WO2009107488A1 - 可変容量素子とその制御方法、電子デバイス及び通信モバイル機器 - Google Patents

可変容量素子とその制御方法、電子デバイス及び通信モバイル機器 Download PDF

Info

Publication number
WO2009107488A1
WO2009107488A1 PCT/JP2009/052331 JP2009052331W WO2009107488A1 WO 2009107488 A1 WO2009107488 A1 WO 2009107488A1 JP 2009052331 W JP2009052331 W JP 2009052331W WO 2009107488 A1 WO2009107488 A1 WO 2009107488A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance
voltage
variable
polarization
capacitance element
Prior art date
Application number
PCT/JP2009/052331
Other languages
English (en)
French (fr)
Inventor
和隆 羽生
正喜 管野
敏昭 横田
誠 渡辺
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP09714433A priority Critical patent/EP2249357A1/en
Priority to CN2009801058613A priority patent/CN101952917B/zh
Priority to US12/918,754 priority patent/US8385045B2/en
Publication of WO2009107488A1 publication Critical patent/WO2009107488A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Definitions

  • the present invention relates to a variable capacitance element and a control method thereof, an electronic device incorporating the variable capacitance element, and a communication mobile device.
  • a power circuit system of a series regulator using a power transformer is used.
  • the commercial power supply 100V is divided down, rectified by a diode bridge circuit, and the waveform is smoothed by a large-capacitance capacitor to stabilize fluctuations in external AC voltage, electronic component variations, and output fluctuations. Therefore, the regulator, which is a semiconductor component, absorbs the fluctuation voltage and stabilizes the voltage.
  • FIG. 17 shows the characteristics of the conventional ceramic capacitor, that is, the DC bias voltage dependency of the capacitance.
  • ceramic capacitors are roughly classified into two types: a capacitor with B characteristics whose capacitance change is small with respect to the DC bias voltage as a control voltage, and an capacitor with F characteristics whose capacitance changes with respect to the DC bias voltage. Is done.
  • the F characteristic shown in FIG. 17 is a use characteristic within a capacity change of +30 to ⁇ 80% in a use temperature range of ⁇ 25 ° C. to 85 ° C.
  • the B characteristic is a use characteristic in which the capacity change is ⁇ 10% in the use temperature range of ⁇ 25 ° C. to 85 ° C.
  • a capacitor having B characteristics with a small capacitance change is used.
  • These capacitors are made of a barium titanate (BaTiO 3 ) -based ferroelectric material in which a capacitance change is caused by a DC bias voltage.
  • This phenomenon in which the capacitance change is caused by the external voltage is considered to be caused by the polarization charge caused by the capacitance of the capacitor and the behavior of the domain of the polarization acting on the electric field.
  • the material of this system can increase its capacity change by changing the Curie point depending on the additive element and sintering conditions, or by increasing the capacity by changing the particle size (see Non-Patent Document 1).
  • the use of a general capacitor is not preferred because the capacitance changes when a voltage is applied.
  • the above-mentioned method in the power supply circuit proposed by the applicant of the present application is that of extra Joule heat.
  • the voltage drop corresponding to the voltage fluctuation is controlled through a variable capacitor to reduce the generation of Joule heat.
  • This method uses the principle that power loss does not occur because the voltage drop due to the capacitor is involved in the imaginary part of the alternating current and the phase of the current is shifted from the phase of the voltage.
  • a variable capacitor used in such a power supply circuit is desirable because the larger the capacitance and its capacitance change, the smaller the power loss corresponding to the large voltage fluctuation.
  • the capacitance change of the ferroelectric system material is a ferroelectric material, it has a characteristic of having hysteresis characteristics depending on the magnitude of the DC bias voltage and the polarity of the applied voltage. Further, the barium titanate material system not subjected to polarization treatment has a capacitance change peak deviated from the origin (0 V) of the DC bias voltage as shown in FIG. 18, and a gradual decrease change in the region exceeding the peak. Has a change in the capacity of the curve depicting. Therefore, in this barium titanate material system, when the capacitance change peak is exceeded, the hysteresis characteristic drops, and thus the capacitance change value is different even with the same DC bias voltage.
  • the capacitance varies depending on the polarity and magnitude of the DC bias voltage. For this reason, it is necessary to limit the area to be used to a narrow area with a monotonously decreasing area, or to build a circuit in consideration of characteristics when the peak is exceeded. Further, even if it is limited to a monotonically decreasing region, the linearity is inferior when the capacitance is changed, so that circuit design is troublesome. In general, the use of the negative capacitance change characteristic with respect to the positive polarity control voltage has a problem in controlling the circuit.
  • the present invention provides a variable capacitance element that can be used in accordance with the use of a power supply circuit, a mobile device, and other electronic devices, and a control method thereof. Moreover, this invention provides the electronic device provided with the said variable capacitance element, and a communication mobile apparatus.
  • variable capacitance element is formed by forming a pair of electrodes with a ferroelectric material layer sandwiched between them, and subjecting the ferroelectric material layer to a polarization treatment exceeding the coercive electric field of polarization hysteresis characteristics.
  • the capacitance is variable according to the control voltage.
  • variable capacitance element of the present invention the ferroelectric material layer is subjected to polarization treatment that is higher than the coercive electric field, and the capacitance is varied according to the control voltage, whereby a large capacitance can be obtained and linear A good variable capacity can be obtained.
  • control voltage is the same, the same constant capacitance change value can be obtained.
  • the control method for a variable capacitance element according to the present invention is a control method for a variable capacitance element having a pair of electrodes sandwiching a ferroelectric material layer, and the ferroelectric material layer is subjected to polarization treatment higher than the coercive electric field.
  • the capacitance is variably controlled by controlling the control voltage applied to the electrode by ⁇ ⁇ V centering on 0V.
  • the capacitance is variably controlled in a range of ⁇ ⁇ V centering on 0V, so that the capacitance is always maintained at a required value corresponding to 0V when no voltage is applied. Is done.
  • variable capacitance element control method includes a pair of electrodes sandwiching a ferroelectric material layer, and the ferroelectric material layer is subjected to a polarization process that is greater than the coercive electric field of polarization hysteresis characteristics.
  • electrostatic capacitance is variably controlled even with a single polarity power source by switching between positive and negative polarities of a control voltage applied to the electrode.
  • variable capacitance element of the present invention by switching the polarity of the control voltage to be applied, for example, if the polarity is positive, the capacitance is decreased and variable, and if the polarity is negative, the capacitance is increased and variable. Even if a single polarity power source is used, a large capacity variable range can be obtained, and the capacity can be varied with good linearity.
  • the electronic device is formed by forming a pair of electrodes with a ferroelectric material layer sandwiched therebetween, and subjecting the ferroelectric material layer to a polarization treatment exceeding the coercive electric field of the polarization hysteresis characteristic. And a variable capacitance element whose capacitance is variable according to the control voltage.
  • the electronic device according to the present invention includes the variable capacitor according to the present invention, so that the performance of the electronic device can be improved.
  • a pair of electrodes are formed with a ferroelectric material layer sandwiched between them, and the ferroelectric material layer is subjected to a polarization treatment exceeding the coercive electric field of the polarization hysteresis characteristic, and applied to the electrodes.
  • a variable capacitance element whose capacitance is variable according to the control voltage.
  • the communication mobile device of the present invention includes the variable capacitance element according to the present invention, so that the performance of the communication mobile device can be improved.
  • variable capacitance element of the present invention it is possible to obtain a large capacitance, to obtain a variable capacitance with good linearity, and to obtain the same capacitance change value with the same control voltage.
  • the corresponding variable capacitance element can be provided according to the use of the electronic device, the communication mobile device, and other electronic devices.
  • the capacitance change can be controlled in a range of ⁇ ⁇ V around 0V, or a large capacitance change can be controlled by a single polarity power supply. Convenience can be improved according to the use of other electronic devices.
  • the convenience can be enhanced by providing the variable capacitance element according to the present invention.
  • FIG. 3 is a characteristic diagram showing the DC bias dependence of the capacitance when polarization is not performed on the capacitive element having the same configuration as in FIG. 2.
  • FIGS. 4A and 4B are a sample and a characteristic diagram showing a DC bias voltage dependence of a capacity used for explanation of a capacitive element according to the present invention.
  • FIGS. It is a DC bias history characteristic figure with which it uses for description of the capacitive element which concerns on this invention.
  • FIGS. It is a block diagram which shows an example of the variable capacity device which concerns on this invention.
  • FIG. 8 is a capacitance-control voltage characteristic diagram of the variable capacitance device of FIG. 7. It is a hysteresis characteristic figure of polarization used for explanation of the present invention. It is a capacity-write voltage characteristic diagram related to rewriting for the explanation of the present invention.
  • FIG. 5 is a characteristic diagram of a write voltage and a capacity change according to a rewrite processing voltage for explaining the present invention.
  • FIG. 13 is a characteristic diagram in which the capacitance change of FIG. 12 is changed relative to a preprocessing voltage of 0 V as a reference. It is a characteristic view showing the DC bias voltage dependence of the capacity by the pre-processing voltage for writing for explanation of the present invention.
  • It is an equivalent circuit diagram showing an example of a power supply device to which the variable capacitance element of the present invention is applied. It is a block diagram of the voltage control variable capacitor used for the power supply circuit of FIG. It is the characteristic view of the capacitive element using the conventional barium titanate. It is the characteristic view of the capacitive element using the conventional barium titanate.
  • Variable capacitance element 2 .. Ferroelectric material layer 3, 4 .. Electrode 5 .. Capacitance element (variable capacitance element) 6 .. Electrode layer 6A, 6B ... Electrode 7 ... Sheet-like body 8, 9, 10 ... Characteristics 21 ... Variable capacity device 22 ... Variable capacity element 23-24 ... DC cut capacity element 25 ... Polarity switching element 26 .. Single polarity power supply 27a.
  • variable capacitor In the variable capacitance element according to the present embodiment, a pair of electrodes is formed on both sides of a ferroelectric material layer, and a voltage is applied between both electrodes to polarize the ferroelectric material layer, and then both electrodes The electrostatic capacity can be varied according to the control voltage applied between them.
  • the control voltage for changing the capacitance changes in the same way even with an AC bias, but in the present invention, the case of a DC bias voltage will be described.
  • the variable capacitance element according to the present embodiment has the characteristics described below.
  • a capacitor configured using lead zirconate titanate (PZT) as a ferroelectric material is used as a sample.
  • PZT lead zirconate titanate
  • a pair of electrodes are formed on both sides of the PZT material layer.
  • the PZT material layer is formed.
  • a laminated capacitive element 5 using was prepared.
  • the capacitor element 5 according to the sample is formed by laminating a plurality of sheet-like bodies 7 each having an electrode layer 6 formed on one surface of a ferroelectric material layer 2 made of a PZT material layer, six in this example, and an odd number of electrode layers.
  • Electrode layers 6 are formed on both surfaces of either the lowermost layer or the uppermost ferroelectric material layer 2.
  • This capacitive element 5 is an example of a variable capacitive element according to the present embodiment, as will be apparent later.
  • a capacitor element 5 as a sample is produced as follows. Powders composed of titanium oxide, zirconium oxide, and lead oxide are mixed at a required mixing ratio, and two ceramic sheets molded to a thickness of 60 ⁇ m are stacked and calcined. Next, the sheet-like body 7 in which the electrode layer 6 is formed by applying palladium (Pd) -based electrode powder is prepared. Six sheets of the sheet-like body 4 in which the electrode layer 6 is formed on the two ceramic sheets are laminated and fired. Next, a conductive paste containing silver (Ag) is applied so as to be connected to, for example, an odd-numbered electrode layer 6 exposed on one surface of the laminate, and is exposed, for example, to the other surface of the laminate.
  • Pd palladium
  • the size of the capacitive element 5 produced by firing is a plate-like element having a thickness of about 0.3 mm with respect to a 5 ⁇ 30 mm 2 surface.
  • FIG. 3 shows the capacitance dependency due to the DC bias voltage of the capacitive element 5 that does not perform the polling process (polarization process).
  • This capacitive element is an element that has not been subjected to polarization treatment as it is fired.
  • the capacitance change characteristic of the capacitive element at the DC bias voltage was measured.
  • An impedance analyzer 1260 system manufactured by Instron was used for the characteristic evaluation of the capacitance change. The evaluation conditions were a frequency of 1000 Hz, an applied AC voltage of 1000 mVp-p, and an applied DC voltage of 0V to 14V.
  • the capacitance of the capacitive element was 0.227 ⁇ F, but the capacitance did not change.
  • FIG. 4 shows the capacitance dependence due to the DC bias voltage of the capacitive element 5 subjected to the poling process for applying the voltage to align the polarization of the ferroelectric material layer 2 in one direction.
  • the capacitor 5 serving as a sample is subjected to a polling process by applying the voltage V, in this example, 100 V for several tens of seconds, with the electrode 6B set to positive and the electrode 6A set to negative. Then, using the same evaluator system described with reference to FIG. 3, the characteristics of the capacitance change of the capacitive element due to the DC bias voltage were examined.
  • the direction of the polarity of the applied DC bias voltage is the direction shown in FIG.
  • the power source 11 is set so that the polarity of the DC bias voltage is negative (the electrode 6A is positive and the electrode 6B is negative).
  • the characteristic 9 in FIG. 4B shows the change in capacitance when the polarity of the DC bias voltage is changed from positive to negative. This characteristic 9 is rising to the right.
  • the capacitance change of the capacitive element 5 was observed by performing the polarization process, and when the DC bias voltage was not applied (so-called 0 V), a capacitance of about 460 nF was shown.
  • the change showed a linear change, unlike the commercially available B characteristic and F characteristic. That is, by changing the polarity of the DC bias to be applied with respect to the polarity in the polarization direction by the polling process, the polarity of the increase / decrease in the capacitance changes, that is, the capacitance increases and decreases. I found it. Furthermore, it was confirmed that the capacitance change is greatly changed by fixing the polarity direction of the polarization by the poling process and changing the polarity of the bias voltage to be applied.
  • the characteristics of FIG. 5 are characteristics of a sample (capacitance element 5) that has not been subjected to the polling process.
  • the magnitude of the DC bias voltage on the horizontal axis is normalized by the magnitude of the DC bias electric field of the applied electric field as a voltage per unit thickness.
  • the applied voltage is a maximum of ⁇ 250V.
  • the capacity change on the vertical axis is normalized by the capacity change rate with reference to a voltage application of 0 V when the DC bias voltage is applied and returned from 250 V.
  • the evaluation was performed using an evaluator that can apply a large DC bias voltage. This evaluator is characterized in that it can be evaluated by applying an external voltage to the sample by a bridge circuit.
  • the bias voltage is applied to the sample (capacitor 5) starting from a bias voltage of 0V.
  • the capacitance change with respect to the bias voltage application is constant at first and does not change, but a change of decrease appears when the electric field is 0.4 V / ⁇ m to 0.5 V / ⁇ m. From 1.3V / ⁇ m with 250V applied, the capacity increases when the electric field is lowered, and the magnitude of the electric field suddenly decreases from ⁇ 0.4V / ⁇ m to ⁇ 0.5V / ⁇ m, and then decreases gently. Turn to.
  • the characteristic of FIG. 6 is a characteristic with respect to the sample (capacitance element 5) after the polling process is performed.
  • the horizontal and vertical axes in FIG. 6b indicate the normalized electric field and capacity change rates similar to those shown in FIG.
  • the characteristic of FIG. 6b has the same characteristic as that of FIG.
  • the sample (capacitance element 5) measured and evaluated in FIG. 5 was subjected to polling processing, and the hysteresis characteristics indicated by the electric field E and polarization P in FIG.
  • an evaluator using a Soya tower circuit was used for the hysteresis measurement. Due to the use performance of the evaluator, the applied bias voltage was 115 Vp-p, and the frequency was 50 Hz.
  • the coercive electric field Ec of this evaluation is 0.47 V / ⁇ m, and in the DC bias dependence of the capacity change evaluated in FIG. 5, the magnitude of the electric field that suddenly changes the capacity is 0.4 V / ⁇ m to 0.5 V / ⁇ m. Therefore, it was shown that this value corresponds to the coercive electric field.
  • variable capacitance element is obtained by using the characteristics of the capacitance change in the region depending on the DC bias voltage, particularly the capacitance change property in the linearly changing region. Convenience that is easy to control was confirmed. That is, convenience is enhanced that the capacitance change is excellent in linearity with respect to the DC bias voltage and that the origin (0 V) of the DC bias voltage is a constant and the same capacitance value. Further, by performing polarization processing in a certain direction and changing the polarity of the DC bias voltage to be applied, the capacitance change can be used in a large capacitance change range as an approximately double change amount, and the convenience is improved. be able to.
  • the ferroelectric material used in the present embodiment uses a voltage-controlled capacitance change corresponding to an electric field below the coercive electric field Ec.
  • the dielectric material has a finite coercive electric field Ec
  • polarization processing is performed, and a voltage below the coercive electric field Ec is used to control the voltage in a region where the capacitance change is linear.
  • the present inventors have found an advantage that can be applied to a variable capacitance element without shifting the capacitance value of (starting point).
  • the region having a finite coercive electric field Ec is limited in terms of material to a ferroelectric phase in a temperature region having a hysteresis phase.
  • this variable capacitance element is used in a power supply circuit, it is assumed that the temperature rises. Therefore, it is desirable that the usable temperature range is wider.
  • a ferroelectric material by ion polarization is an ferroelectric material that is made of an ionic crystal material and is electrically polarized by the displacement of positive ions and negative ions.
  • atom A and atom B are represented by the chemical formula of ABO 3 and have a perovskite structure such as barium titanate (TiBaO 3 ), KNbO 3 , PbTiO 3, and the like.
  • PZT (lead zirconate titanate) used in one of the embodiments is a ferroelectric material in which lead zirconate (PbZrO 3 ) is mixed with lead titanate (PbTiO 3 ).
  • a ferroelectric material by electronic polarization is a material in which polarization is caused by being divided into a portion biased to a positive charge and a portion biased to a negative charge to generate an electric dipole moment.
  • a rare earth oxide having a ferroelectric property in which polarization is formed by the formation of a charge surface of Fe 2+ and a charge surface of Fe 3+ has been reported.
  • This system is a rare earth (RE) and iron group (TM), and is represented by the molecular formula (RE) ⁇ (TM) 2 ⁇ O4. It has been reported that a material comprising the following elements has a high dielectric constant. Yes.
  • variable capacitance element is configured using the characteristics after the polarization treatment of the ferroelectric material layer.
  • the variable capacitance element of the embodiment according to the basic configuration of the present invention can be configured with a single layer structure or a stacked structure.
  • the variable capacitance element 1 includes electrodes 3 and 4 that are paired on both sides with a ferroelectric material layer 2 interposed therebetween, as shown in FIG.
  • the electrode 6 A, the ferroelectric material layer 2, the electrode 6 B, and the ferroelectric material layer 2 are alternately laminated as shown in FIG.
  • a ferroelectric material layer 2 is sandwiched between electrodes 6A and 6B.
  • a parallel connection or series connection configuration can be adopted.
  • the ferroelectric material layer 2 is formed of a ferroelectric phase material having hysteresis characteristics, and is subjected to polarization treatment that is equal to or greater than the coercive electric field Ec (absolute value) of the polarization hysteresis characteristics.
  • the polarization treatment includes any state of a state where polarization is performed until saturation, a state where polarization is not performed until saturation, or a so-called unsaturated state.
  • the variable capacitance elements 1 and 5 correspond to a control voltage applied between the electrodes 3 and 4 or between the electrodes 6A and 6B, that is, a DC bias voltage in the temperature range of the ferroelectric phase having hysteresis characteristics. It is comprised so that an electrostatic capacitance may be varied.
  • the polarization region having a hysteresis characteristic is performed by performing a polarization process greater than the magnitude of the coercive electric field Ec (absolute value).
  • Ec absolute value
  • FIG. 5 by changing the DC bias voltage, a large capacity can be obtained and the capacity can be changed.
  • the control voltage is the same, the same constant capacitance change value can be obtained.
  • variable capacitance with good linearity can be obtained in controlling the DC bias voltage.
  • the variable range of capacity can be increased. When the polarization process is performed up to the saturation state, the variable range is large.
  • a variable capacitance element can also be configured by subjecting the dielectric material layer 2 to a polarization treatment in an unsaturated state. That is, it can be configured such that the polarization state of the ferroelectric material layer 2 subjected to the polarization treatment is an unsaturated state.
  • a DC bias voltage applied between a pair of electrodes is centered on a zero bias voltage capacitance below a coercive electric field Ec of polarization hysteresis characteristics. Accordingly, the capacitance can be configured to change linearly (linearly). Since the capacitance changes linearly from the positive side to the negative side around the zero bias voltage, a large capacitance change range can be obtained. In addition, the circuit design of the electronic device is facilitated by focusing on the zero bias voltage capacitance. For example, it is possible to avoid a shift in the center frequency in a communication mobile device such as a mobile phone or an IC card described later.
  • a bias voltage applied between a pair of electrodes includes a positive side including 0V or not including 0V, a negative side including 0V or not including 0V, or It can be configured to vary the capacitance by controlling in a range including positive and negative including 0V.
  • the electrostatic capacity can be linearly varied when used below the coercive electric field Ec of the polarization hysteresis characteristic.
  • the capacitance can be varied along a gentle curve with poor linearity. The so-called capacitance can be changed by linearity, monotone increase including a gentle curve, or monotone decrease.
  • the DC bias voltage to be applied can be configured to be controlled by ⁇ ⁇ V centering on 0V.
  • variable capacitance element As described above, according to the variable capacitance element according to the embodiment of the present invention, a ferroelectric material having a hysteresis characteristic having a finite coercive electric field Ec is used, for example, by a DC bias voltage corresponding to less than the coercive electric field Ec.
  • the capacity By changing the capacity by the control, the linearity of the capacity change can be obtained, and the deviation of the capacity at 0 V (starting point) can be eliminated.
  • the capacitance change region can be increased by reversing the polarity of the DC bias voltage applied with the polarization direction fixed. Since the variable capacitance element of this embodiment has such advantages, for example, it is possible to easily design a circuit for reducing power consumption, and to contribute to improving the efficiency of reducing power consumption in the circuit.
  • variable capacitance element can linearly control the capacitance change, and can greatly change the capacitance and the capacitance change. Correspondence is possible according to the use of other electronic devices, and it can be applied to various uses.
  • variable capacitance element In the control of capacitance change by voltage, it is possible to easily control from the fixed capacitance value of the starting point (0 V) when no control voltage is applied. For this reason, the variable capacitance element according to the present embodiment is not only a power supply circuit for energy saving, but also a tuning circuit for the frequency of radio waves for antenna communication of mobile devices that are being actively developed for IT devices. It can be applied as
  • the peak voltage (electric field) due to the DC bias dependence of the barium titanate system also corresponds to the coercive electric field Ec. Since the development of the coercive electric field Ec is also caused by the structure due to the lattice distortion of the material, for example, if barium titanate having a structure utilizing the interface distortion that increases the coercive electric field is made, It is possible to utilize for the variable capacitance element of the form.
  • ferroelectric material according to the present embodiment has been structurally studied with a perovskite PZT material, any other perovskite material can be used as long as it is a ferroelectric material that develops this hard coercive electric field Ec.
  • ferroelectric material based on ion polarization and the ferroelectric material based on electronic polarization can be used for the variable capacitance element of this embodiment.
  • the thickness of the ferroelectric material layer can be easily designed to match the withstand voltage, and the variable capacitance element Can be easily manufactured.
  • variable capacitance element uses a single polarity power supply and switches the polarity of the DC bias voltage that is a control voltage applied to both ends of the variable capacitance element so that the increase / decrease width of the capacitance can be increased. Composed.
  • a variable capacitance element 22 having the same configuration as described above and a variable capacitance device 21 in which DC cut capacitance elements 23 and 24 are connected in series at both ends thereof are configured.
  • a single polarity power source 26 that supplies a control voltage (DC bias voltage) is connected to both ends of the variable capacitance element 22 in the variable capacitance device 21 via a polarity switching switch element 25.
  • the polarity switching switching element 25 includes two pairs of fixed contacts 28 [28 a, 28 b] and 29 [29 a, which are paired with movable contacts 27 a and 27 b connected to terminals t 1 and t 2 derived from both ends of the variable capacitance element 22. , 29b].
  • One of the fixed contacts 28, 29 paired with each other is connected to the positive side of the unipolar power supply, and the other 28 b and 29 b is connected to the negative side of the unipolar power supply 26.
  • variable capacitance element 22 The control operation of the variable capacitance element 22 will be described.
  • the movable contacts 27a and 27b are connected to one fixed contact 28a and 28b of the polarity switching switching element 25, and the control voltage is varied from 0V to the positive side.
  • the variable range of the control voltage at this time is desirably a range in which the capacitance shown in FIGS. 4 and 6 is linearly variable.
  • variable range of the control voltage at this time is also preferably a range in which the capacitance shown in FIGS. 4 and 6 is linearly variable.
  • the capacitance of the variable capacitance element 22 can be controlled to C0 ⁇ ⁇ C with only the single polarity power supply 25, that is, a so-called single power supply. Further, the capacitance change can be increased at a low voltage.
  • capacitance change (C0 + ⁇ C) / C0.
  • capacitance change (C0 ⁇ C) / (C0 ⁇ C).
  • the variable capacitance element can rewrite the capacitance.
  • FIG. 10 shows changes in the capacitance value when the write voltage V is applied.
  • This capacitance value is a value when the write voltage at that time is once set to 0V.
  • the sample is a capacitor element polarized using PZT as a ferroelectric material, heated to a Curie temperature or higher so that the sum of electric dipole moments is minimized.
  • a silicon oil bath is heated to 240 ° C.
  • a sample obtained by heat treatment is used as a starting evaluation sample.
  • a virgin sample from which polarization was eliminated was used. There are two ways to eliminate polarization.
  • a characteristic Cap1 in FIG. 10 shows a change in the capacitance value of the variable capacitance element when the write voltage V is increased from 0V to 110V, and the polarity is inverted and decreased to ⁇ 110V.
  • the characteristic Cap2 in FIG. 10 shows the change in the capacitance value of the variable capacitance element when the write voltage V is increased from 0 V to 110 V, reversed and decreased to ⁇ 110 in the same manner as Cap1. Show reproducibility. It can be seen that the reproducibility is good.
  • the characteristic Cap3 in FIG. 10 shows that the variable voltage element when the write voltage V is increased from 0V to approximately 40V, and then is decreased to ⁇ 110V by changing the magnitude and polarity of the write voltage. Indicates the change in capacitance value.
  • FIG. 10 shows that the capacitance corresponding to the write voltage is written and held.
  • the capacitance value in the process of decreasing the write voltage from 110V to 0V, the capacitance value is held substantially constant.
  • the capacitance value increases gently, and when the write voltage is ⁇ 20 V, the capacitance value starts to decrease.
  • the write voltage V at which the capacitance value corresponding to the depolarized electric field starts to decrease is defined as the depolarized voltage.
  • the domain of polarization begins to invert and the polarizability in the ferroelectric material layer decreases, so the capacitance value also begins to decrease.
  • the minimum value of the capacitance value is when the write voltage V is ⁇ 32.5V.
  • the capacitance value starts to increase again, and the write voltage is ⁇ 60V and the capacitance value is almost saturated. become.
  • This change in capacitance value corresponds to the curve b of the hysteresis characteristic of polarization in FIG.
  • a write voltage V of ⁇ 32.5 V that minimizes the capacitance value corresponds to the coercive electric field Ec of this hysteresis characteristic. In the coercive electric field Ec, the sum of the electric dipole moments is minimized and the capacitance value is minimized.
  • a write voltage V of ⁇ 60 V corresponds to a saturation electric field ⁇ Ep on the negative side of the hysteresis characteristic. When a write voltage V corresponding to the saturation electric field is applied, the sum of electric dipole moments in the ferroelectric layer is maximized, and the capacitance value is maximized.
  • Capacitance can be rewritten in a negative voltage region, particularly from a depolarized voltage to a voltage region where the capacitance is saturated through a voltage ⁇ Vc corresponding to a negative coercive electric field ⁇ Ec that minimizes the capacitance.
  • mark Q1 indicates a capacitance value due to temperature erasure
  • mark Q2 indicates a capacitance value due to electrical erasure.
  • the voltage write erase can reduce the capacity smaller than the temperature erase.
  • FIG. 11 shows the relationship between the writing electric field and the capacity change due to the preprocessing voltage (rewriting processing voltage).
  • FIG. 11 shows that the variable capacitance element to be the above sample is subjected to a pretreatment (pretreatment 1) of + 110V polarization treatment, and then the next pretreatment (pretreatment 2) voltage is + 110V, ⁇ 110V, ⁇ 50V, ⁇ 40V. , ⁇ 30V, ⁇ 20V, and from these, capacitance values when a positive write voltage is applied are measured.
  • the horizontal axis represents a writing electric field (V / ⁇ m)
  • the vertical axis represents a capacitance value (nF).
  • the characteristic Cap + 110V indicates a change in the capacitance value when the write voltage V is decreased from + 110V to ⁇ 110V and then increased to the positive side after the preprocessing 2 at 110V.
  • a characteristic Cap-110V indicates a change in capacitance value when the write voltage V is increased from ⁇ 110V to the positive side after the preprocessing 2 at ⁇ 110V.
  • a characteristic Cap-50V indicates a change in capacitance value when the write voltage V is increased from zero to the positive side after the preprocessing 2 at -50V.
  • a characteristic Cap-40V indicates a change in capacitance value when the write voltage V is increased from zero to the positive side after the preprocessing 2 at -40V.
  • a characteristic Cap-30V indicates a change in capacitance value when the write voltage V is increased from zero to the positive side after the preprocessing 2 at -30V.
  • a characteristic Cap-20V indicates a change in the capacitance value when the write voltage V is increased from zero to the positive side after the preprocessing 2 at -20V. In either case, in the pretreatment, the applied voltage is applied for 10 seconds to fix the capacity, and then the voltage is changed.
  • the write voltage is smaller than when the pre-processing voltage having a smaller absolute value is first applied.
  • the change width of the capacitance change that is, the change amount ⁇ C from the minimum value to the maximum value of the capacitance value increases.
  • the polarization is started from the depolarization voltage at which the saturated capacity starts to decrease toward the voltage ⁇ Vc corresponding to the coercive electric field ⁇ Ec of the hysteresis characteristic of polarization.
  • Pre-processing for rewriting is possible up to the inverted saturation voltage.
  • the negative pre-processing voltage is larger when a voltage larger than ⁇ Vc is applied, and when the capacitance is written with the next positive voltage, the width, that is, the variation ⁇ C can be increased.
  • variable capacitance element by using the characteristics shown in FIGS. 10 and 11, the magnitude of the polarization voltage by the polarization process that can obtain the required polarizability is selected.
  • the change amount ⁇ C of the capacitance value can be arbitrarily controlled by the DC bias voltage.
  • a repolarization process having a required polarizability is performed by applying a voltage having a reverse polarity different from the polarization direction by the polling process.
  • variable amount according to the present embodiment is controlled so that the change amount ⁇ C of the rewriting capacity can be controlled by the magnitude of the applied voltage in the repolarization process, that is, the increase / decrease gradient and the increase / decrease width of the rewriting capacity can be arbitrarily controlled.
  • a capacitor element can be formed.
  • variable capacitance element resets the capacitance with a voltage corresponding to the polarization inversion saturation electric field from the voltage corresponding to the depolarized electric field for depolarizing the polarization, rewrites the capacitance, and rewrites.
  • the change amount of the capacitance value can be controlled by the magnitude of the voltage.
  • FIG. 12 shows the DC bias voltage dependency of the capacitance value after the polarization treatment and the treatment with the negative pretreatment voltage ⁇ Vdc applied.
  • Polarization processing is performed by applying +110 V to the sample of the capacitor element using PZT in the voltage direction shown in FIG.
  • negative preprocessing voltage (DC voltage) ⁇ Vdc was used as a parameter, and DC bias voltage due to capacitance change after each preprocessing was measured.
  • the AC conditions for measurement are 120 Hz and 500 mVac. Note that the polarity of the pretreatment voltage and the polarity of the DC bias voltage are based on the positive polarity of the polarization.
  • FIG. 13 is a diagram in which the absolute value change of the capacitance change is displayed by changing the negative preprocessing voltage relative to the 0 V capacitance as a reference. If the polarity of the DC bias voltage to be measured is changed, it can be seen that the polarity in which the capacitance increases or decreases (the capacitance increases to the right or decreases to the left) is inverted with respect to the voltage.
  • FIG. 14 shows an outline of the DC bias dependency of the capacitance due to the negative preprocessing voltage.
  • 14 and FIG. 13 show the change in capacity due to the preprocessing voltage, in particular, the capacity corresponding to each negative preprocessing voltage and the capacity change due to the DC bias voltage after the preprocessing, and the change in visual characteristics.
  • the control voltage (DC) is selected by selecting the magnitude of the polarization voltage by the polarization process that obtains the required polarizability using the characteristics shown in FIGS. It can be configured such that the slope ⁇ of change in capacitance due to the bias voltage) and the change amount ⁇ C ′ of capacitance value can be arbitrarily controlled.
  • a repolarization process having a required polarizability is performed by applying a voltage having a polarity opposite to the polarization direction by the polling process.
  • the variable capacitance element according to the present embodiment can be configured so that the slope ⁇ of change in capacitance and the amount of change ⁇ C ′ can be arbitrarily controlled by the magnitude of the applied voltage in the repolarization process. .
  • variable capacitance element according to the above-described embodiment of the present invention can be applied to an electronic device suitable for various uses such as a power supply circuit described later. For this reason, in this invention, the electronic device provided with the variable capacitance element which has the characteristic mentioned above can be comprised.
  • variable capacitance element can be applied to communication mobile devices such as an IC card and a mobile phone. Therefore, the present invention can constitute a communication mobile device including a variable capacitance element having the above-described characteristics.
  • the present invention can be applied to a capacitive element of a tuning circuit that selects a frequency of radio waves for antenna communication in a mobile device.
  • a variable capacitance element that can control the control voltage in a range ranging from positive to negative with 0 V as the center is incorporated in the tuning circuit, so that The variable range of the capacitance increases and the center frequency in the mobile device does not shift even when no voltage is applied.
  • the center frequency is 2.5V
  • the negative frequency is 5V
  • 5V the frequency must be positive.
  • the center frequency shifts when no voltage is applied.
  • variable capacitance element incorporated in the present embodiment can change the capacitance from 0 V to the positive and negative, it can always have 0 V as the center frequency even when no voltage is applied, and is highly convenient. It is suitable for application to communication mobile devices such as mobile phones and IC cards.
  • FIG. 15 shows a power supply circuit, that is, a power supply apparatus, which is an example of an electronic device according to the present invention.
  • the power supply device according to the present embodiment is a series regulator type power supply device.
  • the secondary circuit of the power transformer 53 of the AC circuit 51 is provided with the stabilizer 54 (the voltage control variable capacitor 211 in FIG. 16) made of the above-described variable capacitance element according to the present invention. Is done.
  • the configuration of the voltage controlled variable capacitor 211 will be described.
  • the voltage control variable capacitor 211 for example, as shown in FIG. 16, four variable capacitance elements 32 (C1), 33 (C2), 34 (C3), and 35 (C4) are connected to a bridge. Then, the voltage control variable capacitor 211 leads the AC input terminal 36 and the AC connection terminal 37 to one of the opposing connection ends connected to the bridge, and positive (+) control to each of the other opposing connection ends. A terminal 38 and a negative ( ⁇ ) control terminal 39 are derived.
  • the operation of the voltage controlled variable capacitor 211 will be described.
  • an AC input voltage is supplied to the AC input terminal 36
  • an electric field is generated between the electrodes of the variable capacitance elements 32 to 35, and an AC output based on the potential generated by the electric field is output to the AC output terminal 37.
  • a positive potential of the DC control signal is supplied to the control terminal 38 and a negative potential of the control signal is supplied to the control terminal 39 via the resistor R, respectively.
  • a control signal of + potential or ⁇ potential is supplied, the capacitance of each of the variable capacitance elements 32 to 35 is varied, and the capacitance of the voltage control variable capacitor 211 is varied as a whole.
  • the AC output potential output from the AC output terminal 37 is controlled in accordance with the variable capacitance and the AC input potential.
  • the voltage control variable capacitor 211 has an operation method in which the absolute values of the control signals of + potential and ⁇ potential supplied between the control terminals 38 and 39 are the same and have opposite polarities. As a result, the voltage components of the control signals generated at the AC input / output terminals 36 and 37 are canceled out and always become zero potential. Therefore, the influence on the AC input and AC output signals can be eliminated.
  • a commercial power supply 52 of AC 100V is connected between both ends of the primary winding of the power transformer 53 as an AC power supply.
  • the power transformer 53 is configured to step down the commercial power source 52 to about 9V AC.
  • the secondary winding of the power transformer 53 has one end connected to one input terminal of a rectifier circuit 56 formed of a diode bridge of the DC circuit 55 via a stabilizer 54 and the other end connected to the other input terminal of the rectifier circuit. Is done. That is, in the stabilizer 54, the AC input terminal 36 is connected to one end of the secondary winding of the power transformer 53, and the AC output terminal 37 is connected to one input terminal of the rectifier circuit 56.
  • the control signal input terminal (+) 38 of the stabilizer 54 is connected to the non-inverting output terminal of the differential amplifier circuit 58 constituting the error amplifier.
  • the control signal input terminal ( ⁇ ) 39 of the stabilizer 54 is connected to the inverting output terminal of the differential amplifier circuit 58.
  • the difference between the control signal input terminal (+) 38 and the control signal input terminal ( ⁇ ) 39 of the stabilizer 54 from the non-inverting output terminal and the inverting output terminal of the differential amplifier circuit 58 is the same but different in polarity.
  • a dynamic control signal is supplied.
  • a smoothing capacitor C is connected between one and the other output terminals of the rectifier circuit 56.
  • the DC voltage V UNREG smoothed by the rectifier circuit 56 and the smoothing capacitor C is supplied to one and the other output terminal 59 of the DC voltage via a three-terminal 8 V constant voltage circuit (regulator) 57.
  • a smoothing capacitor C is connected between the one and other output terminals 59.
  • the smoothed DC voltage V UNREG obtained on the output side of the rectifier circuit 56 is supplied to one input terminal of a differential amplifier circuit 58 constituting an error amplifier.
  • the other input terminal of the differential amplifier circuit 58 is grounded via a battery having a reference voltage, for example, 9V.
  • the smoothed DC voltage V UNREG on the output side of the rectifier circuit 56 is compared with the reference voltage by the differential amplifier circuit 58.
  • the comparison result is differentially amplified by the differential amplifier circuit 58 capable of single power supply operation, and fed back to the control signal input terminal (+) and the control signal input terminal ( ⁇ ) of the stabilizer 54.
  • the stabilizer 54 controls the smoothed DC voltage V UNREG on the output side of the rectifier circuit 56 to be a stable reference voltage of 9V.
  • the power loss in the three-terminal constant voltage circuit 57 is expressed by Equation 1.
  • the rectified output voltage V UNREG varies in the range of 9V ⁇ V UNREG ⁇ 16V.
  • the rectified output voltage V UNREG converges in the range of 9V ⁇ V UNREG ⁇ 9.4V. Therefore, the loss improvement is expressed by Equation 2.
  • the power loss PW expressed by the equation (3) occurs in the three-terminal constant voltage circuit 57 at the maximum rating.
  • the output side of the rectifier circuit 56 is controlled by the stabilizer 54 so that it becomes 9.0 V. Therefore, in consideration of the design margin, this power loss PW is expressed by the following equation (4). It will be shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 本発明は、各種電子デバイス、通信モバイル機器を含む電子機器の用途に応じて、対応可能な可変容量素子とその制御方法を提供するものである。この可変容量素子を備えた電子デバイス、通信モバイル機器を提供する。  本発明の可変容量素子1は、強誘電体材料層2を挟んで対の電極3,4を形成し、強誘電体材料層2に分極のヒステリシス特性の抗電界以上の分極処理を施し、電極3,4に印加される制御電圧に応じて静電容量が可変するように構成される。

Description

可変容量素子とその制御方法、電子デバイス及び通信モバイル機器
 本発明は、可変容量素子とその制御方法、この可変容量素子を組み込んだ電子デバイス及び通信モバイル機器に関する。
 近年、デジタル技術の発展により、情報技術(IT)に代表される電子機器の普及が活発化され、それに伴うエネルギーの消費が問題となっている。また、上記の情報技術において、通信によるモバイル機器間の通信技術が活発化している。
 一般に、簡便な据え置き型の電子機器では、電源トランスを用いたシリーズレギュレータの電源回路方式が使われている。この電源方式は、商用電源の100Vを分圧降下させて、ダイオードブリッジ回路にて整流し、大容量コンデンサによって波形を平滑にして外部交流電圧の変動と電子部品のバラツキと出力変動を安定にさせるために、半導体部品であるレギュレータにて、その変動電圧を吸収して電圧を安定にしている。
 しかし、このレギュレータによる変動電圧の吸収は、変動分を余分なジュール熱として排出させ、環境問題に悪影響を与えていた。先に本出願人は、後述するように、可変容量コンデンサを利用して余分なジュール熱の排出をより少なくする方法を提案した。
 図17に、従来のセラミックコンデンサの特性、すなわち静電容量のDCバイアス電圧依存性を示す。セラミックコンデンサでは、図17に示すように、大別して制御電圧であるDCバイアス電圧に対する容量変化の小さいB特性のコンデンサと、DCバイアス電圧に対して容量変化の大きいF特性のコンデンサの2種類に代表される。図17で示すF特性は、使用温度範囲が-25℃~85℃において容量変化が+30~-80%内の使用特性である。B特性は、使用温度範囲が-25℃~85℃において容量変化が±10%の使用特性である。一般に用いられるコンデンサとしては、容量変化しないことが望まれているので、容量変化の小さいB特性のコンデンサが用いられる。
 これらのコンデンサは、DCバイアス電圧によって容量変化が生じるチタン酸バリウム(BaTiO3)系の強誘電体材料で作成される。この容量変化が外部電圧によって変化する現象は、コンデンサの容量に起因する分極電荷と、その分極のドメインの挙動が電場に作用されていると考えられる。この系の材料は、添加元素、焼結条件によってキュリー点を変えたり、粒子サイズを変えて容量を大きく(非特許文献1参照)すれば、その容量変化を大きくできる。しかし、一般のコンデンサの利用では電圧を加えることで容量が変化してしまうので、あまり好まれない。
 コンデンサの強誘電体材料として、チタン酸バリウム系、チタン酸ジルコン酸鉛(PZT)を用いることは、特許文献1,2などに開示されている。
特開平10-223475号公報 特開2000-101345号公報 Landolt-Bornstein Vol.16,Ferroelectrics and Related Substances(1981)
 ところで、前述した本出願人が提案した電源回路における方法は、余分なジュール熱の

排出をより少なくするために、電圧変動に対応した電圧降下を可変コンデンサを介して制御しジュール熱の発生を低減させる方法である。この方法は、コンデンサによる電圧降下では、交流の虚数部に関与して電流の位相と電圧の位相がずれる為に電力損失が発生しない原理を利用している。このような電源回路で用いる可変コンデンサは、容量とその容量変化が大きい程、大きな電圧変動に対応した大きな電力損失を抑えることができるので望ましい。
 強誘電体系材料の容量変化は、強誘電体材料であるがために、DCバイアス電圧の大きさとその印加電圧の極性によってヒステリシス特性を持つ特徴がある。また、分極処理をしていないチタン酸バリウム材料系では、図18に示されるようなDCバイアス電圧の原点(0V)からずれた容量変化のピークをもち、ピークを越えた領域では緩やかな減少変化を描いた曲線の容量変化を持っている。従って、このチタン酸バリウム材料系では、容量変化のピークを越えた場合、このヒステリシス特性の降下のため、同じDCバイアス電圧でも容量変化値が異なる不都合が生じていた。例えば、DCバイアス電圧を印加しない零ボルトでも、DCバイアス電圧の極性と大きさで容量が異なってしまう。その為、使用する領域を単調減少領域の狭い領域に限定するか、ピークを越えた場合に特性を配慮した回路を組む必要があった。また、単調減少する領域に限定しても、容量変化ではリニア性が劣るため、回路設計の煩わしさがあった。また、一般に極性の正の制御電圧に対して、負の容量変化の特性の利用は、回路の制御的な煩わしさがあった。
 一方、近年、電気製品機器における消費電力の増大と、移動モバイル機器の通信の高度化が進んでおり、消費電力の省力化と電波通信の高機能な周波数のチューニングが求められている。モバイル機器のアンテナ通信により機器の電波周波数のチューニングは、バリキャップ半導体が検討されているが、大きな容量が得られないこと、半導体であるため耐圧が低いなどの問題があった。
 本発明は、上述の点に鑑み、電源回路用、モバイル機器用、その他の電子機器の用途に応じて、対応可能な可変容量素子とその制御方法を提供するものである。
 また、本発明は、上記可変容量素子を備えた電子デバイス、通信モバイル機器を提供するものである。
 本発明に係る可変容量素子は、強誘電体材料層を挟んで対の電極が形成され、強誘電体材料層に分極のヒステリシス特性の抗電界以上の分極処理が施されて成り、電極に印加される制御電圧に応じて静電容量が可変される構成とする。
 本発明の可変容量素子では、その強誘電体材料層に抗電界以上の分極処理を施し、制御電圧に応じて静電容量を可変させるように構成することにより、大きな容量が得られると共に、リニア性のよい容量可変が得られる。また、同じ制御電圧であれば、一定の同じ容量変化値が得られる。
 本発明に係る可変容量素子の制御方法は、強誘電体材料層を挟んで対の電極を有し、強誘電体材料層に抗電界以上の分極処理が施された可変容量素子の制御方法であって、電極に印加する制御電圧を、0Vを中心に±ΔVで制御して静電容量を可変制御する。
 本発明に係る可変容量素子の制御方法によれば、0Vを中心に±ΔVの範囲で静電容量を可変制御するので、電圧を印加しないときには常に静電容量は0Vに対応した所要値に維持される。
 本発明に係る可変容量素子の制御方法は、強誘電体材料層を挟んで対の電極を有し、強誘電体材料層に分極のヒステリシス特性の抗電界以上の分極処理が施された可変容量素子の制御方法であって、前記電極に印加する制御電圧の正負の極性を切り替えることより、単一極性電源でも、静電容量を可変制御する。
 本発明の可変容量素子の制御方法では、印加する制御電圧の正負の極性を切り換えることにより、例えば、正極性であれば容量が減少して可変され、負極性であれば容量が増加して可変され、単一極性電源を用いても大きな容量可変範囲が得られ、リニア性のよく容量可変させることができる。
 本発明に係る電子デバイスは、強誘電体材料層を挟んで対の電極が形成され、強誘電体材料層に分極のヒステリシス特性の抗電界以上の分極処理が施されて成り、電極に印加される制御電圧に応じて静電容量が可変される可変容量素子を備えて成る。
 本発明の電子デバイスでは、上記本発明による可変容量素子を備えるので、電子デバイスの性能を高めることができる。
 本発明に係る通信モバイル機器は、強誘電体材料層を挟んで対の電極が形成され、強誘電体材料層に分極のヒステリシス特性の抗電界以上の分極処理が施されて成り、電極に印加される制御電圧に応じて静電容量が可変される可変容量素子を備えて成る。
 本発明の通信モバイル機器では、上記本発明による可変容量素子を備えるので、通信モバイル機器の性能を高めることができる。
 本発明に係る可変容量素子によれば、大きな容量が得られると共に、リニア性のよい容量可変が得られ、また同じ制御電圧であれば同じ容量変化値が得られえることにより、電g子デバイス用、通信モバイル機器用、その他の電子機器の用途に応じて、対応する可変容量素子を提供することができる。
 本発明に係る可変容量素子の制御方法によれば、0Vを中心に±ΔVの範囲で容量変化を制御でき、あるいは単一極性電源で大きな容量変化を制御できるので、電子デバイス、通信モバイル機器用、その他の電子機器の用途に応じて利便性を高めることができる。
 本発明に係る電子デバイス、通信モバイル機器によれば、本発明に係る可変容量素子を備えることにより、利便性を高めることができる。
本発明に係る可変容量素子の一実施の形態を示す断面図である。 a,b 本発明に係る可変容量素子の他の実施の形態を示す上面図及び断面図である。 図2と同じ構成の容量素子に対して、分極を行わないときの、容量のDCバイアス依存性を示す特性図である。 a,b 本発明に係る容量素子の説明に供する容量のDCバイアス電圧依存性を示す試料及び特性図である。 本発明に係る容量素子の説明に供するDCバイアス履歴特性図である。 a,b 本発明に係る容量素子の説明に供するDCバイアス履歴特性図である。 本発明に係る可変容量デバイスの一例を示す構成図である。 図7の可変容量デバイスの容量-制御電圧特性図である。 本発明の説明に供する分極のヒステリシス特性図である。 本発明の説明に供する再書き込みに係る容量-書き込み電圧特性図である。 本発明の説明に供する再書き込み処理電圧による書き込み電圧と容量変化の特性図である。 本発明の説明に供する分極処理と前処理後における容量のDCバイアス電圧依存性を示す特性図である。 図12の容量変化を、前処理電圧0Vを基準に相対変化させた特性図である。 本発明の説明に供する書き込みの前処理電圧による容量のDCバイアス電圧依存性を示す特性図である。 本発明の可変容量素子を適用した電源装置の例を示す等価回路図である。 図15の電源回路に用いられる電圧制御可変コンデンサの構成図である。 従来のチタン酸バリウムを用いた容量素子の特性図である。 従来のチタン酸バリウムを用いた容量素子の特性図である。
符号の説明
 1・・可変容量素子
 2・・強誘電体材料層
 3、4・・電極
 5・・容量素子(可変容量素子)
 6・・電極層
 6A,6B・・電極
 7・・シート状体
 8,9,10・・特性
 21・・可変容量デバイス
 22・・可変容量素子
 23~24・・DCカット用容量素子
 25・・極性切り換えスイッチング素子
 26・・単一極性電源
 27a。27b・・可動接点
 28{28a,28b}、29[29a,29b]・・固定接点
 311,321・・特性
 211・・電圧制御可変コンデンサ
 31~35・・可変容量素子
 36・・AC入力端子
 37・・AC出力端子
 38,39・・制御端子
 51・・AC回路
 52・・AC電源
 53・・電源トランス
 54・・スタビライザー
 55・・DC回路
 56・・整流回路
 57・・定電圧回路
 58・・差動増幅回路
 59・・出力端子
 以下、図面を参照して本発明の実施形態について説明する。
 まず、本実施形態に係る可変容量素子について説明する。本実施形態に係る可変容量素子は、強誘電体材料層を挟んで両面に対をなす電極が形成され、両電極間に電圧を印加して強誘電体材料層を分極させた後、両電極間に印加する制御電圧に応じて、静電容量を可変できるように構成される。容量変化の制御電圧は、ACバイアスでも同様に変化するが、本発明ではDCバイアス電圧の場合で説明する。本実施形態に係る可変容量素子は、以下に説明する特性を備えている。
 本実施形態に係る可変容量素子の特性を検証するために、本実施形態では、試料として、強誘電体材料としてチタン酸ジルコン酸鉛(PZT)を用いて構成された容量素子を用いる。基本的には、PZT材料層を挟んで両面に対の電極を形成して構成されるが、本例では、図2a(上面図),図2b(断面図)に示すように、PZT材料層を用いた積層型の容量素子5を作成した。試料に係る容量素子5は、PZT材料層による強誘電体材料層2の一方の面に電極層6を形成したシート状体7を複数枚、本例では6枚積層し、奇数層の電極層6A同士、偶数層の電極層6B同士をそれぞれ電気的に接続して構成される。最下層または最上層のいずれか一方の強誘電体材料層2の両面には電極層6が形成される。この容量素子5は、後述で明らかとなるように、本実施の形態に係る可変容量素子の一例となる。
 具体例としては、次のようにして試料となる容量素子5が作成される。酸化チタンと、酸化ジルコニウムと、酸化鉛からなるパウダーを所要の配合比で混合し、厚さ60μmに成形したセラミックシートを2枚重ねて、仮焼きをする。次に、パラジウム(Pd)系の電極粉を塗布して電極層6を形成したシート状体7を作成する。この2層のセラミックシート上に電極層6を形成したシート状体4を単位として6枚積層して焼成する。次に、銀(Ag)を含む導電性ペーストを、積層体の一方の面に露出する例えば奇数層の電極層6に接続するように塗布し、また積層体の他方の面に露出する例えば偶数層の電極層6に接続するように塗布する。そして熱処理して対の電極6A,6Bを形成して可変容量素子5を作成する。焼成して作成された容量素子5のサイズは、5×30mm2の面に対して厚さが約0.3mmの板状素子である。
 この容量素子5におけるDCバイアス電圧の静電容量の変化を測定した。
 まず、図3に、ポーリング処理(分極処理)を行わない容量素子5のDCバイアス電圧による容量依存性を示す。この容量素子は、焼成されたままの分極処理されていない素子である。この容量素子のDCバイアス電圧における容量変化の特性を測定した。容量変化の特性評価には、インストロン社製のインピーダンスアナライザ1260系システムを用いた。評価条件は、周波数が1000Hzで印加AC電圧は1000mVp-pにて、印加DC電圧を0Vから14Vまで印加した。その結果、図2の特性10で示すように、容量素子の容量は0.227μFであったが、容量変化はなかった。
 図4に、電圧を印加して強誘電体材料層2の分極を一方向に揃えるポーリング処理を行った容量素子5のDCバイアス電圧による容量依存性を示す。試料となる容量素子5に対して、図4(a)に示すように、電極6Bをプラスとし、電極6Aをマイナスとして電圧V、本例では100Vを数十秒間印加してポーリング処理する。そして、図3で説明したと同じ評価器システムを用いて、DCバイアス電圧による容量素子の容量変化の特性を調べた。印加したDCバイアス電圧の極性の方向は図4(a)に示す方向であり、分極Pの方向(矢印)とDCバイアス電圧印加による電場Eの方向(矢印)を一致させている。分極後のDCバイアス電圧の極性を正(電極6Bがプラス、電極6Aがマイナスとなるように電源11を接続し)にして、DCバイアス電圧を正から負に極性を変えて容量変化させたときの特性8を図4(b)に示す。この特性8は右下がりである。
 次に、分極Pの極性方向を変えず同じ分極の方向Pを有する容量素子5に対して、DCバイアス電圧の極性を逆の負(電極6Aがプラス、電極6Bがマイナスとなるように電源11を切替えて接続し)に切り替えて、DCバイアス電圧を正から負に極性を変えたときの容量変化を示したのが図4(b)の特性9である。この特性9は右上がりである。
 この図4から、分極処理をすることにより、容量素子5の容量変化が観測され、DCバイアス電圧を印加しない(いわゆる0Vの)ときは、約460nFの容量を示した。このDCバイアス電圧を±15V印加してその容量変化を調べると、その変化は、市販されているB特性、F特性のものとは異なり、リニアな変化を示した。すなわち、ポーリング処理による分極方向の極性に対して、印加するDCバイアスの極性を変えることにより、静電容量の増減の極性が変化すること、つまり静電容量が増加変化、並びに減少変化することを見出した。
 さらに、ポーリング処理による分極の極性方向を固定して、印加するバイアス電圧の極性を変えることにより、容量変化を大きく変えることが確認された。
 更に、検討を重ねることにより、図2と同様にして作成した試料、つまりPZT材料による強誘電体材料層2を有する容量素子5に大きな電圧を印加することにより、図5に示すような静電容量のDCバイアス依存性をもつ特性が得られた。この特性の試料(容量素子5)を用いて、強誘電体材料層2の分極と電場のヒステリシス特性を測定したところ、図6に示すような特性が得られ、容量変化がリニアに変化する領域が、強誘電体材料層の抗電界Ec(絶対値)以下、すなわちEcと-Ecの間の電圧に対応していることが確かめられた。
 図5の特性は、ポーリング処理が施されていない試料(容量素子5)による特性である。図5において、横軸のDCバイアス電圧の大きさは、単位厚さ当たりの電圧として、印加電場のDCバイアス電界の大きさで規格化してある。印加した電圧は、最大±250Vである。また縦軸の容量変化は、DCバイアス電圧を印加して250Vから戻って来たときの電圧印加0Vのときを基準にして容量変化率で規格化してある。評価は、大きなDCバイアス電圧を印加できる評価器にて評価した。本評価器は、ブリッジ回路にて試料に外部電圧を印加して評価できることを特徴としている。
 図5では、DCバイアス電圧0Vのスタートからフラットの位置(+Ec)までが、分極のヒステリシス曲線のゼロから飽和途上のEcまでの部分に対応する。ここの曲線の微分係数が容量値に対応する。したがって、スタートからEcまでは容量変化がない。
 図5に示すように、試料(容量素子5)に対するバイアス電圧の印加を、バイアス電圧0Vからスタートして行う。バイアス電圧印加に対する容量変化は、始めは一定で変化しないが、電界が0.4V/μm~0.5V/μmのところで減少の変化が現れる。250V印加の1.3V/μmから、電界を下げると容量は増大し、電界の大きさが、-0.4V/μm~-0.5V/μmのところで急激に減少してその後、なだらかに減少に転じる。さらに、印加バイアス電圧を上げて戻すと、緩やかな増大から、再び0.4V/μm~0.5V/μmのところで、急激に容量変化が下がり、緩やかな減少に転じ、原点(0V)を対称にしたヒステリシス特性を示す。
 一方、図6の特性は、ポーリング処理が施された後の試料(容量素子5)に対しての特性である。図6bにおける横軸及び縦軸は、図5で示したと同様の規格化された電界及び容量変化率を示す。図6bの特性は、図5の特性と同じ特性を有している。ここでは、図5で測定評価した試料(容量素子5)をポーリング処理し、図6aの電界Eと分極Pにて示すヒステリシス特性を評価した。ヒステリシス測定は、ソーヤタワー回路を用いた評価器を用いた。評価器の使用性能上、印加バイアス電圧は115Vp-pで、周波数は50Hzの評価であった。この評価の抗電界Ecは0.47V/μmであり、図5で評価した容量変化のDCバイアス依存性において、急激に容量変化する電界の大きさが0.4V/μm~0.5V/μmであることから、この値が抗電界に相当する値であることが示された。
 上述の図4、図6から明らかなように、可変容量素子として、DCバイアス電圧に依存した領域の容量変化の特性、特にリニアに変化する領域の容量変化の特性を使うことにより、回路的に制御しやすい利便性が確かめられた。すなわち、容量変化がDCバイアス電圧に対してリニア性に優れていること、DCバイアス電圧の原点(0V)が一定の同じ容量値であることが利便性を高める。また、或る一方向に分極処理をして、印加するDCバイアス電圧の極性を変えることにより、容量変化をおおよそ2倍の変化量として大きな容量変化範囲で利用することができ、利便性を高めることができる。
 本実施形態で用いる強誘電体材料は、抗電界Ec以下の電場に対応した電圧制御の容量変化を利用している。そして、本実施形態では、有限の抗電界Ecをもつ誘電体材料であれば、分極処理し、抗電界Ec以下の電圧を使用することにより、容量変化がリニアな領域で電圧の制御において、中心(起点)の容量値がずれることなく、可変容量素子に応用することができる長所を見出した。但し、有限な抗電界Ecをもつ領域は、材料的には、ヒステリシス相をもつ温度領域の強誘電体相に限定される。この可変容量素子は、電源回路に利用する場合、温度上昇が想定されるので、使用できる温度領域が広いほど望ましい。
 本実施形態の可変容量素子で用いる強誘電体材料層の材料としては、イオン分極による強誘電体材料、及び電子分極による強誘電体材料を用いることができる。イオン分極による強誘電体材料は、イオン結晶材料からなり、プラスのイオンとマイナスのイオンの原子が変位することで、電気的に分極している強誘電体材料である。この材料には、原子Aと原子Bが、ABO3の化学式で表され、ペレブスカイト構造をもつ例えばチタン酸バリウム(TiBaO3)、KNbO3、PbTiO3などがある。また本実施形態の一つに用いられたPZT(チタン酸ジルコン酸鉛)は、チタン酸鉛(PbTiO3)にジルコン酸鉛(PbZrO3)を混ぜ合わせた強誘電体材料である。
 電子分極による強誘電体材料は、プラスの電荷に偏った部分とマイナスの電荷に偏った部分に分かれて電気双曲子モーメントが生じ、分極が生じている材料である。この強誘電体材料としては、Fe2+の電荷面とFe3+の電荷面の形成により分極を形成している強誘電体的特性を示す希土類酸化物が報告されている。この系は希土類(RE)と鉄族(TM)にて、(RE)・(TM)2・O4なる分子式で表され、以下の元素からなる材料が、高誘電率をもつことが報告されている。
 RE;Y,Er,Yb,Lu、・・(等にYと重希土類元素)
 TM;Fe,Co,Ni(特にFe)
  ・ErFe2O4
  ・LuFe2O4
  ・YFe2O4
 本発明の実施の形態に係る可変容量素子は、上述したように、強誘電体材料層の分極処理した後の特性を利用して構成される。本発明の基本的な構成に係る実施の形態の可変容量素子は、単層型構造または積層型構造で構成することができる。例えば単層型構造であれば、本可変容量素子1は、図1に示すように、強誘電体材料層2を挟んで両面にそれぞれ対をなす電極3及び4が形成されて成る。積層型構造であれば、本可変容量素子5は、図2に示すように、電極6A,強誘電体材料層2、電極6B、強誘電体材料層2が交互に積層され、最終的に各強誘電体材料層2を電極6A,6Bで挟んで構成される。積層型構造の場合には並列接続、あるいは直列接続の構成を採り得る。
 強誘電体材料層2は、ヒステリシス特性を持つ強誘電体相材料で形成され、分極のヒステリシス特性の抗電界Ec(絶対値)以上の分極処理が施されている。ここでの分極処理としては、分極が飽和まで行っている状態、または分極が飽和まで行っていない状態、いわゆる未飽和の状態の、いずれかの状態を含む。そして、本可変容量素子1、5は、ヒステリシス特性を有する強誘電体相の温度領域において、電極3及び4間、あるいは電極6A及び6B間に印加される制御電圧、すなわちDCバイアス電圧に応じて静電容量が可変されるように構成される。
 本実施の形態に係る可変容量素子によれば、前述した特性検証で示すように、抗電界Ec(絶対値)の大きさ以上の分極処理を行い、ヒステリシス特性を有する強誘電体相の温度領域において、DCバイアス電圧を可変させることにより、大きな容量が得られると共に、容量を可変させることができる。また、同じ制御電圧であれば、一定の同じ容量変化値が得られる。そして抗電界Ec未満の領域を利用するときは、DCバイアス電圧の制御において、リニア性のよい容量可変が得られる。さらに容量の可変範囲も大きくとれる。分極処理を飽和状態まで行った場合には、可変の範囲は大きくとれる。
 本発明の他の実施の形態に係る可変容量素子としては、誘電体材料層2に対して未飽和状態の分極処理を施しても構成することとができる。すなわち、分極処理が施された強誘電体材料層2の分極状態が未飽和状態である構成とすることができる。
 本発明の他の実施の形態に係る可変容量素子としては、分極のヒステリシス特性の抗電界Ec未満において、零バイアス電圧の静電容量を中心として、対の電極間に印加されるDCバイアス電圧に応じて静電容量を、リニア(直線的)に変化するように構成することができる。零バイアス電圧を中心に静電容量が正側、負側にリニアに変化するので、大きな容量変化範囲を得ることができる。また零バイアス電圧の静電容量を中心とすることで、電子機器の回路設計を容易にする。例えば、後述する携帯電話やICカードなどの通信モバイル機器における中心周波数のずれを回避することができる。
 本発明の他の実施の形態に係る可変容量素としては、対の電極間に印加するバイアス電圧を、0Vを含むまたは0Vを含まない正側、0Vを含むまたは0Vを含まない負側、または0Vを含んで正負にわたる範囲で制御して、静電容量を可変するように構成することができる。この構成では、分極のヒステリシス特性の抗電界Ec未満で使用するときは、静電容量をリニアに可変することができる。抗電界Ec以上で使うときは、静電容量をリニア性が悪いゆるやかな曲線に沿って可変することができる。いわゆる静電容量は、リニア性、ゆるやかな曲線を含む単調増加、あるいは単調減少で変化させることができる。
 さらに、本発明の他の実施の形態に係る可変容量素子としては、印加するDCバイアス電圧を、0Vを中心に±ΔVで制御するように構成することができる。
 上述したように本発明の実施の形態に係る可変容量素子によれば、有限の抗電界Ecを有したヒステリシス特性をもつ強誘電体材料を用い、例えば抗電界Ec未満に対応したDCバイアス電圧による制御で、容量変化させることにより、容量変化のリニア性を得ると共に、0V(起点)における容量のずれを無くすことができる。また、分極方向を固定して印加するDCバイアス電圧の極性を反転することにより、容量変化領域を増大することができる。本実施の形態の可変容量素子は、このような長所を有することにより、例えば消費電力削減の回路を容易に設計することができ、回路における消費電力削減の効率向上に寄与することができる。
 本実施の形態に係る可変容量素子は、容量変化をリニアに制御することができ、しかも、その静電容量とその容量変化を大きく変えることができるので、消費電力削減を要する回路、モバイル機器、その他の電子機器の用途に応じて対応が可能となり、各種用途に適用することができる。
 電圧による容量変化の制御において、制御電圧の無印加状態の起点(0V)の固定容量値からの制御が容易にできる。このことから、本実施の形態の可変容量素子は、省エネルギー用の例えば電源回路ばかりでなく、IT機器に関して開発が活発化しているモバイル機器のアンテナ通信の電波の周波数のチューニング回路にも可変容量素子として応用することができる。
 一方、チタン酸バリウム系のDCバイアス依存性によるピークの電圧(電界)も、抗電界Ecに対応していることが分かった。抗電界Ecの発現は、材料の格子歪みによる構造にも起因しているので、例えば、チタン酸バリウムも、抗電界を大きくするような界面の歪みを利用した構造のものを造れば、本実施の形態の可変容量素子に利用することが可能である。
 本実施の形態に係る強誘電体材料は、構造的にはペロブスカイト系のPZT系材料にて検討したが、このハード的な抗電界Ecを発現させる強誘電体材料であれば、他のペロブスカイト系を含めて、前述したイオン分極による強誘電体材料でも、電子分極による強誘電体材料でも本実施の形態の可変容量素子に利用することができる。
 そして、本検討で得られた材料は、強誘電体材料で酸化物系であるので、強誘電体材料層の厚さを耐圧に見合った厚さに容易に設計することができ、可変容量素子を容易に製造することができる。
 図7、図8に、本発明のさらに他の実施の形態を示す。本実施の形態に係る可変容量素子は、単一極性電源を用い、可変容量素子の両端に印加する制御電圧となるDCバイアス電圧の極性を切り替えて、静電容量の増減幅を大きくとれるように構成される。本実施の形態では、図7に示すように、上述と同様の構成を有する可変容量素子22と、その両端にDCカット用容量素子23,24が直列接続された可変容量デバイス21として構成される。この可変容量デバイス21における可変容量素子22の両端に極性切り換えスイッチン素子25を介して制御電圧(DCバイアス電圧)を供給する単一極性電源26が接続される。極性切り換えスイッチング素子25は、可変容量素子22の両端から導出された端子t1,t2に接続される可動接点27a,27bと、対をなす2組の固定接点28[28a,28b]及び29[29a,29b]を有して成る。それぞれに対をなす固定接点28,29のそれぞれの一方28aと29aが単一極性電源のプラス側に接続され、他方28bと29bが単一極性電源26のマイナス側に接続される。
 この可変容量素子22の制御動作を説明する。極性切り換えスイッチング素子25の一方の固定接点28a、28bに可動接点27a,27bを接続して、制御電圧を0Vから正側に可変させる。このときの制御電圧の可変範囲は、図4、図6で示した静電容量がリニアに可変される範囲とすることが望ましい。制御電圧を0Vから正側に可変させることにより、静電容量は図8の特性311に示すように増大する。すなわち、静電容量は、制御電圧0Vのときの容量C0から容量C0+ΔCへ増大する。
 次に、制御電圧を0V以下にして静電容量をさらに下げたいときには、可変容量素子22に印加する制御電圧の極性を切り換える。すなわち、極性切り換えスイッチング素子25の可動接点27a,27bを固定接点29a,29bに切り換える。これによって、単一極性電源26かの制御電圧の極性が切り換わって可変容量素子22に印加される。このときの制御電圧の可変範囲も、図4、図6で示した静電容量がリニアに可変される範囲とすることが望ましい。制御電圧を0Vから正側に可変させることにより、静電容量は図8の特性321に示すように減少する。すなわち、静電容量は、制御電圧0Vのときの容量C0から容量C0-ΔCへ減少する。
 本実施の形態に係る可変容量素子22によれば、単一極性電源25、いわゆる片電源のみで、可変容量素子22の静電容量をC0±ΔCの制御ができる。また、低電圧で容量変化を増大することができる。極性を切り換えないときは、容量変化=(C0+ΔC)/C0。極性を切り換えたときは、容量変化=(C0-ΔC)/(C0-ΔC)。
 本実施形態に係る可変容量素子は、静電容量の再書き込みが可能である。図10に、書き込み電圧Vを印加していったときの容量値の変化を示す。この容量値は、その時の書き込み電圧を一旦0Vにした時の値である。試料は、強誘電体材料としてPZTを用いて分極処理された容量素子を、電気双極子モーメントの総和が最小となるようにキュリー温度以上に加熱処理、本例ではシリコンのオイルバスに240℃の加熱処理をして得られたものを出発評価試料としている。分極が消去された処女状態の試料を使用した。分極を消去するには2つの方法がある。加熱処理により電気双極子モーメントの総和(いわゆる分極の総和)を最小にする温度消去と電圧により電気双極子モーメントの総和を最小にする電圧消去あるいは電気的消去がある。試料の可変容量素子に対する書き込み容量の測定は、DCの再書き込み電圧を印加した後、一旦、印加電圧を0Vに戻してから測定したものである。
 図10における特性Cap1は、書き込み電圧Vを0Vから110Vまで増加させていき、極性を反転して-110Vまで減少させていったときの可変容量素子の容量値の変化を示す。
 図10おける特性Cap2は、Cap1と同様に書き込み電圧Vを0Vから110Vまで増加させていき、反転して-110まで減少させていったときの可変容量素子の容量値の変化を示し、Cap1の再現性を示す。再現性がよいことがわかる。
 次に、図10における特性Cap3は、書き込み電圧Vを0Vからおよそ40Vまで増加させていき、そこで一旦、書き込み電圧の大きさと極性を変えて-110Vまで減少させていったときの可変容量素子の容量値の変化を示す。
 図10から書き込み電圧に対応した容量が書き込まれて保持されていることが分かる。
 図10に示す特性Cap1,2から分かるように、書き込み電圧を110Vから0Vまで減少させていく過程では、容量値がほぼ一定に保持される。さらに負の書き込み電圧を印加していくと、容量値は穏やかに上昇し、書き込み電圧がが-20Vのときに、容量値は下がり始める。このときの電圧を減極電界に対応した容量値が下がり始める書き込み電圧Vを減極電圧と定義する。この減極電圧においては、分極のドメインが反転し始めて強誘電体材料層内の分極率が下がるため、容量値も減少し始める。容量値の最小値は、書き込み電圧Vが-32.5Vのときであり、さらに書き込み電圧を減少させていくと、容量値は再び上昇に転じ、書き込み電圧が-60Vで容量値はほぼ飽和値になる。
 この容量値変化は、図9の分極のヒステリシス特性の曲線bに対応する。容量値が最小になる-32.5Vの書き込み電圧Vは、このヒステリシス特性の抗電界Ecに対応する。抗電界Ecにおいては、電気双極子モーメントの総和が最小となり、容量値が最小となる。-60Vの書き込み電圧Vは、上記ヒステリシス特性のマイナス側の飽和電界-Epに相当する。飽和電界に相当する書き込み電圧Vが印加されたとき、強誘電体層内の電気双極子モーメントの総和が最大となり、容量値が最大となる。
 書き込まれた大きな容量(飽和状態の容量)に対して、容量の再書き込みをするには、印加電圧の極性を負に変えて所望の電圧を印加すれば、容量の再書き込みができる。電圧が負の領域で、特に減極電圧から、容量が最小になる負の抗電界-Ecに相当する電圧-Vcの前後を通じて容量が飽和する電圧領域までの電圧で容量の再書き込みができる。
 図10において、印Q1は温度消去による容量値、印Q2は電気的消去による容量値を示す。このQ1,Q2の容量値から分かるように、再書き込み時の容量を最小にするには、温度消去した場合より、電気的消去となる電圧を-Vcにする電圧制御の方が容量を最小にできる。すなわち、電圧(-Vc)消去での容量Cは、C(-Vc)=320nF程度であり、温度消去での容量は、C0=350nF程度であった。温度消去より電圧書き込み消去の方が容量を小さくすることができる。
 図11に、前処理電圧(再書き込み処理電圧)による書き込み電界と容量変化の関係を示す。図11は、上記試料となる可変容量素子を、+110Vの分極処理の前処理(前処理1)をした後、次の前処理(前処理2)電圧を+110V、-110V、-50V、-40V,-30V,-20Vとし、そこから、それぞれ正の書き込み電圧を印加していったときの容量値を測定している。図11において、横軸は書き込み電界(V/μm)、縦軸は容量値(nF)を示す。
 特性Cap+110Vは、110Vで前処理2をした後、書き込み電圧Vを+110Vから-110Vまで減少させ、次いで正側に増加させていったときの容量値の変化を示す。
 特性Cap-110Vは、-110Vで前処理2した後、-110Vから書き込み電圧Vを正側に増加させていったときの容量値の変化を示す。
 特性Cap-50Vは、-50Vで前処理2をした後、書き込み電圧Vを零から正側に増加させていったときの容量値の変化を示す。
 特性Cap-40Vは、-40Vで前処理2をした後、書き込み電圧Vを零から正側に増加させていったときの容量値の変化を示す。
 特性Cap-30Vは、-30Vで前処理2をした後、書き込み電圧Vを零から正側に増加させていったときの容量値の変化を示す。
 特性Cap-20Vは、-20Vで前処理2をした後、書き込み電圧Vを零から正側に増加させていったときの容量値の変化を示す。
 いずれも、前処理は印加電圧を10秒間加え容量を固定し、その後、電圧を変化させている。
 図11より、始めに飽和容量値が得られる+110V,-110Vの前処理電圧を印加した場合の方が、それよりも絶対値の小さい前処理電圧を始めに印加した場合よりも、書き込み電圧のよる容量変化の変化幅、すなわち容量値の最小値から最大値までの変化量ΔCが大きくなる。
 図11から明らかなように、負のDC印加電圧による前処理において、飽和した容量が分極のヒステリシス特性の抗電界-Ecに相当する電圧-Vcに向って下がり始める減極電圧のところから、分極反転させた飽和電圧まで、再書き込みの前処理は可能である。但し、この場合、負の前処理電圧は、-Vcより大きな電圧を印加する場合の方が、次の正の電圧で容量を書き込む場合、幅、すなわち変化量ΔCが大きく取れる。再書き込みの処理領域は、-Vcより、容量が上がりきる、すなわち容量変化の電界微分が零になる領域の電圧(V=V(dC/dV=0))までが、現実的には有効である。
 容量を再書き込みするには、前に書き込まれた容量に対応する書き込み電圧より大きい電圧を印加することにより、前に書き込まれた容量より大きい容量に再書き込みすることができる。一方、容量の再書き込みに際して、実際には前の書き込み状態が分からないので、一旦大きな電圧を印加して分極処理し、その状態から、書き込み電圧を制御すれば、所要の容量値を容易に利便的に書き込むことができる。
 本発明の実施の形態に係る可変容量素子としては、上記図10、図11の特性を利用して、所要分極率が得られる分極処理による分極電圧の大きさを選定することにより、制御電圧(DCバイアス電圧)にて容量値の変化量ΔCを任意に制御できるように構成することができる。例えば、強誘電体材料層に対してポーリング処理された可変容量素子において、そのポーリング処理による分極方向とは異なる逆極性の電圧を印加して、所要の分極率を有する再分極処理を行う。その再分極処理での印加電圧の大きさにより、再書き込みの容量の変化量ΔCを制御、すなわち再書き込みの容量の増減勾配と増減幅を任意に制御できるように、本実施の形態に係る可変容量素子を構成することができる。
 本発明の実施の形態に係る可変容量素子は、分極を減極させる減極電界に対応した電圧から分極反転飽和電界に対応した電圧にて容量をリセットし、容量を再書き込みし、再書き込みにおける電圧の大きさにより、容量値の変化量を制御するように構成することができる。
 図12に、分極処理と負の前処理電圧-Vdcを印加した処理後における容量値のDCバイアス電圧依存性を示す。PZTを用いた容量素子による試料に、前述の図4aで示される電圧の方向で+110Vを印加して分極処理を行う。次に、前処理として、負の前処理電圧(DC電圧)-Vdcをパラメータとして振り、その各前処理後の容量変化によるDCバイアス電圧を測定した。測定の交流条件は、120Hz、500mVacである。なお、前処理電圧の極性とDCバイアス電圧の極性は、分極の方向の正を基準にしている。
 図12では、前処理2電圧Vdcを、0V、-25V,-30V、-31.5V、-50V,-110V、+32Vにおける、それぞれの容量のDCバイアス特性変化を測定した。負の前処理電圧を大きくすることで、はじめ右上がりでリニアで大きな容量変化を示すが、負の前処理電圧を大きくすると容量変化が小さくなり、電圧-Vcに相当するVdc=-31.5Vで容量の変化しないプロット領域が現れた。各容量のリニアな変化は、抗電界より小さい電圧領域で電圧を印加しているからである。またVdcの容量が変化しないプロット領域の出現は、ここでは、電圧の制御であるが、温度処理で分極を消去し、DCバイアス電圧で容量が変化しないVc以下のDCバイアス特性の変化に対応している。
 この負の抗電界(-Vc)に相当する電圧を越える前処理電圧を印加すると、今度は容量変化の増減の極性が変わり、左下がりの変化に転ずる。更に負の前処理電圧を大きくすると容量変化の割合が大きく変化する特性が得られる。すなわち、0Vを含み負の前処理電圧の大きさで容量変化の勾配(傾き)θと容量の変化量ΔCを変えられることができる。
 図13は、容量変化の絶対値変化を、負の前処理電圧を0Vの容量を基準に相対変化させて表示にした図である。測定するDCバイアス電圧の極性を変えれば、容量の増減変化する極性(容量の右上がり、左下がりの変化)は電圧に対して反転していることが分かる。
 図14に、負の前処理電圧による容量のDCバイアス依存性の概要を示す。図14は、図12と図13から、前処理電圧による容量変化を、特に、各負の前処理電圧に対応した容量とその前処理後においてDCバイアス電圧による容量変化を、視覚的な特性変化として示した概要図である。容量のDCバイアス特性による変化量とその変化勾配は、負の前処理電圧を印加しない0Vの時が左上がりで一番大きく、負の前処理電圧を印加して行くと、その容量変化量と傾きは小さくなりV=-Vcにて極小容量で容量変化は零となる。そしてV=-Vcを越えると再び、容量の増減変化の極性を変えて変化し、増大して行くことが分かる。
 本実施の形態に係る可変容量素子としては、上記図12から図14に示す特性を利用して、所要分極率が得られる分極処理による分極電圧の大きさを選定することにより、制御電圧(DCバイアス電圧)による容量の変化の傾きθ、容量値の変化量ΔC′を任意に制御できるように構成することができる。例えば、強誘電体材料層に対してポーリング処理された可変容量素子において、そのポーリング処理による分極方向とは異なる逆極性の電圧を印加して、所要分極率を有する再分極処理を行う。その再分極処理での印加電圧の大きさにより、制御電圧による容量の変化の傾きθ、変化量ΔC′を任意に制御できるように、本実施の形態に係る可変容量素子を構成することができる。
 上述の本発明の実施の形態に係る可変容量素子は、例えば後述する電源回路などの各種の用途に応じた電子デバイスに適用することができる。このため、本発明では、上述した特性を有する可変容量素子を備えた電子デバイスを構成することができる。
 また、上述の本発明の実施の形態に係る可変容量素子は、ICカードや携帯電話などの通信モバイル機器に適用することができる。従って、本発明は、上述した特性を有する可変容量素子を備えた通信モバイル機器を構成することができる。特に、モバイル機器におけるアンテナ通信の電波の周波数を選択するチューニング回路の容量素子に適用することができる。このときは、制御電圧を、0Vを中心に正負にわたる範囲で制御してリニアに容量が可変される可変容量素子を組み込むことが好ましい。
 本実施の形態に係る通信モバイル機器によれば、例えば制御電圧を、0Vを中心に正負にわたる範囲で制御して静電容量を可変できる可変容量素子をチューニング回路に組み込む構成とすることにより、静電容量の可変範囲が増大すると共に、電圧が加わっていないときにも、モバイル機器における中心周波数がずれることがない。因みに、従来の0Vから正側、例えば5Vまでの間で容量変化させる可変容量素子を用いて、機器における周波数を合わせる際、センターの2.5Vのとき中心周波数とし、0Vのときマイナス周波数、5Vのときプラス周波数としなければならない。この機器では電圧を加えないときには中心周波数がずれてしまう。例えば、ICカードでは、電圧が無い不使用の状態から使用する際には周波数がずれたところから始まることになる。本実施の形態に組み込まれる可変容量素子は0Vを中心に正負にわたり容量を可変できるので、電圧を印加しないときでも常に0Vを中心周波数とすることができ、利便性が高い。携帯電話、ICカードなどの通信モバイル機器に適用して好適である。
 図15に、本発明に係る電子デバイスの一例である電源回路すなわち電源装置を示す。
 本実施の形態に係る電源装置は、シリーズレギュレータ方式の電源装置である。本実施の形態においては、AC回路51の電源トランス53の2次側に、上述した本発明に係る可変容量素子からなるスタビライザー54(図16に於いて電圧制御可変コンデンサ211)を有して構成される。
 先に、電圧制御可変コンデンサ211の構成を説明する。電圧制御可変コンデンサ211は、例えば、図16で示すように、4つの可変容量素子32(C1)、33(C2)、34(C3)、35(C4)がブリッジに接続される。そして、電圧制御可変コンデンサ211は、ブリッジに接続された一方の対向する接続端のそれぞれにAC入力端子36及びAC接続端子37を導出し、他方の対向する接続端のそれぞれに正(+)制御端子38及び負(-)制御端子39を導出して構成される。
 電圧制御可変コンデンサ211の動作を説明する。AC入力端子36にAC入力電圧が供給されると、可変容量素子32~35の各電極間に電界が発生し、この電界により発生した電位によるAC出力がAC出力端子37に出力される。一方、制御端子38にDCの制御信号の+電位が、制御端子39に制御信号のー電位が、それぞれ抵抗器Rを介して供給される。+電位、-電位の制御信号が供給されると、各可変容量素子32~35の容量が可変し、全体として電圧制御可変コンデンサ211の容量が可変する。この可変された容量とAC入力電位に応じてAC出力端子37から出力されるAC出力電位が制御される。この電圧制御可変コンデンサ211は、制御端子38,39間に供給される+電位,-電位の制御信号の絶対値が同じで、かつ逆極性とする作動方式としている。これにより、AC入出力端子36,37に生じる制御信号の電圧成分が相殺され常にゼロ電位となる。従って、AC入力、AC出力の信号への影響はなくすことができる。
 さて、上記電源装置においては、AC電源として交流100Vの商用電源52が電源トランス53の1次巻線の両端間に接続される。
 この電源トランス53は商用電源52を約交流9Vに降圧するように構成される。電源トランス53の2次巻線は、その一端がスタビライザー54を介してDC回路55のダイオードブリッジより成る整流回路56の一方の入力端子に接続され、他端が整流回路の他方の入力端子に接続される。すなわち、スタビライザー54では、AC入力端子36が電源トランス53の2次巻線の一端で接続され、AC出力端子37が整流回路56の一方の入力端子に接続される。
 スタビライザー54の制御信号入力端子(+)38は、エラーアンプを構成する差動増幅回路58の非反転出力端子に接続される。スタビライザー54の制御信号入力端子(-)39は、差動増幅回路58の反転出力端子に接続される。本例では、スタビライザー54の制御信号入力端子(+)38及び制御信号入力端子(-)39に、差動増幅回路58の非反転出力端子及び反転出力端子から絶対値が同じで極性が異なる差動方式の制御信号が供給される。
 整流回路56の一方及び他方の出力端子間には、平滑用コンデンサCが接続される。
 整流回路56及び平滑用コンデンサCで平滑された直流電圧VUNREGは、3端子の8Vの定電圧回路(レギュレータ)57を介して直流電圧の一方及び他方の出力端子59に供給される。この一方及び他方の出力端子59間に平滑用コンデンサCが接続される。
 本例においては、この整流回路56の出力側に得られる平滑直流電圧VUNREGがエラーアンプを構成する差動増幅回路58の一方の入力端子に供給される。これと共にこの差動増幅回路58の他方の入力端子が基準電圧例えば9Vの電池を介して接地される。
 本実施の形態に係る電源装置では、整流回路56の出力側の平滑直流電圧VUNREGが差動増幅回路58により基準電圧と比較される。この比較結果は片電源動作可能な差動増幅回路58により差動増幅され、スタビライザー54の制御信号入力端子(+)及び制御信号入力端子(-)にフィードバックされる。
 このスタビライザー54により、整流回路56の出力側の平滑直流電圧VUNREGが安定した基準電圧の9Vになるように制御される。
 ここで、3端子定電圧回路57における電力損失は、数1式で表される。
[数1]
  (VUNREG-8)V×IL
 また、スタビライザー54を設けないとき、整流出力電圧VUNREGは、9V<VUNREG<16Vの範囲で変動する。スタビライザー54を設けることにより、整流出力電圧VUNREGは、9V<VUNREG<9.4Vの範囲に収束する。
 従って、損失改善分は、数2式で表される。
[数2]
  (16-9.4)V×IL(IL=0.26A)
 すなわち、従来の電源装置では本実施の形態に係るスタビライザー54が設けられていないので、電源トランス53の出力電圧は、交流100V入力時、整流出力電圧VUNREGで16VIL=0.26A)である。この場合、設計マージンを考慮しなければならないために最大定格時に、数3式で示す電力損失PWが3端子定電圧回路57で生じてしまう。
[数3]
  (16-8)V×0.26A=2.08W
 これに対し、本実施の形態では、整流回路56の出力側を9.0Vになるようにスタビライザー54で制御しているので、設計マージンを考慮して、この電力損失PWは、数4式で示すものとなる。
[数4]
  (9.4-8)V×0.26A=0.364W
 従って、本実施の形態に係る電源装置によれば、約1.7Wの大幅な省エネが達成できる。

Claims (12)

  1.  強誘電体材料層を挟んで対の電極が形成され、
     前記強誘電体材料層に電界による分極のヒステリシス特性の抗電界以上の分極処理が施されて成り、前記電極に印加される制御電圧に応じて静電容量が可変される
     可変容量素子。
  2.  前記分極処理が施された前記強誘電体材料層の分極状態が未飽和状態である
     請求項1記載の可変容量素子。
  3.  分極のヒステリシス特性の抗電界未満において、制御電圧0Vの静電容量を中心として、 印加される制御電圧に応じて静電容量がリニアに可変される
     請求項1記載の可変容量素子。
  4.  印加する前記制御電圧は、正側、負側、または正負にわたる範囲で制御される
     請求項1記載の可変容量素子。
  5.  印加する前記制御電圧は、0Vを中心に±ΔVで制御される
     請求項4記載の可変容量素子。
  6.  単一極性電源を用い、印加する制御電圧の正負の極性を切り換えて、静電容量を可変さ
     せる
     請求項1記載の可変容量素子。
  7.  分極を減極させる減極電界に対応した電圧から分極反転飽和電界に対応した電圧にて容量をリセットし、容量を再書き込みし、再書き込みにおける電圧の大きさにより、容量値の変化量を制御する
     請求項1記載の可変容量素子。
  8.  分極処理に於ける印加電圧の大きさにより、制御電圧による容量の変化勾配と変化量を制御する
     請求項1記載の可変容量素子。
  9.  強誘電体材料層を挟んで対の電極を有し、前記強誘電体材料層に分極のヒステリシス特性の抗電界以上の分極処理が施された可変容量素子の制御方法であって、
     前記電極に印加する制御電圧を、0Vを中心に±ΔVで制御して静電容量を可変制御する
     可変容量素子の制御方法。
  10.  強誘電体材料層を挟んで対の電極を有し、前記強誘電体材料層に分極のヒステリシス特性の抗電界以上の分極処理が施された可変容量素子の制御方法であって、
     単一極性電源を用い、前記電極に印加する制御電圧の正負の極性を切り替えて、静電容量を可変制御する
     可変容量素子の制御方法。
  11.  強誘電体材料層を挟んで対の電極が形成され、
     前記強誘電体材料層に分極のヒステリシス特性の抗電界以上の分極処理が施されて成り、
     前記電極に印加される制御電圧に応じて静電容量が可変される可変容量素子
     を備えて成る電子デバイス。
  12.  強誘電体材料層を挟んで対の電極が形成され、
     前記強誘電体材料層に分極のヒステリシス特性の抗電界以上の分極処理が施されて成り、
     前記電極に印加される制御電圧に応じて静電容量が可変される
     可変容量素子
     を備えて成る通信モバイル機器。
PCT/JP2009/052331 2008-02-29 2009-02-12 可変容量素子とその制御方法、電子デバイス及び通信モバイル機器 WO2009107488A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09714433A EP2249357A1 (en) 2008-02-29 2009-02-12 Variable-capacitance element, method for controlling variable-capacitance element, electronic device and communication mobile apparatus
CN2009801058613A CN101952917B (zh) 2008-02-29 2009-02-12 可变电容器及其控制方法、电子装置和通信移动装置
US12/918,754 US8385045B2 (en) 2008-02-29 2009-02-12 Variable capacitor, control method thereof, electronic device and communication mobile device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008051363A JP4888418B2 (ja) 2008-02-29 2008-02-29 可変容量素子とその制御方法、電子デバイス及び通信モバイル機器
JP2008-051363 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009107488A1 true WO2009107488A1 (ja) 2009-09-03

Family

ID=41015889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052331 WO2009107488A1 (ja) 2008-02-29 2009-02-12 可変容量素子とその制御方法、電子デバイス及び通信モバイル機器

Country Status (6)

Country Link
US (1) US8385045B2 (ja)
EP (1) EP2249357A1 (ja)
JP (1) JP4888418B2 (ja)
KR (1) KR20100134563A (ja)
CN (1) CN101952917B (ja)
WO (1) WO2009107488A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748646A (zh) * 2011-08-19 2014-04-23 卡文迪什动力有限公司 用于rf应用的mems可变电容器的布线

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737253B2 (ja) * 2008-08-29 2011-07-27 ソニー株式会社 非接触受信装置
US9252704B2 (en) * 2011-05-20 2016-02-02 The United States Of America As Represented By The Secretary Of The Army Voltage tunable oscillator using bilayer graphene and a lead zirconate titanate capacitor
US9438129B2 (en) 2011-10-06 2016-09-06 Cesar Ladron de Guevara Input/output power and signal transfer isolator device
JP6122307B2 (ja) * 2013-02-22 2017-04-26 デクセリアルズ株式会社 可変容量回路、可変容量デバイス、共振回路、増幅回路及び電子機器
KR101429160B1 (ko) * 2013-06-21 2014-09-23 한국과학기술원 멀티비트 메모리 소자
DE102014219374A1 (de) * 2014-09-25 2016-03-31 Siemens Aktiengesellschaft Vorrichtung mit einstellbarem Kapazitätswert zum Abstimmen eines schwingfähigen Systems, schwingfähiges System und Energieübertragungssystem
US9679893B2 (en) * 2015-05-15 2017-06-13 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and transistor
JP6679967B2 (ja) * 2016-02-08 2020-04-15 富士電機株式会社 半導体素子の駆動装置
UA115716C2 (uk) * 2016-04-18 2017-12-11 Генрік Генрікович Шумінський Генератор електроенергії
RU2016124959A (ru) * 2016-06-22 2017-12-25 Евгений Анатольевич Обжиров Способы производства электродов для конденсатора переменной емкости
US10931192B2 (en) * 2016-09-09 2021-02-23 Texas Instruments Incorporated Discrete capacitor structure
CN108109844B (zh) * 2016-11-25 2021-08-31 南通华表新材料科技开发有限公司 压电陶瓷电容器的增容用途
CN109119248A (zh) * 2017-06-23 2019-01-01 北京北方华创微电子装备有限公司 可调电容及阻抗匹配装置
JP2019179827A (ja) * 2018-03-30 2019-10-17 ソニーセミコンダクタソリューションズ株式会社 半導体記憶装置及び積和演算装置
CN111880018B (zh) * 2020-06-29 2022-02-11 西安交通大学 一种铁电晶体矫顽场强的测量装置及方法
JP2022040657A (ja) * 2020-08-31 2022-03-11 セイコーエプソン株式会社 圧電デバイス、液体吐出ヘッド、液体吐出装置、及び、圧電デバイスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182857A (ja) * 1991-12-27 1993-07-23 Rohm Co Ltd 薄膜コンデンサ
JPH10223475A (ja) 1997-01-31 1998-08-21 Mitsubishi Materials Corp コンデンサ容量の調整方法
JP2000101345A (ja) 1998-09-22 2000-04-07 Tdk Corp 電圧制御発振器
JP2005286658A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1290752A1 (en) * 2000-05-02 2003-03-12 Paratek Microwave, Inc. Voltage tuned dielectric varactors with bottom electrodes
SE520018C2 (sv) * 2001-05-09 2003-05-06 Ericsson Telefon Ab L M Ferroelektriska anordningar och förfarande relaterande därtill
JP2003133531A (ja) * 2001-10-26 2003-05-09 Fujitsu Ltd 電子装置とその製造方法
US7030463B1 (en) * 2003-10-01 2006-04-18 University Of Dayton Tuneable electromagnetic bandgap structures based on high resistivity silicon substrates
US7990749B2 (en) * 2009-06-08 2011-08-02 Radiant Technology, Inc. Variable impedance circuit controlled by a ferroelectric capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182857A (ja) * 1991-12-27 1993-07-23 Rohm Co Ltd 薄膜コンデンサ
JPH10223475A (ja) 1997-01-31 1998-08-21 Mitsubishi Materials Corp コンデンサ容量の調整方法
JP2000101345A (ja) 1998-09-22 2000-04-07 Tdk Corp 電圧制御発振器
JP2005286658A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Landolt-Bornstein", FERROELECTRICS AND RELATED SUBSTANCES, vol. 16, 1981

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748646A (zh) * 2011-08-19 2014-04-23 卡文迪什动力有限公司 用于rf应用的mems可变电容器的布线

Also Published As

Publication number Publication date
CN101952917B (zh) 2012-09-05
EP2249357A1 (en) 2010-11-10
CN101952917A (zh) 2011-01-19
JP2009212167A (ja) 2009-09-17
KR20100134563A (ko) 2010-12-23
US8385045B2 (en) 2013-02-26
US20100321857A1 (en) 2010-12-23
JP4888418B2 (ja) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4888418B2 (ja) 可変容量素子とその制御方法、電子デバイス及び通信モバイル機器
JP4737253B2 (ja) 非接触受信装置
CN104377035B (zh) 电容装置和谐振电路
Vijatović et al. History and challenges of barium titanate: Part II
CN108369866B (zh) 电压可调多层电容器
US8243417B2 (en) Variable capacitor and electronic device
CN111433870B (zh) 高电容可调多层电容器和阵列
JP2023139080A (ja) 電圧調整可能な積層キャパシタの制御システムおよび方法
WO2009107489A1 (ja) 可変容量素子、可変容量素子の調整方法、可変容量デバイス、及び電子機器
CN101859644A (zh) 变容元件和电子设备
JP5313904B2 (ja) 積層型圧電/電歪素子の分極処理方法
JP2004311512A (ja) 多値情報記憶素子、その使用方法およびその製造方法
JPS62230068A (ja) 圧電素子の駆動方法
JP5085753B2 (ja) 可変容量素子及び共振回路
JP2008166484A (ja) 可変容量素子及びそれを用いた可変フィルタ
JP2014036022A (ja) チューナブルキャパシタ
JPH04273184A (ja) バイモルフ型変位素子
JPH1167592A (ja) 可変コンデンサ
KR20190058274A (ko) 압전 액추에이터의 구동 장치 및 방법
JPH04340281A (ja) 圧電バイモルフ変位素子
JPH059912B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105861.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714433

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009714433

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107018405

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12918754

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE