格子中に取り込まれて近接する酸化物イオンと比較的緩やかな結合を作っている状態では、酸を用いて結晶格子ごと溶かすことが容易であるためと考えられる。
 酸の濃度は限定的ではないが、反応時間及び溶出効率の点を考慮すればできるだけ高濃度のものが好ましい。ただし、酸の濃度が高すぎると相対的に水の含有量が少なくなるため、沈殿が生成する等してかえって反応が遅くなる場合もある。また、環境負荷の点を考慮すれば、低濃度の酸が好ましい。これらの点を考慮して、適宜酸の濃度を決めればよい。
 金属を吸蔵した複合酸化物を酸に接触させる方法については特に限定的ではないが、通常、酸中に該複合酸化物を浸漬し、必要に応じて酸を加熱すればよい。
 加熱温度は、酸中において該複合酸化物のペロブスカイト型構造が崩壊して該複合酸化物の構成成分が酸中に分散し、該複合酸化物に含まれる金属が溶液中に溶出する温度とすればよい。通常は、室温から酸の沸点未満の温度とすることができるが、特に、反応時間及び溶出効率を考慮すると、30~100℃程度とすることが好ましい。
 上記した方法で酸に溶出された金属は、例えば、非特許文献3に記載の還元剤により還元する方法、Zn等の金属によるセメンテーション法を用いた回収法、イオン交換樹脂や活性炭に吸着させて回収する方法、溶媒抽出法によって回収から分離精製までを行う方法、電解法による回収方法等公知の方法によって、固体の金属として再生することができる。特に、貴金属、希少金属等を含む廃材を処理対象とする場合には、簡単な方法によって、低コストで効率よく高付加価値の金属を再利用できる点で非常に有利な方法である。
柴田隼次、奥田晃彦「貴金属のリサイクル技術」、資源と素材、118巻1号1頁、2002年、資源・素材学会
 以下、実施例を挙げて本発明を更に詳細に説明する。
実施例1
[ペロブスカイト型複合酸化物粉末の作製]
 La、SrCO、BaCO及びScを原料として用い、これらの原料をLa:Sr:Ba:Scの元素比が0.7:0.2:0.1:1.0となるように混合した後、空気中で焼成、粉砕を数回繰り返し、最終的に空気中、1400℃で10時間することによって、組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末を作製した。該複合酸化物粉末のトレランスファクターは0.92である。図1は得られた粉末試料のX線回折図であり、結晶性の良好な単一相のペロブスカイト型複合酸化物粉末が得られたことが確認できた。
[ペロブスカイト型複合酸化物を用いたパラジウム担持酸化物触媒粉末に含まれるパラジウムの吸蔵]
 上記方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、1重量%のパラジウムを担持したアルミナ粉末(0.5g、褐色)と接触させずに、図2の通り同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、図3に示す通り組成式:(La0.7Sr0.2Ba0.1)(Sc0.995Pd0.005)H0.052.8725で表される淡褐色のパラジウム含有複合酸化物粉末及び、無色のアルミナ粉末が得られた。
実施例2
[ペロブスカイト型複合酸化物粉末を用いた白金担持酸化物触媒粉末に含まれる白金の吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、1重量%の白金を担持したアルミナ粉末(1g、淡黄色)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、組成式:(La0.7Sr0.2Ba0.1)(Sc0.994Pt0.006)H0.052.878で表される青色の白金含有複合酸化物粉末及び、無色のアルミナ粉末が得られた。
実施例3
[ペロブスカイト型複合酸化物粉末を用いたロジウム担持酸化物触媒粉末に含まれるロジウムの吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、1重量%のロジウムを担持したアルミナ粉末(0.5g、淡緑褐色)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、組成式:(La0.7Sr0.2Ba0.1)(Sc0.995Rh0.005)H0.052.875で表される濃青色のロジウム含有複合酸化物粉末及び、無色のアルミナ粉末が得られた。
実施例4
[ペロブスカイト型複合酸化物粉末を用いたルテニウム担持酸化物触媒粉末に含まれるルテニウムの吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、1重量%のルテニウムを担持したアルミナ粉末(0.5g、緑色)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、組成式:(La0.7Sr0.2Ba0.1)(Sc0.995Ru0.005)H0.052.8775で表される橙色のルテニウム含有複合酸化物粉末及び、無色のアルミナ粉末が得られた。
実施例5
[ペロブスカイト型複合酸化物粉末を用いたイリジウム担持酸化物触媒粉末に含まれるイリジウムの吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、1.5重量%のイリジウムを担持したアルミナ粉末(0.5g、青色)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、組成式:(La0.7Sr0.2Ba0.1)(Sc0.996Ir0.004)H0.052.875で表される赤褐色のイリジウム含有複合酸化物粉末及び、無色のアルミナ粉末が得られた。
実施例6
[ペロブスカイト型複合酸化物粉末を用いたパラジウム担持酸化物ハニカム触媒に含まれるパラジウムの吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、0.5重量%のパラジウムを担持したコージェライトハニカム(0.2g、黒色)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、コージェライトハニカムが溶融し、組成式:(La0.7Sr0.2Ba0.1)(Sc0.999Pd0.001)H0.052.8745で表される淡褐色のパラジウム含有複合酸化物粉末が得られた。
実施例7
[ペロブスカイト型複合酸化物粉末を用いた白金担持酸化物ハニカム触媒に含まれる白金の吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、0.5重量%の白金を担持したコージェライトハニカム(0.2g、黒色)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、コージェライトハニカムが溶融し、組成式:(La0.7Sr0.2Ba0.1)(Sc0.999Pt0.001)H0.052.8755で表される青色の白金含有複合酸化物粉末が得られた。
実施例8
[ペロブスカイト型複合酸化物粉末を用いた白金担持炭素電極触媒粉末に含まれる白金の吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、40重量%の白金を担持した炭素粉末(0.025g、黒色)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、炭素粉末が消失し、組成式:(La0.7Sr0.2Ba0.1)(Sc0.994Pt0.006)H0.052.878で表される青色の白金含有複合酸化物粉末が得られた。
実施例9
[ペロブスカイト型複合酸化物粉末を用いた白金-ロジウム含有炉材に含まれる白金-ロジウムの吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、白金-ロジウム含有アルミナセメント(白金:ロジウム重量比=7:3、重量5.8g)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、炉材表面の貴金属成分が遷移して青色の白金-ロジウム含有複合酸化物粉末が得られた。
実施例10
[ペロブスカイト型複合酸化物粉末を用いたモリブデン箔からのモリブデンの吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、モリブデン箔(厚さ0.1mm、重量0.35g)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で10時間焼成することにより、モリブデン箔が消失し、組成式:(La0.7Sr0.2Ba0.1)(Sc0.75Mo0.25)H0.022.985で表される青緑色のモリブデン含有複合酸化物粉末が得られた。
実施例11
[ペロブスカイト型複合酸化物粉末を用いた金担持酸化物触媒粉末に含まれる金の吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(2g)を、1.5重量%の金を担持したチタニア粉末(重量0.5g、紫色)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1525℃で50時間焼成することにより、組成式:(La0.7Sr0.2Ba0.1)(ScAu0.000006)H0.052.875で表される淡褐色の金含有複合酸化物粉末及び、緑色のチタニア粉末が得られた。
実施例12
[ペロブスカイト型複合酸化物粉末を用いたレニウム箔からのレニウムの吸蔵]
 実施例1と同様の方法で得られた組成式:(La0.7Sr0.2Ba0.1)ScH0.052.875で表される淡黄色の酸化物粉末(1.5g)を、レニウム箔(厚さ0.025mm、重量0.096g)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1600℃で10時間焼成することにより、レニウム箔が消失し、組成式:(La0.7Sr0.2Ba0.1)(Sc0.965Re0.035)H0.052.8925で表される橙色のレニウム含有複合酸化物粉末が得られた。
実施例13
[ペロブスカイト型複合酸化物粉末の作製]
 SrCO、ZrO及びYを原料として用い、これらの原料をSr:Zr:Yの元素比が1.0:0.9:0.1となるように混合した後、空気中で焼成、粉砕を数回繰り返し、最終的に空気中、1600℃で10時間焼成することによって、組成式:Sr(Zr0.90.1)H0.052.975で表される淡黄色の酸化物粉末を作製した。該複合酸化物粉末のトレランスファクターは0.94である。図4は得られた粉末試料のX線回折図であり、結晶性の良好な単一相のペロブスカイト型複合酸化物粉末が得られたことが確認できた。
[ペロブスカイト型複合酸化物を用いた白金箔からの白金の吸蔵]
 上記方法で得られた組成式:Sr(Zr0.90.1)H0.052.975で表される淡黄色の酸化物粉末(1.5g)を、白金箔(厚さ0.03mm、重量0.168g)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1600℃で10時間焼成することにより、組成式:Sr(Zr0.8990.099Pt0.002)H0.052.9755で表される青色の白金含有複合酸化物粉末が得られた。
実施例14
[ペロブスカイト型複合酸化物を用いたルテニウム箔からのルテニウムの吸蔵]
 実施例13と同様の方法で得られた組成式:Sr(Zr0.90.1)H0.052.975で表される淡黄色の酸化物粉末(1.5g)を、ルテニウム箔(厚さ0.1mm、重量0.23g)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1325℃で5時間焼成することにより、ルテニウム箔が収縮し、組成式:Sr(Zr0.8380.038Ru0.124)H0.032.996で表される濃褐色のルテニウム含有複合酸化物粉末が得られた。
実施例15
[ペロブスカイト型複合酸化物を用いたイリジウム箔からのイリジウムの吸蔵]
 実施例13と同様の方法で得られた組成式:Sr(Zr0.90.1)H0.052.975で表される淡黄色の酸化物粉末(1.5g)を、イリジウム箔(厚さ0.05mm、重量0.13g)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1600℃で10時間焼成することにより、イリジウム箔が収縮し、組成式:Sr(Zr0.8890.089Ir0.022)H0.052.9695で表される褐色のイリジウム含有複合酸化物粉末が得られた。
実施例16
[ペロブスカイト型複合酸化物粉末の作製]
 La、CaO及びAlを原料として用い、これらの原料をLa:Ca:Alの元素比が0.9:0.1:1.0となるように混合した後、空気中で焼成、粉砕を数回繰り返し、最終的に空気中、1600℃で20時間焼成することによって、組成式:(La0.9Ca0.1)AlO2.95で表される淡赤色の酸化物粉末を作製した。該複合酸化物粉末のトレランスファクターは1.01である。図5は得られた粉末試料のX線回折図であり、結晶性の良好な単一相のペロブスカイト型複合酸化物粉末が得られたことが確認できた。
[ペロブスカイト型複合酸化物を用いた白金箔に含まれる白金の吸蔵]
 上記方法で得られた組成式:(La0.9Ca0.1)AlO2.95で表される淡赤色の酸化物粉末(0.8g)を、白金箔(厚さ0.03mm、重量0.16g)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1600℃で10時間焼成することにより、組成式:(La0.9Ca0.1)(AlPt0.000002)O2.95で表される淡褐色の白金含有複合酸化物粉末が得られた。
実施例17
[ペロブスカイト型複合酸化物粉末の作製]
 La、Sc及びZnOを原料として用い、これらの原料をLa:Sc:Znの元素比が1.0:0.95:0.05となるように混合した後、空気中で焼成、粉砕を数回繰り返し、最終的に空気中、1600℃で10時間することによって、組成式:La(Sc0.95Zn0.05)H0.022.985で表される淡赤色の酸化物粉末を作製した。該複合酸化物粉末のトレランスファクターは0.91である。図6は得られた粉末試料のX線回折図であり、結晶性の良好な単一相のペロブスカイト型複合酸化物粉末が得られたことが確認できた。
[ペロブスカイト型複合酸化物を用いた白金箔からの白金の吸蔵]
 上記方法で得られた組成式:La(Sc0.95Zn0.05)H0.022.985で表される淡赤色の酸化物粉末(2g)を、白金箔(厚さ0.03mm、重量0.18g)と接触させずに、同一の蓋付きの容器(アルミナ製、直方体状、容積:約30cm3)に入れ、空気中、1600℃で10時間焼成することにより、組成式:La(Sc0.9498Zn0.0498Pt0.0004)H0.022.9853で表される淡褐色の白金含有複合酸化物粉末が得られた。
実施例18
[濃塩酸によるロジウム含有複合酸化物粉末に含まれるロジウムの溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.937Rh0.063)H0・052.875で表される黒色のロジウム含有複合酸化物粉末20mgに濃塩酸4mlを加え60℃で加熱すると、図7及び図8で示したように徐々に溶解が進み、6時間後には沈殿が消失して淡赤色の溶液が得られた。誘導結合プラズマ(ICP)分析の結果、図9に示した通り複合酸化物粉末に含まれていたロジウムのうち、少なくとも9割以上がこの溶液中に溶けていることが確認された。
実施例19
[王水によるロジウム含有複合酸化物粉末に含まれるロジウムの溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.937Rh0.063)H0・052.875で表される黒色のロジウム含有複合酸化物粉末20mgに王水4mlを加え60℃で加熱すると、図7及び図8で示したように徐々に溶解が進み、9時間後には沈殿が消失して橙赤色の溶液が得られた。誘導結合プラズマ(ICP)分析の結果、図9に示した通り複合酸化物粉末に含まれていたロジウムのうち、少なくとも9割以上がこの溶液中に溶けていることが確認された。
実施例20
[濃硝酸によるロジウム含有複合酸化物粉末に含まれるロジウムの溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.937Rh0.063)H0・052.875で表される黒色のロジウム含有複合酸化物粉末20mgに濃硝酸4mlを加え60℃で加熱すると、図7及び図8で示したように徐々に溶解が進み、12時間後に無色の沈殿を含んだ淡黄色の溶液が得られ、少量の水を加えると沈殿は溶解した。誘導結合プラズマ(ICP)分析の結果、図9に示した通り複合酸化物粉末に含まれていたロジウムのうち、少なくとも9割以上がこの溶液中に溶けていることが確認された。
実施例21
[濃塩酸によるパラジウム含有複合酸化物粉末に含まれるパラジウムの溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.981Pd0.019)H0・052.8655で表される淡褐色のパラジウム含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で6時間加熱すると、沈殿が消失して淡褐色の溶液が得られた。
実施例22
[濃塩酸による白金含有複合酸化物粉末に含まれる白金の溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.993Pt0.007)H0・052.8785で表される青色の白金含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で6時間加熱すると、沈殿が消失して無色の溶液が得られた。また、加熱後30分で無色の沈殿が得られたが、この段階で少量の水を加えると完全に溶解して無色の溶液が得られた。
実施例23
[希塩酸による白金含有複合酸化物粉末に含まれる白金の溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.993Pt0.007)H0・052.8785で表される青色の白金含有複合酸化物粉末20mgに1規定の希塩酸4mlを加え、60℃で3時間加熱すると、沈殿が消失して無色の溶液が得られた。
実施例24
[希硝酸による白金含有複合酸化物粉末に含まれる白金の溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.993Pt0.007)H0・052.8785で表される青色の白金含有複合酸化物粉末20mgに1規定の希硝酸4mlを加え、60℃で4時間加熱すると、沈殿が消失して無色の溶液が得られた。
実施例25
[酢酸による白金含有複合酸化物粉末に含まれる白金の溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.993Pt0.007)H0・052.8785で表される青色の白金含有複合酸化物粉末20mgに50%酢酸4mlを加え、60℃で40時間加熱すると、沈殿が消失して無色の溶液が得られた。
実施例26
[濃塩酸によるルテニウム含有複合酸化物粉末に含まれるルテニウムの溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.93Ru0.07)H0・052.91で表される黄褐色のルテニウム含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で8時間加熱すると無色の沈殿を含んだ濃褐色の溶液が得られ、少量の水を加えると沈殿は溶解した。
実施例27
[硫酸によるルテニウム含有複合酸化物粉末に含まれるルテニウムの溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.93Ru0.07)H0・052.91で表される黄褐色のルテニウム含有複合酸化物粉末20mgに6規定の硫酸4mlを加え、60℃で6時間加熱すると無色の沈殿を含んだ濃褐色の溶液が得られた。
実施例28
[濃塩酸によるイリジウム含有複合酸化物粉末に含まれるイリジウムの溶出]
 組成式:(La0.66Sr0.19Ba0.08Ir0.07)(Sc0.93Ir0.07)H0・052.89で表される濃褐色のイリジウム含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で6時間加熱すると、沈殿が消失して淡褐色の溶液が得られた。
実施例29
[濃塩酸によるモリブデン含有複合酸化物粉末に含まれるモリブデンの溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.75Mo0.25)H0.022.985で表される青緑色のモリブデン含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で8時間加熱すると無色の沈殿を含んだ無色の溶液が得られ、少量の水を加えると沈殿は溶解した。
実施例30
[濃塩酸による金含有複合酸化物粉末に含まれる金の溶出]
 組成式:(La0.7Sr0.2Ba0.1)(ScAu0.000006)H0.052.875で表される淡褐色の金含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で6時間加熱すると、沈殿が消失して無色の溶液が得られた。
実施例31
[濃塩酸によるレニウム含有複合酸化物粉末に含まれるレニウムの溶出]
 組成式:(La0.7Sr0.2Ba0.1)(Sc0.965Re0.035)H0.052.8925で表される橙色のレニウム含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で6時間加熱すると、沈殿が消失して無色の溶液が得られた。
実施例32
[濃塩酸による白金含有複合酸化物粉末に含まれる白金の溶出]
 組成式:Sr(Zr0.8990.099Pt0.002)H0.052.9755で表される青色の白金含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で1時間加熱すると、沈殿が消失して無色の溶液が得られた。
実施例33
[濃塩酸によるルテニウム含有複合酸化物粉末に含まれるルテニウムの溶出]
 組成式:Sr(Zr0.8380.038Ru0.124)H0.032.996で表される濃褐色のルテニウム含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で1時間加熱すると無色の沈殿を含んだ濃褐色の溶液が得られ、少量の水を加えると沈殿は溶解した。
実施例34
[濃塩酸によるイリジウム含有複合酸化物粉末に含まれるイリジウムの溶出]
 組成式:Sr(Zr0.8890.089Ir0.022)H0.052.9695で表される褐色のイリジウム含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で1時間加熱すると、沈殿が消失して淡褐色の溶液が得られた。
実施例35
[濃塩酸による白金含有複合酸化物粉末に含まれる白金の溶出]
 組成式:(La0.9Ca0.1)(AlPt0.000002)O2.95で表される淡褐色の白金含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で6時間加熱すると、沈殿が消失して無色の溶液が得られた。
実施例36
[濃塩酸による白金含有複合酸化物粉末に含まれる白金の溶出]
 組成式:La(Sc0.9498Zn0.0498Pt0.0004)H0.022.9853で表される淡褐色の白金含有複合酸化物粉末20mgに濃塩酸4mlを加え、60℃で2時間加熱すると、沈殿が消失して無色の溶液が得られた。

Claims (16)

  1.  金属を含有する材料中の金属成分を吸蔵する材料であって、下記のペロブスカイト型複合酸化物を含む金属吸蔵材。
     組成式(1): 
    [ペロブスカイト型複合酸化物]
         ABH3-b             (1)
    (式中、Aは、ランタノイド元素及び周期表2族の元素からなる群から選ばれた少なくとも一種の元素であり、Bは、周期表3族の元素、周期表4族の元素、周期表13族の元素、及び元素周期表の第4周期の遷移金属元素からなる群から選ばれた少なくとも一種の元素である。また、a及びbの各記号は、水素及び酸素空孔の量であり、下記範囲の数値を示す:0≦a≦1.0、0≦b≦0.5)
  2.  上記ペロブスカイト型複合酸化物が下記式の条件を満たすことを特徴とする、請求項1に記載の金属吸蔵材。
    下記式:
    t=(r+r)/(21/2・(r+r))
    (式中、rはAのイオン半径の相加平均、rはBのイオン半径の相加平均、rは酸化物イオン(O2-)のイオン半径(1.40Å)である)で定義されるトレランスファクター(t)が0.75~1.15の範囲内にあるもの。
  3.  上記金属を含有する材料が、固相状態にあるものであることを特徴とする請求項1または2に記載の金属吸蔵材。
  4.  上記金属成分が、周期律表の6族、7族、8族、9族、10族及び11族から選ばれた少なくとも1種の元素であることを特徴とする、請求項1~3のいずれかに記載の金属吸蔵材。
  5.  金属を含有する材料を下記のペロブスカイト型複合酸化物の存在下で、加熱処理を行うことにより、該材料中の金属成分を該ペロブスカイト型複合酸化物に吸蔵する方法。
     組成式(1):
    [ペロブスカイト型複合酸化物]
         ABH3-b             (1)
    (式中、Aは、ランタノイド元素及び周期表2族の元素からなる群から選ばれた少なくとも一種の元素であり、Bは、周期表3族の元素、周期表4族の元素、周期表13族の元素、及び元素周期表の第4周期の遷移金属元素からなる群から選ばれた少なくとも一種の元素である。また、a及びbの各記号は、水素及び酸素空孔の量であり、下記範囲の数値を示す:0≦a≦1.0、0≦b≦0.5)
  6. 上記ペロブスカイト型複合酸化物が、下記式の条件を満たすことを特徴とする請求項5に記載の金属成分の吸蔵方法。
    下記式:
    t=(r+r)/(21/2・(r+r))
    (式中、rはAのイオン半径の相加平均、rはBのイオン半径の相加平均、rは酸化物イオン(O2-)のイオン半径(1.40Å)である)で定義されるトレランスファクター(t)が0.75~1.15の範囲内にあるもの。
  7.  上記金属を含有する材料と、上記ペロブスカイト型複合酸化物とを加熱した際に生じる金属の蒸気または金属酸化物の蒸気と該複合酸化物とが接触する状態において、加熱することを特徴とする請求項5または6に記載の金属成分の吸蔵方法。
  8.  上記金属を含有する材料と、上記ペロブスカイト型複合酸化物を、同一の容器内に収容して加熱することを特徴とする請求項5~7のいずれかに記載の金属成分の吸蔵方法。
  9.  上記金属を含有する材料と上記ペロブスカイト型複合酸化物とを非接触の状態で加熱することを特徴とする請求項5~8のいずれかに記載の金属成分の吸蔵方法。
  10.  加熱温度が900~1750℃であることを特徴とする請求項5~9のいずれかに記載の金属成分の吸蔵方法。
  11.  金属を含有する材料が、固相状態にあるものであることを特徴とする請求項5~10のいずれかに記載の金属成分の吸蔵方法。
  12.  上記金属成分が、周期律表の6族、7族、8族、9族、10族及び11族から選ばれた少なくとも1種の元素であることを特徴とする請求項5~11のいずれかに記載の金属成分の吸蔵方法。
  13.  上記金属成分が吸蔵された請求項5~12のいずれかに記載の複合酸化物を酸で処理し、該酸中に金属成分を溶出する方法。
  14.  上記酸が、塩酸、硝酸、王水、硫酸、酢酸から選ばれた少なくとも1種の酸であることを特徴とする請求項13に記載の金属成分の溶出方法。
  15.  請求項13または請求項14に記載の酸中に溶出した金属成分を酸から回収することを特徴とする金属成分の回収方法。
  16.  金属を製造する方法であって、請求項5~12のいずれかに載の金属成分の吸蔵方法と請求項13または14に記載の金属成分の溶出方法と請求項15に記載の金属成分の回収方法を組み合わせたことを特徴とする金属の製造方法。
PCT/JP2009/053388 2008-02-27 2009-02-25 金属の回収方法 WO2009107647A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/919,724 US8568509B2 (en) 2008-02-27 2009-02-25 Method of recovering metal
JP2010500709A JP5339302B2 (ja) 2008-02-27 2009-02-25 金属の回収方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-046188 2008-02-27
JP2008046188 2008-02-27
JP2008-268353 2008-10-17
JP2008268353 2008-10-17

Publications (1)

Publication Number Publication Date
WO2009107647A1 true WO2009107647A1 (ja) 2009-09-03

Family

ID=41016036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053388 WO2009107647A1 (ja) 2008-02-27 2009-02-25 金属の回収方法

Country Status (3)

Country Link
US (1) US8568509B2 (ja)
JP (1) JP5339302B2 (ja)
WO (1) WO2009107647A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225979A (ja) * 2010-03-31 2011-11-10 National Institute Of Advanced Industrial Science & Technology 金属成分回収剤及び金属成分の回収方法
JP2013253280A (ja) * 2011-12-06 2013-12-19 National Institute Of Advanced Industrial Science & Technology 金属成分の回収方法
JP2019031699A (ja) * 2017-08-04 2019-02-28 国立研究開発法人産業技術総合研究所 貴金属等の回収方法
JP7496977B2 (ja) 2022-07-21 2024-06-10 国立研究開発法人産業技術総合研究所 貴金属の回収方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344493B2 (ja) 2008-10-09 2013-11-20 独立行政法人産業技術総合研究所 金属成分の回収用組成物
WO2016152141A1 (ja) 2015-03-24 2016-09-29 クラリアント触媒株式会社 水溶液中のルテニウム吸着剤、及び水溶液中のルテニウムの吸着処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051035A (ja) * 2005-08-18 2007-03-01 Noritake Co Ltd 酸素イオン伝導体および酸素分離膜
JP2008001916A (ja) * 2006-06-20 2008-01-10 Mitsubishi Materials Corp 貴金属の回収方法および回収貴金属
JP2008100902A (ja) * 2006-09-22 2008-05-01 National Institute Of Advanced Industrial & Technology ペロブスカイト型複合酸化物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084148A (en) * 1990-02-06 1992-01-28 Olin Corporation Electrochemical process for producing chloric acid - alkali metal chlorate mixtures
US6497851B1 (en) * 1994-12-06 2002-12-24 Englehard Corporation Engine exhaust treatment apparatus and method of use
US5977017A (en) * 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
JP3715211B2 (ja) * 2000-09-07 2005-11-09 本田技研工業株式会社 内燃機関の排気浄化装置
JP4328338B2 (ja) * 2006-06-01 2009-09-09 ダイハツ工業株式会社 内燃機関の排ガス浄化用触媒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051035A (ja) * 2005-08-18 2007-03-01 Noritake Co Ltd 酸素イオン伝導体および酸素分離膜
JP2008001916A (ja) * 2006-06-20 2008-01-10 Mitsubishi Materials Corp 貴金属の回収方法および回収貴金属
JP2008100902A (ja) * 2006-09-22 2008-05-01 National Institute Of Advanced Industrial & Technology ペロブスカイト型複合酸化物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Dai 100 Kai CatSJ Meeting A Yokoshu, 17 September, 2007 (17.09.07)", article MASAKAZU DATE ET AL.: "Koso Yoshutsuho de Chosei shita Hakkin-Perovskite Shokubai no Tokui na Kassei(2)", pages: 481 *
KATSUHIRO NOMURA ET AL.: "Ultramarine colored: Solid-phase elution of Pt into perovskite oxides", JOURNAL OF MATERIALS RESEARCH, vol. 22, no. 10, October 2007 (2007-10-01), pages 2647 - 2650 *
M. DATE ET AL.: "Unique catalytic activity of platinum eluted into perovskite in the solid phase", CATALYSIS LETTERS, vol. 117, no. 3-4, September 2007 (2007-09-01), pages 107 - 111 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225979A (ja) * 2010-03-31 2011-11-10 National Institute Of Advanced Industrial Science & Technology 金属成分回収剤及び金属成分の回収方法
JP2013253280A (ja) * 2011-12-06 2013-12-19 National Institute Of Advanced Industrial Science & Technology 金属成分の回収方法
JP2019031699A (ja) * 2017-08-04 2019-02-28 国立研究開発法人産業技術総合研究所 貴金属等の回収方法
JP7496977B2 (ja) 2022-07-21 2024-06-10 国立研究開発法人産業技術総合研究所 貴金属の回収方法

Also Published As

Publication number Publication date
US20110017022A1 (en) 2011-01-27
US8568509B2 (en) 2013-10-29
JPWO2009107647A1 (ja) 2011-07-07
JP5339302B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5339302B2 (ja) 金属の回収方法
US8979974B2 (en) Composition for collecting metal component
JP5182850B2 (ja) ペロブスカイト型複合酸化物
KR101685044B1 (ko) 휘발성 유기화합물 제거용 다성분계 세리아-지르코니아 기반 복합 금속 산화물 촉매 및 이의 제조방법
JP5547077B2 (ja) 貴金属粉末と酸化物粉末からなる混合粉末の製造方法及び貴金属粉末と酸化物粉末からなる混合粉末
WO1997037933A1 (fr) Oxyde composite ayant certaines capacites d'absorption et d'evacuation d'oxygene, et methode de preparation dudit oxyde
JP2020501875A (ja) 金属間化合物を含む触媒を製造する方法、及びその方法により製造される触媒
CN107511147A (zh) 一种高稳定性催化氧化催化剂及制备方法
CN109126777A (zh) 一种含铂废催化剂制备Pt/C催化剂的方法
Kasuya et al. Synthesis of sodium platinates and their dissolution behaviors in hydrochloric acid: effects of lithium carbonate addition on platinate formation
JP5652765B2 (ja) 金属成分回収剤及び金属成分の回収方法
JP5979634B2 (ja) 金属成分の回収方法
KR20150067253A (ko) 복합 산화물의 제조 방법 및 복합 산화물 촉매
JP6966768B2 (ja) 貴金属等の回収方法
JP6940089B2 (ja) 貴金属の回収方法
JP7228892B2 (ja) 被回収成分を回収する方法、ペロブスカイト型の複合酸化物、および処理体を連続的に製造する装置
JP2018070394A (ja) 低温作動可能なペロブスカイト型酸化物およびその製造法
WO2012096017A1 (ja) 触媒及びその製造法
JP2017141123A (ja) 低温作動可能なペロブスカイト型酸化物吸着材およびその製造法
JP4949795B2 (ja) 水素発生媒体の製造方法
CN101804342B (zh) 一种具有储氧性能和耐高温的铈-锆-铋复合氧化物
Shukla et al. Combustion synthesis: a versatile method for functional materials
CN108117388A (zh) Ti基双相透氧陶瓷膜材料
Veghte Insights into the Synthetic Mechanisms Behind Ligand-Free Metal Nanoparticle Formation
JP2023071037A (ja) Voc除去触媒及びその製造方法並びにvocの除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500709

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12919724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714538

Country of ref document: EP

Kind code of ref document: A1