WO2009104756A1 - ZnO系半導体素子 - Google Patents

ZnO系半導体素子 Download PDF

Info

Publication number
WO2009104756A1
WO2009104756A1 PCT/JP2009/053074 JP2009053074W WO2009104756A1 WO 2009104756 A1 WO2009104756 A1 WO 2009104756A1 JP 2009053074 W JP2009053074 W JP 2009053074W WO 2009104756 A1 WO2009104756 A1 WO 2009104756A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
zno
acceptor
doped
mgzno
Prior art date
Application number
PCT/JP2009/053074
Other languages
English (en)
French (fr)
Inventor
健 中原
謙太郎 田村
洋行 湯地
俊輔 赤坂
雅司 川崎
明 大友
敦 塚崎
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008040118A external-priority patent/JP2009200239A/ja
Priority claimed from JP2008050906A external-priority patent/JP2009212139A/ja
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN2009801140016A priority Critical patent/CN102017197A/zh
Priority to US12/735,798 priority patent/US20110114938A1/en
Publication of WO2009104756A1 publication Critical patent/WO2009104756A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies

Definitions

  • the present invention relates to a ZnO-based semiconductor element including an acceptor doped layer made of ZnO or MgZnO in a laminated structure.
  • ZnO-based semiconductors are expected to be applied to ultraviolet LEDs, high-speed electronic devices, surface acoustic wave devices and the like used as light sources for illumination and backlights. Although ZnO-based semiconductors have attracted attention for their multifunctionality, light emission potential, and the like, they have hardly grown as semiconductor device materials. The biggest difficulty is that acceptor doping is difficult and p-type ZnO cannot be obtained.
  • Non-Patent Document 1 and Non-Patent Document 2 in recent years, it has become possible to obtain P-type ZnO as a result of technological advances, and light emission has been confirmed.
  • nitrogen as an acceptor for obtaining p-type ZnO.
  • the doping efficiency of nitrogen strongly depends on the growth temperature, and it is necessary to lower the substrate temperature in order to perform nitrogen doping.
  • the substrate temperature is lowered, the crystallinity is lowered, a carrier compensation center for compensating the acceptor is formed, and nitrogen is not activated (self-compensation effect), so that the formation of the p-type ZnO layer itself becomes very difficult.
  • the main surface of growth is a -C plane, and the temperature dependence of nitrogen doping efficiency is used to repeat the growth temperature between 400 ° C and 1000 ° C.
  • a modulation method Repeated Temperature Modulation: RTM.
  • the above-described method has a problem that the expansion and contraction are repeated by continuous heating and cooling, so that the burden on the manufacturing apparatus is large, the manufacturing apparatus becomes large, and the maintenance cycle is shortened. Further, since the low temperature portion determines the doping amount, it is necessary to accurately control the temperature, but it is difficult to accurately control 400 ° C. and 1000 ° C. in a short time, and the reproducibility and stability are poor. Further, since a laser is used as a heating source, it is not suitable for heating a large area, and it is difficult to grow a large number of sheets for reducing the device manufacturing cost. RTM is necessary because, when the ⁇ C plane of the ZnO substrate is used for crystal growth, nitrogen cannot enter unless the temperature is lowered, which is peculiar to ⁇ C plane growth.
  • Non-Patent Document 3 it is easy to enter nitrogen when a + C plane of a ZnO substrate is used as a growth substrate. Therefore, as a result of research on growing a ZnO-based thin film on the + C plane ZnO substrate on the + C plane, the MgZnO thin film is easier to be p-type than the ZnO thin film, and even at a constant temperature growth without using RTM. It has been found that p-type conversion is possible and is described in detail in Japanese Patent Application No. 2007-251482, which has already been filed. A. Tsukazaki et al., JJAP 44 (2005) L643 A.
  • the roughness of the acceptor-doped layer is propagated to the n-type layer and the surface flatness is deteriorated, so that a desired function as a semiconductor device cannot be exhibited.
  • ZnO when ZnO is used for the acceptor doped layer or the like, there are some troublesome physical properties of ZnO. What is generally well known is a change in electrical characteristics due to annealing. In the low oxygen state, the electron concentration increases to lower the resistance, and in the presence of oxygen, both the electron concentration and mobility decrease to increase the resistance. This means that the film properties of ZnO may change during the process from the time when ZnO is grown to the completion of the device or during operation, and that the film properties are likely to change at the film growth temperature. It is a property that causes problems with devices.
  • ZnO tends to cause compositional deviation.
  • ZnO has the property of shifting to the Zn-rich side like Zn 1 + ⁇ O 1- ⁇ . Therefore, the degree of Zn rich is increased by the low oxygen state annealing, and the degree of Zn rich is decreased in the high oxygen state annealing.
  • the undoped state needs to be stabilized in order to control the conductivity as intended, but undoped ZnO is slightly less stable. For this reason, especially when acceptor doping such as nitrogen doping is performed, a compensation level is automatically formed (self-compensation effect), or surface atom migration due to point defect growth is suppressed, thereby reducing the roughness of the film surface. Easy to cause.
  • ZnO has a very high c-axis orientation and often forms a film like a collection of hexagonal columns. At this time, a region called a grain boundary exists between the hexagonal columns, and a potential barrier is generated here.
  • a ZnO varistor has successfully used this property, but it causes a crystal defect, which usually causes an increase in operating voltage and a leakage current. This also becomes a problem especially in electronic devices.
  • an object of the present invention is to provide a ZnO-based semiconductor element that can suppress deterioration in flatness of the layers after the acceptor-doped layer and increase in crystal defects, and can stabilize film characteristics.
  • a ZnO-based semiconductor element of the present invention is a ZnO-based semiconductor element formed by stacking ZnO-based semiconductors on a substrate by crystal growth, and includes Mg Y Zn 1-Y 2 O (0 ⁇ Y ⁇ 1), which includes an acceptor-doped layer containing at least one acceptor element, and an undoped or donor-doped Mg X Zn 1-X O (0 ⁇ X ⁇ 1) layer is formed in contact with the acceptor-doped layer It is a summary.
  • the ZnO-based semiconductor device of the present invention is a ZnO-based semiconductor device formed by stacking ZnO-based semiconductors on a substrate by crystal growth, and Mg Y Zn 1-Y O (0 ⁇ Y ⁇ 1).
  • the configured acceptor element and containing at least one acceptor-doped layer, and at least one n-type comprising the Mg Z Zn 1-Z O ( 0 ⁇ Z ⁇ 1) layer of the donor element, undoped or donor-doped been Mg X
  • the Zn 1-X O layer is located between the acceptor-doped layer and the n-type Mg Z Zn 1-Z O layer and is in contact with either one of the two layers. .
  • an undoped or donor-doped MgZnO layer is formed in contact with the acceptor-doped layer. Also, if it contains an acceptor-doped layer and n-type Mg Z Zn 1-Z O layer laminate, undoped or donor-doped MgZnO layer, between the acceptor-doped layer and n-type Mg Z Zn 1-Z O layer And is in contact with either one of the two layers. Furthermore, in any of the above cases, the acceptor doped layer is made of MgZnO containing Mg.
  • the deterioration of the flatness of the acceptor doped layer or the layers after the acceptor doped layer and the increase of crystal defects are suppressed without lowering the acceptor element concentration of the acceptor doped layer due to the base effect of the MgZnO layer and the characteristics of MgZnO itself. be able to.
  • the characteristics and properties of the acceptor doped layer can be stabilized.
  • FIG. 1 It is a figure which shows an example of the laminated structure of the ZnO type semiconductor element of this invention. It is a figure which shows the difference in the laminated structure at the time of using MgZnO and ZnO for the base
  • FIG. 1 shows an example of a laminated structure of ZnO-based semiconductor elements of the present invention.
  • n-type Mg Z Zn 1-Z O layer 2 the undoped Mg X Zn 1-X O layer 5, in order to simplify the notation, such as the acceptor-doped Mg Y Zn 1-Y O layer 6, respectively, n type Mg Z ZnO layer 2, an undoped Mg X ZnO layer 5, referred to as the acceptor-doped Mg Y ZnO layer 6.
  • the ZnO-based semiconductor or the ZnO-based thin film is composed of ZnO or a compound containing ZnO. Specific examples include ZnO, IIA group element and Zn, IIB group element and Zn, or IIA. It means a material containing each group element, IIB group element and Zn oxide.
  • the MQW active layer 4 is formed in, for example, a multiple quantum well structure in which barrier layers Mg 0.15 ZnO and well layers ZnO are alternately stacked.
  • the acceptor-doped Mg Y ZnO layer 6 is doped with at least one acceptor element.
  • acceptor element nitrogen, phosphorus, arsenic, lithium, copper, or the like is used.
  • the undoped Mg X ZnO layer 5 corresponds to an undoped or donor-doped Mg X Zn 1-X O (0 ⁇ X ⁇ 1) layer, and may be a donor-doped Mg X ZnO layer.
  • the donor element in this case can be selected as in the case of the n-type Mg Z ZnO layer 2.
  • the undoped Mg X ZnO layer 5 and the acceptor doped Mg Y ZnO layer 6 have Mg compositions in the range of 0 ⁇ X and 0 ⁇ Y, and are composed of MgZnO that always contains Mg. Yes.
  • the upper limit of the Mg composition is preferably 0 ⁇ X ⁇ 0.5 and 0 ⁇ Y ⁇ 0.5. This is because the Mg composition ratio capable of producing a uniform MgZnO mixed crystal is currently 50% or less. To produce a uniform MgZnO mixed crystal more reliably, the Mg composition ratio may be 30% or less. Further preferred.
  • the acceptor-doped layer includes a p-type semiconductor and an i-type semiconductor (intrinsic semiconductor).
  • a characteristic point in the structure of FIG. 1 is that an undoped MgZnO layer is used as a base when an acceptor doped layer is formed, and the acceptor doped layer is made of MgZnO.
  • an undoped MgZnO layer is inserted between the n-type layer and the acceptor-doped layer, and MgZnO is also used in the acceptor-doped layer, so that many acceptor elements are contained in the acceptor-doped layer. While being able to take in, the surface roughness of an acceptor dope layer can be prevented.
  • FIG. 12 shows the relationship between the crystal growth temperature (substrate temperature) and the nitrogen concentration in the ZnO thin film. Characteristics in the growth temperature range of about 600 ° C. to 850 ° C. are shown. This is a result of growing a ZnO thin film on the + C plane of the ZnO substrate while doping nitrogen, which is a kind of acceptor element.
  • the vertical axis represents the nitrogen concentration (cm ⁇ 3 ) taken into the ZnO thin film when nitrogen is doped, and the horizontal axis represents the growth temperature (substrate temperature: unit ° C.). As shown in FIG.
  • the nitrogen concentration which is a kind of acceptor element, has temperature dependency even when the + C plane is used, and the doped nitrogen concentration increases as the temperature decreases. Therefore, in order to sufficiently incorporate nitrogen and make the ZnO-based thin film p-type, the substrate temperature may be lowered. However, when the substrate temperature is lowered, the following surface flatness problem occurs. .
  • FIG. 14 is a graph showing the ZnO thin film grown on the MgZnO substrate by changing the substrate temperature (growth temperature) and expressing the flatness of the ZnO surface for each substrate temperature as a numerical value.
  • the vertical axis Ra (unit: nm) in FIG. 14 represents the arithmetic average roughness of the film surface.
  • the arithmetic average roughness Ra is obtained from a roughness curve.
  • the surface roughness parameters such as the arithmetic average roughness Ra are defined by JIS standards and are used.
  • FIG. 14 shows the arithmetic average roughness Ra calculated as described above as the vertical axis and the substrate temperature as the horizontal axis.
  • the black triangle ( ⁇ ) in FIG. 14 indicates data when the substrate temperature is less than 750 ° C.
  • the black circle ( ⁇ ) indicates data when the substrate temperature is 750 ° C. or higher.
  • FIG. 14 it can be seen that the flatness of the surface is drastically improved when the substrate temperature rises at the boundary of 750 ° C.
  • FIG. 15 shows the root mean square roughness RMS of the film surface from the same measurement data as FIG.
  • the root mean square roughness RMS is the sum of the squares of deviations from the mean line of the roughness curve to the measurement curve and represents the square root of the averaged value.
  • RMS ⁇ (1 / l) ⁇ ⁇ (f (x)) 2 dx ⁇ 1/2 (the integration interval is from 0 to 1).
  • FIG. 15 shows the mean square roughness RMS on the vertical axis and the substrate temperature on the horizontal axis.
  • the black triangle ( ⁇ ) indicates data when the substrate temperature is less than 750 ° C.
  • the black circle ( ⁇ ) indicates data when the substrate temperature is 750 ° C. or higher.
  • the substrate temperature it can be seen that the flatness of the surface is abruptly improved when the substrate temperature is increased at 750 ° C. as in FIG.
  • the nitrogen doping amount depends on the growth temperature. As shown in FIGS. 14 and 15, if the temperature is less than 750 ° C., the surface flatness is extremely deteriorated. In addition, the step flow growth temperature of MgZnO is higher than that of ZnO.
  • FIG. 13 shows that the step flow growth temperature of MgZnO increases.
  • FIG. 13A shows an image obtained by scanning the surface of the ZnO thin film grown on the ZnO substrate in an area of 2 ⁇ m using AFM
  • FIG. 13B shows the surface of the MgZnO thin film grown on the ZnO substrate. Is an image scanned in a 2 ⁇ m square range.
  • the ZnO thin film in FIG. 13A has a growth temperature of 790 ° C., and the growth temperature of the MgZnO thin film in FIG. In the MgZnO thin film, the surface flatness is maintained at a growth temperature of about 880 ° C., but in the ZnO thin film, the surface flatness is maintained even at 790 ° C. As described above, the MgZnO thin film needs to be grown at a higher temperature than the ZnO thin film. When the growth temperature is lowered to increase the nitrogen doping concentration, the influence on the surface flatness of the MgZnO thin film is larger. Conceivable.
  • Si is a constituent element of a discharge tube in a radical cell that generates active oxygen by converting O 2 into plasma, and is most often mixed.
  • Si is taken in, it works as a donor, so that the p-type conversion becomes difficult if the Si concentration increases. Therefore, it is important to flatten the film surface.
  • FIGS. 16 and 17 were examined by epitaxially growing a nitrogen-doped Mg x ZnO thin film on a ZnO substrate using an MBE (Molecular Beam Epitaxy) apparatus having a radical cell. Further, the silicon concentration and nitrogen concentration in the Mg X ZnO thin film were measured by secondary ion mass spectrometry (SIMS).
  • MBE Molecular Beam Epitaxy
  • FIG. 16B shows a surface image when Mg 0.1 ZnO is doped with nitrogen at 1 ⁇ 10 19 cm ⁇ 3 by nitrogen doping with nitrogen monoxide (NO) plasma at a substrate temperature of 750 ° C.
  • an AFM Atomic Force Microscope
  • the scan range is 10 ⁇ m square, and the numbers in the figure are RMS (Root Mean Square) values.
  • nitrogen-doped ZnO causes surface roughness at low temperatures.
  • the surface roughness of Mg 0.1 ZnO does not occur, and when acceptor doping is performed, the Mg component is also included in producing a flat film. MgZnO is more preferable.
  • FIG. 17 shows that surface roughness causes unintentional impurity doping and hinders p-type conversion.
  • Si is taken as an example of an unintended impurity.
  • FIG. 17A shows the nitrogen doping concentration and the Si concentration in the ZnO layer of FIG.
  • FIG. 17B shows the nitrogen doping concentration and the Si concentration in the Mg 0.1 ZnO layer of FIG.
  • the left vertical axis indicates the Si concentration or N concentration
  • the right vertical axis indicates the ZnO secondary ion intensity
  • the horizontal axis indicates the depth ( ⁇ m).
  • the vertical dotted line in the figure indicates the boundary between the ZnO substrate and the Mg X ZnO thin film, and the region where the nitrogen concentration or the silicon concentration is rising is the ZnO layer or the Mg 0.1 ZnO layer, and the region where the concentration is close to 0 It is a ZnO substrate.
  • the ZnO layer having a poor surface flatness (rough surface) shown in FIG. 16A has a higher Si concentration in the thin film.
  • Si When Si is taken in, it works as a donor, so if the Si concentration increases, p-type conversion becomes difficult. Therefore, MgZnO containing the Mg component is more preferable from the viewpoint of flattening the film surface and preventing the incorporation of impurities.
  • FIG. 1 when an acceptor doped layer is produced, the surface flatness of the acceptor doped layer is improved by using an undoped or donor-doped MgZnO layer as a base and MgZnO for the acceptor doped layer.
  • FIG. 2 shows the difference in effect between when the MgZnO layer is used as a base and when it is not used when forming the acceptor doped layer.
  • a Ga-doped MgZnO layer 42, an undoped MgZnO layer 43, a stacked body 44, an undoped ZnO layer 45, and a nitrogen-doped MgZnO layer 46 are formed in this order on a ZnO substrate 41.
  • the Ga-doped MgZnO layer 42 to the undoped ZnO layer 45 were grown at a growth temperature of 900 ° C., and the nitrogen-doped MgZnO layer 46 was grown at a low growth temperature of 830 ° C. in order to increase the nitrogen concentration.
  • a Ga-doped MgZnO layer 42, an undoped MgZnO layer 43, a stacked body 44, an undoped MgZnO layer 50, and a nitrogen-doped MgZnO layer 46 were formed in this order on the ZnO substrate 41.
  • the Ga-doped MgZnO layer 42 to the undoped MgZnO layer 50 were grown at a growth temperature of 900 ° C., and the nitrogen-doped MgZnO layer 46 was grown at a low growth temperature of 830 ° C. in order to increase the nitrogen concentration.
  • the stacked body 44 is a superlattice layer, and is configured by a stacked body in which undoped ZnO and undoped MgZnO are alternately stacked for 10 periods.
  • Ga-doped MgZnO layer 42 is the n-type Mg Z ZnO layer
  • an undoped MgZnO layer 50 corresponds to the Mg X ZnO layer which is undoped or donor-doped .
  • FIGS. 2A and 2B other layer structures, growth temperatures, and the like are different depending on whether the undoped ZnO layer 45 or the undoped MgZnO layer 50 is used as the base of the nitrogen-doped MgZnO layer 46. Is the same.
  • FIG. 3 shows a comparison of the surface states of these uppermost layers. 3A shows the surface of the uppermost nitrogen-doped MgZnO layer 46 shown in FIG. 2A, and FIG. 3B shows the surface of the uppermost nitrogen-doped MgZnO layer 46 shown in FIG. These are images scanned by AFM measurement. 3B has a clean surface with no roughness, and is considered to be an effect obtained by using the undoped MgZnO layer 50 as the base of the nitrogen-doped MgZnO layer 46 in FIG. 2B.
  • the crystal defect density decreases when MgZnO is used. Since the crystal defect density causes unintentional impurity contamination as well as the problem of surface flatness, it is desirable to reduce it as much as possible.
  • FIG. 4 is a graph in which a ZnO thin film is grown on a ZnO substrate and its surface is observed by AFM, as depicted in the lower right of FIG. 4B.
  • FIG. 5 shows a ZnO thin film grown on a ZnO substrate by growing a Ga (gallium) doped MgZnO thin film on the ZnO substrate, as depicted in the lower right of FIG. 5B.
  • the substrate / Ga-doped MgZnO / ZnO layered structure is used, and the ZnO thin film surface is observed by AFM.
  • FIG. 4C and FIG. 5C show the results of performing PL (photoluminescence) measurement with each of these configurations.
  • the horizontal axis represents wavelength (nm) and the vertical axis represents emission intensity (arbitrary unit).
  • the measurement curve M is F at the absolute temperature of 12K and F at the room temperature.
  • IQE represents internal quantum efficiency.
  • a black dot is seen. This is a dislocation defect appearing on the surface.
  • the defect density is 3.6 ⁇ 10 5 cm ⁇ 2 , FIG. In this case, the defect density was 6.1 ⁇ 10 4 cm ⁇ 2 .
  • the use of MgZnO as the base for crystal growth of the ZnO thin film reduces the crystal defect density and greatly increases the internal quantum efficiency from 6.8% to 20%. You can see that it is rising.
  • FIG. 6 shows the state of the MQW layer surface when a stacked structure of ZnO substrate / Ga-doped MgZnO / MQW layer is formed at a growth temperature of 870 ° C. as shown in FIG.
  • the MQW layer was constituted by a laminated body in which an undoped ZnO film having a thickness of 2 nm and an undoped MgZnO film having a thickness of 2 nm were alternately stacked for 10 periods.
  • the surface of the MQW layer was photographed using an AFM with a visual field of 20 ⁇ m square and a visual field of 1 ⁇ m square.
  • the crystal defect density was 7.2 ⁇ 10 4 cm ⁇ 2 .
  • the PL measurement result is shown in (c), and the internal quantum efficiency (IQE) was 36%.
  • the internal quantum efficiency is greatly improved by using MQW (multiple quantum well structure) than in the case of FIG.
  • FIG. 7 is a photograph of the surface of MgZnO taken by AFM with a ZnO substrate / undoped MgZnO formed at a growth temperature of 870 ° C. as shown in FIG.
  • the crystal defect density was 7.4 ⁇ 10 4 cm ⁇ 2 .
  • FIG. 8 shows an undoped ZnO film formed on the undoped MgZnO film of FIG. 7 at a growth temperature of 870 ° C.
  • the surface of the undoped ZnO film was photographed by AFM.
  • the crystal defect density was 3.2 ⁇ 10 5 cm ⁇ 2 .
  • FIG. 9 shows an AFM measurement on the surface of an undoped ZnO film when an undoped ZnO film is grown directly on a ZnO substrate at a growth temperature of 870 ° C. without using MgZnO as a base to obtain a ZnO substrate / undoped ZnO. Images are shown. In this case, the defect density was 1.2 ⁇ 10 6 cm ⁇ 2 .
  • the defect of the MgZnO film grown on the ZnO substrate is the smallest, and only ZnO is grown on the ZnO substrate.
  • the defect density shows a two-digit increase. It can also be seen that when MgZnO is used for the base, an increase in the defect density of the ZnO film on MgZnO is suppressed.
  • FIG. 10A is an image obtained by forming nitrogen-doped Mg 0.1 ZnO on a ZnO substrate at a growth temperature of 748 ° C. and measuring the surface by AFM.
  • FIG. 10B shows a nitrogen doping in the case where 20 cycles of nitrogen-doped ZnO having a thickness of 10 nm and nitrogen-doped Mg 0.08 ZnO having a thickness of 10 nm are alternately stacked on a ZnO substrate at a growth temperature of 790 ° C. It is the image which measured the ZnO surface by AFM.
  • the roughness of the ZnO surface affects the uppermost layer, so that the defect density increases.
  • MgZnO is used as a base, an increase in defect density is considerably suppressed.
  • the MgZnO layer As described above, by using the MgZnO layer, crystal defects of the MgZnO layer itself and the upper layer formed after the MgZnO layer can be reduced, and the photoluminescence intensity of the thin film formed on the MgZnO layer is dramatically increased. Therefore, the light emission efficiency is improved for the light emitting element.
  • the + C plane ZnO substrate 1 is wet-etched with an acidic solution having a pH of 3 or less to remove the polishing damage layer.
  • the ZnO substrate 1 is introduced into the MBE apparatus having a background vacuum of about 5 ⁇ 10 ⁇ 7 Pascal through the load lock chamber. While the temperature is measured by thermography, the ZnO substrate 1 is heated at 700 ° C. to 1000 ° C. to sublimate H 2 O and hydrocarbon organic substances adhering to the atmosphere (thermal cleaning).
  • a Ga-doped MgZnO layer / undoped MgZnO layer / MQW active layer is grown using a Ga-doped MgZnO layer as the n-type Mg Z ZnO layer 2.
  • the MQW active layer 4 is formed, for example, by repeating the well layer ZnO with a thickness of 1.5 nm and the barrier layer Mg 0.15 ZnO with a thickness of 6 nm for about 5 cycles. At this time, the MQW active layer 4 may include a ZnO layer.
  • the final layer of the MQW active layer 4 is a ZnO layer
  • an undoped Mg on the MQW active layer 4 as shown in FIG. X An undoped Mg 0.05 ZnO layer is formed at a growth temperature of 900 ° C. as the ZnO layer 5.
  • the growth temperature is lowered to 850 ° C., and NO (nitrogen monoxide) gas is introduced by plasma cracking to grow nitrogen-doped Mg 0.15 ZnO as the acceptor-doped Mg Y ZnO layer 6.
  • the present invention can be applied to elements other than the above-described light-emitting elements, such as MOS or MIS type FETs (field effect transistors), HEMTs (high electron mobility transistors), and the like.
  • a trench type MOSFET there is an NPN structure having a p-type layer as a channel layer.
  • the substrate temperature is raised when the growth process shifts from the p-type layer to the n-type layer.
  • the p-type ZnO is the final layer of the p-type layer, Since ZnO tends to cause defects at a high temperature, p-type ZnO causes surface roughness, and further, surface roughness propagates to an n-type layer formed thereon to deteriorate surface flatness.
  • the subsequent n-type layer can be formed without surface roughness.
  • FIG. 11A shows only the layer structure.
  • An n-type MgZnO layer 22, an acceptor-doped MgZnO layer 23, an undoped MgZnO layer 24, and an n-type MgZnO layer 25 are formed on the ZnO substrate 21.
  • the acceptor doped MgZnO layer 23 becomes a p-type layer and forms an NPN structure.
  • the acceptor-doped MgZnO layer 23 corresponding to the acceptor-doped layer is formed with the n-type MgZnO layer 22 corresponding to the donor-doped Mg X Zn 1- XO layer as a base, the doping amount of the acceptor element can be ensured, The surface flatness of the acceptor doped MgZnO layer 23 is improved. Even if the surface flatness of the acceptor-doped MgZnO layer 23 deteriorates, the surface roughness does not propagate to the n-type MgZnO layer 25 because the n-type MgZnO layer 25 is formed with the undoped MgZnO layer 24 as a base. .
  • FIG. 11B shows an example of a laminated structure in which two acceptor-doped layers are formed.
  • An acceptor-doped MgZnO layer 32, an undoped MgZnO layer 33, an n-type ZnO layer 34, an acceptor-doped MgZnO layer 35, an undoped MgZnO layer 36, and an n-type MgZnO layer 37 are formed on the ZnO substrate 31.
  • Undoped MgZnO layers 33 and 36 (corresponding to undoped Mg X Zn 1-X O layers) are formed on the upper layers of the acceptor doped MgZnO layers 32 and 35, respectively, and the surface roughness of the acceptor doped layer does not propagate to the upper layers. It is like that.
  • ZnO-based semiconductors ZnO-based compound semiconductors
  • Typical examples of ZnO-based semiconductors are CdZnO and MgZnO.
  • CdZnO which is a narrow gap material, tends to be avoided because of the toxicity of Cd.
  • MgZnO has a tendency to increase the activation energy of the acceptor energy (that is, it is difficult to generate holes), and MgZnO is often made from a sintered body, so that the purity is difficult to increase. That is why it has not been a subject of p-type research for the reasons described above.
  • FIG. 22 shows that MgZnO has the effect of reducing and mitigating the self-compensation effect.
  • FIG. 22 shows spectral distributions of nitrogen-doped ZnO and nitrogen-doped MgZnO measured at an absolute temperature of 12 K (Kelvin) by photoluminescence (PL) measurement. As shown in FIG.
  • the PL measurement has a structure in which a nitrogen-doped Mg X1 ZnO layer 52 (0 ⁇ X1 ⁇ 1) is crystallized on a ZnO substrate 51.
  • a nitrogen-doped MgZnO layer 52 (X1 ⁇ 0) with crystal growth was used.
  • the photoluminescence measuring device As the photoluminescence measuring device, the device described in Japanese Patent Application No. 2007-251482 of the already filed application was used. Briefly, a He—Cd laser was used as an excitation light source, and the output of the He—Cd laser was 30 to 32 mW. The intensity of the excitation light generated from the excitation light source was about 1 to 10 W / cm 2 , and the output of the excitation light immediately before the sample was about 250 to 400 ⁇ W.
  • the focal length of the spectrometer is 50 cm, the number of engraving lines of the diffraction grating of the spectrometer is 1200 / mm, and the blaze wavelength (wavelength with the maximum diffraction efficiency) is 330 nm.
  • the freezing temperature of the refrigerator was set so that the absolute temperature could be set to 10 to 200 Kelvin.
  • the photodetector is a 1024 channel, liquid nitrogen cooling system with a CCD detector.
  • the entire system including the spectroscope and the photodetector was a so-called SPECTRUM1 system (manufactured by HORIBA JOVIN YVON).
  • the curve drawn with a white circle ( ⁇ ) is nitrogen-doped ZnO, and the other two curves are nitrogen-doped MgZnO.
  • ZnO is a nitrogen doping concentration formed in 2 ⁇ 10 19 cm -3
  • MgZnO the nitrogen doping concentration for Mg 0.1 ZnO 2 ⁇ 10 19 cm -3
  • the horizontal axis in FIG. 22 indicates the emission energy (unit: eV)
  • the vertical axis indicates the PL intensity, and is expressed in an arbitrary unit (logarithmic scale) that is normally used during PL measurement. In order to make it easy to compare the shapes of the spectra, the origin positions of the spectra are shifted.
  • FIG. 24 is a graph in which the horizontal axis of the graph of FIG. 22 is enlarged from a range of 3.05 to 3.65 eV to a range of 1.7 to 3.7 eV
  • FIG. 23 is a graph of FIG. The figure which expanded the scale of a horizontal axis to 2.7-3.7eV is represented.
  • P1, P2, and P3 shown in FIGS. 22 to 24 each represent band edge emission.
  • Nitrogen-doped ZnO is known as a donor-acceptor pair (DAP) on the lower energy side than the band edge emission peak energy shown by P1 in FIGS.
  • DAP donor-acceptor pair
  • the position of DAP emission is determined as follows.
  • the energy of DAP emission is E DAP
  • the lowest excitation energy is E G
  • the donor level is E D
  • the acceptor level is E A
  • the distance between the donor and the acceptor is r DA
  • the vacuum dielectric constant ⁇ 0 is the vacuum dielectric constant ⁇ 0
  • the relative dielectric constant ⁇ r is the electron charge is e
  • the Planck constant is h
  • the LO (Longitudinal Optical) phonon frequency is ⁇ LO
  • E DAP E G -E D -E A + (e 2 / 4 ⁇ 0 ⁇ r r DA) - (mh ⁇ LO / 2 ⁇ ) It becomes.
  • m is an integer of 0 or more.
  • the emission peak position of DAP is determined as shown in the above formula, it is usually determined if the types of donors and acceptors and their concentrations are determined.
  • the DAP emission region appears on the lower energy side than 3.3 eV.
  • the DAP emission region appears on the lower energy side than 3.3 eV.
  • the DAP emission region appears on the lower energy side than 3.3 eV.
  • the DAP region shows that on the lower energy side than the DAP region, there is a region where the PL intensity increases as the energy decreases, and deep level emission peculiar to nitrogen doping is observed.
  • the deep level emission intensity becomes very large in ZnO.
  • MgZnO the deep level emission intensity is reduced by an order of magnitude or more, and the remarkable characteristics of MgZnO are observed.
  • MgZnO the degree of defect generation due to nitrogen doping is small.
  • DAP emission is blue-shifted in emission peak as PL excitation light density is increased, and is mainly identified using this phenomenon.
  • the solid and dashed curves are for MgZnO, but because MgZnO has a wide gap, on the MgZnO curve, the same peak as the ZnO band edge emission peak is visible at the same position as the ZnO band edge emission peak P1. ing. From this, it can be readily seen that for nitrogen-doped ZnO, DAP emission is stronger than that of ZnO band edge emission at 3.3 eV. The band edge emission is weakened during acceptor doping, and the DAP emission is strong, which is normally seen in ZnSe and GaN, and is not unusual. Because this fact is supported, it has become common to try to make p-type ZnO.
  • the behavior is completely different in MgZnO.
  • the broken line and the solid line in the figure are nitrogen-doped MgZnO.
  • the emission near the band edge emission P2 and P3 is stronger than the DAP emission.
  • the solid line data shows a very weak DAP emission despite the fact that the ZnO curve and the nitrogen concentration are exactly the same. This is a remarkable feature of MgZnO, and it is considered that the self-compensation effect is reduced.
  • FIG. 18 shows that MgZnO has fewer extra levels than the vicinity of the band than ZnO.
  • FIG. 18 shows what is called time-resolved photoluminescence (TRPL), and the PL light intensity (in this case, of ZnO and MgZnO) with a wavelength selected arbitrarily, with the time course after excitation by an external laser as the horizontal axis.
  • TRPL time-resolved photoluminescence
  • the intensity of the band edge is plotted on the vertical axis, and is used to estimate the light emission component and the non-light emission component, which indicates the attenuation of the PL light intensity.
  • FIG. 18A shows the TRPL spectrum of MgZnO
  • FIG. 18B shows the TRPL spectrum of ZnO.
  • the horizontal axis indicates the elapsed time (unit: ns) from the first PL emission
  • the vertical axis indicates the PL intensity
  • the PL intensity decays exponentially with time variation of the PL intensity, indicating that there is no extra emission level.
  • the line is linear.
  • the solid line indicates the fitting result when the measurement curve is fitted with a combination of a plurality of exponential functions. If there is one straight line, only one exponential function is used.
  • ZnO does not become a straight line, but as shown in FIG. 18A, MgZnO becomes a straight line. Therefore, it can be seen that MgZnO is less likely to generate extra levels, is easy to optimize, has a wide allowable range of growth conditions, and is suitable as a device material.
  • MgZnO is considered to be easier to be p-type by acceptor doping due to a reduction in self-compensation effect than ZnO, which will be described below.
  • FIG. 19A illustrates a graph in which the voltage when the electrode 54 is positively biased with respect to the electrode 53 is positive.
  • FIG. 19B shows current-voltage characteristics (IV characteristics) of the configuration of FIG. 19A, where the horizontal axis represents voltage (unit: V) and the vertical axis represents current (unit: A).
  • the nitrogen-doped Mg X1 ZnO layer 52 is n-type
  • the potential barrier against electrons on the electrode side is lowered, and the electrons flow from the nitrogen-doped Mg X1 ZnO layer 52 side.
  • the nitrogen-doped Mg X1 ZnO layer 52 is p-type
  • applying a positive voltage to the electrode 54 raises the potential barrier against holes and no current flows.
  • a negative voltage is applied to the electrode 54, the potential barrier for holes is lowered, and a current flows.
  • an ideal curve when the nitrogen-doped Mg X1 ZnO layer 52 is made p-type is a curve such as S indicated by a dotted line.
  • the IV characteristics were compared with the case where the doped Mg 0.14 ZnO layer 52 was used. “: N” in the figure represents nitrogen doping. As can be seen from FIG.
  • MgZnO is suitable for constituting an acceptor doped layer.
  • the active functional layer refers to a layer that functions actively rather than passively, and refers to, for example, one having the following configuration.
  • it is a light emitting layer or a light emitting region portion in an LED (light emitting diode) or LD (laser diode). This corresponds to a p-type layer and an n-type layer when the light emitting region is formed by a pn junction.
  • a multilayer body having a quantum well structure such as an MQW (Multi-Quantum-Well) active layer or an SQW (Single-Quantum-Well) active layer is also included.
  • a channel layer that causes an inversion distribution in a field effect transistor (FET) having a MOS (Metal-Oxide-Semiconductor) structure, a MIS (Metal-Insulator-Semiconductor) structure, or the like.
  • FET field effect transistor
  • MOS Metal-Oxide-Semiconductor
  • MIS Metal-Insulator-Semiconductor
  • PD photodiode
  • the active functional layer described above is formed using MgZnO containing an Mg component and not using a ZnO crystal alone.
  • the channel portion is made of MgZnO with TFT.
  • FIG. 20 shows an example of an LED (light emitting diode) structure using MgZnO for the active functional layer.
  • an n-type MgZnO layer 62, an active layer 63, and a p-type MgZnO layer 64 are formed on the ZnO substrate 61.
  • the p-type MgZnO layer 64 corresponds to an acceptor doped layer.
  • the active layer 63 is either composed of MgZnO monolayer, or, Mg Y1 ZnO layer (0 ⁇ Y1 ⁇ 1), and a band gap than Mg Y1 ZnO layer large Mg Y2 ZnO layer (0 ⁇ Y2 ⁇ 1, It is composed of a multiple quantum well structure (MQW) sandwiched between Y1 ⁇ Y2).
  • a p-electrode 65 formed of a Ni film 65a and an Au film 65b is formed on the p-type MgZnO layer 64, and an n-electrode formed of a Ti film 66a and an Au film 66b on the back surface of the ZnO substrate 61. 66 is provided.
  • a wire bonding electrode 67 composed of an Ni film 67a and an Au film 67b is formed.
  • the active functional layer corresponds to the active layer 63 serving as a light emitting layer.
  • FIG. 21 shows an example of a photodiode structure using MgZnO for the active functional layer.
  • an n-type MgZnO layer 72 and an organic electrode PEDOT: PSS73 are formed on the ZnO substrate 71.
  • the film thickness of PEDOT: PSS73 is, for example, about 50 nm, and an Au film 74 for wire bonding is formed on PEDOT: PSS73.
  • an electrode 75 made of a Ti film 75a and an Au film 75b is formed on the back surface of the ZnO substrate 71.
  • the n-type MgZnO layer 72 serves as an absorption layer or a layer that generates a rectifying action, and this corresponds to an active functional layer. To do.
  • the acceptor-doped MgZnO layer 23 corresponds to the channel layer.
  • the acceptor-doped MgZnO layer 23 is an example having both functions of the acceptor-doped layer and the active functional layer.
  • the acceptor-doped MgZnO layer 35 corresponds to both the acceptor-doped layer and the active functional layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 ZnO系半導体からなるアクセプタドープ層を含む積層体を形成する場合に、アクセプタ元素の濃度を低下させずに、アクセプタドープ層又はアクセプタドープ層以降の層の平坦性の悪化や結晶欠陥の増加を抑制し、膜の特性を安定化させることができるZnO系半導体素子を提供する。  ZnO基板1上にn型MgZnO層2、アンドープMgZnO層3、MQW活性層4、アンドープMgZnO層5、アクセプタドープMgZnO層6が順に積層されている。アクセプタドープMgZnO(0<Y<1)層6は、アクセプタ元素を少なくとも1種類含んでおり、この層に接してアンドープMgZn1-XO(0<X<1)層5が形成されている。このため、アクセプタドープ層にアクセプタ元素を十分取り込むことができるとともに、アクセプタドープ層の表面平坦性は良くなる。  

Description

ZnO系半導体素子
 本発明は、ZnO又はMgZnOで構成されたアクセプタドープ層を積層構造に含むZnO系半導体素子に関する。
 ZnO系半導体は、照明やバックライト等用の光源として使用される紫外LED、高速電子デバイス、表面弾性波デバイス等への応用が期待されている。ZnO系半導体はその多機能性、発光ポテンシャルの大きさなどが注目されていながら、なかなか半導体デバイス材料として成長しなかった。その最大の難点は、アクセプタドーピングが困難で、p型ZnOを得ることができなかったことにある。
 しかし、近年、非特許文献1や非特許文献2に見られるように、技術の進歩により、P型ZnOを得ることができるようになり、発光も確認されるようになってきた。例えば、p型ZnOを得るためのアクセプタとして窒素を用いることが提案されている。非特許文献4に示されているように、アクセプタとして窒素をドーピングする場合は、窒素のドーピング効率は成長温度に強く依存し、窒素ドーピングを行うためには基板温度を下げる必要がある。しかし、基板温度を下げると結晶性が低下し、アクセプタを補償するキャリア補償センターが形成されて、窒素が活性化しないので(自己補償効果)、p型ZnO層の形成そのものが非常に難しくなる。
 そこで、非特許文献2に示されるように、成長の主面を-C面とし、窒素ドーピング効率の温度依存性を利用して、400℃と1000℃との間の成長温度を行き来する反復温度変調法(Repeated Temperature Modulation:RTM)により高キャリア濃度のp型ZnO層を形成する方法がある。
 しかし、上記の方法では、絶え間ない加熱と冷却によって膨張・収縮を繰り返すために製造装置への負担が大きく、製造装置が大がかりになり、メンテナンス周期が短くなるといった問題があった。また、低温度部分がドープ量を決定するため、温度を正確に制御する必要があるが、400℃と1000℃を短時間に正確に制御するのは難しく、再現性・安定性が悪い。さらに、加熱源としてレーザを使用するため、大きい面積の加熱には不向きで、デバイス製造コストを下げるための多数枚成長も行いにくい。RTMが必要なのは、ZnO基板の-C面を結晶成長に用いると、低温度にしなければ窒素が入らないためであり、-C面成長に特有のものである。
 一方、成長用基板としてZnO基板の+C面を使用すると窒素が入り易くなることは、例えば、非特許文献3に示されるように、既に知られている。そこで、我々は+C面ZnO基板上にZnO系薄膜を+C面成長させる研究を行った結果、ZnO薄膜よりもMgZnO薄膜の方がp型化しやすいこと、RTMを使用せずに一定温度の成長でもp型化が可能であることを見出しており、既に出願した特願2007-251482号等に詳く説明している。
A.Tsukazaki et al.,JJAP 44(2005)L643 A.Tsukazaki et al Nture Material 4(2005)42 M.Sumiya et al.,Applied Surface Science 223(2004)p.206 K.Nakahara et al.,Journal of Crystal Growth 237-239(2002)p.503
 しかし、上記のような手法を用いた場合でも、まだ、問題が残されている。それは、半導体素子の積層構造を作製する場合に発生する。ZnO系薄膜を積層する場合は、薄膜の平坦性が重要になる。薄膜の平坦性が良くないとキャリアが薄膜中を移動するときの抵抗になってしまう。また、積層構造の上層になるほど、表面荒れが大きくなり、その表面荒れのためにエッチング深さの均一性が取れなかったり、表面荒れによる異方的な結晶面の成長が起こったり、といった問題が発生しやすい。以上の理由により、半導体デバイスとしての所望の機能を発揮させるのが困難になりやすい。そのため、通常、薄膜表面はできるだけ平坦なことが望まれる。
 平坦なZnO系薄膜を積層するためには、既出願特願2008-5987や特願2007-27182に示したように、750℃以上の成長温度が必要であり、MgZnOになると、更に高温でなければ平坦な膜を形成することができない。一方、ZnO系薄膜を+C面成長させると窒素は入り易くなるが、成長温度依存性がなくなるわけではなく、高温になるほど、窒素は入り難くなる。
 ZnO系薄膜のn型層の場合は、高温で結晶成長させても、n型不純物のドープや膜の平坦性に問題が発生しない。ところが、アクセプタドープ層を作製するときには、アクセプタ元素のドープ濃度を高めるために、上記のように成長温度を下げることが必要である。しかし、成長温度を下げると、膜の表面荒れが発生する。このため、ZnO系薄膜を積層する場合、n型層作製後にアクセプタドープ層を積層すると、アクセプタドープ層に表面荒れが発生する。一方、アクセプタドープ層を作製後にn型層を積層するとn型層にアクセプタドープ層の荒れが伝搬して表面平坦性が悪くなり、半導体デバイスとしての所望の機能を発揮できないという問題があった。
 他方、アクセプタドープ層等にZnOを用いた場合、ZnOには物性的に厄介な問題がいくつか存在する。一般的に良く知られているのが、アニールによる電気特性の変化である。低酸素状態では電子濃度が増加して低抵抗化し、酸素がある状態では電子濃度と移動度が共に減り高抵抗化する。これはZnOを成長させた時点からデバイスを完成させるまでのプロセスの間や動作中にZnOの膜特性が変わりかねないこと、および膜成長温度で膜の性質が変わりやすいことを意味し、特に電子デバイスで問題になる性質である。
 これはZnOが組成ズレを起こしやすいということを表わしている。酸化物には、良くあることだが、ZnOは、Zn1+δ1-δのように、Znリッチ側にずれる性質がある。そのため、低酸素状態アニールによりZnリッチの程度が高くなり、高酸素状態アニールではZnリッチの程度が低くなる。半導体デバイスでは、意図した通りの導電性制御のために、アンドープ状態の安定が必要であるが、アンドープZnOはやや安定性に欠ける。このために、特に窒素ドープのようなアクセプタドープを行った場合、自動的に補償準位を形成したり(自己補償効果)、点欠陥増殖による表面原子マイグレーションの抑制によって、膜表面の荒れ等を引き起こしやすい。
 また、ZnOはc軸配向が非常に高く、六角柱の集まりのような膜を作ることが多い。このとき六角柱の間に粒界と呼ばれる領域が存在し、ここにポテンシャルバリアが発生する。この性質をうまく使ったのがZnOバリスタであるが、結晶欠陥を発生させるので、通常は動作電圧の上昇やリーク電流の原因となり、その上昇の度合いができた膜によって違うと言う現象が起こり、これも特に電子デバイスで問題になってくる。
 この他にも、我々による既出願の特願2007-221198に詳しいが、p型化に必要な窒素ドープでZnO膜表面が荒れやすいため、特にMBE成長の場合、この膜表面荒れがSi等の意図しない不純物の混入を招くという問題もある。根拠が明確ではないが、これもZnOにおける欠陥が発生しやすいことと関係がある可能性が高いと考えている。
 本発明は、上述した課題を解決するために創案されたものであり、ZnO系半導体からなるアクセプタドープ層を含む積層体を形成する場合に、アクセプタ元素の濃度を低下させずに、アクセプタドープ層又はアクセプタドープ層以降の層の平坦性の悪化や結晶欠陥の増加を抑制し、膜の特性を安定化させることができるZnO系半導体素子を提供することを目的としている。
 上記目的を達成するために、本発明のZnO系半導体素子は、基板上にZnO系半導体を結晶成長より積層して形成されるZnO系半導体素子であって、MgZn1-YO(0<Y<1)で構成されアクセプタ元素を少なくとも1種類含むアクセプタドープ層を含み、前記アクセプタドープ層に接してアンドープ又はドナードープされたMgZn1-XO(0<X<1)層が形成されていることを要旨とする。
 また、本発明のZnO系半導体素子は、基板上にZnO系半導体を結晶成長より積層して形成されるZnO系半導体素子であって、 MgZn1-YO(0<Y<1)で構成されアクセプタ元素を少なくとも1種類含むアクセプタドープ層と、ドナー元素を少なくとも1種類は含むn型MgZn1-ZO(0≦Z<1)層とを含み、アンドープ又はドナードープされたMgZn1-XO層が前記アクセプタドープ層とn型MgZn1-ZO層の間に位置するとともに、この2つの層のいずれか1方に接して形成されていることを要旨とする。
 本発明によれば、ZnO系半導体からなるアクセプタドープ層を含む積層体を形成する場合に、アクセプタドープ層に接してアンドープ又はドナードープMgZnO層を形成している。また、積層体にアクセプタドープ層とn型MgZn1-ZO層と含んでいる場合には、アンドープ又はドナードープMgZnO層は、アクセプタドープ層とn型MgZn1-ZO層の間に位置するとともに、この2つの層のいずれか1方に接して形成されている。さらに、上記いずれの場合も、アクセプタドープ層は、Mgを含むMgZnOで構成されている。
 したがって、MgZnO層の下地効果及びMgZnOそのものの特性により、アクセプタドープ層のアクセプタ元素濃度を低下させずに、アクセプタドープ層又はアクセプタドープ層以降の層の平坦性の悪化や結晶欠陥の増加を抑制することができる。また、アクセプタドープ層の特性や性質を安定化させることができる。
本発明のZnO系半導体素子の積層構造の一例を示す図である。 アクセプタドープ層の下地にMgZnOとZnOを用いた場合の積層構造の違いを示す図である。 図2の各積層構造に対応したアクセプタドープ層表面の状態を示す図である。 ZnO基板/ZnOと積層した場合の表面状態とPL発光スペクトルを示す図である。 ZnO基板/MgZnO/ZnOと積層した場合の表面状態とPL発光スペクトルを示す図である。 ZnO基板/MgZnO/MQW層と積層した場合の表面状態とPL発光スペクトルを示す図である。 ZnO基板/MgZnOと積層した場合の表面状態を示す図である。 ZnO基板/MgZnO/ZnOと積層した場合の表面状態を示す図である。 ZnO基板/ZnOと積層した場合の表面状態を示す図である。 MgZnO単層と、ZnO/MgZnOの多層膜との表面状態を示す図である。 本発明のZnO系半導体素子の積層構造の他の例を示す図である。 窒素濃度の成長温度依存性を示す図である。 平坦なMgZnOとZnOを作製する場合の成長温度の違いを示す図である。 ZnO系薄膜表面の算術平均粗さと基板温度との関係を示す図である。 ZnO系薄膜表面の二乗平均粗さと基板温度との関係を示す図である。 窒素添加時のMgZnOとZnOの表面形状を示す図である。 図16に示す表面平坦性とSiの混入濃度との関連性を示す図である。 MgZnOとZnOのPL発光強度の時間経過に伴う変化を示す図である。 MgZnOとZnOのIV特性を比較する図である。 MgZnO層を用いたLED構造の一例を示す図である。 MgZnO層を用いたPD構造の一例を示す図である。 窒素が添加されたMgZnOとZnOのPL発光スペクトルを示す図である。 窒素が添加されたMgZnOとZnOのPL発光スペクトルを示す図である。 窒素が添加されたMgZnOとZnOのPL発光スペクトルを示す図である。
符号の説明
1  ZnO基板
2  n型MgZnO層
3  アンドープMgZnO層
4  MQW活性層
5  アンドープMgZnO層
6  アクセプタドープMgZnO層
 以下、図面を参照して本発明の一実施形態を説明する。図面は模式的なものであり、現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。図1は本発明のZnO系半導体素子の積層構造の一例を示す。
 成長用基板としてのZnO基板1上にn型MgZn1-ZO(0≦Z<1)層2、アンドープMgZnO層3、MQW活性層4、アンドープMgZn1-XO(0<X<1)層5、アクセプタドープMgZn1-YO(0<Y<1)層6が順に積層されている。ここで、n型MgZn1-ZO層2、アンドープMgZn1-XO層5、アクセプタドープMgZn1-YO層6等の表記を簡単にするために、各々、n型MgZnO層2、アンドープMgZnO層5、アクセプタドープMgZnO層6と記載する。以下、他の表記についても同様とする。
 また、ZnO系半導体又はZnO系薄膜というのは、ZnO又はZnOを含む化合物から構成されるものであり、具体例としては、ZnOの他、IIA族元素とZn、IIB族元素とZn、またはIIA族元素およびIIB族元素とZnのそれぞれの酸化物を含むものを意味する。
 MQW活性層4は、例えば、障壁層Mg0.15ZnOと井戸層ZnOを交互に積層した多重量子井戸構造に形成されている。アクセプタドープMgZnO層6は、アクセプタ元素を少なくとも1種類ドーピングされている。アクセプタ元素としては、窒素、燐、砒素、リチウム、銅等が用いられる。n型MgZnO層2に添加されるドナー元素には、III族元素のうちから、少なくとも1種類が選択される。したがって、2種類以上ドーピングしても良く、ドナー元素としては、B(ホウ素)、Al(アルミニウム)、Ga(ガリウム)等がある。
 また、アンドープMgZnO層5は、アンドープ又はドナードープされたMgZn1-XO(0<X<1)層に相当するもので、ドナードープMgZnO層としても良い。この場合のドナー元素については、n型MgZnO層2の場合と同様に選択することができる。また、アンドープMgZnO層5及びアクセプタドープMgZnO層6については、上記のように、Mg組成が0<X、0<Yの範囲であり、Mgが必ず含まれたMgZnOで構成されている。一方、Mg組成の上限については、0<X≦0.5、0<Y≦0.5とすることが望ましい。これは、現在、均一なMgZnO混晶を作製できるMg組成比率は50%以下であるためで、より確実に均一なMgZnO混晶を作製するには、Mg組成比率は30%以下とすることがさらに好ましい。
 ここで、ZnO(酸化亜鉛)又はMgZnO(酸化マグネシウム亜鉛)にドナー元素をドープした場合には、通常、n型になるが、アクセプタ元素をドープした場合は、ドープ量にもよるが、自己補償効果等によりアクセプタ元素が必ずしも活性化せず、p型半導体にならない場合があるので、アクセプタドープ層とは、p型半導体及びi型半導体(真性半導体)を含むものである。
 図1の構造で特徴的な点は、アクセプタドープ層を作製するときに、アンドープMgZnO層を下地に用いていること、及びアクセプタドープ層をMgZnOで構成していることである。このように、ZnO系半導体を積層する場合に、n型層からアクセプタドープ層までの間にアンドープMgZnO層を挿入し、アクセプタドープ層にもMgZnOを用いることで、アクセプタドープ層にアクセプタ元素を多く取り込むことができるとともに、アクセプタドープ層の表面荒れを防止することができる。
 以下、上記作用効果について説明する。まず、背景技術のところで述べたように、ZnO基板の+C面を用い、ZnO系薄膜を+C面成長させるとアクセプタ元素は入り易くなるが、成長温度依存性がなくなるわけではなく、高温になるほど、アクセプタ元素は入り難くなる。
 図12は、結晶成長温度(基板温度)とZnO薄膜中の窒素濃度との関係を示す。成長温度600℃~850℃程度までの範囲における特性が示されている。これは、ZnO基板の+C面上に、アクセプタ元素の一種である窒素をドーピングしながら、ZnO薄膜を成長させた結果である。縦軸は窒素をドープしたときにZnO薄膜に取り込まれる窒素濃度(cm-3)を示し、横軸は成長温度(基板温度:単位℃)を示す。図12に示すように、ZnO系薄膜では、+C面を用いてもアクセプタ元素の一種である窒素濃度に温度依存性があり、ドープされる窒素濃度は低温度ほど上昇する。したがって、十分窒素を取り込んで、ZnO系薄膜をp型化するには、基板温度を下げれば良いのであるが、基板温度を下げた場合には、以下のような表面平坦性の問題が発生する。
 ZnO薄膜を形成する場合の表面平坦性と成長温度との関係については、既出願の特願2008-5987に詳しいのであるが、要点を再度説明する。基板温度(成長温度)を変化させて、MgZnO基板上にZnO薄膜を結晶成長させ、基板温度毎のZnOの表面の平坦性を数値として表し、それらをグラフにしたものが図14である。図14の縦軸Ra(単位はnm)は、膜表面の算術平均粗さを表す。算術平均粗さRaとは、粗さ曲線から求められる。
 粗さ曲線は、例えば、AFM(原子間力顕微鏡)測定等により観察された膜表面の凹凸を、所定のサンプリングポイントで測定し、凹凸の大きさをこれらの凹凸の平均値とともに示したものである。そして、粗さ曲線から、その平均線の方向に基準長さlだけ抜き取り、この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計して、平均した値のことである。算術平均粗さRa=(1/l)×∫|f(x)|dx(積分区間は0~lまで)と表される。このようにすることで、1つの傷が測定値に及ぼす影響が非常に小さくなり、安定した結果が得られる。なお、算術平均粗さRa等の表面粗さのパラメータは、JIS規格で規定されているものであり、これらを用いている。
 以上のように算出された算術平均粗さRaを縦軸にし、基板温度を横軸にして表示したのが図14である。図14の黒三角(▲)は、基板温度が750℃未満のデータを示し、黒丸(●)は基板温度が750℃以上のデータを示す。図14からもわかるように、基板温度が750℃を境にして基板温度が高くなれば、急激に表面の平坦性が向上していることがわかる。
 図15は、図14と同じ測定データから、膜表面の二乗平均粗さRMSを求めたものである。二乗平均粗さRMSは、粗さ曲線の平均線から測定曲線までの偏差の二乗を合計し、平均した値の平方根を表す。算術平均粗さRaを算出する際の基準長さlを用いて、
 RMS={(1/l)×∫(f(x))dx}1/2(積分区間は0~lまで)となる。
 図15は縦軸に二乗平均粗さRMSを、横軸に基板温度を示したものである。ここで、黒三角(▲)は、基板温度が750℃未満のデータを示し、黒丸(●)は基板温度が750℃以上のデータを示す。基板温度については、図14と同様、750℃を境にして基板温度が高くなれば、急激に表面の平坦性が向上していることがわかる。
 したがって、ZnO系材料層上にZnO系薄膜を成長させる場合は、基板温度を750℃以上にしてエピタキシャル成長させれば、平坦性の良い膜が得られ、積層構造の最上層においても平坦な膜が得られる。
 しかし、図12のように、+C面成長であっても、窒素ドープ量は成長温度に依存しており、窒素ドープ量を十分に得る場合には、ZnO系薄膜の成長温度を750℃未満にしなければならないことになるが、図14、15より750℃未満では表面平坦性が極端に悪くなる。加えて、MgZnOのステップフロー成長温度は、ZnOよりも高温である。
 図13は、MgZnOのステップフロー成長温度が高くなることを示している。図13(a)は、ZnO基板上に成長させたZnO薄膜表面をAFMを用い、2μm四方の範囲でスキャンした画像、図13(b)は、ZnO基板上に成長させたMgZnO薄膜表面をAFMを用い、2μm四方の範囲でスキャンした画像である。
 図13(a)のZnO薄膜は、成長温度790℃、図13(b)のMgZnO薄膜の成長温度880℃である。MgZnO薄膜では成長温度880℃程度で表面平坦性が保たれているが、ZnO薄膜では790℃でも表面平坦性は維持されている。このように、MgZnO薄膜の方がZnO薄膜よりも高温での成長が必要であり、窒素ドープ濃度を高めるために成長温度を低温にした場合、MgZnO薄膜の表面平坦性に与える影響はより大きいと考えられる。
 既出願の特願2007-221198でも説明したが、ZnO系半導体において、表面荒れは意図しない不純物ドープの原因になり、p型化の障害になる。不純物のうち、特に、Siについては、Oをプラズマ化して活性酸素をつくるラジカルセル内の放電管の構成元素であり、最も多く混入する。Siは取り込まれると、ドナーとして働くので、Si混入濃度が高くなると、p型化が困難になる。したがって、膜表面を平坦化しておくことは重要である。
 図16、17のデータは、ZnO基板上に窒素ドープのMgZnO薄膜をラジカルセルを有するMBE(Molecular Beam Epitaxy)装置によってエピタキシャル成長させて調べた。また、MgZnO薄膜中のシリコン濃度、窒素濃度を二次イオン質量分析法(Secondary Ion Mass Spectroscopy:SIMS)で測定した。
 図16(a)は、基板温度750℃で、一酸化窒素(NO)プラズマによる窒素ドープにより、ZnO(X=0)に窒素を3×1019cm-3ドープしたときの表面画像を示す。一方、図16(b)は、基板温度750℃で、一酸化窒素(NO)プラズマによる窒素ドープにより、Mg0.1ZnOに窒素を1×1019cm-3ドープしたときの表面画像を示す。これらの表面画像は、AFM(原子間力顕微鏡)を用い、図16(a)、(b)ともにスキャン範囲は10μm四方で、図中の数字はRMS(Root Mean Square)値である。
 これらを比較すれば、わかるように、窒素ドープZnOは低温度で表面荒れを起こしてしまう。ところが、同じ低温での窒素ドープであっても、Mg0.1ZnOの方には表面荒れが発生しておらず、アクセプタドープする場合、平坦な膜を作製する上でも、Mgの成分が含まれたMgZnOの方が好ましい。
 ZnO系半導体において、表面荒れは意図しない不純物ドープの原因になり、p型化の障害になることを図17に示す。図17では、意図しない不純物としてSiを例にとっている。図17(a)は、図16(a)のZnO層中における窒素ドープ濃度とSiの混入濃度を示す。一方、図17(b)は、図16(b)のMg0.1ZnO層中における窒素ドープ濃度とSiの混入濃度を示す。
 図17(a)、(b)ともに、左側縦軸がSi濃度又はN濃度、右側縦軸がZnO二次イオン強度を示し、横軸が深さ(μm)を示す。図中の縦の点線がZnO基板とMgZnO薄膜との境界を示し、窒素濃度やシリコン濃度が上昇している領域がZnO層又はMg0.1ZnO層、0近くまで落ちている領域がZnO基板である。
 この図からわかるように、図16(a)に示された表面平坦性が悪い(表面の荒れた)ZnO層の方が薄膜中のSi混入濃度が高くなっていることがわかる。Siは取り込まれるとドナーとして働くので、Si混入濃度が高くなればp型化が困難になる。したがって、膜表面を平坦化し、不純物の取り込みを防ぐ観点からもMgの成分が含まれたMgZnOの方が好ましい。
 そこで、図1のように、アクセプタドープ層を作製するときに、アンドープ又はドナードープMgZnO層を下地に用い、アクセプタドープ層にもMgZnOを用いることで、アクセプタドープ層の表面平坦性を改善する。アクセプタドープ層を作製するときにMgZnO層を下地に用いた場合と用いなかった場合との効果の違いを示すのが図2である。図2(a)は、ZnO基板41上に、GaドープMgZnO層42、アンドープMgZnO層43、積層体44、アンドープZnO層45、窒素ドープMgZnO層46と順に形成した。GaドープMgZnO層42~アンドープZnO層45までは、成長温度900℃で成長させ、窒素ドープMgZnO層46は、窒素濃度を高めるために低温の成長温度830℃で成長させた。
 一方、図2(b)は、ZnO基板41上に、GaドープMgZnO層42、アンドープMgZnO層43、積層体44、アンドープMgZnO層50、窒素ドープMgZnO層46と順に形成した。GaドープMgZnO層42~アンドープMgZnO層50までは、成長温度900℃で成長させ、窒素ドープMgZnO層46は、窒素濃度を高めるために低温の成長温度830℃で成長させた。
 積層体44は、超格子層であり、アンドープZnOとアンドープMgZnOとを交互に10周期積層した積層体で構成している。また、GaドープMgZnO層42がn型MgZnO層に、窒素ドープMgZnO層46がアクセプタドープ層(MgZnO層)に、アンドープMgZnO層50がアンドープ又はドナードープされたMgZnO層に該当する。
 図2の(a)と(b)では、窒素ドープMgZnO層46の下地にアンドープZnO層45を用いているか、アンドープMgZnO層50を用いているかの違いだけで、他の層構造や成長温度等も同じである。これらの最上層の表面状態の比較を示すのが図3である。図3(a)が図2(a)の最上層の窒素ドープMgZnO層46の表面を、図3(b)が図2(b)の最上層の窒素ドープMgZnO層46の表面を示す。これらは、AFM測定でスキャンされた画像である。図3(b)の方が、荒れがなく綺麗な表面となっており、図2(b)で窒素ドープMgZnO層46の下地にアンドープMgZnO層50を用いたことによる効果であると考えられる。
 次に、MgZnOを用いると、結晶欠陥密度が減少することを説明する。結晶欠陥密度は、上記表面平坦性の問題と同様、意図しない不純物混入の原因になるので、できるだけ低下させておくことが望ましい。
 図4は、図4(b)の右下に描かれているように、ZnO基板上にZnO薄膜を成長させて、その表面をAFMで観察したものである。一方、図5は、図5(b)の右下に描かれているように、ZnO基板上にGa(ガリウム)ドープのMgZnO薄膜を成長させ、さらにその上にZnO薄膜を形成して、ZnO基板/GaドープMgZnO/ZnOという積層構造にして、ZnO薄膜表面をAFMで観察したものである。
 各画像の左上に示されている数字は、AFMの視野範囲を示すもので、20μm四方、又は1μm四方となっている。いずれの場合も、成長温度は800℃とした。また、これらの各構成で、PL(フォトルミネッセンス)測定を行った結果を示すのが、図4(c)と図5(c)である。横軸は波長(nm)を、縦軸は発光強度(任意単位)を示す。このスペクトル曲線のうち、測定曲線Mは絶対温度12Kでの結果、室温での結果がFである。また、IQEは、内部量子効率を表す。(a)の図で、黒い点が見えるが、これが、転位欠陥が表面に現われたものであり、測定の結果、図4の場合では欠陥密度は3.6×10cm-2、図5の場合では欠陥密度は6.1×10cm-2となった。図4と図5とを比較すればわかるように、ZnO薄膜の結晶成長の下地としてMgZnOを用いた方が、結晶欠陥密度が低下するとともに、内部量子効率が6.8%から20%と大幅に上昇していることがわかる。
 図6は、(b)に示すように、ZnO基板/GaドープMgZnO/MQW層の積層構造を、成長温度870℃で形成したときのMQW層表面の状態を示す。ここで、MQW層は、膜厚2nmのアンドープZnO膜と膜厚2nmのアンドープMgZnO膜とを交互に10周期積層した積層体で構成した。前述したように、AFMを用い、20μm四方の視野と1μm四方の視野でMQW層表面撮影した。結晶欠陥密度は、7.2×10cm-2となった。また、PL測定結果を(c)に示しているが、内部量子効率(IQE)は、36%であった。PL測定の結果に現われているように、MQW(多重量子井戸構造)を用いることによって、内部量子効率は、図5の場合よりも、大きく向上している。
 図7は、(b)に示すように、ZnO基板/アンドープMgZnOを成長温度870℃で形成して、MgZnOの表面をAFMで撮影したものである。結晶欠陥密度は、7.4×10cm-2となった。一方、図8は、図7のアンドープMgZnO膜の上にアンドープZnO膜を成長温度870℃で形成したもので、同様に、アンドープZnO膜の表面をAFMで撮影した。結晶欠陥密度は、3.2×10cm-2となった。
 他方、図9は、下地にMgZnOを用いずに、成長温度870℃で、ZnO基板上に直接アンドープZnO膜を結晶成長させて、ZnO基板/アンドープZnOとした場合のアンドープZnO膜表面におけるAFM測定画像を示す。この場合、欠陥密度は、1.2×10cm-2となった。
 図4~図9の測定でわかるように、比較的高温で結晶成長させた場合、ZnO基板上に結晶成長させたMgZnO膜の欠陥が一番小さく、ZnO基板上にZnOのみを結晶成長させると、欠陥密度は2桁の増加を示している。また、下地にMgZnOを用いると、MgZnO上のZnO膜の欠陥密度増大が抑制されることがわかる。
 図10(a)は、成長温度748℃で、窒素ドープMg0.1ZnOをZnO基板上に形成し、その表面をAFMで測定した画像である。一方、図10(b)は、成長温度790℃で、ZnO基板上に、膜厚10nmの窒素ドープZnOと膜厚10nmの窒素ドープMg0.08ZnOを交互に20周期積層した場合の窒素ドープZnO表面をAFMで測定した画像である。このように、積層体にZnOを繰り返して用いると、ZnO表面の荒れが、最上層にまで影響を与えるために、欠陥密度は増加する。しかし、MgZnOを下地にしているために、欠陥密度の増加はかなり抑制されている。
 上記のように、MgZnO層を用いることによって、MgZnO層そのもの及びMgZnO層よりも後に形成する上層の結晶欠陥を減少させることができ、MgZnO層上に形成される薄膜のフォトルミネッセンス強度が飛躍的に増大するため、発光素子にとっても発光効率が良くなる。
 次に、図1の構造のZnO系半導体素子の製造方法を説明する。+C面ZnO基板1をpH3以下の酸性溶液でウエットエッチングし、研磨ダメージ層を除去する。ロードロック室を介して、5×10-7パスカル程度のバックグランド真空を有するMBE装置にZnO基板1を導入する。サーモグラフィで温度計測しながら、ZnO基板1を700℃~1000℃で加熱し、大気中で付着したHO、炭化水素系有機物を昇華させる(サーマルクリーニング)。
 成長温度900℃で、n型MgZnO層2としてGaドープMgZnO層を用い、GaドープMgZnO層/アンドープMgZnO層/MQW活性層を成長させる。MQW活性層4は、例えば、井戸層ZnOを膜厚1.5nm、障壁層Mg0.15ZnOを膜厚6nmで5周期程度繰り返して形成する。このとき、MQW活性層4にZnO層が含まれていても良いが、MQW活性層4の最終層がZnO層となる場合には、図1のように、MQW活性層4上に例えばアンドープMgZnO層5としてアンドープMg0.05ZnO層を成長温度900℃で形成する。次に、成長温度を850℃に下げ、NO(一酸化窒素)ガスをプラズマクラッキングして導入し、アクセプタドープMgZnO層6として窒素ドープMg0.15ZnOを成長させる。
 以上のように、アクセプタドープ層の下地にアンドープMgZnO層を用いると、アクセプタドープ層形成時に、成長温度を下げても表面平坦性を良くできるので、アクセプタ元素を十分取り込むことができる。このことを応用すれば、上述した発光素子の場合以外の素子、例えば、MOS型やMIS型のFET(電界効果型トランジスタ)やHEMT(高電子移動度トランジスタ)等にも適用できる。
 例えば、トレンチタイプのMOSFETを作製する場合には、p型層をチャネル層とするNPN構造のものもある。NPN構造を製造する場合には、p型層からn型層へ成長過程が移行する際、基板温度を上昇させるが、このときにp型ZnOがp型層の最終層であると、p型ZnOは、高温度で欠陥が生じやすいため、p型ZnOが表面荒れを起こし、さらに、その上に形成されるn型層にも表面荒れが伝搬して表面平坦性が悪化する。この場合も、p型層の上層をアンドープMgZnO又はドナードープMgZnOを形成しておくことにより、その後のn型層を表面荒れなく形成することができる。
 MOS型のトランジスタには、NPN構造が用いられるが、その層構造のみを示したのが図11(a)である。ZnO基板21上にn型MgZnO層22、アクセプタドープMgZnO層23、アンドープMgZnO層24、n型MgZnO層25が形成されている。アクセプタドープMgZnO層23がp型層になり、NPN構造を形成する。ドナードープされたMgZn1-XO層に相当するn型MgZnO層22を下地としてアクセプタドープ層に相当するアクセプタドープMgZnO層23が形成されているので、アクセプタ元素のドープ量を確保できるとともに、アクセプタドープMgZnO層23の表面平坦性は良くなる。仮に、アクセプタドープMgZnO層23の表面平坦性が悪くなったとしても、アンドープMgZnO層24を下地としてn型MgZnO層25が作製されているので、n型MgZnO層25にまで、表面荒れは伝搬しない。
 図11(b)は、アクセプタドープ層が2層形成されている場合の積層構造例を示す。ZnO基板31上にアクセプタドープMgZnO層32、アンドープMgZnO層33、n型ZnO層34、アクセプタドープMgZnO層35、アンドープMgZnO層36、n型MgZnO層37が形成されている。アクセプタドープMgZnO層32、35の各上層には、各々アンドープMgZnO層33、36(アンドープMgZn1-XO層に相当)が形成されており、アクセプタドープ層の表面荒れが上層に伝搬しないようになっている。
 このように、アクセプタドープ層を作製するまでの層やアクセプタドープ層よりも後の層にアンドープMgZnO層又はドナードープMgZnO層を用い、アクセプタドープ層にもMgZnOを用いることによって、アクセプタドープ層やこれよりも上層の平坦性の悪化や欠陥密度の増加を防止することができる。
 上述のように、ZnO系半導体素子を作製する場合には、ZnO単体からなる薄膜よりも、MgZnOからなる薄膜の方が製造過程でのパラメータに依存しにくいことがわかった。次に、MgZnOを用いると、膜の特性や性質が安定することを示し、アクセプタドープ層だけではなく、発光層やチャネル層等、素子の目的とする機能を発揮するアクティブ機能層(Operating Layer)にも用いると、最適であることを示す。なお、アクティブ機能層の具体的内容については後述する。
 これまでの研究ではZnO系半導体(ZnO系化合物半導体)のp型化というと、ZnOのp型が研究されるのが専らであった。ZnO系半導体の代表格はCdZnOとMgZnOであるが、ナローギャップ材料のCdZnOはCdの毒性からその研究が忌避される傾向にあった。ワイドギャップ半導体のMgZnOはワイドギャップの通例の傾向としてアクセプタエネルギーの活性化エネルギーが大きくなる(すなわちホールが発生しにくくなる)こと、MgZnOは焼結体から作られることが多いため、純度があげにくいこと、以上のような理由からp型化の研究対象とはなっていなかった。
 しかし、我々は、ZnO系半導体の一種であるMgZn1-YO(0<Y<1)にそれまで知られていなかった自己補償効果を低減する効果があることを見出しており、既出願の特願2007-251482号に詳しい。この内容について、再度要点を説明する。図22は、MgZnOが特に自己補償効果を低減、緩和する作用があることを示す。図22は、絶対温度12K(ケルビン)で測定された窒素ドープZnOと窒素ドープMgZnOのフォトルミネッセンス(PL)測定によるスペクトル分布を示す。PL測定は、図19(a)に示すように、ZnO基板51上に窒素ドープMgX1ZnO層52(0≦X1<1)を結晶させた構造とし、窒素ドープMgZnOについては、ZnO基板51上に窒素ドープMgZnO層52(X1≠0)を結晶成長させたものを用いた。窒素ドープZnOについては、窒素ドープMgZnO層の替わりに窒素ドープZnO層52(X1=0)を結晶成長させたものを用いた。
 また、フォトルミネッセンス測定装置は、既出願の特願2007-251482に記載した装置を用いた。簡単に説明すると、励起光源としてHe-Cdレーザを使用し、He-Cdレーザの出力は30~32mWとした。励起光源から発生した励起光強度は、1~10W/cm程度、試料直前の励起光出力は、250~400μW程度となった。分光器の焦点距離は50cm、分光器の回折格子の刻線本数1200本/mm、ブレーズ波長(回折効率最大の波長)330nmである。冷凍機の冷凍温度は絶対温度10~200ケルビンに設定可能なものを用いた。光検出器は、CCD検出器による構成で1024ch、液体窒素冷却方式である。分光器と光検出器とを含めた全体のシステムは、SPECTRUM1システム(HORIBA JOVIN YVON社製)と呼ばれるものを用いた。
 図22の測定結果において、白丸(○)で描かれている曲線が窒素ドープZnOで、他の2本の曲線が、窒素ドープMgZnOである。ZnOは、窒素ドープ濃度を2×1019cm-3に形成し、MgZnOは、Mg0.1ZnOについては窒素ドープ濃度2×1019cm-3、Mg0.11ZnOについては窒素ドープ濃度7×1018cm-3に形成して測定した。図22の横軸は発光エネルギー(単位:eV)を、縦軸はPL強度を示し、PL測定のときに通常用いられる任意単位(対数スケール)で表す。各スペクトルの形状を比較しやすくするため、各スペクトルの原点位置はずらせている。
 また、図24は、図22のグラフの横軸のスケールを3.05~3.65eVの範囲から1.7~3.7eVの範囲に拡大した図を、図23は、図22のグラフの横軸のスケールを2.7~3.7eVに拡大した図を表わす。図22~図24に示されているP1、P2、P3は、各々バンド端発光を表わす。
 窒素ドープZnOについては、これまでに知られているように、図22~図24のP1に示されるバンド端発光ピークエネルギーより低エネルギー側にドナー・アクセプタペア(Donor-Acceptor Pair:DAP)と呼ばれる、アクセプタドープ時特有の発光ピークが現れる。DAP発光の位置というのは、以下のように決まる。
 DAP発光のエネルギーをEDAP、最低励起エネルギーをE、ドナー準位をE、アクセプタ準位をE、ドナーとアクセプタとの距離をrDA、真空誘電率ε、比誘電率ε、電子の電荷をe、プランク定数をh、LO(Longitudinal Optical)フォノンの振動数をωLOとすると、
 EDAP=E-E-E+(e/4πεεDA)-(mhωLO/2π)
 となる。ここで、mは0以上の整数である。
 DAPの発光ピーク位置というのは、上記式のように決定されるので、通常はドナー、アクセプタの種類、およびその濃度が決まれば、決定されるものである。
 3.3eVをバンド端発光領域とDAP発光領域との境界とすると、3.3eVよりも低エネルギー側にDAP発光領域が現われている。一方、図24に示されるように、DAP領域よりもさらに低エネルギー側では、エネルギーが低下するほどにPL強度が上がっていく領域が存在し、窒素ドープ特有の深い準位発光が見られる。図に示すA付近のエネルギー領域になると、ZnOでは、この深い準位発光強度が非常に大きくなる。この深い準位発光の起源は、まだ同定されていないが、欠陥由来であることはわかっており、深い準位発光が強いということは、欠陥が多く発生していることを表している。他方、MgZnOでは深い準位発光強度は、一桁以上小さくなり、MgZnOの著しい特徴が見られる。MgZnOでは、窒素ドープに伴う欠陥発生の程度が小さい。
 DAP発光はPLの励起光密度を上げていくと発光ピークがブルーシフトすることが良く知られており、主にこの現象を用いて同定される。実線と破線の曲線はMgZnOのものであるが、MgZnOがワイドギャップであるため、MgZnOの曲線上で、ZnOのバンド端発光ピークP1と同じ位置にZnOのバンド端発光ピークと同じピークが少し見えている。これを見ると、窒素ドープZnOについては、3.3eVを境にしてDAP発光がZnOバンド端発光に比べて強いことがすぐにわかる。アクセプタドープ時にバンド端発光が弱まり、DAP発光が強くなるのはZnSe、GaNでも普通に見られることであり、特別異常なことではない。この事実の裏づけがあるため、ZnOでp型化を試みるのが一般的になっていた。
 ところが、図22~図24に示されるように、MgZnOでは全く振る舞いが異なる。図の破線と実線が窒素ドープMgZnOであるが、どちらも、DAP発光よりも、バンド端発光P2、P3近傍の発光の方が強い。特に実線のデータはZnOの曲線と窒素濃度が全く同じであるにも関わらず、DAP発光が非常に弱い。これはMgZnOの著しい特徴であり、自己補償効果が低減されているものと考えられる。
 一方、上述したように、窒素ドープMgZnOでは、窒素ドープZnOよりも、深い準位発光強度が非常に小さくなる。これは、窒素ドープにおいて点欠陥発生がMgZnOで小さいことを示すが、アンドープMgZnOとアンドープZnOでも同じ傾向が見られる。ZnOよりもMgZnOの方がバンド近傍以外の余計な準位が少ないことを図18に示す。図18は、時間分解フォトルミネセンス(TRPL)と呼ばれるもので、外部レーザで励起した後の時間経過を横軸に、ある任意に選んだ波長のPL光強度(この場合は、ZnOとMgZnOのバンド端の強度)を縦軸に取り、PL光強度の減衰具合を示したものである、発光成分、非発光成分を見積もる時に用いられる。
 図18(a)は、MgZnOのTRPLスペクトルを、図18(b)は、ZnOのTRPLスペクトルを表わす。また、図18の(a)、(b)ともに、横軸は最初のPL発光からの経過時間(単位:ns)を、縦軸はPL強度を示し、PL測定のときに通常用いられる任意単位(対数スケール)で表す。
 PL強度の時間変化で、PL強度が指数関数的に減衰していることが、余計な発光準位がないことを表す。グラフ上ではPL強度の対数を取った場合、1直線状になっているものが良い。実線が測定曲線を、複数の指数関数の組み合わせでフィットした場合のフィッティング結果を示す。1直線ならば指数関数は1つだけ用いられる。図18(b)のように、ZnOでは1直線にならないが、図18(a)のように、MgZnOは1直線になる。したがって、MgZnOの方が余計な準位の発生が少なく、最適化が容易で、成長条件の許容範囲が広く、デバイス材料として適していることがわかる。また、ZnOよりもMgZnOの方が、自己補償効果の低減により、アクセプタドープによりp型化しやすいと考えられ、以下にそのことを示す。
 図19(a)の構成で、窒素ドープMgX1ZnO層52上に、Hg(水銀)からなる電極53と電極54を設けている。電極53は電極54を中心として、その電極54を囲むように環状に形成されている。電極53、54と窒素ドープZnO層52とがショットキー接触をしているが、電極53は面積が1桁以上大きく、オーミック接触と見なし得る。電極53に対して電極54が正にバイアスされているときの電圧を正としてグラフを描いたのが、図19(b)である。図19(b)は、図19(a)の構成の電流-電圧特性(IV特性)を示し、横軸が電圧(単位:V)、縦軸は電流(単位:A)を表わす。
 仮に、窒素ドープMgX1ZnO層52がn型の場合、電極54に正電圧がかかると電極側の電子に対するポテンシャルバリアを下げることになり、電子が窒素ドープMgX1ZnO層52側から流れる。一方、窒素ドープMgX1ZnO層52がp型の場合、電極54に正電圧をかけると正孔に対するポテンシャルバリアを上げることになり、電流は流れない。逆に電極54に負電圧をかけると正孔に対するポテンシャルバリアが下がるので電流が流れる。
 したがって、窒素ドープMgX1ZnO層52がp型化されたときの理想的な曲線は、点線で示されるSのような曲線となる。窒素ドープMgX1ZnO層52の窒素ドープ量を1×1019程度とし、Mg組成を変化させ、X=0にして、窒素ドープZnO層52とした場合と、X=0.14にして、窒素ドープMg0.14ZnO層52とした場合とでIV特性を比較した。図中の「:N」は、窒素ドープを表す。図18(b)からわかるように、1×1019程度の窒素ドープ量があるときは、ZnOはn型のままだが、MgZnOでは、Sの曲線に近い特性、すなわちp型挙動をする。したがって、窒素ドープの活性化はMgZnOの方が起こりやすい。このように、MgZnOはアクセプタドープ層を構成するのに適している。
 また、以上説明したように、最適化が容易で、成長条件の許容範囲が広くデバイス材料として適している点、下地効果がある点、膜表面の荒れが少ない点、結晶欠陥を減少させる効果がある点等から、ZnO結晶単体を用いずに、Mgの成分を含んだMgZnOで、デバイスの機能的な働きをするアクティブ機能層も形成した方がプロセス安定性に有利である。
 ここで、アクティブ機能層とは、受動的ではなく、能動的な働きをする層をいい、例えば、以下のような構成のものを指すものとする。第一に、LED(発光ダイオード)やLD(レーザダイオード)における発光層又は発光領域部分である。これには、発光領域がpn接合により形成されている場合のp型層とn型層が相当する。また、MQW(Multi Quantum Well)活性層又はSQW(Single Quantum Well)活性層のように、量子井戸構造を有する積層体等も含まれる。第二に、MOS(Metal Oxide Semiconductor)構造やMIS(Metal Insulator Semiconductor)構造等で構成される電界効果トランジスタ(FET)において、反転分布を起こすチャネル層である。第三に、フォトダイオード(PD)における吸光層や整流作用を発生させる層である。例えば、金属と半導体層とを接触させたときには、ショットキー接合となるが、このときの半導体層が相当する。以上述べたアクティブ機能層に、Mg成分が含まれたMgZnOを用い、ZnO結晶単体は用いない構造を形成する。TFTでチャネル部分をMgZnOにする。
 図20は、アクティブ機能層にMgZnOを用いたLED(発光ダイオード)構造の一例を示す。ZnO基板61上にn型MgZnO層62、活性層63、p型MgZnO層64が形成されている。p型MgZnO層64がアクセプタドープ層に相当する。活性層63は、MgZnO単層で構成されるか、又は、MgY1ZnO層(0<Y1<1)を、MgY1ZnO層よりもバンドギャップの大きなMgY2ZnO層(0<Y2<1、Y1<Y2)で挟んだ多重量子井戸構造(MQW)で構成される。また、p型MgZnO層64上には、Ni膜65aとAu膜65bとで形成されたp電極65が、ZnO基板61の裏面には、Ti膜66aとAu膜66bとで形成されたn電極66が設けられる。p電極65上にはNi膜67aとAu膜67bとで構成されたワイヤーボンディング用電極67が形成されている。ここで、アクティブ機能層は、発光層となる活性層63が相当する。
 図21は、アクティブ機能層にMgZnOを用いたフォトダイオード構造の一例を示す。ZnO基板71上にn型MgZnO層72、有機物電極であるPEDOT:PSS73が形成されている。PEDOT:PSS73の膜厚は、例えば50nm程度形成され、PEDOT:PSS73上にはワイヤーボンディング用のAu膜74が形成されている。一方、ZnO基板71の裏面には、Ti膜75aとAu膜75bからなる電極75が形成されている。ここで、PEDOT:PSS73とn型MgZnO層72とはショットキー接合状態となっているため、n型MgZnO層72は吸光層や整流作用を発生させる層の役割を果たし、これがアクティブ機能層に該当する。
 また、前述した図11(a)のNPN構造のMOS型トランジスタの場合、p型層がチャネル層となる。したがって、アクセプタドープMgZnO層23がチャネル層に該当するが、この場合は、アクセプタドープMgZnO層23がアクセプタドープ層及びアクティブ機能層の両方の機能を兼ね備えた例となっている。図11(b)では、アクセプタドープMgZnO層35がアクセプタドープ層及びアクティブ機能層の両方に該当する。なお、本発明の半導体素子の構成は、以上の実施例に限定されるものではなく、ここでは記載していない様々な実施例等も含まれる。

Claims (7)

  1.  基板上にZnO系半導体を結晶成長により積層して形成されるZnO系半導体素子であって、
     MgZn1-YO(0<Y<1)で構成されアクセプタ元素を少なくとも1種類含むアクセプタドープ層を含み、前記アクセプタドープ層に接してアンドープ又はドナードープされたMgZn1-XO(0<X<1)層が形成されているZnO系半導体素子。
  2.  基板上にZnO系半導体を結晶成長により積層して形成されるZnO系半導体素子であって、
     MgZn1-YO(0<Y<1)で構成されアクセプタ元素を少なくとも1種類含むアクセプタドープ層と、ドナー元素を少なくとも1種類は含むn型MgZn1-ZO(0≦Z<1)層とを含み、アンドープ又はドナードープされたMgZn1-XO層が前記アクセプタドープ層とn型MgZn1-ZO層の間に位置するとともに、この2つの層のいずれか1方に接して形成されているZnO系半導体素子。
  3.  前記アクセプタドープ層の方が基板に近い側に形成されていることを特徴とする請求項1又は請求項2のいずれか1項に記載のZnO系半導体素子。
  4.  前記アンドープ又はドナードープされたMgZn1-XO層のMg組成Xは、0<X≦0.5の範囲である請求項1~請求項3のいずれか1項に記載のZnO系半導体素子。
  5.  前記アクセプタドープ層のアクセプタ元素の少なくとも1つは、窒素である請求項1~請求項4のいずれか1項に記載のZnO系半導体素子。
  6.  前記n型MgZn1-ZO層のドナー元素の少なくとも1つは、III族元素である請求項1~請求項5のいずれか1項に記載のZnO系半導体素子。
  7.  前記アクセプタドープ層の他に素子の目的とする機能を発揮するアクティブ機能層が形成され、前記アクティブ機能層はMgZnOで構成されている請求項1~請求項5のいずれか1項に記載のZnO系半導体素子。
PCT/JP2009/053074 2008-02-21 2009-02-20 ZnO系半導体素子 WO2009104756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801140016A CN102017197A (zh) 2008-02-21 2009-02-20 ZnO类半导体元件
US12/735,798 US20110114938A1 (en) 2008-02-21 2009-02-20 ZnO SEMICONDUCTOR ELEMENT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-040118 2008-02-21
JP2008040118A JP2009200239A (ja) 2008-02-21 2008-02-21 ZnO系半導体素子
JP2008-050906 2008-02-29
JP2008050906A JP2009212139A (ja) 2008-02-29 2008-02-29 ZnO系半導体素子

Publications (1)

Publication Number Publication Date
WO2009104756A1 true WO2009104756A1 (ja) 2009-08-27

Family

ID=40985633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053074 WO2009104756A1 (ja) 2008-02-21 2009-02-20 ZnO系半導体素子

Country Status (3)

Country Link
US (1) US20110114938A1 (ja)
CN (1) CN102017197A (ja)
WO (1) WO2009104756A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546797B2 (en) * 2009-10-20 2013-10-01 Stanley Electric Co., Ltd. Zinc oxide based compound semiconductor device
JP5800291B2 (ja) * 2011-04-13 2015-10-28 ローム株式会社 ZnO系半導体素子およびその製造方法
TWI460885B (zh) * 2011-12-09 2014-11-11 Univ Nat Chiao Tung 具有空氣介質層之半導體光電元件及空氣介質層之製作方法
KR20130070892A (ko) * 2011-12-20 2013-06-28 한국전자통신연구원 광 검출기 소자
US10090820B2 (en) * 2015-07-31 2018-10-02 Qorvo Us, Inc. Stealth-dicing compatible devices and methods to prevent acoustic backside reflections on acoustic wave devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193270A (ja) * 2002-12-10 2004-07-08 Sharp Corp 酸化物半導体発光素子
JP2004335712A (ja) * 2003-05-07 2004-11-25 Sharp Corp 酸化物半導体発光素子およびその加工方法
JP2004363382A (ja) * 2003-06-05 2004-12-24 Sharp Corp 酸化物半導体発光素子およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193270A (ja) * 2002-12-10 2004-07-08 Sharp Corp 酸化物半導体発光素子
JP2004335712A (ja) * 2003-05-07 2004-11-25 Sharp Corp 酸化物半導体発光素子およびその加工方法
JP2004363382A (ja) * 2003-06-05 2004-12-24 Sharp Corp 酸化物半導体発光素子およびその製造方法

Also Published As

Publication number Publication date
CN102017197A (zh) 2011-04-13
US20110114938A1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP6466653B2 (ja) 窒化物半導体発光素子、および窒化物半導体ウェーハ
EP2472605A1 (en) Nitride semiconductor element and process for production thereof
JP4881491B2 (ja) 半導体発光素子
EP3413359A1 (en) Ultraviolet light emitting element
US20120145991A1 (en) High-quality non-polar/semi-polar semiconductor element on tilt substrate and fabrication method thereof
KR102115752B1 (ko) 단결정 알루미늄 질화물 기판을 포함하는 광전자 소자들
KR20140123410A (ko) 자외선 발광 소자
KR102307011B1 (ko) Iii족 질화물 적층체 및 iii족 질화물 발광 소자
JP2009266938A (ja) 半導体素子
JPWO2007138656A1 (ja) 窒化物半導体発光素子
JP2010074068A (ja) 半導体素子
WO2009104756A1 (ja) ZnO系半導体素子
US11538962B2 (en) Light-emitting element and method for manufacturing light-emitting element
CN107004744A (zh) 第iii族氮化物半导体发光器件的制造方法和第iii族氮化物半导体发光器件
JP5261711B2 (ja) ZnO系半導体及びZnO系半導体素子
JP2009212139A (ja) ZnO系半導体素子
US8294146B2 (en) ZnO-containing semiconductor layer and device using the same
JP5451320B2 (ja) ZnO系化合物半導体素子
JP2009200239A (ja) ZnO系半導体素子
US20210066542A1 (en) Epitaxial light emitting structure and light emitting diode
JP7481618B2 (ja) 窒化物半導体素子の製造方法
JP5135465B2 (ja) 半導体発光素子及びその製造方法
JP5426315B2 (ja) ZnO系化合物半導体素子
KR100990643B1 (ko) p형 질화물 반도체 제조방법 및 질화물 반도체 소자
KR20170015850A (ko) 전류 주입 효율이 우수한 자외선 질화물반도체 발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114001.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12735798

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09711696

Country of ref document: EP

Kind code of ref document: A1