WO2009107346A1 - 回路板および回路板の製造方法 - Google Patents

回路板および回路板の製造方法 Download PDF

Info

Publication number
WO2009107346A1
WO2009107346A1 PCT/JP2009/000738 JP2009000738W WO2009107346A1 WO 2009107346 A1 WO2009107346 A1 WO 2009107346A1 JP 2009000738 W JP2009000738 W JP 2009000738W WO 2009107346 A1 WO2009107346 A1 WO 2009107346A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
board according
substrate
coating layer
conductor
Prior art date
Application number
PCT/JP2009/000738
Other languages
English (en)
French (fr)
Inventor
近藤正芳
小宮谷壽郎
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN200980107025.9A priority Critical patent/CN101965759A/zh
Priority to US12/865,731 priority patent/US20100326712A1/en
Priority to JP2010500551A priority patent/JPWO2009107346A1/ja
Publication of WO2009107346A1 publication Critical patent/WO2009107346A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4635Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating flexible circuit boards using additional insulating adhesive materials between the boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases

Definitions

  • the present invention relates to a circuit board and a method for manufacturing the circuit board.
  • the build-up method is a method in which interlayer connection is made between single layers while a resin layer composed of only a resin and a conductor layer are stacked.
  • This build-up method is roughly classified into a method of connecting vias after forming a via hole in a resin layer and a method of laminating resin layers after forming an interlayer connecting part.
  • the interlayer connection portion is divided into a case where the via hole is formed by plating and a case where the via hole is formed by a conductive paste.
  • a fine via hole for interlayer connection is formed in a resin layer with a laser, and the via hole is filled with a conductive adhesive such as copper paste.
  • a conductive adhesive such as copper paste.
  • a method of obtaining an electrical connection with a conductive adhesive is disclosed (for example, see Patent Document 1).
  • the electrical connection between layers is performed with a conductive adhesive, the reliability may not be sufficient.
  • advanced technology for embedding a conductive adhesive in a fine via hole is required, and it is difficult to cope with further miniaturization of the wiring pattern.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a circuit board having good connection reliability and a method for manufacturing the circuit board.
  • a circuit board includes a first substrate including a first base, a protrusion protruding from the first base, and a conductor post formed of a metal coating layer covering the protrusion.
  • a second substrate including a second base material and a conductor circuit is laminated and bonded via an interlayer adhesive, and alloyed at a joint surface between the metal coating layer and the conductor circuit, and
  • the cross-sectional shape of the metal coating layer in a cross-sectional view of the joint surface is a shape that widens from the joint surface of the conductor circuit toward the first substrate.
  • the cross-sectional shape of the metal coating layer in a cross-sectional view of the joint surface is a shape that widens from the joint surface of the conductor circuit toward the first substrate.
  • the circuit board manufacturing method includes a conductor post having a first base material and a metal covering layer that covers the projecting portion and has a projecting portion that projects from the first base material.
  • a conductor post having a first base material and a metal covering layer that covers the projecting portion and has a projecting portion that projects from the first base material.
  • Preparing a first substrate comprising: a second substrate comprising: a second base material; and a conductor circuit formed on one surface side of the second base material and receiving the conductor post.
  • the circuit board can be provided with a method of manufacturing a circuit board that is less likely to flow out of the interlayer adhesive and is excellent in productivity and yield.
  • the interlayer adhesive has a polyfunctional epoxy resin (a) having three or more glycidyl ether groups and an epoxy equivalent of 100 to 300, and a carboxyl group having a melting point of 50 ° C. or higher and 230 ° C. or lower.
  • curing agent (c) may be included.
  • the boiling point or decomposition temperature of the compound (b) having a carboxyl group may be 240 ° C. or higher.
  • a synthetic rubber-based elastomer may be included.
  • the novolak phenol resin may be included as a hardening
  • FIG. 1A is a sectional view of a first substrate
  • FIG. 1B is a sectional view of a second substrate
  • 2 is a first step
  • FIG. 3 is a second step
  • FIG. 4 is a cross-sectional view showing a bonding step.
  • the circuit board 68 shown in the present embodiment includes a first base 12, a protrusion 14 protruding from the first base 12, and a metal coating layer 15 covering the protrusion 14.
  • a first substrate 16 having a conductor post 45, a second base material 19 and a second substrate 18 having a conductor circuit 17 are laminated and bonded via an interlayer adhesive 13, and a metal coating layer 15 and the conductor circuit 17 are alloyed to form a metal alloy layer 41.
  • the cross-sectional shape of the metal coating layer 15 in the cross-sectional view of the joint surface 43 is a circuit board 68 that is widened from the joint surface 43 of the conductor circuit 17 toward the first substrate 16.
  • Examples of the material constituting the first and second substrates 12 and 19 include fiber substrates and resin films.
  • a fiber base material for example, a glass fiber base material such as a glass fiber cloth and a glass non-fiber cloth, or an inorganic fiber base material such as a fiber cloth or a non-fiber cloth containing an inorganic compound other than glass, an aromatic polyamide resin, a polyamide resin, an aromatic fiber
  • organic fiber base materials composed of organic fibers such as polyester resin, polyester resin, polyimide resin, and fluorine resin.
  • polyimide resin film such as polyimide resin film, polyetherimide resin film, polyamideimide resin film, polyamide resin film such as polyamide resin film, polyester resin film such as polyester resin film A film is mentioned.
  • a polyimide resin film is mainly preferable. Thereby, especially an elasticity modulus and heat resistance can be improved.
  • the thickness of the base materials 12 and 19 is not particularly limited, but is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, and further preferably 12.5 to 25 ⁇ m. When the thickness is within the above range, the flexibility is particularly excellent.
  • Examples of the metal foil constituting the conductor pad 11 and the conductor circuit 17 include iron, aluminum, stainless steel, and copper. Among these, copper is preferably used as the metal foil from the viewpoint of electrical characteristics.
  • the thickness of the metal foil is not particularly limited, but is preferably 5 to 35 ⁇ m, and particularly preferably 8 to 18 ⁇ m.
  • the shape of the metal coating layer 15 preferably has a cup-like shape that spreads toward the first substrate 16.
  • the tip is formed while being deformed, and the cross-sectional shape of the metal coating layer 15 in the cross-sectional view of the joint surface 43 is The shape is such that the width is increased from the joint surface 43 of the conductor circuit 17 toward the first substrate 16.
  • the metal coating layer 15 may be formed so as to surround the protruding portion 14 on the surface of the first base 12 that faces the first base 12. .
  • the shape formed so as to surround the shape may be not only a circular shape but also a square shape, an elliptical shape, or the like.
  • the metal coating layer 15 may be widened such as a cup-shaped shape that expands toward the first substrate 16 or a bowl-shaped shape that expands in diameter.
  • At least 1 type of metal selected from the group which consists of gold, silver, nickel, tin, lead, zinc, bismuth, antimony, copper, or this metal is included. Composed of alloy. Examples include tin-lead, tin-silver, tin-zinc, tin-bismuth, tin-antimony, tin-silver-bismuth, and tin-copper, but are limited to metal combinations and compositions. What is necessary is just to select an optimal thing.
  • the maximum value of the thickness of the metal coating layer 15 is not particularly limited, but is preferably 2 ⁇ m or more, and particularly preferably 3 to 20 ⁇ m. When the thickness is within the above range, the connection between the conductor post 45 and the conductor circuit 17 is excellent in stability, thereby improving the reliability.
  • the thickness of the interlayer adhesive 13 is not particularly limited, but is preferably 8 to 30 ⁇ m, and particularly preferably 10 to 25 ⁇ m. When the thickness is within the above range, it is particularly excellent in both adhesiveness and suppression of bleeding of the adhesive.
  • the interlayer adhesive 13 includes a method of applying a liquid to the first substrate 12 and a method of heating and pressing with a vacuum laminator or the like, but the latter is simpler and the thickness of the interlayer adhesive 13 is stabilized.
  • the interlayer adhesive 13 preferably has a flux function that is a function of cleaning the metal surface.
  • the interlayer adhesive 13 is an adhesive having a function of removing an oxide film existing on the metal surface and a function of reducing the oxide film.
  • the first preferred interlayer adhesive 13 includes a polyfunctional epoxy resin (a) having three or more glycidyl ether groups and an epoxy equivalent of 100 to 300, and a melting point of 50 ° C. or higher and 230 ° C. or lower. And a compound (b) having a carboxyl group and a curing agent (c).
  • the interlayer adhesive 13 includes a polyfunctional epoxy resin (a) having three or more glycidyl ether groups and an epoxy equivalent of 100 to 300. Thereby, it can be set as the interlayer adhesive 13 excellent in heat-resistant reliability.
  • polyfunctional epoxy resin (a) For example, phenol novolak epoxy resin, cresol novolak epoxy resin, glycidyl amine type epoxy resin, aminotriazine phenol novolak epoxy resin, aminotriazine cresol novolak epoxy resin, naphthalene skeleton type Epoxy resins and cyclopentadiene type epoxy resins can be used alone or in combination.
  • naphthalene skeleton type tetrafunctional epoxy resin, glycidylamine type trifunctional epoxy resin and trifunctional solid epoxy resin are preferable.
  • the content of the polyfunctional epoxy resin (a) is not particularly limited, but when the polyfunctional epoxy resin (a) and the curing agent (c) are combined to be 100 parts by weight, 60 parts by weight or more and 80 parts by weight or less. Is preferred. When the content is within this range, the adhesion is excellent.
  • the interlayer adhesive 13 includes a compound (b) having a carboxyl group having a melting point of 50 ° C. or higher and 230 ° C. or lower.
  • the boiling point or decomposition temperature of the compound (b) having a carboxyl group may be 240 ° C. or higher.
  • the compound having a carboxyl group is formed by forming an oxide film of the receiving side conductor circuit when the conductor post formed with the metal coating layer and the conductor circuit are joined to each other by melting the metal coating layer. It functions to remove and remove oxides on the surface of the metal coating layer to improve wettability. Generally, since the temperature at the time of metal bonding is often 240 ° C.
  • the boiling point or decomposition temperature of the compound (b) having a carboxyl group is preferably 240 ° C. or higher.
  • the reliability may be deteriorated because voids (cavities) are generated between layers or delamination occurs.
  • the melting point is preferably 230 ° C. or lower.
  • the compound (b) having a carboxyl group may flow out from the interlayer adhesive layer, and therefore the melting point is preferably 50 ° C. or higher.
  • the content of the carboxyl group-containing compound (b) is preferably 3 parts by weight or more and 15 parts by weight or less when the polyfunctional epoxy resin (a) and the curing agent (c) are combined to be 100 parts by weight. .
  • the metal surface is excellent in reducing property and can be a good metal joint.
  • it is set as a sheet-like carrier material, it is excellent in workability as a film.
  • the interlayer adhesive 13 may further include a synthetic rubber-based elastomer.
  • a synthetic rubber-based elastomer can be preferably used since a carboxylic acid-modified elastomer has good adhesion to a polyimide film.
  • common commercially available products such as carboxylic acid-modified NBR, carboxylic acid-modified acrylic rubber, and carboxylic acid-modified butadiene rubber may be used.
  • the content of the synthetic rubber elastomer is not particularly limited, but when the combined amount of the polyfunctional epoxy resin (a) and the curing agent (c) is 100 parts by weight, it is preferably 5 parts by weight or more and 30 parts by weight or less. When the content is within this range, the interlayer adhesive 13 having an excellent balance between adhesion and heat resistance can be obtained.
  • the synthetic rubber elastomer preferably has a weight average molecular weight of 500,000 or more. Thereby, it can be set as the interlayer adhesive 13 excellent in the moldability at the time of heat-pressing.
  • the interlayer adhesive 13 may contain a novolak phenol resin as the curing agent (c).
  • the novolak phenol resin is not particularly limited, but is preferably an aminotriazine novolak type phenol resin or an aminotriazine cresol novolak type phenol resin. Due to the presence of amino groups, some of the epoxy groups react with the heat during coating, resulting in a B-stage. Thereby, seepage at the time of lamination press is suppressed. Further, nitrogen in the triazine part contributes to flame retardancy.
  • the content of the novolak phenol resin is not particularly limited, but it is preferably 0.8 to 1.2 equivalents relative to the polyfunctional epoxy resin (a) included in the present invention. When the equivalent weight is within this range, the interlayer adhesive 13 having excellent curability and warpage can be obtained.
  • the interlayer adhesive 13 includes a coupling agent for improving adhesion, an antifoaming agent and a leveling agent for suppressing foaming and repellency during coating, a small amount of a curing accelerator and an inorganic filler for adjusting gel time, and the like. It is also possible to add.
  • the second preferred interlayer adhesive comprises a phenol novolak resin having a phenolic hydroxyl group, a cresol novolak resin, an alkylphenol novolak resin, a resole resin, a polyvinylphenol resin, and the like, and a curing agent (B ).
  • Curing agents are epoxidized based on bisphenol, phenol novolac, alkylphenol novolac, biphenol, naphthol, resorcinol and other skeletons such as aliphatic, cycloaliphatic and unsaturated aliphatic skeletons. And epoxy resins and isocyanate compounds.
  • the compounding amount of the resin having a phenolic hydroxyl group is preferably 20 parts by weight or more and 80 parts by weight or less in the total adhesive, and if it is less than 20 parts by weight, the action of cleaning the metal surface is lowered and exceeds 80 parts by weight. As a result, the cured product cannot be obtained, and as a result, the bonding strength and reliability may be lowered.
  • the resin or compound acting as a curing agent is preferably 20 to 80 parts by weight in all adhesives. You may add a coloring agent, an inorganic filler, various coupling agents, a solvent, etc. to an interlayer adhesive as needed.
  • the third preferred interlayer adhesive composition includes bisphenol-based, phenol novolac-based, alkylphenol novolak-based, biphenol-based, naphthol-based, resorcinol-based phenol base, aliphatic, cycloaliphatic, unsaturated aliphatic, etc.
  • the curing agent having an imidazole ring examples include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 2-undecylimidazole, and 2-phenyl-4. -Methylimidazole, bis (2-ethyl-4-methyl-imidazole) and the like.
  • the curable antioxidant is a compound that acts as an antioxidant and can be cured by reacting with the curing agent, such as a compound having a benzylidene structure, 3-hydroxy-2-naphthoic acid, pamoic acid, 2,4-dihydroxy. Examples include benzoic acid and 2,5-dihydroxybenzoic acid.
  • the compounding amount of the epoxy resin is preferably 30 parts by weight to 99 parts by weight in all adhesives, and if it is less than 30 parts by weight, a sufficient cured product may not be obtained.
  • a thermosetting resin such as cyanate resin, acrylic acid resin, methacrylic acid resin, maleimide resin, or thermoplastic resin may be blended.
  • the blending amount of the epoxy resin curing agent and the curable antioxidant that has an imidazole ring is preferably 1 part by weight or more and 20 parts by weight or less, including both in the total adhesive. If it is less than the range, the effect of cleaning the metal surface is lowered, and the epoxy resin may not be sufficiently cured, which is not preferable. If it exceeds 10 parts by weight, the curing reaction proceeds rapidly, and the fluidity of the adhesive layer may be inferior.
  • the epoxy curing agent and the curable antioxidant may be used in combination, or only one component may be used alone.
  • the method for adjusting the interlayer adhesive is, for example, a method in which a resin (A) having a solid phenolic hydroxyl group and a resin (B) acting as a solid curing agent are dissolved in a solvent, and a solid phenolic hydroxyl group is contained.
  • Examples of the method include dispersion or dissolution.
  • Examples of the solvent to be used include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexane, toluene, butyl cell soluble, ethyl cello soluble, N-methyl pyrrolidone, and ⁇ -butyl lactone.
  • a solvent having a boiling point of 200 ° C. or lower is preferable.
  • Step A First, as shown to Fig.1 (a), while having the 1st base material 12 and the protrusion part 14 which protruded from the 1st base material 12, it has the metal coating layer 15 which covers the protrusion part 14, and the conductor post.
  • a first substrate 16 composed of 45 is prepared.
  • a conductor pad 11 is formed on one surface of the first substrate 12.
  • a second base 19 and a conductor circuit 17 that is formed on one surface side of the second base 19 and receives the conductor post 45.
  • a second substrate 18 is prepared.
  • Step B Next, as shown in FIG. 2, the interlayer adhesive 13 is laminated on the conductor post 45 surface side or the conductor circuit 17 surface side, and the conductor post 45 and the conductor circuit 17 are arranged so as to face each other and heated. A first step of applying pressure is performed.
  • Step C Next, as shown in FIG. 3, after the first step, a second step of heating and curing the interlayer adhesive 13 is performed.
  • Step D Next, after the second step, a metal bonding layer 15 is melted to perform a bonding step for metal bonding of the conductor post 45 and the conductor circuit 17.
  • the circuit board 68 can be obtained by a manufacturing method including these steps.
  • Step A A first substrate 16 having a conductor post 45 and a second substrate 18 having a conductor circuit 17 that receives the conductor post 45 are prepared (FIGS. 1A and 1B).
  • the protrusion 14 forms a copper post by, for example, a paste or a plating method. Subsequently, the metal coating layer 15 is formed of an alloy or the like to form a conductor post 45.
  • the height of the protrusion 14 is not particularly limited, but it is preferably 2 to 30 ⁇ m, more preferably 5 to 15 ⁇ m, from the surface of the first base 12 opposite to the surface on which the conductor pads 11 are formed. It is preferable. When the height is in the above range, the connection stability between the conductor post 45 and the conductor circuit 17 is excellent.
  • Step B Next, the first step will be described (FIG. 2).
  • the interlayer adhesive 13 is laminated on the conductor post 45 surface side or the conductor circuit 17 surface side, arranged so that the conductor post 45 and the conductor circuit 17 face each other, heated and pressed, and metal The interlayer adhesive 13 covering the coating layer 15 is removed and the top of the metal coating layer 15 is deformed.
  • the aligned substrate is pressed at a predetermined temperature and pressure in a vacuum.
  • the predetermined temperature is preferably 150 to 200 ° C., particularly 170 to 190 ° C.
  • the predetermined pressure is preferably 1 to 3 MPa, and particularly preferably 1.5 to 2.5 MPa.
  • the pressure is within the above range, the metal coating layer 15 is deformed and the interlayer adhesive 13 between the conductor circuit 17 can be eliminated.
  • the deformed shape of the metal cover layer 15 is widened from the interface between the metal cover layer 15 and the conductor circuit 17 in a cross-sectional view, and the deformation is maintained.
  • the treatment time is preferably from 20 seconds to 10 minutes, particularly preferably from 3 to 7 minutes. When the processing time is within the above range, the interlayer adhesive 13 can be eliminated and the top of the metal coating layer 15 can be crushed.
  • the interlayer adhesive 13 is thermally cured.
  • the temperature is preferably 150 to 200 ° C, particularly 170 to 190 ° C.
  • the treatment time is preferably from 30 minutes to 120 minutes, particularly preferably from 45 to 75 minutes.
  • Step D Next, the joining process will be described (FIG. 4).
  • the metal coating layer 15 is melted and joined to the conductor circuit 17, and the metal alloy layer 41 is formed between the metal coating layer 15 and the conductor post 45 and between the metal coating layer 15 and the conductor circuit 17. Even when the metal coating layer 15 is melted, the shape in which the top portion is deformed is maintained.
  • the reflow temperature is preferably from 240 to 280 ° C, particularly preferably from 250 to 270 ° C. When the temperature is within the above range, the stable metal alloy layer 41 can be formed, and the electrical connection reliability between the first substrate 16 and the second substrate 18 is improved.
  • the treatment time is preferably 1 to 10 minutes, particularly preferably 3 to 8 minutes. Within the above range, the metal alloy layer 41 is formed, and the reliability and productivity are improved.
  • FIG. 5 is a cross-sectional photographic view partially showing the circuit board 68.
  • the first substrate 16 includes a first base 12, a protruding portion 14 that protrudes from the first base 12, and a conductor post 45 that includes a metal coating layer 15 that covers the protruding portion 14.
  • a conductor pad 11 is formed on one surface of the first substrate 12.
  • the second substrate 18 includes a second base material 19 and a conductor circuit 17.
  • the first substrate 16 and the second substrate 18 are laminated and bonded via an interlayer adhesive 13. And it is alloyed by the joint surface 43 of the metal coating layer 15 and the conductor circuit 17, and the metal alloy layer 41 is formed.
  • the cross-sectional shape of the metal coating layer 15 in the cross-sectional view of the bonding surface 43 is a shape that widens from the bonding surface 43 of the conductor circuit 17 toward the first substrate 16.
  • step A Although it is not necessary to carry out from step A to step D continuously, it is preferable to carry out continuously since the working time is shortened and a stable substrate can be obtained.
  • the apparatus is not particularly limited as long as it can obtain a predetermined temperature, pressure, and processing time from the first process to the bonding process, but it is performed using a hot plate heated to a predetermined temperature in advance or rapidly rises. You may perform using a warm heater.
  • Example 1 First, a two-layer single-sided circuit board (SE1310 manufactured by Ube Industries, Ltd.) having a copper foil of 12 ⁇ m and a base material of polyimide film of 25 ⁇ m was prepared, and vias having a diameter of 50 ⁇ m were formed by UV laser from the opposite side of the copper foil. . After performing desmear treatment with plasma, copper plating and lead-free solder plating are performed to form a copper protrusion with a protruding amount of 8 ⁇ m from the base material, and then the metal coating with a thickness of 15 ⁇ m is formed on the protrusion by lead-free solder plating To form a conductor post. Then, a circuit was formed by etching to obtain a first substrate.
  • SE1310 manufactured by Ube Industries, Ltd.
  • a circuit was formed by etching a two-layer double-sided circuit board (NFX-2ABEPFE (25T) manufactured by Mitsui Chemicals) having a copper foil of 12 ⁇ m and a base material having a polyimide film thickness of 25 ⁇ m to obtain a second substrate.
  • NFX-2ABEPFE 25T
  • a base material having a polyimide film thickness of 25 ⁇ m
  • the 13 ⁇ m-thick interlayer adhesive was thermocompression bonded to the first substrate on the conductor post side with a vacuum laminator at 120 ° C. and 0.2 MPa.
  • interlayer adhesive 40 parts by weight of bisphenol A type epoxy resin (Dainippon Ink & Chemicals, Inc., Epiklon 830S), 10 parts by weight of dicyclopentadiene type epoxy resin (DIC, HP-7200: epoxy equivalent 258), novolak type phenolic resin (Sumitomo Bakelite) 25 parts by weight of PR-53647 manufactured by Co., Ltd., 25 parts by weight of acrylic rubber (SG-708-6 manufactured by Nagase Chemtech): 100 parts by weight of acetone, and mixed and stirred to dissolve.
  • bisphenol A type epoxy resin Dainippon Ink & Chemicals, Inc., Epiklon 830S
  • DIC dicyclopentadiene type epoxy resin
  • novolak type phenolic resin Novolak type phenolic resin
  • PR-53647 manufactured by Co., Ltd.
  • acrylic rubber SG-708-6 manufactured by Nagase Chemtech
  • An interlayer adhesive was prepared by coating and drying a PET film having a thickness of 25 ⁇ m treated as an antistatic treatment with a comma knife type coater so that the thickness after drying was 13 ⁇ m.
  • the first substrate conductor post and the second substrate conductor circuit are aligned and laminated by image processing.
  • a first step after thermocompression bonding at 180 ° C. and 2 MPa for 5 minutes in a vacuum press, As a step, after treatment at 180 ° C. for 60 minutes with a dryer, finally, as a joining step, treatment was carried out at 260 ° C. for 5 minutes by reflow.
  • the shape of the obtained metal layer is a shape in which the top part of the solder is deformed and widened to the first substrate in a cross-sectional view, and has excellent connection stability and temperature cycle reliability.
  • the resistance value change rate was 10% or less.
  • Example 2 The same procedure as in Example 1 was performed except that the following interlayer adhesive was used.
  • an interlayer adhesive 40 parts by weight of a naphthalene skeleton type tetrafunctional epoxy resin (Dainippon Ink Chemical Co., Ltd., developed product number EXA-4700: epoxy equivalent 162), dicyclopentadiene type epoxy resin (Dainippon Ink Chemical Co., Ltd.) HP-7200 Epoxy Equivalent 258), 30 parts by weight, 30 parts by weight of novolac type phenolic resin (PR-53647, manufactured by Sumitomo Bakelite Co., Ltd.) and 100 parts by weight of acetone were measured, mixed, stirred and dissolved, and their resin compositions To 100 parts by weight, 3 parts by weight of p-toluic acid (reagent boiling point: 275 ° C., manufactured by Kanto Chemical Co., Inc.) having a melting point of 180 ° C.
  • p-toluic acid reagent boiling point: 275 ° C.,
  • An interlayer adhesive was prepared by coating and drying a PET film having a thickness of 25 ⁇ m treated as an antistatic treatment with a comma knife type coater so that the thickness after drying was 13 ⁇ m.
  • the shape of the obtained metal layer is a shape in which the top part of the solder is deformed and widened to the first substrate in a cross-sectional view, and has excellent connection stability and temperature cycle reliability.
  • the resistance value change rate was 10% or less.
  • Example 3 The first step of Example 1 was treated at 180 ° C. and 2 MPa for 1 minute in a vacuum press, and the joining step was treated at 260 ° C. for 3 minutes by reflow, and the following was used as an interlayer adhesive The procedure was the same as in Example 1 except that.
  • the shape of the obtained metal layer is a shape in which the top part of the solder is deformed and widened to the first substrate in a cross-sectional view, and has excellent connection stability and temperature cycle reliability.
  • the resistance value change rate was 10% or less.
  • Example 4 The same procedure as in Example 1 was performed except that the following interlayer adhesive was used.
  • Example 2 Except that p-toluic acid of Example 2 was changed to benzophenone-2-carboxylic acid (manufactured by Kanto Chemical Co., Inc.) having a melting point of 128 ° C., a comma coater was used so that the adhesive thickness was 13 ⁇ m. The coating was dried to produce an interlayer adhesive.
  • benzophenone-2-carboxylic acid manufactured by Kanto Chemical Co., Inc.
  • the shape of the obtained metal layer is a shape in which the top part of the solder is deformed and widened to the first substrate in a cross-sectional view, and has excellent connection stability and temperature cycle reliability.
  • the resistance value change rate was 10% or less.
  • Example 1 The first step of Example 1 was performed in the same manner as in Example 1 except that the vacuum press was performed at 260 ° C. and 2 MPa for 5 minutes to melt the solder and not perform reflow. As a result, as shown in FIG. 6, the shape of the obtained metal layer was a shape that was widened to the second substrate in a cross-sectional view. Further, since the solder was melted before the interlayer adhesive 13 was cured, the interlayer adhesive was spotted.
  • Example 2 The same operation as in Example 1 was performed except that the first step of Example 1 was not performed. As a result, the interlayer adhesive was not removed from the top of the metal coating layer in the first step, and the connection with the conductor circuit was not sufficiently performed.

Abstract

 接続信頼性を維持しつつ、多層積層に用いる層間接着剤の流れ出しが少ない回路板および回路板の製造方法を提供する。  回路板68は、第一の基材12と、第一の基材12より突出した突出部14および突出部14を覆う金属被覆層15から構成される導体ポスト45とを備える第一の基板16と、第二の基材19と、導体回路17とを備える第二の基板18と、が層間接着剤13を介して積層接着され、金属被覆層15と導体回路17との接合面43で合金化されるとともに、接合面43の断面視における金属被覆層15の断面形状は、導体回路17の接合面43から第一の基板16に向かって拡幅する形状であることを特徴とする。

Description

回路板および回路板の製造方法
 本発明は、回路板および回路板の製造方法に関する。
 近年、電子機器の高密度化に伴い、これに用いられるフレキシブルプリント配線板等の回路板の多層化が進んでいる。このような多層の回路板を積層する技術として、ビルドアップ法が採用されている。ビルドアップ法とは、樹脂のみで構成される樹脂層と導体層とを積み重ねながら、単層間で層間接続をする方法である。
 このビルドアップ法は、樹脂層にビアホールを形成してから層間接続する方法と、層間接続部を形成してから樹脂層を積層する方法に大別される。また、層間接続部は、ビアホールをめっきで形成する場合と、導電性ペーストで形成する場合等に分けられる。
 スタックドビアが可能で、かつ高密度化および配線設計の簡易化できる技術として、樹脂層に層間接続用の微細ビアホールをレーザーで形成し、該ビアホールを銅ペースト等の導電性接着剤で穴埋めし、この導電性接着剤により電気的に接続を得る方法が開示されている(例えば特許文献1参照)。
 しかし、この方法では、層間の電気的接続を導電性接着剤で行っているため、信頼性が十分でない場合がある。また、微細なビアホールに導電性接着剤を埋め込む高度な技術も必要となり、配線パターンの更なる微細化に対応することが困難である。
 そこで、導電性接着剤をビアホールに埋め込む手法に代わって、金属製の突起物(導体ポスト)を使用する技術が使用されている。しかし、導体ポストを使用する場合でも、層間接続する際に導体ポストが、層間接着剤を物理的に排除して導体パッドと接続する方法が開示されている(例えば特許文献2参照)。
 しかし、この方法では、プレス等による高温時に導体ポストと導体パッドとの間の層間接着剤を除去すると同時に導体ポストが溶融して電気的接続を得るため、プレス内温度のばらつきで層間接着剤が先に硬化する場合があり、接続信頼性が不十分となることがあった。また、高温になるため、層間接着剤が回路板の外へ流れ出し、板厚精度が悪くなったり、外へ流れ出した接着剤が周辺の回路板を汚染する恐れがあった。
特開平8-316598号公報 特開2000-183528号公報
 本発明は、上記事情に鑑みてなされたものであり、接続信頼性が良好な回路板および回路板の製造方法を提供することを目的とする。
 本発明による回路板は、第一の基材と、前記第一の基材より突出した突出部と、前記突出部を覆う金属被覆層とから構成される導体ポストとを備える第一の基板と、第二の基材と、導体回路とを備える第二の基板と、が層間接着剤を介して積層接着され、前記金属被覆層と前記導体回路との接合面で合金化されるとともに、前記接合面の断面視における前記金属被覆層の断面形状は、前記導体回路の前記接合面から第一の基板に向かって拡幅する形状であることを特徴とする。
 この回路板においては、前記接合面の断面視における前記金属被覆層の断面形状は、前記導体回路の前記接合面から第一の基板に向かって拡幅する形状である。これにより、金属被覆層が第一の基材と、第二の基材間で、略均一な厚さとなっているため接続の信頼性が増した回路板を提供できる。
 また、本発明による回路板の製造方法は、第一の基材と、前記第一の基材より突出した突出部を有するとともに、前記突出部を覆う金属被覆層とを有する導体ポストから構成される第一の基板を用意する工程と、第二の基材と、前記第二の基材の一方の面側に形成され、前記導体ポストを受ける導体回路とから構成される第二の基板を用意する工程と、前記導体ポスト面側、または、前記導体回路面側に層間接着剤が積層され、前記導体ポストと、前記導体回路とが対向するように配置して加熱加圧する第一の工程と、前記第一の工程の後、前記層間接着剤を加熱硬化する第二の工程と、前記第二の工程の後、前記金属被覆層を溶融することにより、前記導体ポストと、前記導体回路とを金属接合する接合工程と、を含むことを特徴とする。
 これにより、回路板は、層間接着剤を硬化させたあとに金属被覆層を溶融させているため、層間接着剤の流れ出しが少なく、生産性、歩留まりに優れた回路板の製造方法が提供できる。
 また、前記層間接着剤は、三つ以上のグリシジルエーテル基を有し、エポキシ当量が100~300である多官能エポキシ樹脂(a)と、融点が50℃以上、230℃以下であるカルボキシル基を有する化合物(b)と、硬化剤(c)と、を含んでいてもよい。また、カルボキシル基を有する化合物(b)の沸点または分解温度が240℃以上であってもよい。さらに、合成ゴム系エラストマーを含んでいてもよい。また、硬化剤(c)として、ノボラックフェノール樹脂を含んでいてもよい。
 接続信頼性が良好な回路板を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の第一の基板と第二の基板を示す断面図である。 本実施形態の第一の工程を示す断面図である。 本実施形態の第二の工程を示す断面図である。 本実施形態の接合工程を示す断面図である。 本実施形態の回路板を部分的に示す断面写真図である。 従来例を示す接合部の断面写真図である。
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、共通する構成要素には同一符号を付し、以下の説明において詳細な説明を適宜省略する。
 図1ないし図4は、本発明による回路板の製造方法の一実施形態を示す断面図である。
 図1(a)は第一の基板、図1(b)は第二の基板の断面図である。図2は第一の工程、図3は第二の工程、図4は接合工程を示す断面図である。
 図4に示すように、本実施形態に示す回路板68は、第一の基材12と、第一の基材12より突出した突出部14および突出部14を覆う金属被覆層15から構成される導体ポスト45とを備える第一の基板16と、第二の基材19と、導体回路17とを備える第二の基板18と、が層間接着剤13を介して積層接着され、金属被覆層15と導体回路17との接合面43で合金化され、金属合金層41を形成している。
 また、接合面43の断面視における金属被覆層15の断面形状は、導体回路17の接合面43から第一の基板16に向かって拡幅する形状である回路板68となっている。
 第一および第二の基材12、19を構成する材料としては、繊維基材または樹脂フィルムなどが挙げられる。繊維基材として、例えばガラス繊布、ガラス不繊布等のガラス繊維基材、あるいはガラス以外の無機化合物を成分とする繊布又は不繊布等の無機繊維基材、芳香族ポリアミド樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、ポリエステル樹脂、ポリイミド樹脂、フッ素樹脂等の有機繊維で構成される有機繊維基材等が挙げられる。また、樹脂フィルム基材としては、例えばポリイミド樹脂フィルム、ポリエーテルイミド樹脂フィルム、ポリアミドイミド樹脂フィルム等のポリイミド樹脂系樹脂フィルム、ポリアミド樹脂フィルム等のポリアミド樹脂系フィルム、ポリエステル樹脂フィルム等のポリエステル樹脂系フィルムが挙げられる。これら中でも主としてポリイミド樹脂系フィルムが好ましい。これにより、弾性率と耐熱性を特に向上することができる。
 基材12、19の厚さは、特に限定されないが、5~100μmが好ましく、8~50μmがより好ましく、12.5~25μmがさらに好ましい。厚さが前記範囲内であると、特に屈曲性に優れる。
 導体パッド11、導体回路17を構成する金属箔としては、鉄、アルミ、ステンレス、銅などが挙げられる。これらの中でも銅を金属箔として用いることが、電気特性の面からも好ましい。金属箔の厚さは、特に限定はされないが、5~35μmが好ましく、特に8~18μmが好ましい。
 金属被覆層15の形状は、第一の基板16に向かって広がる杯状の形状を有することが好ましい。これにより、導体回路17と接合面43を形成するとき、頭頂部から導体回路17と接触するので、先端が変形しながら形成され、接合面43の断面視における金属被覆層15の断面形状が、導体回路17の接合面43から第一の基板16に向かって拡幅するような形状となっている。また、接合面43を、上面視したとき、第一の基材12と、第一の基材12の対向する面において、突出部14を取り囲むように金属被覆層15が形成されていてもよい。この取り囲むように形成される形状は円形状ばかりではなく、方形状、楕円状などであってもよい。また、金属被覆層15の、拡幅する形も、第一の基板16に向かって広がっていく杯状の形状や、お椀状、など拡径する形状であってもよい。
 金属被覆層15を構成する金属として、特に限定はされないが、金、銀、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、銅からなる群より選択される少なくとも1種の金属または該金属を含む合金で構成される。例えば、錫-鉛系、錫-銀系、錫-亜鉛系、錫-ビスマス系、錫-アンチモン系、錫-銀-ビスマス系、錫-銅系等があるが、金属組み合わせや組成に限定されず、最適なものを選択すればよい。金属被覆層15の厚さの最大値は、特に限定されないが、2μm以上が好ましく、特に3~20μmが好ましい。厚さが前記範囲内であると導体ポスト45と導体回路17との接続の安定性に優れ、それによって信頼性が向上する。
 層間接着剤13の厚さは、特に限定されないが、8~30μmが好ましく、特に10~25μmが好ましい。厚さが前記範囲内であると、特に密着性及び接着剤の染み出し抑制の双方に優れる。層間接着剤13は、第一の基材12に液状塗布する方法、真空ラミネータ等で加熱加圧する方法等があるが、後者の方がより簡便で、層間接着剤13の厚みが安定する。
 層間接着剤13は、金属表面の清浄化機能であるフラックス機能を有することが好ましく、例えば、金属表面に存在する酸化膜の除去機能や、酸化膜の還元機能を有した接着剤である。
 第一の好ましい層間接着剤13の構成としては、三つ以上のグリシジルエーテル基を有し、エポキシ当量が100~300である多官能エポキシ樹脂(a)と、融点が50℃以上、230℃以下であるカルボキシル基を有する化合物(b)と、硬化剤(c)を含んでいる。
 層間接着剤13は、三つ以上のグリシジルエーテル基を有し、エポキシ当量が100~300である多官能エポキシ樹脂(a)を含む。これにより、耐熱信頼性に優れた層間接着剤13とすることができる。多官能エポキシ樹脂(a)としては、特に限定はされないが、例えばフェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノトリアジンフェノールノボラックエポキシ樹脂、アミノトリアジンクレゾールノボラックエポキシ樹脂、ナフタレン骨格型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂などが単独もしくは組み合わせて使用できる。これらの中でも、ナフタレン骨格型4官能エポキシ樹脂、グリシジルアミン型3官能エポキシ樹脂および3官能固形エポキシ樹脂が好ましい。多官能エポキシ樹脂(a)の含有量は、特に限定はされないが、多官能エポキシ樹脂(a)と硬化剤(c)を合わせて100重量部としたとき、60重量部以上、80重量部以下が好ましい。含有量がこの範囲内にあると密着力に優れる。
 層間接着剤13は、融点が50℃以上、230℃以下であるカルボキシル基を有する化合物(b)とを含む。また、カルボキシル基を有する化合物(b)の沸点または分解温度が240℃以上であってもよい。カルボキシル基を有する化合物は、後述するように、金属被覆層が形成された導体ポストと、導体回路とを、金属被覆層を溶融させることにより金属接合する際、受け側の導体回路の酸化膜を除去および金属被覆層表面の酸化物を除去して濡れ性を向上させる働きがある。一般に、金属接合する際の温度は、240℃以上となることが多いため、カルボキシル基を有する化合物(b)の沸点または分解温度が240℃以上であることが好ましい。沸点や分解温度が240℃以下であると層間にボイド(空洞)が発生したり、層間剥離が生じたりと信頼性が低下することがある。また、カルボキシル基を有する化合物(b)の活性化が最も発現するのは融点を超えたときであるため、融点は230℃以下であることが好ましい。融点が、50℃以下では、カルボキシル基を有する化合物(b)が層間接着層から流れ出してくることがあるので融点は、50℃以上であることが好ましい。
 カルボキシル基を有する化合物(b)の含有量は、多官能エポキシ樹脂(a)と硬化剤(c)を合わせて100重量部としたとき、3重量部以上、15重量部以下であることが好ましい。含有量がこの範囲にあると、金属表面の還元性に優れ良好な金属接合とすることができる。また、シート状のキャリア材料としたとき、フィルムとしての作業性に優れる。
 カルボキシル基を有する化合物(b)としては、特に限定はされないが、例えば、以下のものが挙げられる。2,3-ピラジンジカルボン酸、シクロヘキサンジカルボン酸、シクロブタンジカルボン酸、安息香酸、m-メチル安息香酸、p-メチル安息香酸、クマリン-3-カルボン酸、ベンゾフェノン-2-カルボン酸、セバシン酸、1,2,3,4-シクロペンタンテトラカルボン酸、2-ビフェニルカルボン酸、4-ビフェニルカルボン酸などの1種または2種以上の組合せで使用可能である。
 層間接着剤13は、合成ゴム系エラストマーをさらに含んでいてもよい。これにより、シート状のキャリア材料としたとき、フィルム加工性に優れた層間接着剤13とすることができる。合成ゴム系エラストマーはカルボン酸変性したものがポリイミドフィルムに対する密着力が良いため好ましく使用できる。例えばカルボン酸変性NBR、カルボン酸変性アクリルゴム、カルボン酸変性ブタジエンゴムなど市販されている一般的なものでよい。
 合成ゴム系エラストマーの含有量は、特に限定はされないが、多官能エポキシ樹脂(a)と硬化剤(c)を合わせて100重量部としたとき、5重量部以上、30重量部以下が好ましい。含有量がこの範囲内にあると、密着性と耐熱性のバランスに優れた層間接着剤13とすることができる。また、合成ゴム系エラストマーの重量平均分子量が50万以上であることが好ましい。これにより、加熱加圧時の成形性に優れた層間接着剤13とすることができる。
 層間接着剤13は、硬化剤(c)としてノボラックフェノール樹脂を含んでいてもよい。ノボラックフェノール樹脂としては、特に限定されないが、アミノトリアジンノボラック型フェノール樹脂、または、アミノトリアジンクレゾールノボラック型フェノール樹脂であることが好ましい。アミノ基が存在することで塗工時の熱により一部のエポキシ基の反応が起こりBステージ化する。これにより積層プレス時の染み出しが抑えられる。また、トリアジン部の窒素が難燃性に寄与する。ノボラックフェノール樹脂の含有量は、特に限定されないが、本発明に含まれる多官能エポキシ樹脂(a)に対して0.8~1.2当量を含むことが好ましい。当量がこの範囲内にあると、硬化性、反りなどに優れた層間接着剤13とすることができる。
 層間接着剤13は、密着力を向上させるためのカップリング剤、塗工の際に発泡やハジキを抑える消泡剤やレベリング剤、ゲルタイムを調整する為の少量の硬化促進剤や無機フィラーなどを添加することも可能である。
 第二の好ましい層間接着剤の構成としては、フェノール性水酸基を有するフェノールノボラック樹脂、クレゾールノボラック樹脂、アルキルフェノールノボラック樹脂、レゾール樹脂、ポリビニルフェノール樹脂などの樹脂(A)と、前記樹脂の硬化剤(B)を含むものである。硬化剤としては、ビスフェノール系、フェノールノボラック系、アルキルフェノールノボラック系、ビフェノール系、ナフトール系、レゾルシノール系などのフェノールベースや、脂肪族、環状脂肪族や不飽和脂肪族などの骨格をベースとしてエポキシ化されたエポキシ樹脂やイソシアネート化合物が挙げられる。
 フェノール性水酸基を有する樹脂の配合量は、全接着剤中20重量部以上~80重量部以下が好ましく、20重量部未満であると金属表面を清浄化する作用が低下し、80重量部を越えると十分な硬化物を得られず、その結果として接合強度と信頼性が低下するおそれがあり好ましくない。一方、硬化剤として作用する樹脂或いは化合物は、全接着剤中20重量部以上~80重量部以下が好ましい。層間接着剤には、必要に応じて着色剤、無機充填材、各種のカップリング剤、溶媒などを添加してもよい。
 第三の好ましい層間接着剤の構成としては、ビスフェノール系、フェノールノボラック系、アルキルフェノールノボラック系、ビフェノール系、ナフトール系、レゾルシノール系などのフェノールベースや、脂肪族、環状脂肪族や不飽和脂肪族などの骨格をベースとしてエポキシ化されたエポキシ樹脂(C)と、イミダゾール環を有し、かつ前記エポキシ樹脂の硬化剤(D)と、硬化性酸化防止剤(E)を含むものである。イミダゾール環を有する硬化剤としては、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ウンデシルイミダゾール、2-フェニル-4-メチルイミダゾール、ビス(2-エチル-4-メチル-イミダゾール)などが挙げられる。硬化性酸化防止剤は、酸化防止剤として作用し、かつ硬化剤と反応して硬化できる化合物であり、ベンジリデン構造を有する化合物や3-ヒドロキシ-2-ナフトイック酸、パモイック酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸などが挙げられる。
 エポキシ樹脂の配合量は、全接着剤中30重量部以上~99重量部以下が好ましく、30重量未満だと十分な硬化物が得られないおそれがあり好ましくない。
 上記2成分以外に、シアネート樹脂、アクリル酸樹脂、メタクリル酸樹脂、マレイミド樹脂などの熱硬化性樹脂や熱可塑性樹脂を配合してもよい。又、必要に応じて着色剤、無機充填材、各種のカップリング剤、溶媒などを添加してもよい。
 イミダゾール環を有し、かつ前記エポキシ樹脂の硬化剤と前記硬化性酸化防止剤となるものの配合量としては、全接着剤中両者を併せ1重量部以上~20重量部以下が好ましく、1重量部未満だと金属表面を清浄化する作用が低下し、エポキシ樹脂を十分に硬化させないおそれがあり好ましくない。10重量部を越えると硬化反応が急激に進行し、接着剤層の流動性が劣るおそれがあり好ましくない。また、前記エポキシの硬化剤と前記硬化性酸化防止剤は両方を併用するまたは、片側の成分のみを単独で配合し使用することもできる。
 層間接着剤の調整方法は、例えば固形のフェノール性水酸基を有する樹脂(A)と、固形の硬化剤として作用する樹脂(B)を溶媒に溶解して調整する方法、固形のフェノール性水酸基を有する樹脂(A)を液状の硬化剤として作用する樹脂(B)に溶解して調整する方法、固形の硬化剤として作用する樹脂(B)を液状のフェノール性水酸基を有する樹脂(B)に溶解して調整する方法、又固形のエポキシ樹脂(C)を溶媒に溶解した溶液に、イミダゾール環を有し、かつエポキシ樹脂の硬化剤として作用する化合物(D)と硬化性酸化防止剤(E)を分散もしくは溶解する方法などが挙げられる。使用する溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサン、トルエン、ブチルセルソブル、エチルセロソブル、N-メチルピロリドン、γ-ブチルラクトンなどが挙げられる。好ましくは沸点が200℃以下の溶媒である。
 次に、図1ないし図4をもちいて、本発明の回路板の製造方法の一実施形態について説明する。
(ステップA)
 まず、図1(a)に示すように、第一の基材12と、第一の基材12より突出した突出部14を有するとともに、突出部14を覆う金属被覆層15とを有する導体ポスト45から構成される第一の基板16を用意する。第一の基材12の一方の面には、導体パッド11が形成されている。次に、図1(b)に示すように、第二の基材19と、第二の基材19の一方の面側に形成され、導体ポスト45を受ける導体回路17とから構成される第二の基板18を用意する。
(ステップB)
 次に、図2に示すように、導体ポスト45面側、または、導体回路17面側に層間接着剤13を積層し、導体ポスト45と、導体回路17とが対向するように配置して加熱加圧する第一の工程を行う。
(ステップC)
 次に、図3に示すように、第一の工程の後、層間接着剤13を加熱硬化する第二の工程を行う。
(ステップD)
 次に、第二の工程の後、金属被覆層15を溶融することにより、導体ポスト45と、導体回路17とを金属接合する接合工程を行う。
 これらの工程を含む製造方法によって、回路板68を得ることができる。
 各工程について説明する。
(ステップA)
 導体ポスト45を有する第一の基板16と導体ポスト45を受ける導体回路17を有する第二の基板18を用意する(図1(a)、(b))。
 突出部14は、例えばペースト又はめっき法等で、銅ポストを形成する。引き続き、金属被覆層15を合金等で形成し導体ポスト45とする。突出部14の高さは、特に限定されないが、第一基材12の導体パッド11が形成されている面と反対側の面から2~30μm突出されることが好ましく、特に5~15μm突出させることが好ましい。高さが前記範囲にあると、導体ポスト45と導体回路17との接続安定性に優れる。
(ステップB)
 次に第一の工程について説明する(図2)。第一の工程では、導体ポスト45面側、または、導体回路17面側に層間接着剤13を積層し、導体ポスト45と、導体回路17とが対向するように配置して加熱加圧し、金属被覆層15を覆っている層間接着剤13を排除するとともに、金属被覆層15の頂部を変形させる。
 予め、第一の基板16と第二の基板18の位置を合わせるため、導体パターンとして形成されているマークを画像認識装置により読み取り位置合わせする方法、ピンで位置合わせする方法など用いて、位置合わせを行う。位置合わせした基板を真空中で所定の温度、圧力でプレスする。
 前記所定の温度は、150~200℃が好ましく、特に170~190℃が好ましい。温度が前記範囲内であると層間接着剤13が軟化し且つ、金属被覆層15が溶融前であるため、金属被覆層15と導体回路17との間の層間接着剤13を排除することができる。前記温度より低いと層間接着剤13の軟化レベルが低く、また前記温度より高いと金属被覆層15が溶融するため、完全には層間接着剤13を排除することができない。
 前記所定の圧力は、1~3MPaが好ましく、特に1.5~2.5MPaが好ましい。圧力が前記範囲内であると金属被覆層15が変形し導体回路17との間の層間接着剤13を排除することができる。金属被覆層15の変形形状は、断面視において、金属被覆層15と導体回路17の界面から拡幅し、その変形を維持させる。
 処理時間は、20秒以上、10分以下が好ましく、特に3~7分が好ましい。処理時間が前記範囲であると、層間接着剤13を排除できるとともに、金属被覆層15の頂部をつぶすことが出来る。
(ステップC)
 次に、第二の工程について説明する(図3)。第二の工程では、層間接着剤13を熱硬化させる。温度は150~200℃が好ましく、特に170~190℃が好ましい。処理時間は、30分以上、120分以下が好ましく、特に45~75分が好ましい。処理条件が前記範囲であると層間接着剤13が硬化し、第一の基板16と第二の基板18の密着強度が向上する。このとき、金属被覆層15の頂部の変形はその形状が維持されている。
(ステップD)
 次に接合工程について説明する(図4)。金属被覆層15が溶融し導体回路17と接合し、更に金属被覆層15と導体ポスト45、金属被覆層15と導体回路17との間で金属合金層41を形成する状態である。金属被覆層15を溶融させても、頂部が変形した形状を維持している。
 リフロー温度は240~280℃が好ましく、特に250~270℃が好ましい。温度が前記範囲であると安定した金属合金層41を形成することができ、第一の基板16と第二の基板18の電気的接続信頼性が向上する。
 処理時間は、1~10分が好ましく、特に3~8分が好ましい。前記範囲であると金属合金層41が形成され、信頼性、生産性が向上する。
 図5は、回路板68を部分的に示す断面写真図である。第一の基板16は、第一の基材12と、第一の基材12より突出した突出部14および突出部14を覆う金属被覆層15から構成される導体ポスト45とを備えている。第一の基材12の一方の面には、導体パッド11が形成されている。また、第二の基板18は、第二の基材19と、導体回路17とを備えている。この第一の基板16と第二の基板18とは、層間接着剤13を介して積層接着されている。そして、金属被覆層15と導体回路17との接合面43で合金化され、金属合金層41を形成している。
 また、接合面43の断面視における金属被覆層15の断面形状は、導体回路17の接合面43から第一の基板16に向かって拡幅する形状となっている。
 ステップAからステップDまで連続して行う必要はないが、連続して行った方が作業時間の短縮になり、また安定した基板を得られるため好ましい。
 第一の工程から接合工程まで所定の温度、圧力、処理時間を得ることができる装置であれば、特に限定されないが、予め所定の温度までに加熱した熱板を用いて行うもの、或いは急昇温ヒータを用いて行うものであっても良い。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。
 例えば、本実施形態では、第一の基板16、第二の基板18を積層接着する工程について説明してきたが、第一の基板16に導体回路17を形成し、第一の基板16の上層に導体ポスト45を含む基板を積層接着した回路板の製造方法であってもよい。この様に、複数の層を所望する場合は第一の基板16や第二の基板18に追加することにより多層回路板を得ることができる。また、この多層回路板に半導体素子を搭載することにより半導体装置とすることが出来る。
 表1に示した各工程に沿って実施した。
 表1中、AAは「良好」、CCは「不良」を示す。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 まず、銅はくが12μm、基材がポリイミドフィルム厚み25μmの2層片面回路基板(宇部興産製 SE1310)を用意し、銅はくとは反対面から、UVレーザーにより50μm径のビアを形成した。プラズマによるデスミア処理を施した後、銅めっきと鉛フリー半田めっきを行うことにより、基材から突出量8μmの銅突出部を形成し、更に鉛フリー半田めっきにより突出部へ15μm厚さの金属被覆を行い導体ポストを形成した。そして、エッチングにより回路を形成し、第一の基板を得た。次に、銅はくが12μm、基材がポリイミドフィルム厚み25μmの2層両面回路基板(三井化学製 NFX-2ABEPFE(25T))をエッチングにより回路形成し第二の基板を得た。
 この第一の基板の導体ポスト側に、厚さ13μmの層間接着剤を真空ラミネータにて120℃、0.2MPaの条件で熱圧着した。
 なお、層間接着剤は以下のものを用いた。ビスフェノールA型エポキシ樹脂(大日本インキ化学工業株式会社製 エピクロン830S)を40重量部、ジシクロペンタジエン型エポキシ樹脂(DIC製 HP-7200:エポキシ当量258)10重量部、ノボラック型フェノール樹脂(住友ベークライト株式会社製 PR-53647)を25重量部、アクリルゴム(ナガセケムテック製SG-708-6:重量平均分子量70万)を25重量部、アセトン100重量部を測り取り混合攪拌して溶解し、それらの樹脂組成物100重量部に対し、セバシン酸(関東化学株式会社製 試薬 融点131℃、沸点294.5℃/133hPa)を5重量部加えて攪拌、溶解しワニスを得た。離型可能な基材として静電防止処理をした厚み25μmのPETフィルムにコンマナイフ方式のコーターにて乾燥後の厚みが13μmとなるように塗工、乾燥して層間接着剤を作成した。
 第一の基板の導体ポストと第二の基板の導体回路とを画像処理による位置合わせ積層を行い、第一の工程として、真空プレスにて180℃、2MPaで5分間熱圧着した後、第二の工程として、乾燥機にて180℃、60分処理した後、最後に、接合工程として、リフローにて260℃で5分間処理をした。その結果、図5に示すように、得られた金属層の形状は、半田の頂部が変形し断面視において第一の基板へ拡幅している形状であり、接続安定性に優れ、温度サイクル信頼性評価(-25℃~125℃ 各9分 1000cyc)において、抵抗値変化率が10%以下の良好な結果であった。
(実施例2)
 実施例1の層間接着剤を以下のものを用いた以外は、実施例1と同様に行った。層間接着剤として、ナフタレン骨格型4官能エポキシ樹脂(大日本インキ化学工業株式会社製 開発品番EXA-4700:エポキシ当量162)を40重量部、ジシクロペンタジエン型エポキシ樹脂(大日本インキ化学工業株式会社製 HP-7200 エポキシ当量258)30重量部、ノボラック型フェノール樹脂(住友ベークライト株式会社製 PR-53647)を30重量部、アセトン100重量部を測り取り混合攪拌して溶解し、それらの樹脂組成物100重量部に対し、融点が180℃のp-トルイル酸(関東化学株式会社製 試薬 沸点:275℃)を3重量部加えて攪拌、溶解しワニスを得た。離型可能な基材として静電防止処理をした厚み25μmのPETフィルムにコンマナイフ方式のコーターにて乾燥後の厚みが13μmとなるように塗工、乾燥して層間接着剤を作成した。
 その結果、図5に示すように、得られた金属層の形状は、半田の頂部が変形し断面視において第一の基板へ拡幅している形状であり、接続安定性に優れ、温度サイクル信頼性評価(-25℃~125℃ 各9分 1000cyc)において、抵抗値変化率が10%以下の良好な結果であった。
(実施例3)
 実施例1の、第一の工程を、真空プレスにて180℃、2MPaで1分間と、また、接合工程を、リフローにて260℃で3分間処理とし、層間接着剤として以下のものを用いた以外は、実施例1と同様に行った。
 グリシジルアミン型3官能エポキシ樹脂(JER社製 エピコート630:エポキシ当量100)を20重量部、ジシクロペンタジエン型エポキシ樹脂(大日本インキ化学工業株式会社製 HP-7200 エポキシ当量258)を40重量部、ノボラック型フェノール樹脂(住友ベークライト株式会社製 PR-53647)を40重量部、アセトン100重量部を測り取り混合攪拌して溶解し、それらの樹脂組成物100重量部に対し、融点が225℃の4-ビフェニルカルボン酸(関東化学株式会社製 試薬 融点225℃以上)を15重量部加えて攪拌、溶解しワニスを得た。それを実施例1と同様に接着剤厚みが13μmとなるようにコンマコーターにて塗工乾燥して層間接着剤を作成した。
 その結果、図5に示すように、得られた金属層の形状は、半田の頂部が変形し断面視において第一の基板へ拡幅している形状であり、接続安定性に優れ、温度サイクル信頼性評価(-25℃~125℃ 各9分 1000cyc)において、抵抗値変化率が10%以下の良好な結果であった。
(実施例4)
 実施例1の層間接着剤を以下のものを用いた以外は、実施例1と同様に行った。
 実施例2のp-トルイル酸を融点が128℃のベンゾフェノン-2-カルボン酸(関東化学株式会社製)とした以外は実施例1と同様に接着剤厚みが13μmとなるようにコンマコーターにて塗工乾燥して層間接着剤を作成した。
 その結果、図5に示すように、得られた金属層の形状は、半田の頂部が変形し断面視において第一の基板へ拡幅している形状であり、接続安定性に優れ、温度サイクル信頼性評価(-25℃~125℃ 各9分 1000cyc)において、抵抗値変化率が10%以下の良好な結果であった。
(比較例1)
 実施例1の、第一の工程を、真空プレスにて260℃、2MPaで5分間とし、半田を溶融させ、リフローを行わなかった以外は、実施例1と同様に行った。その結果、図6に示すように、得られた金属層の形状は、断面視において第二の基板へ裾広がりに拡幅している形状であった。また、層間接着剤13が硬化する前に半田を溶融させたため層間接着剤のシミ出しが認められた。
(比較例2)
 実施例1の、第一の工程を行わなかった以外は、実施例1と同様に行った。その結果、第一の工程で層間接着剤を金属被覆層頂部から排除されず導体回路との接続が十分行われなかった。
 この出願は、日本出願特願2008-48986、特願2008-48989、特願2008-104200、特願2008-104208、特願2008-174430、および特願2008-174429を基礎とする優先権を主張し、その開示のすべてをここに取り込む。

Claims (28)

  1.  第一の基材と、
     前記第一の基材より突出した突出部および前記突出部を覆う金属被覆層から構成される導体ポストとを備える第一の基板と、
     第二の基材と、導体回路とを備える第二の基板と、
    が層間接着剤を介して積層接着され、前記金属被覆層と前記導体回路との接合面で合金化されるとともに、
     前記接合面の断面視における前記金属被覆層の断面形状は、前記導体回路の前記接合面から前記第一の基板に向かって拡幅する形状であることを特徴とする回路板。
  2.  前記第一の基材と、該第一の基材の対向する面において、前記突出部を取り囲むように前記金属被覆層が形成されている請求項1に記載の回路板。
  3.  前記金属被覆層の形状は、前記第一の基板に向かって広がる杯状の形状を有する請求項1または2に記載の回路板。
  4.  前記金属被覆層は、金、銀、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、銅からなる群より選択される少なくとも1種の金属または該金属を含む合金で構成される請求項1ないし3のいずれかに記載の回路板。
  5.  前記層間接着剤は、三つ以上のグリシジルエーテル基を有し、エポキシ当量が100~300である多官能エポキシ樹脂(a)と、融点が50℃以上、230℃以下であるカルボキシル基を有する化合物(b)と、硬化剤(c)と、を含む請求項1ないし4のいずれかに記載の回路板。
  6.  前記カルボキシル基を有する化合物(b)の沸点または分解温度が240℃以上である請求項5に記載の回路板。
  7.  合成ゴム系エラストマーをさらに含む請求項5または6に記載の回路板。
  8.  前記合成ゴム系エラストマーの重量平均分子量が50万以上である請求項7に記載の回路板。
  9.  前記合成ゴム系エラストマーが、カルボン酸変性されている請求項7または8に記載の回路板。
  10.  前記硬化剤(c)は、ノボラックフェノール樹脂を含む請求項5ないし9のいずれかに記載の回路板。
  11.  前記ノボラックフェノール樹脂が、前記多官能エポキシ樹脂(a)に対して0.8~1.2当量の割合で配合されている請求項10に記載の回路板。
  12.  第一の基材と、前記第一の基材より突出した突出部を有するとともに、前記突出部を覆う金属被覆層とを有する導体ポストから構成される第一の基板を用意する工程と、
     第二の基材と、前記第二の基材の一方の面側に形成され、前記導体ポストを受ける導体回路とから構成される第二の基板を用意する工程と、
     前記導体ポスト面側、または、前記導体回路面側に層間接着剤が積層され、前記導体ポストと、前記導体回路とが対向するように配置して加熱加圧する第一の工程と、
     前記第一の工程の後、前記層間接着剤を加熱硬化する第二の工程と、
     前記第二の工程の後、前記金属被覆層を溶融することにより、前記導体ポストと、前記導体回路とを金属接合する接合工程と、
    を含むことを特徴とする回路板の製造方法。
  13.  前記第一の工程は、温度が150℃以上、200℃以下であり、圧力が1MPa以上、3MPa以下である請求項12に記載の回路板の製造方法。
  14.  前記第一の工程は、前記金属被覆層を変形させる請求項12または13に記載の回路板の製造方法。
  15.  前記金属被覆層の変形形状は、前記回路板の断面視において、前記導体回路の接合面から拡径している請求項14に記載の回路板の製造方法。
  16.  前記第二の工程は、実質的に無加圧で、かつ、温度が150℃以上、200℃以下である請求項12ないし15のいずれかに記載の回路板の製造方法。
  17.  前記接合工程は、温度が240℃以上、280℃以下である請求項12ないし16のいずれかに記載の回路基板の製造方法。
  18.  前記金属被覆層の溶融は、前記金属被覆層の変形形状を維持したまま行う請求項14ないし17のいずれかに記載の回路板の製造方法。
  19.  前記第一の工程の処理時間が、20秒以上、10分以下である請求項12ないし18のいずれかに記載の回路板の製造方法。
  20.  前記第二の工程の処理時間が、30分以上、120分以下である請求項12ないし19のいずれかに記載の回路板の製造方法。
  21.  前記接合工程の処理時間が、1分以上、10分以下である請求項12ないし20のいずれかに記載の回路板の製造方法。
  22.  前記層間接着剤は、三つ以上のグリシジルエーテル基を有し、エポキシ当量が100~300である多官能エポキシ樹脂(a)と、融点が50℃以上、230℃以下であるカルボキシル基を有する化合物(b)と、硬化剤(c)と、を含む請求項12ないし21のいずれかに記載の回路板の製造方法。
  23.  前記カルボキシル基を有する化合物(b)の沸点または分解温度が240℃以上である請求項22に記載の回路板の製造方法。
  24.  合成ゴム系エラストマーをさらに含む請求項22または23に記載の回路板の製造方法。
  25.  前記合成ゴム系エラストマーの重量平均分子量が50万以上である請求項24に記載の回路板の製造方法。
  26.  前記合成ゴム系エラストマーが、カルボン酸変性されている請求項24または25に記載の回路板の製造方法。
  27.  前記硬化剤(c)は、ノボラックフェノール樹脂を含む請求項22ないし26のいずれかに記載の回路板の製造方法。
  28.  前記ノボラックフェノール樹脂が、前記多官能エポキシ樹脂(a)に対して0.8~1.2当量の割合で配合されている請求項27に記載の回路板の製造方法。
PCT/JP2009/000738 2008-02-29 2009-02-20 回路板および回路板の製造方法 WO2009107346A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980107025.9A CN101965759A (zh) 2008-02-29 2009-02-20 电路板及其制造方法
US12/865,731 US20100326712A1 (en) 2008-02-29 2009-02-20 Circuit board and method for manufacturing the same
JP2010500551A JPWO2009107346A1 (ja) 2008-02-29 2009-02-20 回路板および回路板の製造方法

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2008-048989 2008-02-29
JP2008048986 2008-02-29
JP2008-048986 2008-02-29
JP2008048989 2008-02-29
JP2008104200 2008-04-14
JP2008104208 2008-04-14
JP2008-104208 2008-04-14
JP2008-104200 2008-04-14
JP2008174429 2008-07-03
JP2008-174430 2008-07-03
JP2008-174429 2008-07-03
JP2008174430 2008-07-03

Publications (1)

Publication Number Publication Date
WO2009107346A1 true WO2009107346A1 (ja) 2009-09-03

Family

ID=41015753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000738 WO2009107346A1 (ja) 2008-02-29 2009-02-20 回路板および回路板の製造方法

Country Status (6)

Country Link
US (1) US20100326712A1 (ja)
JP (1) JPWO2009107346A1 (ja)
KR (1) KR20100125276A (ja)
CN (1) CN101965759A (ja)
TW (1) TW200945984A (ja)
WO (1) WO2009107346A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505366A (ja) * 2011-12-13 2014-02-27 エンパイア テクノロジー ディベロップメント エルエルシー エラストマーの接着

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027238B (zh) 2016-01-29 2020-08-18 奥特斯(中国)有限公司 包括铜填充多径激光钻孔的元件载体
US11006531B1 (en) * 2017-05-30 2021-05-11 Amogreentech Co., Ltd. Method for manufacturing flexible printed circuit board and flexible printed circuit board manufactured by same
TWI736100B (zh) * 2019-01-08 2021-08-11 胡迪群 具高密度線路的基板結構及其製法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195560A (ja) * 1995-01-12 1996-07-30 Oki Purintetsudo Circuit Kk プリント回路基板の製造方法
JPH11204939A (ja) * 1998-01-08 1999-07-30 Hitachi Ltd 多層回路基板及びその製造方法
JP2000044771A (ja) * 1998-07-30 2000-02-15 Sumitomo Bakelite Co Ltd 熱時寸法安定性に優れるフェノール樹脂成形材料
JP2006002095A (ja) * 2004-06-18 2006-01-05 Sumitomo Bakelite Co Ltd 樹脂組成物、樹脂付キャリア材料および多層プリント配線板
JP2007077247A (ja) * 2005-09-13 2007-03-29 Sumitomo Bakelite Co Ltd 樹脂組成物およびそれを用いたカバーレイフィルム、金属張積層板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195560A (ja) * 1995-01-12 1996-07-30 Oki Purintetsudo Circuit Kk プリント回路基板の製造方法
JPH11204939A (ja) * 1998-01-08 1999-07-30 Hitachi Ltd 多層回路基板及びその製造方法
JP2000044771A (ja) * 1998-07-30 2000-02-15 Sumitomo Bakelite Co Ltd 熱時寸法安定性に優れるフェノール樹脂成形材料
JP2006002095A (ja) * 2004-06-18 2006-01-05 Sumitomo Bakelite Co Ltd 樹脂組成物、樹脂付キャリア材料および多層プリント配線板
JP2007077247A (ja) * 2005-09-13 2007-03-29 Sumitomo Bakelite Co Ltd 樹脂組成物およびそれを用いたカバーレイフィルム、金属張積層板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505366A (ja) * 2011-12-13 2014-02-27 エンパイア テクノロジー ディベロップメント エルエルシー エラストマーの接着
US8987606B2 (en) 2011-12-13 2015-03-24 Empire Technology Development Llc Elastomer adhesions

Also Published As

Publication number Publication date
KR20100125276A (ko) 2010-11-30
JPWO2009107346A1 (ja) 2011-06-30
CN101965759A (zh) 2011-02-02
US20100326712A1 (en) 2010-12-30
TW200945984A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
CN101432876B (zh) 半导体器件和制造半导体器件的方法
US6281450B1 (en) Substrate for mounting semiconductor chips
US20110120754A1 (en) Multilayer wiring board and semiconductor device
CN102027584B (zh) 半导体组件的制造方法和半导体组件
CN102224584A (zh) 电子部件封装件以及制备电子部件封装件的方法
KR20120041733A (ko) 전자 부품의 제조 방법 및 전자 부품
JP2006216758A (ja) プリント回路基板の接続方法
US20090084597A1 (en) Circuit board and connection substrate
WO2009107346A1 (ja) 回路板および回路板の製造方法
JP2008004908A (ja) 回路板
JP3838250B2 (ja) 積層板及び多層プリント回路板
JP4967359B2 (ja) 樹脂組成物、樹脂フィルム、層間接着材および多層回路板
JP5605219B2 (ja) 樹脂組成物、樹脂付キャリア材料、多層プリント配線板および半導体装置
JP2007173343A (ja) 多層基板および電子機器
JP2004356369A (ja) 半導体用接着剤付きテープおよびそれを用いた半導体用接続用基板の製造方法
JP2010221526A (ja) 金属張積層板、プリント回路板および半導体装置
JP4470447B2 (ja) 樹脂組成物、接着剤層付き基材および多層プリント配線板
JP2012054589A (ja) 半導体パッケージ
JP2009158706A (ja) 半導体パッケージ
JP2005235981A (ja) 多層回路基板の製造方法
JP2007188985A (ja) 回路基板、回路基板の製造方法および回路板
JP2005235894A (ja) 樹脂組成物、樹脂付キャリア材料および多層プリント配線板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107025.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500551

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12865731

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107019424

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713868

Country of ref document: EP

Kind code of ref document: A1