WO2009105925A1 - 一种有颜色的高强度聚乙烯纤维及其制造方法 - Google Patents

一种有颜色的高强度聚乙烯纤维及其制造方法 Download PDF

Info

Publication number
WO2009105925A1
WO2009105925A1 PCT/CN2008/001308 CN2008001308W WO2009105925A1 WO 2009105925 A1 WO2009105925 A1 WO 2009105925A1 CN 2008001308 W CN2008001308 W CN 2008001308W WO 2009105925 A1 WO2009105925 A1 WO 2009105925A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
strength polyethylene
strength
spinning
molecular weight
Prior art date
Application number
PCT/CN2008/001308
Other languages
English (en)
French (fr)
Inventor
任意
Original Assignee
山东爱地高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东爱地高分子材料有限公司 filed Critical 山东爱地高分子材料有限公司
Priority to ES08783513T priority Critical patent/ES2426088T3/es
Priority to EP08783513.8A priority patent/EP2154274B1/en
Priority to JP2010547024A priority patent/JP5244921B2/ja
Priority to US12/600,241 priority patent/US8623245B2/en
Priority to AU2008351678A priority patent/AU2008351678B2/en
Publication of WO2009105925A1 publication Critical patent/WO2009105925A1/zh
Priority to US13/802,029 priority patent/US20130267650A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/04Pigments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer

Definitions

  • the invention relates to a high-strength polyethylene fiber and a manufacturing method and application thereof, in particular to a colored high-strength polyethylene fiber, a manufacturing method and application thereof.
  • High-strength polyethylene fiber is a high-strength and modulus synthetic fiber material produced by ultra-high molecular weight polyethylene with a molecular weight of more than 1 million.
  • High-strength polyethylene fiber, aramid fiber and carbon fiber are called three high-performance in the world. Fibrous materials, in which ultra-high molecular weight polyethylene fibers have high strength, high modulus and low density, they play an extremely important role in modern warfare and defense equipment, aerospace and aviation, and have also gained in civil fields. The more widely used.
  • high-strength polyethylene fibers are mostly produced by gel spinning and a super-high heat drawing process. Since ultra-high molecular weight polyethylene has a long polyethylene macromolecular flexible chain, it is easy to cause chain entanglement and dissolve it in a certain degree. In the agent, the distance between the macromolecules is opened by the dilution of the solvent, and the raw liquid is extruded into fibers to obtain frozen collagen filaments having moderate large molecular entanglement points, which are straightened by ultra-high heat stretching and molecular orientation. High-strength polyethylene fiber with chain structure.
  • the main processes include: 1. Dissolving ultra-high molecular weight polyethylene with a solvent to form a spinning solution; 2.
  • the solution is extruded through a spinning hole and then quenched with air or water to obtain a moderately large molecular entanglement point.
  • Solvent-containing wet raw yarn 3. Using an extractant to remove the solvent contained in the wet raw yarn; 4. Drying the tow after extraction in a dry box; 5. Performing a super-hot drawing to obtain High-strength polyethylene fiber with straight chain crystal structure.
  • Japanese Patent Laid-Open No. Hei 7-238416 discloses a method for actively preparing a high-performance polyethylene fiber by actively volatilizing a solvent in a dry spinning process, and the specific art is: 5-50% ultrahigh molecular weight polyethylene and 95-50 % of the selective solvent is dissolved, after heating and extruding, through a spinning cylinder, 40% or more of the solvent is volatilized by using a hot gas flow in the spinning drum, and the remaining solvent is removed during the hot drawing process.
  • the Japanese patent solves the problem of spinning adhesion by actively removing part of the solvent during the spinning process to form a semi-dry raw yarn.
  • the solvent volatilizes during spinning and hot drawing the patent needs to be spun. Fireproof and explosion-proof treatment and solvent recovery are carried out on the section and the drafting equipment respectively, which increases the difficulty of equipment investment and solvent recovery, and is not conducive to large-scale industrial production. .
  • the current production process pursues the high strength of the fiber, and the tensile strength of the high-strength polyethylene fiber produced is mostly
  • the object of the present invention is to produce a colored, high-strength polyethylene fiber which is more aesthetically pleasing and distinguishable in the civilian sector and which is better concealed in the military field.
  • the surface of the high-strength polyethylene fiber has a color, gray or black
  • the high-strength polyethylene fiber has a strength of 15 to 50 g/d, a modulus of 400 to 1000 g/d, a filament fineness of 4 to 5 d, and an elongation at break of ⁇ 3.5%.
  • the strength of the colored high-strength polyethylene fiber of the present invention is 15 ⁇ 30g/d, it is mainly used in the civil field, such as but not limited to: 1) marine engineering such as ropes, cables, sails and fishing gear; 2) sports equipment Supplies: such as helmets, snowboards, sail boards, fishing rods, rackets and bicycles, glides, ultra-lightweight aircraft parts, etc.; 3) for biomaterials: the fiber reinforced composite for dental tray materials, medical implants And plastic suture, etc., it has good biocompatibility and durability, and has high stability, does not cause allergies, and has been used clinically. Also used in medical gloves and other medical facilities.
  • the fiber and its composite materials can be used as pressure-resistant containers, conveyor belts, filter materials, automobile buffer boards, etc.; construction can be used as wall, partition structure, etc., and it can be improved by using it as a reinforced cement composite material.
  • the toughness of cement improves its impact resistance.
  • the strength of the high-strength polyethylene fiber of the present invention is 30 to 50 g/d, it is mainly used in the military field, such as but not limited to: 1) Defense military equipment: protective clothing, helmets, bulletproof materials, helicopters, tanks and Ship's armor protection panels, radar protective enclosures, missile covers, body armor, stab-resistant clothing, shields, etc.; 2) Aerospace applications: wingtip structures, spacecraft structures and buoy aircraft of various aircraft.
  • the high-strength polyethylene fiber of the prior art is white, in the civilian field, it is often necessary to adopt different colors to facilitate collocation, differentiation, beauty and sales. In the military field, color is also required to realize concealment and the like, in the prior art.
  • the white high-strength polyethylene fiber is very limited in the above applications, and the present invention solves this problem well.
  • the method for producing the colored high-strength polyethylene fiber adopts a jelly spinning method, including a process in which an ultrahigh molecular weight polyethylene is swollen in a solvent to dissolve a spinning dope, and the method further comprises: adding a maximum in the process The inorganic pigment having a particle diameter smaller than ⁇ ⁇ ⁇ , is added in an amount of 1.0 to 3.0% by weight based on the weight of the ultrahigh molecular weight polyethylene.
  • the method for manufacturing the colored stubborn polyethylene fiber includes the following steps: (1) Preparation of spinning dope
  • Ultrahigh molecular weight polyethylene with a number average molecular weight of more than 3 million is used, and white mineral oil is used as a solvent.
  • the weight ratio of ultrahigh molecular weight polyethylene to white mineral oil is 1:7 ⁇ 9, inorganic pigment is added, and the raw materials are mixed by heating and stirring. After being hooked, it is heated into a twin-screw extruder to swell and dissolve, and the temperature is controlled at 100 to 300 ° C to obtain a spinning dope; the white mineral oil of the present invention is a commercially available raw material. , is easy to get on the market.
  • the spinning dope is extruded from the spinneret to obtain a liquid filament.
  • the spinneret has a pore diameter of 0.5 to 1.6 mm, and the liquid filament enters a spinning water tank with a water temperature of 15-25 ° C through a gas gap, and is cooled by water. , made into a jelly gel, the air gap drafting ratio is 4 to 8 times;
  • the jelly wire enters the extraction tank for extraction by a godet.
  • the extractant in the extraction tank is xylene. After the white mineral oil in the jelly gel is extracted by the extractant, the extractant and the white mineral oil are separated. The process is recovered for recycling; in view of cost factors, the xylene of the present invention is mixed xylene.
  • the extracted fiber enters a drying oven and is blown dry by hot air at 45 to 55 ° C, and the extracting agent contained in the fiber is recovered by an activated carbon fiber adsorption recovery device;
  • the dry fiber drawn from the drying oven is subjected to post-drawing 1 to 3 times, and the number of post-drawing is 1 to 6 times each time to obtain a colored high-strength polyethylene fiber of the present invention.
  • the present invention can also be prepared by other suitable methods, for example: a melt spinning method, including a process of melt-preparing a spinning dope of ultrahigh molecular weight polyethylene, characterized in that a particle diameter of less than lm is added in the process.
  • Inorganic pigment added in an amount of .0-3.0% by weight of ultrahigh molecular weight polyethylene.
  • Ultrahigh molecular weight polyethylene having a number average molecular weight of 100 to 3 million is added, and 1.0 to 3.0% of an inorganic pigment is added, and the mixture is uniformly stirred;
  • the step 1) is added to the twin-screw extruder to be melted and melted at a melting temperature of 150 to 300 ° C to obtain a polyethylene melt, and a melt diluent is added;
  • the nascent fiber after stretching is fed into two oil baths containing glycerin through a godet, and the fibers are uniformly stretched in the oil bath.
  • the temperature of the oil bath is 100 ⁇ 130 ° C, and the total in the oil bath
  • the draw ratio is 3 to 12 times;
  • the fiber stretched by the godet roller in the two oil baths is then washed into the water bath tank to be washed at a temperature of 80 to 95 ° C, and an isomeric alcohol ether surfactant is added to the water washing liquid;
  • the water-washed fiber is dried to remove water contained in the fiber, and is wound into a cylinder to obtain a high-strength polyethylene fiber having a tensile strength of 10 to 50 g/d.
  • the invention adopts the prior art inorganic pigments, and the requirements are: capable of withstanding high temperatures of up to 30 CTC, for example: the inorganic pigments are ultramarine blue, phthalocyanine blue, chrome oxide green, lead green, iron oxide, carbon black, vanadium Acid bismuth, bismuth molybdate yellow, calcium exchange silica pigment, chrome cobalt green, titanium iron brown, copper chrome black, alkali resistant iron blue, light resistant yellow, easily disperse iron blue, zinc bismuth, zinc bismuth green, One of zinc bismuth, titanium manganese brown, and mica titanium pearlescent pigment.
  • the inorganic pigments are ultramarine blue, phthalocyanine blue, chrome oxide green, lead green, iron oxide, carbon black, vanadium Acid bismuth, bismuth molybdate yellow, calcium exchange silica pigment, chrome cobalt green, titanium iron brown, copper chrome black, alkali resistant iron blue, light resistant yellow, easily disperse iron blue, zinc bismuth, zinc bismuth green,
  • the beneficial effects of the invention are as follows: 1)
  • the product of the invention has the colors of color, gray, black, etc., and when used in the civil field, color matching can be performed to make the product more beautiful, and in some fields, different colors can be used to distinguish different
  • the product of the specification is easy to use; in the field of military application, the product of the invention can be angled according to the terrain, the climate and the like, and the products of various colors are easy to conceal.
  • PE having a lower molecular weight can be used
  • the manufacturing method of the present invention has a simple manufacturing process, high production efficiency, low cost, and produced.
  • the fiber has excellent performance and reduces the cost of use.
  • Example 1 Preparation of blue high-strength polyethylene fiber, the production steps of which are:
  • Ultrahigh molecular weight polyethylene with a number average molecular weight of more than 3 million is used, and white mineral oil is used as a solvent.
  • the weight ratio of ultrahigh molecular weight polyethylene to white mineral oil is 1 : 9, using phthalocyanine blue as an inorganic pigment additive, the amount of which is 1.0% by weight of the ultrahigh molecular weight polyethylene, and heating and stirring to fully mix the ultrahigh molecular weight polyethylene and indigo in a white mineral oil solvent. Then, it is heated into a twin-screw extruder to swell and dissolve, and the temperature is controlled at 100-30 CTC to obtain a spinning dope;
  • the spinning dope is extruded from a spinneret to obtain a liquid filament having a pore size of 1.0 nm, liquid
  • the filaments enter the spinning water tank with water temperature of 20 °C, and are cooled by water to make frozen spleen silk.
  • the air gap drafting multiple is 8;
  • the jelly filament is introduced into the extraction tank through the godet roller for extraction, the extractant in the extraction tank is xylene, and the white mineral oil in the jelly gel is extracted by the extractant.
  • the extractant and the white mineral oil are recovered by a separation process for recycling;
  • High-strength polyethylene fiber which is post-drawn and wound into blue The dry fiber drawn from the drying oven is subjected to three times of post-drawing, and the multiples of three drafts are 2 times, 2 times and 1.5 times respectively.
  • the equipment required for post-drawing includes a seven-roll drafter and a hot oven, and the drawn fibers are wound into blue high-strength polyethylene fibers.
  • the blue high-strength polyethylene fiber was tested to have a strength of 50 g/d, a modulus of 2000 g/d, and a pass rate of 98%.
  • Example 2 Preparation of green high-strength polyethylene fibers, the production steps of which are:
  • Ultrahigh molecular weight polyethylene with a number average molecular weight of more than 3 million is used, and white mineral oil is used as a solvent.
  • the weight ratio of ultrahigh molecular weight polyethylene to white mineral oil is 1 : 7, chrome oxide green as an inorganic pigment additive, the addition amount is 3.0% of the weight of the ultra-high molecular weight polyethylene, and the mixture is heated and stirred to fully mix the ultra-high molecular weight polyethylene and the chrome oxide green in the white mineral oil solvent. Then, it is heated into a twin-screw extruder to swell and dissolve, and the temperature is controlled at 100-30 CTC to prepare a spinning dope;
  • the spinning dope is extruded from a spinneret to obtain a liquid filament.
  • the diameter of the spinneret is 1.6 mm, and the liquid filament enters a spinning water tank with a water temperature of 24 ° C, and is cooled by water.
  • Forming a jelly filament, the air gap drafting multiple is 7;
  • the jelly filament is introduced into the extraction tank through the godet roller for extraction, the extractant in the extraction tank is xylene, and the white mineral oil in the jelly gel is extracted by the extractant.
  • the extractant and the white mineral oil are then subjected to a separation process to be recycled for recycling;
  • High-strength polyethylene fiber which is post-drawn and wound into green The dry fiber drawn from the drying oven is subjected to two-time post-drawing, and the multiples of the two drafts are three times and 1.5 times respectively.
  • the equipment required for the post-drawing includes a seven-roll drafter and a hot oven, and the drawn fibers are wound into green high-strength polyethylene fibers.
  • the green high-strength polyethylene fiber was found to have a strength of 15 g/d, a modulus of 410 g/d, and a yield of 99%.
  • Example 3 Preparation of red, bare polyethylene fibers, the production of which was -
  • Ultrahigh molecular weight polyethylene with a number average molecular weight of more than 3 million is used, and white mineral oil is used as a solvent.
  • the weight ratio of ultrahigh molecular weight polyethylene to white mineral oil is 1 : 8
  • Iron is an inorganic pigment additive, which is added in an amount of 2.0% by weight of the ultrahigh molecular weight polyethylene, and is heated and stirred to sufficiently uniformly mix the ultrahigh molecular weight polyethylene and the iron oxide in a white mineral oil solvent, and then enter the twin screw extruder. Heating, so that it is swollen and dissolved, and the temperature is controlled at 100-300 ° C to obtain a spinning dope;
  • the jelly filament is introduced into the extraction tank through the godet roller for extraction, the extractant in the extraction tank is xylene, and the white mineral oil in the jelly gel is extracted by the extractant.
  • the extractant and the white mineral oil are recovered by a separation process for recycling;
  • High-strength polyethylene fiber which is drawn and wound into red The dry fiber drawn from the drying oven is subjected to three times of post-drawing, and the multiples of three drafts are 2, 2 and 1.5 times respectively.
  • the equipment required for the post-drawing includes a seven-roll drafting machine and a hot oven, and the drawn fibers are wound into red high-strength polyethylene fibers.
  • the red high-strength polyethylene fiber was tested to have a strength of 40 g/d, a modulus of 1350 g/d, and a yield of 99%.
  • Example 4 Preparation of black high-strength polyethylene fibers, the production steps of which are:
  • Ultrahigh molecular weight polyethylene with a number average molecular weight of more than 3 million is used, and white mineral oil is used as a solvent.
  • the weight ratio of ultrahigh molecular weight polyethylene to white mineral oil is 1 : 9, using carbon black as an inorganic pigment additive, the amount of which is 2.0% by weight of the ultrahigh molecular weight polyethylene, heating and stirring to mix the ultrahigh molecular weight polyethylene and the carbon black in a white mineral oil solvent, and then enter The twin-screw extruder is heated to swell and dissolve, and the temperature is controlled at 100-300 ⁇ to obtain a spinning dope;
  • the spinning filament liquid is extruded from the spinneret to obtain a liquid filament.
  • the diameter of the spinneret is 3 ⁇ 4 1.0 mm, and the liquid filament enters a spinning water tank with a water temperature of 20 ° C, and is cooled by water.
  • the air gap drafting multiple is 8;
  • the jelly filament is introduced into the extraction tank through the godet roller for extraction, the extractant in the extraction tank is xylene, and the white mineral oil in the jelly gel is extracted by the extractant.
  • the extractant and the white mineral oil are recovered by a separation process for recycling;
  • Post-drawing and winding high-strength polyethylene fibers made of black The dry fibers pulled out of the drying oven are subjected to three-time post-drawing, and the multiples of three drafts are 3 times, 3 times and 1.5 times, respectively.
  • the equipment required for the post-drawing includes a seven-roll drafter and a hot oven, and the drawn fibers are wound into black high-strength polyethylene fibers.
  • the black high-strength polyethylene fiber was found to have a strength of 30 g/d, a modulus of 970 g/d, and a yield of 98%.
  • Example 5 Preparation of blue high-strength polyethylene fiber, the production steps of which are -
  • Ultrahigh molecular weight polyethylene with a number average molecular weight of more than 3 million is used, and white mineral oil is used as a solvent.
  • the weight ratio of ultrahigh molecular weight polyethylene to white mineral oil is 1 : 8, with ultramarine blue and phthalocyanine blue as inorganic pigment additives, the addition amount is 2.0% by weight of ultra high molecular weight polyethylene, and heating and stirring makes the ultra-molecular weight polyethylene and ultramarine blue and phthalocyanine blue in white mineral oil solvent.
  • the spinning dope is extruded from the spinneret to obtain a liquid filament.
  • the diameter of the spinneret is 0.5 mm, and the liquid filament enters a spinning water tank at a temperature of 20-24 ° C, and is cooled by water. , made into a jelly, the air gap drafting multiple is 6;
  • the jelly filament is introduced into the extraction tank through the godet roller for extraction, the extractant in the extraction tank is xylene, and the white mineral oil in the jelly gel is extracted by the extractant.
  • the extractant and the white mineral oil are recovered by a separation process for recycling;
  • High-strength polyethylene fiber which is post-draw and wound into blue The dry fiber drawn from the drying oven is subjected to three times of post-drawing, and the multiples of three drafts are 2.5 times, 2.5 times and 1.5 times respectively.
  • the equipment required for post-drawing includes a seven-roll drafter and a hot oven, and the drawn fibers are wound into blue high-strength polyethylene fibers.
  • the blue high-strength polyethylene fiber was found to have a strength of 38 g/d, a modulus of 1250 g/d, and a yield of 99%.
  • Example 6 Preparation of green, bare polyethylene fibers, the production steps of which are:
  • the spinning dope is extruded from a spinneret to obtain a liquid filament.
  • the diameter of the spinneret is 1.0 mm, and the liquid filament enters a silk water tank with a water temperature of 20-22 ° C, and is cooled by water. , made of frozen rubber, air gap drafting multiple of 6.
  • the jelly filament is introduced into the extraction tank through the godet roller for extraction, the extractant in the extraction tank is xylene, and the white mineral oil in the jelly gel is extracted by the extractant.
  • the extractant and the white mineral oil are recovered by a separation process for recycling;
  • green high-strength polyethylene fiber is produced: the dry fiber drawn from the drying box is subjected to two times of post-drawing, and the multiples of the two drafts are 3 times and 1.5 times, respectively.
  • the equipment required for the post-drawing includes a seven-roll drafter and a hot oven, and the drawn fibers are wound into green high-strength polyethylene fibers.
  • the green high-strength polyethylene fiber was found to have a strength of 35 g/d, a modulus of 1200 g/d, and a yield of 97%.
  • Example 7 Preparation by melt spinning
  • the polyethylene melt is sprayed through a spinneret on a spinning box, and the discharge speed is 3 ⁇ 5 m/min, and the spun spinning is cooled by an air side blowing device, and the cold air temperature is 20 to 35. ⁇ , the wind speed is 5 ⁇ 8 m / s, made into virgin fiber, and then stretched with a godet, the draw ratio is 2 ⁇ 6 times;
  • the nascent fiber after stretching is fed into two oil baths containing glycerin through a godet, and the fibers are uniformly stretched in the oil bath.
  • the temperature of the oil bath is 100 ⁇ 130 ° C, and the total in the oil bath
  • the draw ratio is 3 to 12 times;
  • the fiber stretched by the godet roller in the two oil baths is then washed into the water bath tank, the water washing temperature is 80 ⁇ 95 V, and the isothermal alcohol ether surfactant is added to the water washing liquid;
  • the water-washed fiber is dried to remove moisture contained in the fiber, and is wound into a cylinder to obtain a colored high-strength polyethylene fiber having a tensile strength of 15 to 50 g/d.
  • composite inorganic pigments may also be employed in the present invention.
  • the above-described embodiments of the present invention are intended to be illustrative of the present invention and are not to be construed as limiting the scope of the invention.

Description

一种有颜色的高强聚乙烯纤维及其制造方法
技术领域
本发明涉及一种高强度聚乙烯纤维及其制造方法和应用, 特别是一种有颜色的高强聚乙 烯纤维及其制造方法和应用。
背景技术
高强聚乙烯纤维, 是采用分子量在 100万以上的超高分子量聚乙烯生产制造的具有高强 度和模量的合成纤维材料, 高强聚乙烯纤维、 芳纶、 碳纤维在国际上称为三大高性能纤维材 料, 其中超高分子量聚乙烯纤维因具有高强度、 高模量、 低密度的特点, 所以在现代化战争 与防御装备、 宇航与航空方面发挥了极其重要的作用, 在民用领域也得到了越来越广泛的应 用。
目前, 高强聚乙烯纤维多采用凝胶纺丝一超倍热牵伸工艺生产, 由于超高分子量聚乙烯 具有很长的聚乙烯大分子柔性链, 极易造成链缠结, 将其溶解于一定^剂中, 通过溶剂的稀 释作用拉开大分子之间的距离, 原液挤出成纤维后得到具有适度大分子缠结点的冻胶原丝, 经超倍热拉伸和分子取向得到具有伸直链结构的高强聚乙烯纤维。其主要工序包括: 1、用溶 剂溶解超高分子量聚乙烯, 制成纺丝溶液; 2、 溶液经喷丝孔挤出后再用空气或水骤冷固化, 得到具有适度大分子缠结点的含溶剂湿态原丝; 3、采用萃取剂将湿态原丝中所含的溶剂脱去; 4、 对萃取后丝束在干燥箱内进行干燥; 5、 进行超倍热牵伸, 得到具有伸直链结晶结构的高 强聚乙烯纤维。
日本专利特开平 7— 238416公开了一种在干法纺丝过程中积极挥发溶剂以制备高性能聚 乙烯纤维的方法, 具体土艺为: 5— 50%的超高分子量聚乙烯和 95— 50%的择发性溶剂溶解, 加热挤出后, 经过一纺丝筒, 利用纺丝筒内通入热气流的方法使 40%以上的溶剂挥发, 剩余 溶剂在热牵伸的过程中去除, 该日本专利通过在纺丝过程中积极去除部分溶剂形成半干态原 丝, 解决了纺丝粘连的问题, 但由于溶剂在纺丝和热牵伸过程中均有挥发, 因此该专利需要 在纺丝段和牵伸设备上分别进行防火防爆处理和溶剂回收, 这样就增加了设备投资和溶剂回 收的难度, 不利于大规模的工业化生产。 .
目前的生产工艺皆追求纤维的高强度, 所生产出的高强聚乙烯纤维的拉伸强度大都在
30g/d以上, 呈白色, 由于其生产过程的复杂性, 其价格也较高, 因此一般用在军用领域, 而 民用的大多领域一般只需强度为 15— 30g/d的纤维即可满足要求,若使用 30g/d以上的高强聚 乙烯纤维, 则会造成纤维性能上的浪费, 也形成了资源的浪费, 从而大大提高了其使用成本, 在民用领域难以承受; 同时, 在绳网等应用领域, 对纤维有一定的颜色要求, 但由于超高分 子量聚乙烯的大分子链中, 除 C_H键外不存在其它的官能团, 一般的染料分子无法与之结 合进行染色, 因此一般的纤维染色方法对聚乙烯纤维都不适用。 目前尚未见带有颜色的高强 聚乙烯纤维及其生产方法的报道。
发明内容
本发明的目的是制备一种有彩色的有颜色的高强聚乙烯纤维, 在民用领域使产品更加美 观并且便于区分, 在军事领域应用能够更好的隐蔽。
一种有颜色的高强聚乙烯纤维, 其特征是,
所述的高强聚乙烯纤维表面具有彩色、 灰色或黑色;
所述的高强聚乙烯纤维的强度为 15〜50g/d, 模量为 400〜1000g/d, 单丝纤度为 4〜5d, 断裂伸长率 <3.5%。
当本发明的有颜色的高强聚乙烯纤维强度为 15〜30g/d时, 主要应用于民用领域, 例如 但不限于: 1 )绳索、 缆绳、 船帆和渔具等海洋工程方面; 2) 体育器材用品: 如安全帽、 滑 雪板、 帆轮板、 钓竿、 球拍及自行车、 滑翔板、 超轻量飞机零部件等; 3 )用作生物材料: 该 纤维增强复合材料用于牙托材料、 医用移植物和整形缝合等方面, 它的生物相容性和耐久性 都较好, 并具有高的稳定性, 不会引起过敏, 已作临床应用。 还用于医用手套和其他医疗设 施等方面。 4)工业上, 该纤维及其复合材料可用作耐压容器、 传送带、过滤材料、 汽车缓冲 板等; 建筑方面可以用作墙体、隔板结构等, 用它作增强水泥复合材料可以改善水泥的韧度, 提高其抗冲击性能。
当本发明的高强聚乙烯纤维的强度为 30〜50g/d时, 主要用于军事领域, 例如但不限于: 1 ) 国防军需装备方面: 防护衣料、 头盔、 防弹材料、 直升飞机, 坦克和舰船的装甲防护板、 雷达的防护外壳罩、 导弹罩、 防弹衣、 防刺衣、 盾牌等; 2) 航空航天方面的应用: 各种飞 机的翼尖结构、 飞船结构和浮标飞机等。
本发明的产品在上述领域应用时, 用法与现有技术的产品基本相同。
由于现有技术的高强聚乙烯纤维是白色的, 在民用领域, 很多时候需要采用不同的色彩 便于搭配、 区分、 美观和销售, 在军事领域, 也需要色彩来实现隐蔽等功能, 现有技术中的 白色高强聚乙烯纤维在上述应用时非常受限制, 而本发明很好的解决了这个问题。
所述有颜色的高强聚乙烯纤维的制造方法, 采用冻胶纺丝法, 包括超高分子量聚乙烯在 溶剂中溶胀、 溶解制备纺丝原液的工序, 其特征是, 在该工序还添加有最大粒径小于 Ι μ ηΐ 的无机颜料, 添加量为超高分子量聚乙烯重量的 1.0〜3.0%。
具体是: 所述的有颜色的髙强聚乙烯纤维的制造方法, 包括如下歩骤: ( 1 ) 纺丝原液的制备
选用数均分子量在 300万以上的超高分子量聚乙烯, 以白色矿物油作为溶剂, 超高分子 量聚乙烯与白色矿物油的重量比为 1 : 7〜9, 添加无机颜料, 加热搅拌将原料混合均勾, 然 后进入双螺杆挤出机内加热, 使之溶胀、 溶解, 温度控制在 100〜300°C, 即制得纺丝原液; 本发明所述的白色矿物油是一种市售的原料, 在市场上很容易得到。
(2) 制备冻胶丝
将纺丝原液从喷丝板挤出得到液态细丝, 喷丝板的孔径为 0.5〜1.6mm, 液态细丝经一崁 气隙进入水温为 15— 25°C的纺丝水箱, 经水冷却, 制成冻胶丝, 气隙牵伸倍数为 4〜8倍;
(3 ) 对冻胶丝进行萃取
冻胶丝经导丝辊进入萃取槽内进行萃取, 所述萃取槽内的萃取剂为二甲苯, 冻胶丝内的 白色矿物油被萃取剂萃取出来后, 萃取剂和白色矿物油再经分离工序回收, 以循环利用; 考虑到成本因素, 本发明所述的二甲苯是混二甲苯。
(4) 纺丝干燥
萃取后的纤维进入干燥箱, 经 45〜55°C的热空气吹干, 纤维中所含的萃取剂经活性炭纤 维吸附回收装置回收;
(5 ) 后牵伸及卷绕制成有颜色的高强聚乙烯纤维
由干燥箱牵出的干态纤维, 进行 1〜3次的后牵伸, 每次后牵伸的倍数在 1〜6倍之间, 制得本发明有颜色的高强聚乙烯纤维。
本发明也可以釆用其他适合的方法制备, 例如: 釆用熔融纺丝法, 包括超高分子量聚乙 烯熔融制备纺丝原液的工序, 其特征是, 在该工序还添加有粒径小于 l m的无机颜料, 添 加量为超高分子量聚乙烯重量的 .0-3.0% .
具体包括如下步骤:
1 ) 原料混合
采用数均分子量为 100〜300万的超高分子量聚乙烯, 添加 1.0〜3.0%的无机颜料, 混合 搅拌均匀;
2) 熔融
将步骤 1 ) 混合料加入双螺杆挤出机内共混熔融, 熔融温度为 150〜300°C, 制得聚乙烯 熔体, 加入熔体稀释剂;
3 ) 制备初生纤维并拉伸 所述聚乙烯熔体经纺丝箱上的喷丝板喷出, 喷出速度为 3〜5m/min, 再经空气侧吹风装 置对喷出的纺丝冷却成型, 冷风温度为 20〜35°C, 风速为 5〜8米 /秒, 制成初生纤维, 再用 导丝辊拉伸, 拉伸倍数为 2〜6倍;
4) 进入两个油浴槽内进行拉伸
拉伸后的初生纤维, 先后经导丝辊送入盛有甘油的两个油浴槽内, 在油浴槽中纤维被均 匀的拉伸, 油浴温度为 100〜130°C, 油浴中的总牵伸倍数为 3〜12倍;
5) 进入水洗浴槽, 去除纤维表面的油剂
经两个油浴槽内的导丝辊拉伸后的纤维,再进入水洗浴槽内进行水洗,水洗温度为 80〜 95°C, 水洗液中添加有异构醇醚类表面活性剂;
6) 干燥并制成高强聚乙烯纤维
经水洗后的纤维通过干燥除去纤维中含有的水份, 并卷绕成筒, 即得到拉伸强度为 10〜 50g/d的高强聚乙烯纤维
本发明采用现有技术的无机颜料, 要求是: 能够耐受最高 30CTC的高温, 例如: 所述的 无机颜料是群青、 酞菁蓝、 氧化铬绿、 铅络绿、 氧化铁、 炭黑、 钒酸铋、 钼酸铋黄、 钙交换 二氧化硅颜料、 铬钴绿、 钛铁棕、 铜铬黑、 耐碱铁蓝、 耐光中辂黄、 易分散铁蓝、 锌钡黄、 锌钡绿、 锌钡红、 钛锰棕、 云母钛珠光颜料中的一种。
本发明的有益效果在于: 1 ) 本发明的产品具有彩色、 灰色、 黑色等颜色, 在民用领域 应用时, 可进行色彩搭配, 使产品更加美观, 在某些领域, 可以釆用不同颜色区分不同规格 的产品, 便于使用; 在军事应用领域, 本发明的产品可以根据地形、 气候等形势, 应角各种 颜色的产品, 便于隐蔽。 2) 本发明釆用熔融纺丝法时, 可采用分子量较低的 PE; 3 ) 本发 明的制造方法与现有技术相比, 具有'制造流程简单、 生产效率高、 成本低, 生产出的纤雍性 能优良, 并且降低了使用成本等优点。
具体实施方式
实施例 1 : 制备蓝色的高强聚乙烯纤维, 其生产步骤为:
1 ) 原料的溶胀、 溶解, 制成紡丝原液: 选用数均分子量在 300万以上的超高分子量聚 乙烯, 并以白色矿物油作为溶剂, 超高分子量聚乙烯与白色矿物油的重量比为 1 : 9, 以酞菁 蓝作为无机颜料添加剂,其添加量为超高分子量聚乙烯重量的 1.0%,加热搅拌使超高分子量 聚乙烯和酞膂蓝在白色矿物油溶剂中充分均勾的混合, 然后进入双螺杆挤出机内加热, 使之 溶胀、 溶解, 温度控制在 100— 30CTC , 制得纺丝原液;
2) 制备冻胶丝: 将纺丝原液从喷丝板挤出得到液态细丝, 喷丝板的孔径为 1.0nim, 液 态细丝进入水温为 20°C的纺丝水箱, 经水冷却, 制成冻脾丝, 气隙牵伸倍数为 8 ;
3 ) 对冻胶丝进行萃取: 冻胶丝经导丝辊进入萃取槽内进行萃取, 所述萃取槽内的萃取 剂为二甲苯, 冻胶丝内的白色矿物油被萃取剂萃取出来后, 萃取剂和白色矿物油再经分离工 序回收, 以循环利用;
4 ) 纺丝干燥: 萃取后的紡丝进入干燥箱, 经干燥温度为 50°C的热空气吹千, 纤维中所 含的萃取剂经活性炭纤维吸附回收装置回收;
5 ) 后牵伸及卷绕制成为蓝色的高强聚乙烯纤维: 由干燥箱牵出的干态纤维, 进行 3次 的后牵伸, 三次牵伸的倍数分别为 2倍、 2倍和 1.5倍, 后牵伸所需的设备包括七辊牵伸机和 热烘箱, 牵伸后的纤维, 经卷绕制成蓝色的高强聚乙烯纤维。
经检测, 该蓝色的高强聚乙烯纤维的强度为 50g/d,模量为 2000g/d, 合格率为 98 %。 实施例 2: 制备绿色的高强聚乙烯纤维, 其生产步骤为:
1 ) 原料的溶胀、 溶解, 制成纺丝原液: 选用数均分子量在 300万以上的超高分子量聚 乙烯, 并以白色矿物油作为溶剂, 超高分子量聚乙烯与白色矿物油的重量比为 1 : 7, 以氧化 铬绿为无机颜料添加剂,其添加量为超高分子量聚乙烯重量的 3.0% ,加热搅拌使超高分子量 聚乙烯和氧化铬绿在白色矿物油溶剂中充分均勾的混合, 然后进入双螺杆挤出机内加热, 使 之溶胀、 溶解, 温度控制在 100— 30CTC , 制 i 纺丝原液;
2) 制备冻胶丝: 将纺丝原液从喷丝板挤出得到液态细丝, 喷丝板的孔径为 1.6mm, 液 态细丝进入水温为 24 °C的纺丝水箱, 经水冷却, 制成冻胶丝, 气隙牵伸倍数为 7;
3 ) 对冻胶丝进行萃取: 冻胶丝经导丝辊进入萃取槽内进行萃取, 所述萃取槽内的萃取 剂为二甲苯, 冻胶丝内的白色矿物油被萃取剂萃取出来后, 萃取剂和白色矿物油再经分离工 序回妆, 以循环利用;
4) 纺丝干燥: 萃取后的纺丝进入干燥箱, 经干燥温度为 54°C的热空气吹干, 纤维中所 含的萃取剂经活性炭纤维吸附回收装置回收;
5 ) 后牵伸及卷绕制成为绿色的高强聚乙烯纤维: 由干燥箱牵出的干态纤维, 进行 2次 的后牵伸, 两次后牵伸的倍数分别为 3倍和 1.5倍, 后牵伸所需的设备包括七辊牵伸机和热 烘箱, 牵伸后的纤维, 经卷绕制成绿色的高强聚乙烯纤维。
经检测, 该绿色的高强聚乙烯纤维的强度为 15g/d,模量为 410g/d, 合格率为 99%。 实施例 3 : 制备红色的髙强聚乙烯纤维, 其生产歩骤为-
1 ) 原料的溶胀、 溶解, 制成纺丝原液: 选用数均分子量在 300万以上的超高分子量聚 乙烯, 并以白色矿物油作为溶剂, 超高分子量聚乙烯与白色矿物油的重量比为 1 : 8, 以氧化 铁为无机颜料添加剂,其添加量为超高分子量聚乙烯重量的 2.0%,加热搅拌使超高分子量聚 乙烯和氧化铁在白色矿物油溶剂中充分均匀的混合, 然后进入双螺杆挤出机内加热, 使之溶 胀、 溶解, 温度控制在 100— 300 °C, 制得纺丝原液;
2) 制备冻胶丝: 将纺丝原液从喷丝板挤出得到液态细丝, 喷丝板的孔径为 0.5mm, 液 态细丝进入水温为 18— 2CTC的纺丝水箱, 经水冷却, 制成冻胶丝, 气隙牵伸倍数为 5 ;
3 ) 对冻胶丝进行萃取: 冻胶丝经导丝辊进入萃取槽内进行萃取, 所述萃取槽内的萃取 剂为二甲苯, 冻胶丝内的白色矿物油被萃取剂萃取出来后, 萃取剂和白色矿物油再经分离工 序回收, 以循环利用;
4) 纺丝千燥: 萃取后的纺丝进入干燥箱, 经干燥温度为 50— 52 °C的热空气吹干, 纤维 中所含的萃取剂经活性炭纤维吸附回收装置回收;
5 ) 后牵伸及卷绕制成为红色的高强聚乙烯纤维: 由干燥箱牵出的干态纤维, 进行 3次 的后牵伸,三次牵伸的倍数分别为 2倍、 2倍和 1.5倍, 后牵伸所需的设备包括七辊牵伸机和 热烘箱, 牵伸后的纤维, 经卷绕制成红色的高强聚乙烯纤维。
经检测, 该红色的高强聚乙烯纤维的强度为 40g/d,模量为 1350g/d, 合格率为 99 %。 实施例 4: 制备黑色的高强聚乙烯纤维, 其生产步骤为:
1 ) 原料的溶胀、 溶解, 制成纺丝原液: 选用数均分子量在 300万以上的超高分子量聚 乙烯, 并以白色矿物油作为溶剂, 超高分子量聚乙烯与白色矿物油的重量比为 1 : 9, 以碳黑 为无机颜料添加剂,其添加量为超高分子量聚乙烯重量的 2.0%,加热搅拌使超高分子量聚乙 烯和碳黑在白色矿物油溶剂中充分均匀的混合, 然后进入双螺杆挤出机内加热, 使之溶胀、 溶解, 温度控制在 100— 300Ό , 制得纺丝原液;
2) 制备冻胶丝: 将纺'丝原液从喷丝板挤出得到液态细丝, 喷丝板的孔径 ¾ 1.0mm, 液 态细丝进入水温为 20°C的纺丝水箱, 经水冷却, 制成冻胶丝, 气隙牵伸倍数为 8 ;
3 ) 对冻胶丝进行萃取: 冻胶丝经导丝辊进入萃取槽内进行萃取, 所述萃取槽内的萃取 剂为二甲苯, 冻胶丝内的白色矿物油被萃取剂萃取出来后, 萃取剂和白色矿物油再经分离工 序回收, 以循环利用;
4) 纺丝千燥: 萃取后的纺丝进入干燥箱, 经千燥温度为 50°C的热空气吹干, 纤维中所 含的萃取剂经活性炭纤维吸附回收装置回收;
5 ) 后牵伸及卷绕制成为黑色的高强聚乙烯纤维: 干燥箱牵出的干态纤维, 进行 3次 的后牵伸,三次牵伸的倍数分别为 3倍、 3倍和 1.5倍, 后牵伸所需的设备包括七辊牵伸机和 热烘箱, 牵伸后的纤维, 经卷绕制成黑色的高强聚乙烯纤维。 经检测, 该黑色的高强聚乙烯纤维的强度为 30g/d,模量为 970g/d, 合格率为 98 %。 实施例 5 : 制备蓝色的高强聚乙烯纤维, 其生产步骤为-
1 ) 原料的溶胀、 溶解, 制成纺丝原液: 选用数均分子量在 300万以上的超高分子量聚 乙烯, 并以白色矿物油作为溶剂, 超高分子量聚乙烯与白色矿物油的重量比为 1 : 8, 以群青 和酖菁蓝为无机颜料添加剂,其添加量为超高分子量聚乙烯重量的 2.0 %,加热搅拌使超髙分 子量聚乙烯和群青、 酞菁蓝在白色矿物油溶剂中充分均匀的混合, 然后进入双螺杆挤出机内 加热, 使之溶胀、 溶解, 温度控制在 100— 300 °C, 制得纺丝原液;
2) 制备冻胶丝: 将纺丝原液从喷丝板挤出得到液态细丝, 喷丝板的孔径为 0.5mm, 液 态细丝进入 温为 20— 24 °C的紡丝水箱, 经水冷却, 制成冻胶 , 气隙牵伸倍数为 6;
3 ) 对冻胶丝进行萃取: 冻胶丝经导丝辊进入萃取槽内进行萃取, 所述萃取槽内的萃取 剂为二甲苯, 冻胶丝内的白色矿物油被萃取剂萃取出来后, 萃取剂和白色矿物油再经分离工 序回收, 以循环利用;
4) 紡丝干燥: 萃取后的纺丝进入千燥箱, 经干燥温度为 46— 50°C的热空气吹干, 纤维 中所含的萃取剂经活性炭纤维吸附回收装置回收;
5 ) 后牵伸及卷绕制成为蓝色的高强聚乙烯纤维: 由干燥箱牵出的干态纤维, 进行 3次 的后牵伸, 三次牵伸的倍数分别为 2.5倍、 2.5倍和 1.5倍, 后牵伸所需的设备包括七辊牵伸 机和热烘箱, 牵伸后的纤维, 经卷绕制成蓝色的高强聚乙烯纤维。
经检测, 该蓝色的高强聚乙烯纤维的强度为 38g/d,模量为 1250g/d, 合格率为 99 %。 实施例 6: 制备绿色的髙强聚乙烯纤维, 其生产步骤为:
1 ) 原料的溶胀、 溶解, 制成纺丝原液: 选用数均分子量在 300万以上的超高分子量聚 乙烯, 并以白色矿物油作为溶剂, 超高分子量聚 ^烯与白色矿物油的重量比为 1 : 9, 以氧化 铬绿、 铅铬绿为无机颜料添加剂, 其添加量为超高分子量聚乙烯重量的 2%, 加热搅拌使超 髙分子量聚乙烯和氧化铬绿、 铅铬绿在白色矿物油溶剂中充分均匀的混合, 然后进入双螺杆 挤出机内加热, 使之溶胀、 溶解, 温度控制在 100— 300°C, 制得纺丝原液;
2 ) 制备冻胶丝: 将纺丝原液从喷丝板挤出得到液态细丝, 喷丝板的孔径为 1.0mm, 液 态细丝进入水温为 20— 22°C的钫丝水箱, 经水冷却, 制成冻胶丝, 气隙牵伸倍数为 6。
3 ) 对冻胶丝进行萃取: 冻胶丝经导丝辊进入萃取槽内进行萃取, 所述萃取槽内的萃取 剂为二甲苯, 冻胶丝内的白色矿物油被萃取剂萃取出来后, 萃取剂和白色矿物油再经分离工 序回收, 以循环利用;
4) 纺丝干燥: 萃取后的纺丝进入干燥箱, 经千燥温度为 48— 50°C的热空气吹干, 纤维 中所含的萃取剂经活性炭纤维吸附回收装置回收;
5 ) 后牵伸及卷绕制成有绿色的高强聚乙烯纤维: 由干燥箱牵出的干态纤维, 进行 2次 的后牵伸, 两次牵伸的倍数分别为 3倍和 1.5倍, 后牵伸所需的设备包括七辊牵伸机和热烘 箱, 牵伸后的纤维, 经卷绕制成绿色的高强聚乙烯纤维。
经检测, 该绿色的高强聚乙烯纤维的强度为 35g/d,模量为 1200g/d, 合格率为 97 %。 实施例 7: 采用熔融纺丝法制备
具体包括如下步骤:
1 ) 原料混合: 超高分子量聚乙烯的数均相对分子量为 100〜300万, 加入其重量 1.0〜 3.0 %的无机颜料, 颜料的选择和搽配根据客户需要即可, 无机颜料的最大粒径要求小于 1 μ m; 混合、 搅拌均匀;
2 ) 熔融: 将上述混合料加入双螺杆挤出机内共混熔融, 熔融温度为 150〜300 °C, 加入 熔体稀释剂, 获得一种粘度适合拉伸的聚乙烯熔体; 稀释剂在现有技术中很容易获得;
3 ) 制备初生纤维并拉伸
. 所述聚乙烯熔体经纺丝箱上的喷丝板喷出, 喷出速度为 3〜5m/min, 再经空气侧吹风装 置对喷出的纺丝冷却成型, 冷风温度为 20〜35 Ό, 风速为 5〜8米 /秒, 制成初生纤维, 再用 导丝辊拉伸, 拉伸倍数为 2〜6倍;
4) 进入两个油浴槽内进行拉伸
拉伸后的初生纤维, 先后经导丝辊送入盛有甘油的两个油浴槽内, 在油浴槽中纤维被均 匀的拉伸, 油浴温度为 100〜130°C, 油浴中的总牵伸倍数为 3〜12倍;
5 ) 进入水洗浴槽, 去除纤维表面的油剂
经两个油浴槽内的导丝辊拉伸后的纤维,再进入水洗浴槽内进行水洗,水洗温度为 80〜 95 V , 水洗液中添加有异构醇醚类表面活性剂;
6) 干燥并制成高强聚乙烯纤维
经水洗后的纤维通过干燥除去纤维中含有的水份, 并卷绕成筒, 即得到拉伸强度为 15〜 ' 50g/d的有颜色高强聚乙烯纤维。
根据现有技术的提示, 为了使本发明的色彩多样化,本发明也可以采用复合的无机颜料。 本发明上述实施例是对本发明的说明而不能限制本发明, 在与本发明权利要求书相当的 含义和范围内的任何改变和组合, 都应认为是在权利要求书的范围内。

Claims

权 利 要 求 书
1.一种有颜色的高强聚乙烯纤维, 其特征是- 所述的高强聚乙烯纤维表面具有彩色、 灰色或黑色;
所述的高强聚乙烯纤维的强度为 15〜50g/d, 模量为 400〜2000g/d。
2.根据权利要求 1所述的有颜色的高强聚乙烯纤维, 其特征是, 所述高强聚乙烯纤维的 强度为 15〜30g/d, 模量为 400〜1000g/d。
3.根据权利要求 1所述的有颜色的高强聚乙烯纤维, 其特征是, 所述高强聚乙烯纤维的 强度为 30〜50g/cL
4.权利要求 1一 3中任一项所述有颜色的高强聚乙烯纤维的制造方法, 采用冻胶纺丝法, 包 超高分子量聚乙烯在溶剂中溶胀、 溶解制备紡丝原.液的工序, 其特征是, 在该工序还添 加有最大粒径小于 1 μ m的无机颜料, 添加量为超高分子量聚乙烯重量的 1.0〜3.0%。
5.根据权利要求 4所述的有颜色的髙强聚乙烯纤维的制造方法, 其特征是, 包括如下步 骤-
( 1 ) 紡丝原液的制备
选用数均分子量在 300万以上的超高分子量聚乙烯, 以白色矿物油作为溶剂, 超高分子 量聚乙烯与白色矿物油的重量比为 1 : 7~9, 添加无机颜料, 加热搅拌将原料混合均匀, 然 后进入双螺杆挤出机内加热, 使之溶胀、 溶解, 温度控制在 100〜300°C, 即制得纺丝原液;
(2) 制备冻胶丝
将纺丝原液从喷丝板挤出得到液态细丝, 喷丝板的孔径为 0.5〜1.6mm, 液态细丝经一段 气隙进入水温为 15— 25°C的纺丝水箱, 经水冷却, 制成冻胶丝, 气隙牵伸倍数为 4〜8倍;
(3 ) 对冻胶丝进行萃取
冻胶丝经导丝辊进入萃取槽内进行萃取, 所述萃取槽内的萃取剂为二甲苯, 冻胶丝内的 · 白色矿物油被萃取剂萃取出来后, 萃取剂和白色矿物油再经分离工序回收, 以循环利用;
(4) 纺丝干燥
萃取后的纤维进入干燥箱, 经 45〜55°C的热空气吹干, 纤维中所含的萃取剂经活性炭纤 维吸附回收装置回收;
(5 ) 后牵伸及卷绕制成有颜色的高强聚乙烯纤维
由干燥箱牵出的干态纤维, 进行 1〜3次的后牵伸, 每次后牵伸的倍数在 1〜6倍之间, 制得本发明有颜色的高强聚乙烯纤维。
6.权利要求 1一 3中任一项所述有颜色的高强聚乙烯纤维的制造方法, 采用熔融纺丝法, 包括超高分子量聚乙烯熔融制备纺丝原液的工序, 其特征是, 在该工序还添加有粒径小于 1 的无机颜料, 添加量为超高分子量聚乙烯重量的 1.0〜3.0%。
7.根据权利要求6所述的有颜色的高强聚乙烯纤维的制造方法, 其特征是, 包括如下步 骤:
1 ) 原料混合
采用数均分子量为 100〜300万的超高分子量聚乙烯, 添加 1.0〜3.0 %的无机颜料, 混合 搅拌均匀;
2 ) 熔融
将步骤 1 ) 混合料加入双螺杆挤出机内共混熔融, 熔融温度为 150〜300°C, 制得聚乙烯 熔体, 加入熔体稀释剂;
3 ) 制备初生纤维并拉伸
所述聚乙烯熔体经纺丝箱上的喷丝板喷出, 喷出速度为 3〜5m/min, 再经空气侧吹风装 置对喷出的纺丝冷却成型, 冷风温度为 20〜35 °C, 风速为 5〜8米 /秒, 制成初生纤维, 再用 导丝辊拉伸, 拉伸倍数为 2〜6倍; .
4) 进入两个油浴槽内进行拉伸
拉伸后的初生纤维, 先后经导丝辊送入盛有甘油的两个油浴槽内, 在油浴槽中纤维被均 匀的拉伸, 油浴温度为 100〜130°C, 油浴中的总牵伸倍数为 3〜12倍;
5 ) 进入水洗浴槽, 去除纤维表面的油剂
经两个油浴槽内的导丝辊拉伸后的纤维,再进入水洗浴槽内进行水洗,水洗温度为 80〜 95 V , 水洗液中添加有异构醇醚类表面活性剂;
6 ) 干燥并制成高强聚乙烯纤维
经水洗后的纤维通过干燥除去纤维中含有的水份, 并卷绕成筒, 即得到拉伸强度为 10〜
50g/d的高强聚乙烯纤维。
8.根据权利要求 4、 5、 6或 7所述的有颜色的高强聚乙烯纤维的制造方法, 所述的无机 颜料是群青、 酞菁蓝、 氧化络绿、 铅铬绿、 氧化铁、 炭黑、 钒酸铋、 钼酸铋黄、 钙交换二氧 化硅颜料、 铬钴绿、 钛铁棕、 铜铬黑、 耐碱铁蓝、 耐光中铬黄、 易分散铁蓝、 锌钡黄、 锌钡 绿、 锌钡红、 钛锰棕、 云母钛珠光颜料中的一种。
8.权利要求 2的有颜色的高强聚乙烯纤维在民用技术领域内的应用, 其特征是, 所述有 颜色的高强聚乙烯纤维在海洋工程、 体育器材用品、 生物材料、 医疗器械材料、工业用材料、 建筑用材料中的应用。
9.权利要求 3的有颜色的高强聚乙烯纤维在军事技术领域内的应用, 其特征是, 所述颜 色的高强聚乙烯纤维在防护装备、 航空航天材料中的应用。
PCT/CN2008/001308 2008-02-26 2008-07-14 一种有颜色的高强度聚乙烯纤维及其制造方法 WO2009105925A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES08783513T ES2426088T3 (es) 2008-02-26 2008-07-14 Fibra de polietileno coloreada de alta resistencia y procedimiento de preparación de la misma
EP08783513.8A EP2154274B1 (en) 2008-02-26 2008-07-14 Colored high strength polyethylene fiber and preparation method thereof
JP2010547024A JP5244921B2 (ja) 2008-02-26 2008-07-14 1種の色彩を有する高強度ポリエチレン繊維および製法と応用
US12/600,241 US8623245B2 (en) 2008-02-26 2008-07-14 Process of making colored high strength polyethylene fiber
AU2008351678A AU2008351678B2 (en) 2008-02-26 2008-07-14 Colored high strength polyethylene fiber and preparation method thereof
US13/802,029 US20130267650A1 (en) 2008-02-26 2013-03-13 Colored High Strength Polyethylene Fiber and Preparation Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810014184.1A CN101230499B (zh) 2008-02-26 2008-02-26 一种有颜色的高强聚乙烯纤维及其制造方法
CN200810014184.1 2008-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/802,029 Division US20130267650A1 (en) 2008-02-26 2013-03-13 Colored High Strength Polyethylene Fiber and Preparation Method Thereof

Publications (1)

Publication Number Publication Date
WO2009105925A1 true WO2009105925A1 (zh) 2009-09-03

Family

ID=39897299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001308 WO2009105925A1 (zh) 2008-02-26 2008-07-14 一种有颜色的高强度聚乙烯纤维及其制造方法

Country Status (7)

Country Link
US (2) US8623245B2 (zh)
EP (1) EP2154274B1 (zh)
JP (1) JP5244921B2 (zh)
CN (1) CN101230499B (zh)
AU (1) AU2008351678B2 (zh)
ES (1) ES2426088T3 (zh)
WO (1) WO2009105925A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234850A (zh) * 2010-05-07 2011-11-09 上海启鹏工程材料科技有限公司 一种高强度聚丙烯纤维的制备方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618295B (zh) * 2009-07-31 2011-08-10 山东爱地高分子材料有限公司 超高分子量聚乙烯多孔膜的冻胶连续生产方法
CN101812750A (zh) * 2010-04-01 2010-08-25 滕良修 一种橘红色聚乙烯线绳的制备方法
CN101891912A (zh) * 2010-07-29 2010-11-24 任意 高强高模聚乙烯膜及其连续固态挤出超拉伸的生产方法
CN101956238B (zh) * 2010-08-24 2012-05-30 北京同益中特种纤维技术开发有限公司 一种超高分子量聚乙烯纤维纺丝溶液的制备方法
CN101962819B (zh) * 2010-09-13 2012-07-18 杭州翔盛高强纤维材料股份有限公司 一种特白颜色高强高模聚乙烯纤维及其制备工艺
CN101967688A (zh) * 2010-09-21 2011-02-09 中国科学院宁波材料技术与工程研究所 一种超高分子量聚乙烯纤维制备方法
KR101235255B1 (ko) 2010-12-06 2013-02-20 주식회사 삼양사 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법
DK2649122T3 (en) * 2010-12-10 2016-12-19 Dsm Ip Assets Bv Hppe element and method of producing a hppe element
CN102251303B (zh) * 2011-05-03 2013-03-27 湖南鑫海网业有限公司 三聚高强高韧节能渔网的制备方法
CN102320171B (zh) * 2011-08-27 2014-01-15 卢霖 一种多组份高分子聚合物纤维吸音保温材料及其制造方法
US9169581B2 (en) * 2012-02-24 2015-10-27 Honeywell International Inc. High tenacity high modulus UHMW PE fiber and the process of making
WO2013139784A1 (en) * 2012-03-20 2013-09-26 Dsm Ip Assets B.V. Polyolefin fiber
CN103590128B (zh) * 2013-11-05 2016-06-08 东华大学 一种有色超高相对分子质量聚乙烯纤维的制备方法
CN103668700B (zh) * 2013-11-27 2015-11-25 江苏中新资源集团有限公司 一种高弹性面料及其制备方法
KR101466692B1 (ko) * 2013-12-02 2014-12-01 동양제강 주식회사 용제 추출 장치
CN103789927B (zh) * 2014-01-24 2017-02-15 廊坊中纺新元无纺材料有限公司 一种纺丝成网法非织造布的制造方法
CN104910650B (zh) * 2014-03-10 2016-02-10 福建坤彩材料科技股份有限公司 珠光颜料的制备方法及应用
CN105133066B (zh) * 2014-05-28 2017-08-18 杭州翔盛高强纤维材料股份有限公司 一种超高分子量聚乙烯有色纤维的制备方法
CN104862793A (zh) * 2015-05-18 2015-08-26 中国水产科学研究院东海水产研究所 一种捻线用纤维生产方法
CN105172271B (zh) * 2015-07-31 2018-01-26 王莎 一种轻质抗冲击自行车车架材料及其制备方法
CN106544746A (zh) * 2015-09-18 2017-03-29 中国石油化工股份有限公司 超高分子量聚乙烯混合溶液干法纺丝制备有色纤维的方法及纤维
CN106544747B (zh) * 2015-09-23 2018-08-31 中国石化仪征化纤有限责任公司 一种超高分子量聚乙烯有色纤维制造方法
CN106567152A (zh) * 2015-10-12 2017-04-19 中国石油化工股份有限公司 一种有色超高分子量聚乙烯纤维及其制备方法
CN105155023A (zh) * 2015-10-26 2015-12-16 太仓市双宇化纤有限公司 高强度热塑性聚酯/纳米碳纤维复合材料及其制备方法
CN105330937A (zh) * 2015-11-17 2016-02-17 梅庆波 一种湿法制备聚乙烯塑料聚合物的方法
WO2017146144A1 (ja) * 2016-02-24 2017-08-31 東洋紡株式会社 着色ポリエチレン繊維およびその製造方法
JP6992257B2 (ja) * 2016-06-23 2022-01-13 東洋紡株式会社 着色ポリエチレン繊維およびその製造方法
CN105754183A (zh) * 2016-04-05 2016-07-13 巢湖市瑞强渔具有限责任公司 一种高强度防藻渔网
CN106245136B (zh) * 2016-08-17 2019-03-29 东华大学 一种有色超高分子量聚乙烯纤维及其制备方法
CN106965505A (zh) * 2017-05-19 2017-07-21 南京航空航天大学 超高分子量聚乙烯纤维增强的纤维金属层板及其制备方法
CN107129620A (zh) * 2017-05-27 2017-09-05 巢湖市鼎盛渔具有限公司 一种利用渔网回收料二次加工造线的方法
CN107460624A (zh) * 2017-09-15 2017-12-12 常州克德制网有限公司 渔网结式经济作物防倾斜网的生产工艺及防倾斜网
WO2019121663A1 (en) 2017-12-22 2019-06-27 Dsm Ip Assets B.V. High performance polyethylene fibers composite fabric
EP3749799A4 (en) * 2018-02-05 2021-09-15 The Board of Trustees of the Leland Stanford Junior University SPECTRAL SELECTIVE TEXTILE FOR PASSIVE RADIANT EXTERNAL COOLING FOR PEOPLE
CN109468700A (zh) * 2018-10-31 2019-03-15 盐城优和博新材料有限公司 一种抗菌高强聚乙烯纤维的制造方法
CN109706534A (zh) * 2018-12-27 2019-05-03 苏州世名科技股份有限公司 一种超高分子量聚乙烯纤维用色油及其制备方法
CN109914001B (zh) * 2019-03-28 2022-01-14 浙江千禧龙纤特种纤维股份有限公司 一种高韧性高强聚乙烯纤维的制造方法
CN111926407B (zh) * 2020-05-09 2022-05-06 中国水产科学研究院东海水产研究所 一种含接枝聚胍盐纳米铜镍协同防污丝的加工方法
CN111593426A (zh) * 2020-06-08 2020-08-28 江苏九九久科技有限公司 温变高性能聚乙烯纤维及其制备方法
CN113151918B (zh) * 2021-05-10 2022-09-06 浙江理工大学上虞工业技术研究院有限公司 一种超高分子量聚乙烯有色纤维及其制备方法
CN113186614B (zh) * 2021-05-10 2022-08-23 浙江理工大学上虞工业技术研究院有限公司 一种抑菌型高强高模聚乙烯有色纤维及其制备方法
CN113249814A (zh) * 2021-05-14 2021-08-13 盐城优和博新材料有限公司 一种超耐高温的超高强聚乙烯纤维生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238416A (ja) 1994-02-23 1995-09-12 Toyobo Co Ltd 高強度ポリエチレン繊維の製造方法
JPH07268784A (ja) * 1994-03-28 1995-10-17 Goosen:Kk 着色された高強力ポリエチレン繊維及びその染色方法
US5613987A (en) * 1992-07-10 1997-03-25 Toyo Boseki Kabushiki Kaisha Colored high-tenacity filaments of polyethylene and process for their production
JPH1121721A (ja) * 1997-07-04 1999-01-26 Toyobo Co Ltd 着色された高強力ポリエチレン繊維
JP2005213674A (ja) * 2004-01-29 2005-08-11 Toyobo Co Ltd 原着高強度ポリオレフィン繊維

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH464419A (de) * 1966-03-04 1968-10-31 Geigy Ag J R Stabiles, handelsfähiges Waschmittel
CA920316A (en) * 1968-02-29 1973-02-06 Kanegafuchi Boseki Kabushiki Kaisha Multi-component mixed filament with nebular configuration
US4413110A (en) * 1981-04-30 1983-11-01 Allied Corporation High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore
DE3363610D1 (en) * 1982-12-28 1986-06-26 Mitsui Petrochemical Ind Process for producing stretched articles of ultrahigh-molecular-weight polyethylene
US4663101A (en) * 1985-01-11 1987-05-05 Allied Corporation Shaped polyethylene articles of intermediate molecular weight and high modulus
US5256358A (en) * 1985-01-29 1993-10-26 Mitsui Petrochemical Industries, Ltd. Method of making stretched filaments of ultra-high-molecular weight polyethylene
JPH01121721A (ja) * 1987-11-05 1989-05-15 Hitachi Metals Ltd 磁気センサ
JP2675182B2 (ja) * 1990-07-19 1997-11-12 日本石油株式会社 着色延伸ポリエチレン材料およびその製造方法
JPH04289212A (ja) * 1991-03-14 1992-10-14 Toyobo Co Ltd 着色された高強力ポリエチレン繊維
US5342567A (en) * 1993-07-08 1994-08-30 Industrial Technology Research Institute Process for producing high tenacity and high modulus polyethylene fibers
JP3764196B2 (ja) * 1994-12-27 2006-04-05 新日本石油株式会社 高強度・高弾性率ポリエチレン材料の連続的製造方法
US5702657A (en) * 1994-12-27 1997-12-30 Nippon Oil Co., Ltd. Method for the continuous production of a polyethylene material having high strength and high modulus of elasticity
US5932309A (en) * 1995-09-28 1999-08-03 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
US6723267B2 (en) * 1998-10-28 2004-04-20 Dsm N.V. Process of making highly oriented polyolefin fiber
US6448359B1 (en) * 2000-03-27 2002-09-10 Honeywell International Inc. High tenacity, high modulus filament
KR101103197B1 (ko) * 2002-12-10 2012-01-04 디에스엠 아이피 어셋츠 비.브이. 폴리올레핀 섬유의 제조 방법 및 전환 방법
CN1246511C (zh) * 2002-12-27 2006-03-22 东华大学 超高相对分子量聚乙烯冻胶纤维的萃取、干燥工艺
US7147807B2 (en) * 2005-01-03 2006-12-12 Honeywell International Inc. Solution spinning of UHMW poly (alpha-olefin) with recovery and recycling of volatile spinning solvent
CN100441753C (zh) * 2006-07-18 2008-12-10 东华大学 一种中空高强高模聚乙烯纤维的制备方法
CN100427653C (zh) * 2006-11-24 2008-10-22 东华大学 一种超高分子量聚乙烯(pe)冻胶丝的制备方法及应用
WO2008141835A1 (en) * 2007-05-23 2008-11-27 Dsm Ip Assets B.V. Colored suture
CN101148783B (zh) * 2007-11-09 2010-09-01 北京特斯顿新材料技术发展有限公司 一种超高分子量聚乙烯纤维制备的干法纺丝方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613987A (en) * 1992-07-10 1997-03-25 Toyo Boseki Kabushiki Kaisha Colored high-tenacity filaments of polyethylene and process for their production
JPH07238416A (ja) 1994-02-23 1995-09-12 Toyobo Co Ltd 高強度ポリエチレン繊維の製造方法
JPH07268784A (ja) * 1994-03-28 1995-10-17 Goosen:Kk 着色された高強力ポリエチレン繊維及びその染色方法
JPH1121721A (ja) * 1997-07-04 1999-01-26 Toyobo Co Ltd 着色された高強力ポリエチレン繊維
JP2005213674A (ja) * 2004-01-29 2005-08-11 Toyobo Co Ltd 原着高強度ポリオレフィン繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2154274A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234850A (zh) * 2010-05-07 2011-11-09 上海启鹏工程材料科技有限公司 一种高强度聚丙烯纤维的制备方法

Also Published As

Publication number Publication date
AU2008351678A1 (en) 2009-09-03
AU2008351678B2 (en) 2013-05-16
US8623245B2 (en) 2014-01-07
CN101230499B (zh) 2010-10-06
EP2154274A1 (en) 2010-02-17
EP2154274A4 (en) 2011-07-20
US20100233479A1 (en) 2010-09-16
JP5244921B2 (ja) 2013-07-24
JP2011513597A (ja) 2011-04-28
EP2154274B1 (en) 2013-05-22
CN101230499A (zh) 2008-07-30
US20130267650A1 (en) 2013-10-10
ES2426088T3 (es) 2013-10-21

Similar Documents

Publication Publication Date Title
WO2009105925A1 (zh) 一种有颜色的高强度聚乙烯纤维及其制造方法
US8188206B2 (en) 10-50 G/D high strength polyethylene fiber and preparation method thereof
CN102586925B (zh) 超高分子量聚乙烯绳网用有色纤维制备方法
CN101886295A (zh) 一种超高分子量聚乙烯有色纤维及制备方法
CN101962819B (zh) 一种特白颜色高强高模聚乙烯纤维及其制备工艺
Imura et al. Dry spinning of synthetic polymer fibers
CN113151912B (zh) 一种超高分子量聚乙烯纤维及其制备方法和应用
CN102776596B (zh) 一种用于制备超高分子量聚乙烯有色纤维的纺丝溶胀液及纺丝原液
CN109322006B (zh) 一种有颜色的高强聚乙烯纤维及其制备方法
TW201204897A (en) Coloured flame retardant shaped cellulosic article and products produced from it
CN105133066B (zh) 一种超高分子量聚乙烯有色纤维的制备方法
CN101718003B (zh) 超高分子量聚乙烯有色细旦纤维的生产方法
CN107475794A (zh) 一种硅氮系阻燃高湿模量粘胶纤维及其制备方法
Yang et al. Preparation and characterization of novel super-artificial hair fiber based on biomass materials
CN103590128A (zh) 一种有色超高相对分子质量聚乙烯纤维的制备方法
CN106012076A (zh) 一种醋酸纤维的湿法纺丝制备方法
CN106567152A (zh) 一种有色超高分子量聚乙烯纤维及其制备方法
KR900003445A (ko) 채색된 아라미드 섬유
CN113186614B (zh) 一种抑菌型高强高模聚乙烯有色纤维及其制备方法
CN204198908U (zh) 一种大有光聚酯纤维及其纺丝所用的喷丝板
CN113215821B (zh) 一种抑菌型超高分子量聚乙烯有色纤维及其制备方法
CN101389794A (zh) 染色的纤维素模制体的制造方法
TW201918516A (zh) 聚丙烯樹脂組成物、聚丙烯樹脂成形體及聚丙烯樹脂成形體之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547024

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008783513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12600241

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008351678

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008351678

Country of ref document: AU

Date of ref document: 20080714

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13/MUMNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE