WO2009099178A1 - 制御装置及び車両 - Google Patents

制御装置及び車両 Download PDF

Info

Publication number
WO2009099178A1
WO2009099178A1 PCT/JP2009/052042 JP2009052042W WO2009099178A1 WO 2009099178 A1 WO2009099178 A1 WO 2009099178A1 JP 2009052042 W JP2009052042 W JP 2009052042W WO 2009099178 A1 WO2009099178 A1 WO 2009099178A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
wheels
vehicle
camber angle
camber
Prior art date
Application number
PCT/JP2009/052042
Other languages
English (en)
French (fr)
Inventor
Munehisa Horiguchi
Akira Mizuno
Hitoshi Kamiya
Original Assignee
Equos Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008027204A external-priority patent/JP2009184540A/ja
Priority claimed from JP2008077677A external-priority patent/JP5110290B2/ja
Priority claimed from JP2008143193A external-priority patent/JP2009286349A/ja
Application filed by Equos Research Co., Ltd. filed Critical Equos Research Co., Ltd.
Priority to US12/866,620 priority Critical patent/US20100320706A1/en
Priority to CN2009801046156A priority patent/CN101939179A/zh
Priority to EP09709036A priority patent/EP2241462A4/en
Publication of WO2009099178A1 publication Critical patent/WO2009099178A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0164Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during accelerating or braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/006Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D17/00Means on vehicles for adjusting camber, castor, or toe-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/46Indexing codes relating to the wheels in the suspensions camber angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/50Constructional features of wheel supports or knuckles, e.g. steering knuckles, spindle attachments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/21Traction, slip, skid or slide control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/95Automatic Traction or Slip Control [ATC]

Definitions

  • the present invention relates to a vehicle capable of changing a camber angle of a wheel and a control device used for the vehicle, and more particularly to a control device capable of preventing wheel slipping during traveling and a vehicle including the control device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-297239
  • Patent Document 2 generates an inertial force in a vertical direction on a vehicle body by the acceleration of an actuator provided between the vehicle body and an axle, and the reaction force reduces the ground contact load of the tire.
  • a load exceeding the vehicle weight is temporarily applied to the tire contact surface to prevent slipping (idling) and improve temporary acceleration performance during sudden start-up or sudden acceleration.
  • a ground contact load control device is described.
  • the ground load control device described in Patent Document 1 is a technique for preventing tire slip at the time of sudden start or sudden acceleration, and a wheel temporarily generated due to a road surface condition or the like during traveling. No slip is expected.
  • the ground load device described in Patent Document 1 predicts the slip of the driving wheel from the throttle opening and the vehicle speed at the time of sudden acceleration, and is not sufficient for predicting the slip of the wheel during traveling. Further, in the ground load device described in Patent Document 1, when a slip of the driving wheel is predicted, an urging ground load for increasing the ground load of the driving wheel is calculated. Since the road surface condition setting value, which is one of the necessary parameters, is a manual setting value by the user, it is not sufficient in terms of accuracy.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a control device and a vehicle that can effectively prevent the occurrence of temporary wheel slip during traveling.
  • the control device is used in a vehicle having a plurality of wheels and a camber angle adjusting device for adjusting a camber angle of the wheels, and the vehicle is a traveling vehicle.
  • Wheel state detecting means for detecting the state of each of the wheels in the vehicle, and based on a comparison of the state of each wheel detected by the wheel state detecting means, there is a possibility of slipping in the plurality of wheels.
  • a determination unit that determines whether or not a certain wheel exists, and when the determination unit determines that there is a wheel that may slip, the camber angle adjustment device is operated to enable the slip.
  • a camber angle adjusting means for adjusting the camber angle of the wheel determined to have the characteristic so as to be inclined by a predetermined angle toward the negative side or the positive side.
  • the control device according to claim 2 is the control device according to claim 1, wherein the determination unit slips into the plurality of wheels based on a comparison of the state of each wheel detected by the wheel state detection unit. It is determined whether or not it is determined whether or not there is one wheel that has the possibility of.
  • the vehicle according to claim 3 includes a wheel, a camber angle adjusting device that adjusts a camber angle of the wheel, a wheel state detecting unit that detects the state of the wheel, and the control device according to claim 1 or 2.
  • the wheel has a tread surface curvature larger than a predetermined value
  • the camber angle adjusting device has the camber rotation axis of the wheel set below the rotation axis of the wheel.
  • the vehicle according to claim 4 includes a wheel, a camber angle adjusting device that adjusts a camber angle of the wheel, a wheel state detecting unit that detects a state of the wheel, and a control device according to claim 1 or 2.
  • the wheel has a tread surface with a curvature smaller than a predetermined value
  • the camber angle adjusting device has a camber rotation axis of the wheel set above the rotation axis of the wheel.
  • the vehicle according to claim 5 is the vehicle according to claim 3 or 4, wherein the wheel state detection means detects the rotational speed of the wheel.
  • the vehicle according to claim 6 is the vehicle according to claim 3 or 4, wherein the wheel state detecting means detects a ground load of the wheel.
  • the vehicle according to claim 7 is the vehicle according to claim 3 or 4, further comprising a suspension for suspending the wheel on a vehicle body, wherein the wheel state detecting means detects a stroke amount of the suspension. .
  • the control device of the first aspect based on the comparison of the state of each wheel detected by the vehicle wheel state detecting means, whether or not there is a wheel with a possibility of slipping among the plurality of wheels. Is determined by the determining means.
  • the camber angle adjusting device is operated by the camber angle adjusting means, and the camber angle of the wheel with the possibility of slipping is determined. Then, it is adjusted so as to be inclined at a predetermined angle toward the negative side or the positive side.
  • the surface pressure of the wheel can be increased by giving the wheel a camber angle inclined to the negative side or the positive side.
  • the vehicle height can be lowered and the center of gravity can be lowered.
  • the ground contact load can be increased by giving a camber angle inclined to the negative side or the positive side to a wheel that may slip during traveling, the wheel slip temporarily during traveling. There is an effect that it is possible to prevent the occurrence of.
  • the following effect is obtained. Based on the comparison of the state of each wheel detected by the wheel state detecting means, it is determined by the determining means whether or not there is one wheel that is likely to slip among the plurality of wheels. Therefore, when the possibility of slipping occurs in any one of the wheels during traveling, it is possible to prevent the slipping of the wheels, so that there is an effect that traveling stability is ensured.
  • the camber angle adjusting device in which the curvature of the tread surface of the wheel is configured to be larger than a predetermined value, and the camber rotating shaft of the wheel is set below the rotating shaft of the wheel. Because it is used, it is easy to increase the surface pressure of the wheel by giving a camber angle inclined to the negative side or positive side with respect to the wheel that may slip during traveling, and as a result, while traveling It is possible to effectively prevent the occurrence of a temporary wheel slip at.
  • the camber angle adjusting device in which the curvature of the tread surface of the wheel is configured to be smaller than a predetermined value and the camber rotation shaft of the wheel is set above the rotation shaft of the wheel. Since it is used, by giving a camber angle inclined to the negative side or the positive side with respect to a wheel that may slip during traveling, the vehicle height is likely to be lowered (i.e., the center of gravity is likely to be lowered), As a result, there is an effect that it is possible to effectively prevent the occurrence of temporary wheel slip during traveling.
  • the wheel state detection means detects the number of rotations of the wheel as the state of the wheel, and based on a comparison of the number of rotations of each wheel, it is determined whether or not there is a possibility of slipping among a plurality of wheels. Is determined by Here, the rotational speed of the wheel is a numerical value reflecting the possibility of slipping of the wheel during traveling. Therefore, by using the rotational speed of the wheel as the state of the wheel to be compared between the wheels, It is easy to find out the possibility of occurrence of slipping, and it is possible to effectively prevent the occurrence of slipping.
  • the wheel state detection means detects the wheel ground load as the wheel state, and based on the comparison of the ground load of each wheel, it is determined whether or not there is a wheel with a possibility of slipping among the plurality of wheels. Is determined by Here, since the ground contact load of the wheel is a numerical value reflecting the possibility of slipping of the wheel during traveling, the ground contact load of the wheel is used as a state of the wheel to be compared between the wheels, thereby temporarily It is easy to find out the possibility of occurrence of slipping, and it is possible to effectively prevent the occurrence of slipping.
  • a wheel state detecting means detects a stroke amount of a suspension for suspending a wheel and a vehicle body as a wheel state, and a wheel having a possibility of slipping among a plurality of wheels based on a comparison of a suspension stroke amount for each wheel. Whether or not exists is determined by the determining means.
  • the stroke amount of the suspension is a numerical value reflecting the possibility of slipping of the wheel during traveling
  • the suspension stroke amount is temporarily used during traveling by using the suspension stroke amount as the state of the wheel to be compared between the wheels. It is easy to find the possibility of occurrence of slipping, and it is possible to effectively prevent slipping.
  • (A) is a typical front view which shows the wheel of 2nd Embodiment in which the camber angle is a steady angle state
  • (b) is the wheel of 2nd Embodiment by which the camber angle was adjusted to negative. It is a typical front view to show.
  • (A) is sectional drawing of a wheel
  • (b) is a schematic diagram which illustrates typically the adjustment method of the steering angle and camber angle of a wheel.
  • Control device 1 Vehicle 2 Wheel 2a Tread surface 2FL Left front wheel (wheel) 2FR Right front wheel (wheel) 2RL Left rear wheel (wheel) 2RR Right rear wheel (wheel) 70 Camber angle adjusting device 81 Wheel speed sensor device (wheel state detecting means) 82 Ground load sensor device (wheel state detection means) 83 Stroke sensor device (wheel state detection means) S15, S17, S20, S22 determination means S16, S21 camber angle adjustment means S18, S23 camber angle adjustment means S35, S37, S40, S42 determination means S38, S43 camber angle adjustment means S55, S57, S60, S62 determination means S58, S63 Camber angle adjusting means 5100 Vehicle control device 501 Vehicle 502 Wheel 502FL Front wheel (wheel, left wheel) 502FR Front wheel (wheel, right wheel) 502RL Rear wheel (wheel, left wheel) 502RR Rear wheel (wheel, right wheel) 521 First tread 522 Second tread 504 Camber angle adjusting device 504a Drive actuator (camber angle adjusting device)
  • FIG. 1 is a schematic diagram schematically showing a top view of a vehicle 1 on which a control device 100 according to the first embodiment of the present invention is mounted.
  • An arrow FWD in FIG. 1 indicates the forward direction of the vehicle 1.
  • the vehicle 1 includes a vehicle body frame BF, a plurality of (four wheels in this embodiment) wheels 2 supported by the vehicle body frame BF, and a part of these wheels 2 (this embodiment).
  • the left and right front wheels 2FL, 2FR are driven to rotate, the suspension device 4 that suspends each wheel 2 on the vehicle body frame BF and independently adjusts the camber angle of each wheel 2, and the operation of the steering 63.
  • a steering device 5 that steers a part of the wheels 2 (in this embodiment, the left and right front wheels 2FL, 2FR) is mainly provided.
  • the vehicle 1 is configured such that the suspension device 4 can independently adjust the camber angle of each wheel 2 as described above, the camber angle of each wheel 2 is adjusted as necessary to improve traveling performance. Can do.
  • the vehicle 1 of the present embodiment adjusts the camber angle of the wheel 2 with the possibility of slipping in the negative direction (negative) when one of the wheels 2FL to 2RR is likely to slip. By doing so, the wheel is prevented from slipping.
  • the vehicle body frame BF forms a skeleton of the vehicle 1 and is used to mount various devices (wheel drive device 3 and the like), and is supported by the suspension device 4.
  • the wheel 2 includes left and right front wheels 2FL and 2FR disposed on the front side (arrow FWD side) of the vehicle body BF and left and right disposed on the rear side (counter arrow FWD side) of the vehicle body frame BF.
  • Four rear wheels 2RL and 2RR are provided.
  • the left and right front wheels 2FL and 2FR are configured as driving wheels that are rotationally driven by the rotational driving force applied from the wheel driving device 3, while the left and right rear wheels 2RL and 2RR are associated with the traveling of the vehicle 1. It is configured as a driven wheel to be driven.
  • a wheel having a large curvature of the tread surface (tread surface) 2a is adopted as the wheel 2. Therefore, by inclining the wheel 2 with respect to the road surface, it is possible to reduce the contact width (contact area) and increase the surface pressure of the wheel 2, and to increase the contact load of the wheel.
  • the wheel driving device 3 is a device for applying a rotational driving force to the left and right front wheels 2FL, 2FR to drive the rotation, and is configured by an electric motor 3a as described later (see FIG. 7). ). As shown in FIG. 1, the electric motor 3 a is connected to the left and right front wheels 2 FL and 2 FR via a differential gear (not shown) and a pair of drive shafts 31.
  • the suspension device 4 is a device that functions as a so-called suspension, and is provided corresponding to each wheel 2 as shown in FIG.
  • the suspension device 4 in the present embodiment includes a camber angle adjusting device 70 (see FIGS. 2 and 3) that is a camber angle adjusting device of the present invention, and the camber angle adjusting device 70 adjusts the camber angle of the wheel 2. It is configured to be able to.
  • FIG. 2 is a front view of the suspension device 4, and since the configuration of each suspension device 4 is common, the suspension device 4 corresponding to the right front wheel 2FR is illustrated in FIG. 2 as a representative example.
  • the drive shaft 31, the lower arm, and the like are not shown, and the drawing is simplified.
  • the suspension device 4 in the present embodiment is configured as a strut type suspension, and as shown in FIG. 2, a strut member 41 extending substantially in the vertical direction of the vehicle 1 and a wheel support that rotatably supports the wheel 2.
  • a knuckle 42 as a member and a lower arm (not shown) extending substantially in the vehicle width direction of the vehicle 1 are provided.
  • the strut member 41 includes a suspension spring 41a and a shock absorber 41b that attenuates vibration of the suspension spring 41a.
  • the lower end 41 of the strut member 41 (the cylinder side of the shock absorber 41b) is rigidly coupled to the knuckle 42.
  • the upper end of the strut member 41 (on the piston rod side of the shock absorber 41b) is pivotally attached to the vehicle body frame BF.
  • the suspension device 4 in the present embodiment includes a camber angle adjusting device 70 that adjusts the camber angle of the wheel 2 and is configured to be able to adjust the camber angle of each wheel 2 independently.
  • the FR actuator 70FR is composed of a hydraulic cylinder, and the rod portion 70b is pivotally attached to the knuckle 42 via a joint portion (universal joint or the like) not shown.
  • the main body portion 70a of the FR actuator 70FR is pivotally attached to the vehicle body frame side.
  • the suspension device 4 including the camber angle adjusting device 70
  • the FL to RR actuators 70FL to 70RR are extended, so that the wheels 2 (2FL to 2RR) are swung around a predetermined camber shaft, and the camber is The corner is adjusted in the negative direction (negative).
  • the camber angle is adjusted in the positive direction (positive) by contracting the FL to RR actuators 70FL to 70RR.
  • the steering device 5 is configured by a rack and pinion type mechanism, and includes a steering shaft 51, a hook joint 52, a steering gear 53, a tie rod 54, a connecting member 55, and a knuckle 42 (see FIG. 4B). It is mainly equipped with.
  • the operation of the steering 63 by the driver is first transmitted to the hook joint 52 via the steering shaft 51 and the angle of the pinion 53 a of the steering gear 53 is changed by the hook joint 52. Is transmitted as rotational motion. Then, the rotational motion transmitted to the pinion 53a is converted into a linear motion of the rack 53b, and the tie rod 54 connected to both ends of the rack 53b is moved by the linear motion of the rack 53b. By pushing and pulling the knuckle 42, the steering angle of the wheel 2 is adjusted.
  • the steering 63 is an operation member operated by the driver, and the wheel 2 is steered by the steering device 5 described above in accordance with the operation.
  • the accelerator pedal 61 and the brake pedal 62 are operation members that are operated by the driver, and the acceleration amount and braking amount of the vehicle 1 according to the depression state (depression amount, depressing speed, etc.) of each pedal 61, 62. Etc. are determined.
  • the control device 100 is a device for controlling each part of the vehicle 1 configured as described above.
  • the control device 100 detects the depression state of the pedals 61 and 62 and determines the wheel drive device 3 according to the detection result. By controlling, each wheel 2 is rotationally driven.
  • control apparatus 100 of this embodiment determines whether the wheel 2 with a possibility of slip exists based on comparing the state of each wheel 2 which rotation speed shows, and possibility of a slip exists.
  • the camber angle adjusting device 70 is controlled to adjust the camber angle of the wheel 2 that may slip.
  • FIG. 3 is a block diagram showing an electrical configuration of the control device 100.
  • the control device 100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74.
  • a plurality of devices such as the wheel driving device 3 are connected to the input / output port 75.
  • the CPU 71 is an arithmetic unit that controls each unit connected by the bus line 74.
  • the ROM 72 is a non-rewritable nonvolatile memory for storing a control program executed by the CPU 71 (for example, a slip prevention processing program shown in FIG. 4), fixed value data, and the like, and the RAM 73 is a control program. This is a memory for storing various data in a rewritable manner at the time of execution.
  • the wheel drive device 3 is a device for rotationally driving the left and right front wheels 2FL, 2FR (see FIG. 1), and an electric motor 3a that applies a rotational driving force to the left and right front wheels 2FL, 2FR.
  • a control circuit (not shown) for controlling the electric motor 3a based on a command from the CPU 71 is mainly provided.
  • the camber angle adjusting device 70 is a device for adjusting the camber angle of each wheel 2 (2FL to 2RR), and functions as the camber angle adjusting device in the present invention.
  • the camber angle adjusting device 70 mainly includes four FL to RR actuators 70FL to 70RR and a control circuit (not shown) for controlling the actuators 70FL to 70RR based on a command from the CPU 71. .
  • the FL to RR actuators 70FL to 70RR are composed of a hydraulic cylinder having the main body portion 70a and the rod portion 70b as described above.
  • Each of the hydraulic cylinders includes a hydraulic pump (not shown) that supplies oil (hydraulic pressure) to each hydraulic cylinder, and a supply direction of oil that is supplied from the hydraulic pump to each hydraulic cylinder.
  • a solenoid valve (not shown) for switching between.
  • each hydraulic cylinder is driven to expand and contract by the oil (hydraulic pressure) supplied from the hydraulic pump.
  • the solenoid valve is turned on / off, the driving direction (extension or contraction) of each hydraulic cylinder is switched.
  • the control circuit of the camber angle adjusting device 70 monitors the expansion / contraction amount of each hydraulic cylinder by an expansion / contraction sensor (not shown), and the expansion / contraction drive of the hydraulic cylinder that reaches the target value (expansion / contraction amount) instructed by the CPU 71 is stopped. Is done.
  • the detection result by the expansion / contraction sensor is output from the control circuit to the CPU 71, and the CPU 71 can obtain the camber angle of each wheel 2 based on the detection result.
  • the wheel speed sensor device 81 is a device for detecting the rotation speed (wheel speed) of each wheel 2 (2FL to 2RR) and outputting the detection result to the CPU 71, and functions as a wheel state detection means in the present invention. To do.
  • the CPU 71 can obtain the rotation speed of each wheel 2 (2FL to 2RR) based on the result output from the wheel speed sensor device 81.
  • the wheel speed sensor device 81 includes an FL wheel speed sensor 81FL that detects a wheel speed of the left front wheel 2FL, an FR wheel speed sensor 81FR that detects a wheel speed of the right front wheel 2FR, and a wheel speed of the left rear wheel 2RL.
  • RL wheel speed sensor 81RL that detects the wheel speed
  • RR wheel speed sensor 81RR that detects the wheel speed of the right rear wheel 2RR
  • an output circuit that processes the detection results of these wheel speed sensors 81FL to 81RR and outputs them to the CPU 71 (Not shown).
  • each of these wheel speed sensors 81FL to 81RR is configured as an electromagnetic sensor that detects a magnetic field fluctuation of a center rotor (not shown) rotating together with the wheel 2 by a hall element (not shown). Has been.
  • the ground load sensor device 82 is a device for detecting a ground load generated between each wheel 2 (2FL to 2RR) and the road surface and outputting the result to the CPU 71.
  • the CPU 71 can obtain the ground load of each wheel 2 (2FL to 2RR) based on the result output from the ground load sensor device 82.
  • This ground load sensor device 82 detects the ground load of the left front wheel 2FL, the FL load sensor 82FL that detects the ground load of the right front wheel 2FR, and the ground load of the left rear wheel 2RL.
  • each of the load sensors 82FL to 82RR is configured as a piezoresistive triaxial load sensor.
  • Each of these load sensors 82FL to 82RR is disposed on a strut member 41 that holds each wheel 2, and the ground load of each wheel 2 is set in the front-rear direction (vertical direction in FIG. 1) and the left-right direction (in FIG. 1). Detection is performed in the horizontal direction) and in the vertical direction (the front and back direction in FIG. 1).
  • the stroke sensor device 83 is a device for detecting the suspension stroke amount of the shock absorber 41b of the strut member 41 holding each wheel 2 and outputting the detection result to the CPU 71.
  • the CPU 71 can obtain the suspension stroke amount in each wheel 2 (2FL to 2RR) based on the result output from the wheel speed sensor device 81.
  • the stroke sensor device 83 includes an FL stroke sensor 83FL that detects a suspension stroke amount in the left front wheel 2FL, an FR stroke sensor 83FR that detects a suspension stroke amount in the right front wheel 2FR, and a suspension stroke amount in the left rear wheel 2RL.
  • RL stroke sensor 83 RL for detecting RR
  • RR stroke sensor 83 RR for detecting the suspension stroke amount in the right rear wheel 2 RR
  • an output circuit (not shown) for processing the detection results of these stroke sensors 83 FL to 83 RR and outputting them to the CPU 71. )).
  • each of these stroke sensors 83FL to 83RR is configured as an optical displacement sensor (for example, a laser displacement sensor).
  • the accelerator pedal sensor device 61a is a device for detecting the depression state of the accelerator pedal 61 and outputting the detection result to the CPU 71.
  • An angle sensor (not shown) for detecting the depression amount of the accelerator pedal 61;
  • a processing circuit (not shown) that processes the detection result of the angle sensor and outputs the result to the CPU 71 is provided.
  • the CPU 71 can calculate the accelerator opening from the detection result of the accelerator pedal sensor device 61a (the amount of depression of the accelerator pedal 61).
  • the brake pedal sensor device 62a is a device for detecting the depression state of the brake pedal 62 and outputting the detection result to the CPU 71.
  • An angle sensor (not shown) for detecting the depression amount of the brake pedal 62;
  • a processing circuit (not shown) that processes the detection result of the angle sensor and outputs the result to the CPU 71 is provided.
  • the CPU 71 can calculate the brake depression amount from the detection result of the brake pedal sensor device 62a (the depression amount of the brake pedal 62).
  • the steering sensor device 63a is a device for detecting the operation state of the steering 63 and outputting the detection result to the CPU 71, and an angle sensor (not shown) for detecting the rotation angle of the steering 63 in association with the rotation direction. ) And a processing circuit (not shown) for processing the detection result of the angle sensor and outputting the result to the CPU 71.
  • each angle sensor is configured as a contact-type potentiometer using electric resistance.
  • the CPU 71 obtains the depression amounts of the pedals 61 and 62 and the rotation angle of the steering 63 from the detection results of the angle sensors input from the sensor devices 61a, 62a and 63a, and time-differentiates the detection results.
  • the depression speed of each pedal 61, 62 and the rotation speed of the steering 63 can be obtained.
  • an acceleration sensor device that detects the longitudinal acceleration and lateral acceleration of the vehicle 1
  • an optical sensor that measures the attitude (tilt, etc.) of the vehicle 1 (body frame BF) with respect to the road surface in a non-contact manner. Etc. are exemplified.
  • FIG. 4 is a flowchart showing the slip prevention process.
  • Such slip prevention processing is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 ms) while the control device 100 is powered on.
  • the rotational speeds of the respective wheels 2FL to 2RR are acquired for all the wheels 2 (S11). Specifically, in S11, the rotational speeds of the respective wheels 2FL to 2RR are acquired based on the output value from the wheel speed sensor device 81 which is the wheel state detecting means of the present invention.
  • the accelerator opening is acquired based on the output value from the accelerator pedal sensor device 61a (S12), and the brake pedal depression amount is acquired based on the output value from the brake pedal sensor device 62a (S13).
  • the accelerator opening degree acquired by the process of S12 is a specified value or more (S14). If the accelerator opening is equal to or greater than the specified value as a result of checking in the process of S14 (S14: Yes), the vehicle 1 is running at an acceleration, and therefore, compared to the average value of the rotational speeds of the other wheels (the other three wheels). , There is one wheel (any one of wheels 2FL to 2RR) that rotates at a rotational speed that exceeds a specified value (for example, a rotational speed that is approximately 120% or more of the average rotational speed of other wheels), and It is confirmed whether the variation in the rotation speed of the other wheel is within a specified value (S15).
  • a specified value for example, a rotational speed that is approximately 120% or more of the average rotational speed of other wheels
  • FIG. 5A is a schematic front view showing the wheel 2 in a state where the camber angle is a steady angle (substantially 0 ° in the present embodiment), and FIG. 5B is the result of the slip prevention process described above. It is a typical front view which shows the wheel 2 by which the camber angle was adjusted to negative (minus direction).
  • a right front wheel 2FR is illustrated as a representative example of the wheel 2.
  • a wheel having a large curvature of the tread surface (tread surface) 2a is used as the wheel 2.
  • a negative camber is applied to the wheel 2, and the wheel 2 is deformed by the inclination by inclining the wheel 2 with respect to the road surface.
  • the camber angle of the wheel 2 is a steady angle
  • the contact width between the wheel 2 and the road surface G is W1 (FIG. 5A)
  • the contact width with the road surface G is reduced to W2.
  • FIG. 5B the surface pressure of the wheel 2 is increased as compared with the case where the ground contact width is W1 (that is, in the case of a steady angle).
  • the vehicle 1 having the wheel 2 whose surface pressure increases by applying the camber angle gives the surface pressure of the wheel 2 by increasing the surface pressure of the wheel 2 by applying a negative camber to the wheel 2 that may slip during traveling. Since the load can be increased, load loss can be suppressed, and temporary wheel slip during running can be prevented.
  • the camber rotation shaft is preferably set below the rotation shaft of the wheel 2, and is set near the road surface G. More preferred.
  • the slip A negative camber with a specified angle is given to a wheel having the possibility of
  • the wheel 2 having a large curvature of the tread surface 2a and increasing the surface pressure by applying the camber angle is used. Therefore, by applying the negative camber, the surface pressure increases and the ground load increases. . Therefore, it is possible to suppress the load drop during traveling and prevent the wheels from slipping.
  • all the wheels 2 are compared based on the comparison of the state (rotational speed) of each wheel 2 during traveling, that is, the relative state of the wheel during traveling. Since it is determined whether there is a wheel with a possibility of slipping from among the wheels, it is easy to find a wheel with a possibility of slipping. In particular, the determination accuracy with respect to a situation in which the load of some of the wheels 2 is temporarily removed due to road surface conditions (for example, the presence of a dent on the road surface or a portion with a low friction coefficient on the road surface) is improved. . Therefore, it is possible to perform prospective control with high certainty for slip prevention.
  • the slipping of the wheel can be prevented, and traveling stability can be ensured.
  • the left wheel 2FL, 2RL or the right wheel is compared by comparing the state of the left wheel (left wheel 2FL, 2RL) with the state of the right wheel (right wheel 2FR, 2RR). Since it is determined whether or not there is a possibility of slipping in either 2FR or 2RR, if there is a possibility of slipping on one of the left and right wheels during traveling, the slipping of that wheel is prevented. It is possible to ensure running stability.
  • FIG. 6A is a schematic front view showing the wheel 2 of the second embodiment in a state where the camber angle is a steady angle (substantially 0 ° in the present embodiment), and FIG. It is a typical front view which shows the wheel 2 of 2nd Embodiment by which the camber angle was adjusted to the negative (minus direction) by the anti-slip process.
  • the right front wheel 2FR is shown as a representative example of the wheel 2.
  • the vehicle height is lowered by applying the negative camber. That is, as shown in FIG. 6B, when a negative camber is applied to the wheel 2 of the second embodiment, the vehicle height is lowered by H.
  • the vehicle 1 having a configuration in which the vehicle height is lowered by providing the camber angle gives a negative camber to the wheel 2 that may slip during traveling.
  • the vehicle height can be lowered and the center of gravity of the vehicle 1 can be lowered, so that load loss can be suppressed and temporary wheel slip during running can be prevented.
  • the camber rotation shaft can effectively lower the vehicle height as the distance from the road surface G increases. it can. Therefore, when using the wheel 2 whose curvature of the tread surface 2a is small, for example, it is preferable that the camber rotating shaft is set above the rotating shaft of the wheel 2.
  • the second embodiment when it is determined that there is a wheel with a possibility of slipping in all the wheels 2 that are traveling (accelerated traveling or decelerating traveling), slipping occurs.
  • a negative camber with a specified angle is given to a wheel having the possibility of
  • the wheel 2 that has a small curvature of the tread surface 2a and can lower the vehicle height by providing a camber angle is used, the vehicle height is lowered and the center of gravity of the vehicle 1 is lowered by applying the negative camber. Therefore, it is possible to suppress the load drop during traveling and prevent the wheels from slipping.
  • the ground load sensor device 82 functions as the wheel state detecting means instead of the wheel speed sensor device 81.
  • symbol is attached
  • FIG. 7 is a flowchart showing a slip prevention process in the third embodiment.
  • the slip prevention process in the third embodiment is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 ms) while the control device 100 is powered on.
  • the ground load of each wheel 2FL to 2RR is acquired for all wheels 2 (S31). Specifically, in S31, the ground load of each of the wheels 2FL to 2RR is acquired based on the output value from the ground load sensor device 82 which is the wheel state detecting means of the present invention.
  • the accelerator opening is acquired (S12), the brake depression amount is acquired (S13), and it is confirmed whether or not the accelerator opening acquired by the processing of S12 is equal to or greater than a specified value (S14). .
  • the contact load (specified value or more) is compared with the average value of the contact load of the other wheels (the other three wheels). For example, there is one wheel (one of wheels 2FL to 2RR) that shows a contact load of about 120% or more of the average contact load of other wheels, and variation in the contact load of these other wheels is specified. It is confirmed whether it is within the value (S40).
  • the possibility of slipping in all the wheels 2 during traveling is determined by the determination processing of S35, S37, S40, and S42.
  • a negative camber having a specified angle that is, a negative camber angle
  • the third embodiment based on the comparison of the state (ground load) of each wheel 2 during traveling, that is, based on the relative state of the wheel during traveling, all wheels 2 (2FL ⁇ Since it is determined whether or not there is a wheel with a possibility of slipping among the four wheels of 2RR), it is possible to perform prospective control with high certainty for slip prevention as in the first embodiment.
  • the stroke sensor device 83 functions as a wheel state detection means instead of the wheel speed sensor device 81.
  • symbol is attached
  • FIG. 8 is a flowchart showing a slip prevention process in the fourth embodiment. Similarly to the slip prevention process in the first embodiment, the slip prevention process in the fourth embodiment is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 ms) while the control device 100 is powered on.
  • the CPU 71 for example, at intervals of 0.2 ms
  • the strokes of the wheels 2FL to 2RR are acquired for all the wheels 2 (S51). Specifically, in S51, the strokes of the wheels 2FL to 2RR are acquired based on the output value from the stroke sensor device 83 which is the wheel state detection means of the present invention.
  • the accelerator opening is acquired (S12), the brake depression amount is acquired (S13), and it is confirmed whether the accelerator opening acquired by the processing of S12 is equal to or greater than a specified value (S14). .
  • the stroke for example, the other wheel
  • the stroke exceeds the specified value compared to the average value of the strokes of the other wheels (the other three wheels). It is confirmed whether there is one wheel (any one of wheels 2FL to 2RR) that shows a stroke of about 120% or more of the stroke of the other wheel, and the variation of the strokes of these other wheels is within a specified value (S55). ).
  • a negative camber of a specified angle (for example, 5 °) is given to the wheel (left wheel 2FL, 2RL, or right wheel 2FR, 2RR) on the side with a large stroke that may be slipped (S58) to prevent the slip.
  • the process of S58 corresponds to the camber angle adjusting means of the present invention.
  • the stroke (for example, less than the specified value) is compared to the average value of the strokes of the other wheels (other three wheels). Whether there is one wheel (wheel of any of wheels 2FL to 2RR) that shows a stroke of approximately 80% or less of the average value of the strokes of the other wheels, and whether the variation of the strokes of these other wheels is within the specified value Is confirmed (S60).
  • a negative camber of a specified angle (for example, 5 °) is given to a wheel (left wheel 2FL, 2RL, or right wheel 2FR, 2RR) on the side with a large stroke that may cause a slip (S63) to prevent the slip.
  • S63 corresponds to the camber angle adjusting means of the present invention.
  • the possibility of slipping in all the wheels 2 during traveling is determined by the determination processing of S55, S57, S60, and S62.
  • a negative camber having a specified angle that is, a negative camber angle
  • the fourth embodiment based on the comparison of the state (stroke) of each wheel 2 during traveling, that is, based on the relative state of the wheel during traveling, all wheels 2 (2FL to 2RR). 4), it is determined whether or not there is a wheel with a possibility of slipping. Like the first embodiment, it is possible to perform the prospective control with high certainty for slip prevention.
  • FIG. 9 is a schematic diagram schematically showing a vehicle 501 on which the vehicle control device 5100 according to the fifth embodiment of the present invention is mounted. 9 indicates the forward direction of the vehicle 501.
  • a vehicle 501 includes a body frame BF, a plurality of (four wheels in this embodiment) wheels 502 supported by the body frame BF, and wheels that rotate and drive these wheels 502 independently.
  • a driving device 503 and a camber angle adjusting device 504 for adjusting a camber angle of each wheel 502 are mainly provided.
  • the camber angle of the wheel 502 is controlled by the vehicle control device 5100, and 2 provided on the wheel 502 is provided.
  • the wheel 502 includes four wheels, left and right front wheels 502FL and 502FR positioned on the front side in the traveling direction of the vehicle 501, and left and right rear wheels 502RL and 502RR positioned on the rear side in the traveling direction.
  • These front and rear wheels 502FL to 502RR are configured to be able to rotate independently by receiving a rotational driving force from a wheel driving device 503.
  • the wheel drive device 503 is a rotation drive device for independently rotating and driving each wheel 502. As shown in FIG. 9, four electric actuators (FL to RR actuators 503FL to 503RR) are attached to each wheel 502 ( That is, it is arranged and configured as an in-wheel motor. When the driver operates the accelerator pedal 552, a rotational driving force is applied to each wheel 502 from each wheel driving device 503, and each wheel 502 is rotated at a rotational speed corresponding to the operation amount of the accelerator pedal 552.
  • the wheels 502 (front and rear wheels 502FL to 502RR) are configured such that a camber angle can be adjusted by a camber angle adjusting device 504.
  • the camber angle adjusting device 504 is a drive device for adjusting the camber angle of each wheel 502. As shown in FIG. 9, a total of four camber angle adjusting devices 504 at a position corresponding to each wheel 502 (FL to RR actuators 504FL to 504RR). Is arranged.
  • the camber angle adjusting device 504 is a traveling state of the vehicle 501 (for example, when traveling at a constant speed or acceleration / deceleration, or when traveling straight or turning), or a state of the road surface G on which the wheels 502 travel (for example, on a dry road surface). And the vehicle control device 5100 controls the camber angle of the wheel 502 in accordance with a state change such as when the road surface is rainy).
  • FIG. 10 is a cross-sectional view through the camber shaft of the wheel 502.
  • illustration of power supply wiring for supplying a drive voltage to the wheel drive device 503 is omitted.
  • the wheels 502 (front and rear wheels 502FL to 502RR) are mainly configured by including a tire 502a made of a rubber-like elastic material and a wheel 502b made of an aluminum alloy or the like, and the wheel 502b.
  • a wheel drive device 503 (FL to RR motors 503FL to 503RR) is disposed as an in-wheel motor on the inner periphery of the motor.
  • the tire 502a is different in characteristics from the first tread 521 disposed inside the vehicle 501 (right side in FIG. 10), and the second tread 522 disposed outside the vehicle 501 (left side in FIG. 10). With. The detailed configuration of the wheel 502 (tire 502a) will be described later with reference to FIG.
  • the wheel drive device 503 has a wheel drive shaft 503a protruding from the front side (left side in FIG. 10) connected and fixed to the wheel 502b, and a rotational drive force via the wheel drive shaft 503a. Can be transmitted to the wheel 502.
  • the camber angle adjusting device 504 includes a drive actuator 504a and a camber drive shaft 504b.
  • the drive actuator 504a is fixed to the vehicle body frame BF and rotates the camber drive shaft 504b.
  • the camber drive shaft 504b is inserted into the hole 503c of the bracket 503b of the wheel drive device 503 (FL to RR motor 503FL to 503RR), and is fixedly connected.
  • the camber drive shaft 504b is rotatably inserted into a hole BFb of the vehicle body side bracket BFa fixed to the vehicle body frame BF via a bearing or the like.
  • the camber drive shaft 504b is disposed so as to be inclined with respect to the front-rear direction of the vehicle 501 so that the front side is outward.
  • the drive actuator 504a is rotationally driven, whereby the wheel drive device 503 is driven to swing around the camber drive shaft 504b serving as the camber shaft C.
  • a predetermined camber angle is imparted to each wheel 502. Is done.
  • the accelerator pedal 552 and the brake pedal 553 are operation members operated by the driver, and the traveling speed and braking force of the vehicle 501 are determined according to the depression state (depression amount, depression speed, etc.) of the pedals 552 and 553. Then, the operation control of the wheel drive device 503 is performed.
  • the steering mechanism 554 is an operation member operated by the driver, and the turning radius of the vehicle 501 is determined according to the operation state (rotation angle, rotation speed, etc.), and the operation control of the camber angle adjusting device 504 is performed. Done.
  • the wiper switch 555 is an operation member operated by the driver, and operation control of a wiper (not shown) is performed according to the operation state (operation position and the like).
  • the winker switch 556 and the high grip switch 557 are operation members operated by the driver, and in the former case, the operation control of the winker (not shown) is performed according to the operation state (operation position, etc.). In the latter case, the operation control of the camber angle adjusting device 504 is performed.
  • the state in which the high grip switch 557 is turned on corresponds to the state in which the high grip property is selected as the characteristic of the wheel 502, and the state in which the high grip switch 557 is turned off selects the low rolling resistance as the characteristic of the wheel 502. It corresponds to the state that was done.
  • the vehicle control device 5100 is a vehicle control device for controlling each part of the vehicle 501 configured as described above. For example, the operation state of each pedal 552, 553 is detected, and the detection result is determined according to the detection result. By operating the wheel drive device 503, the rotational speed of each wheel 502 is controlled.
  • the operation state of the accelerator pedal 552, the brake pedal 553, and the steering mechanism 554 is detected, and the camber angle adjusting device 504 is operated according to the detection result to adjust the camber angle of each wheel.
  • the two types of treads 521 and 522 are selectively used (see FIGS. 13 and 14) to improve running performance and achieve fuel saving.
  • a detailed configuration of the vehicle control device 5100 will be described with reference to FIG.
  • FIG. 11 is a block diagram showing an electrical configuration of the vehicle control device 5100.
  • the vehicle control device 5100 includes a CPU 71, ROM 72, and RAM 73 as control means, determination means, and calculation means, and these are connected to an input / output port 75 via a bus line 74.
  • a plurality of devices such as a wheel drive device 503 are connected to the input / output port 75.
  • the CPU 71 is an arithmetic unit that controls each unit connected by the bus line 74.
  • the ROM 72 is a non-rewritable nonvolatile memory storing a control program executed by the CPU 71, fixed value data, and the like, and the RAM 73 is a memory for storing various data in a rewritable manner when the control program is executed. .
  • the ROM 72 stores a program of a flowchart (camber control process) shown in FIG.
  • the wheel driving device 503 is a device for rotationally driving each wheel 502 (see FIG. 9), and includes four FL to RR motors 503FL to 503RR for applying a rotational driving force to each wheel 502.
  • These motors 503FL to 503RR are mainly provided with a drive circuit (not shown) that drives and controls the motors 503FL to 503RR based on a command from the CPU 71.
  • the camber angle adjusting device 504 is a device for adjusting the camber angle of each wheel 502, and includes four pieces for applying a driving force for angle adjustment to each wheel 502 (wheel driving device 503). It mainly includes FL to RR drive actuators 504FL to 504RR and a drive circuit (not shown) that controls the drive actuators 504FL to 504RR based on a command from the CPU 71.
  • the camber drive shaft 504b is rotationally driven.
  • the drive circuit of the camber angle adjusting device 504 monitors the rotation angle of each drive actuator 504a with a rotation angle sensor, and the drive actuator 504a that has reached the target value (expansion / contraction amount) instructed by the CPU 71 is stopped from rotating.
  • the detection result by the rotation angle sensor is output from the drive circuit to the CPU 71, and the CPU 71 can obtain the current camber angle of each wheel 502 based on the detection result.
  • the vehicle speed sensor device 532 is a device for detecting the ground speed (absolute value and traveling direction) of the vehicle 501 with respect to the road surface G and outputting the detection result to the CPU 71.
  • the longitudinal and lateral acceleration sensors 532a and 532b And a control circuit (not shown) that processes the detection results of the respective acceleration sensors 532a and 532b and outputs the result to the CPU 71.
  • the longitudinal acceleration sensor 532a is a sensor that detects the acceleration in the longitudinal direction (the vertical direction in FIG. 9) of the vehicle 501 (body frame BF), and the lateral acceleration sensor 532b is the lateral direction (in the lateral direction of the vehicle 501 (body frame BF)).
  • FIG. 9 is a sensor that detects acceleration in the left-right direction.
  • each of these acceleration sensors 532a and 532b is configured as a piezoelectric sensor using a piezoelectric element.
  • the CPU 71 time-integrates the detection results (acceleration values) of the respective acceleration sensors 532a and 532b input from the control circuit of the vehicle speed sensor device 532 to calculate the speeds in two directions (front and rear and left and right directions), respectively. By synthesizing these two direction components, the ground speed (absolute value and traveling direction) of the vehicle 501 can be obtained.
  • the ground load sensor device 534 is a device for detecting the load received by the ground contact surface of each wheel 502 from the road surface G and outputting the detection result to the CPU 71, and detects the load received by each wheel 502.
  • RR load sensors 534FL to 534RR and a processing circuit (not shown) for processing the detection results of the load sensors 534FL to 534RR and outputting the results to the CPU 71 are provided.
  • each of the load sensors 534FL to 534RR is configured as a piezoresistive triaxial load sensor.
  • Each of these load sensors 534FL to 534RR is disposed on a suspension shaft (not shown) of each wheel 502, and the load received by the wheel 502 from the road surface G in the front-rear direction, the left-right direction, and the up-down direction of the vehicle 501. Detect by direction.
  • the CPU 71 estimates the friction coefficient ⁇ of the road surface G on the ground contact surface of each wheel 502 from the detection results (ground load) of the load sensors 534FL to 534RR inputted from the ground load sensor device 534 as follows.
  • Fx / Fz Fx / Fz
  • the wheel rotation speed sensor device 535 is a device for detecting the rotation speed of each wheel 502 and outputting the detection result to the CPU 71, and four FL to RR rotations for detecting the rotation speed of each wheel 502, respectively.
  • Speed sensors 535FL to 535RR and a processing circuit (not shown) for processing the detection results of the rotational speed sensors 535FL to 535RR and outputting them to the CPU 71 are provided.
  • each rotation sensor 535FL to 535RR is provided on each wheel 502, and the angular velocity of each wheel 502 is detected as the rotation velocity. That is, each of the rotation sensors 535FL to 535RR is an electromagnetic pickup provided with a rotating body that rotates in conjunction with each wheel 502 and a pickup that electromagnetically detects the presence or absence of a large number of teeth formed in the circumferential direction of the rotating body. It is configured as a sensor of the type.
  • the CPU 71 can obtain the actual peripheral speed of each wheel 502 from the rotational speed of each wheel 502 input from the wheel rotational speed sensor device 535 and the outer diameter of each wheel 502 stored in the ROM 72 in advance. It is possible to determine whether each wheel 502 is slipping by comparing the peripheral speed with the traveling speed (ground speed) of the vehicle 501.
  • the accelerator pedal sensor device 552a is a device for detecting the operation state of the accelerator pedal 552 and outputting the detection result to the CPU 71.
  • An angle sensor (not shown) for detecting the depression state of the accelerator pedal 552; It mainly includes a control circuit (not shown) that processes the detection result of the angle sensor and outputs it to the CPU 71.
  • the brake pedal sensor device 553a is a device for detecting the operation state of the brake pedal 553 and outputting the detection result to the CPU 71.
  • An angle sensor (not shown) for detecting the depression state of the brake pedal 553, It mainly includes a control circuit (not shown) that processes the detection result of the angle sensor and outputs it to the CPU 71.
  • the steering sensor device 554a is a device for detecting the operation state of the steering mechanism 554 and outputting the detection result to the CPU 71, an angle sensor (not shown) for detecting the operation state of the steering mechanism 554, and It mainly includes a control circuit (not shown) that processes the detection result of the angle sensor and outputs it to the CPU 71.
  • the wiper switch sensor device 555a is a device for detecting the operation state of the wiper switch 555 and outputting the detection result to the CPU 71, and a positioning sensor (not shown) for detecting the operation state (operation position) of the wiper switch 555. And a control circuit (not shown) for processing the detection result of the positioning sensor and outputting the result to the CPU 71.
  • the blinker switch sensor device 556a is a device for detecting the operation state of the blinker switch 556 and outputting the detection result to the CPU 71, and a positioning sensor (not shown) for detecting the operation state (operation position) of the blinker switch 556. And a control circuit (not shown) for processing the detection result of the positioning sensor and outputting the result to the CPU 71.
  • the high grip switch sensor device 557a is a device for detecting the operation state of the high grip switch 557 and outputting the detection result to the CPU 71.
  • the positioning sensor detects the operation state (operation position) of the high grip switch 557. (Not shown) and a control circuit (not shown) for processing the detection result of the positioning sensor and outputting it to the CPU 71 are mainly provided.
  • the yaw rate sensor device 558 is a device for detecting the yaw rate applied to the vehicle 501 and outputting the detection result to the CPU 71.
  • the yaw rate sensor (not shown) for detecting the yaw rate state of the vehicle 501 and the yaw rate sensor And a control circuit (not shown) for processing the detection result and outputting it to the CPU 71.
  • the gradient sensor device 559 is a device for detecting the gradient of the vehicle 501 and outputting the detection result to the CPU 71, a gradient sensor (not shown) for detecting the gradient state of the vehicle 501, and the gradient sensor It mainly includes a control circuit (not shown) that processes the detection result and outputs it to the CPU 71.
  • the camber angle sensor device 560 is a device for detecting the camber angle of each wheel 502 and outputting the detection result to the CPU 71.
  • Sensors 560FL to 560RR and a processing circuit (not shown) for processing the detection results of the camber angle sensors 560FL to 560RR and outputting the results to the CPU 71 are provided.
  • each angle sensor is configured as a contact type potentiometer using electrical resistance.
  • the CPU 71 obtains the depression amounts of the pedals 552 and 553 and the operation angle of the steering mechanism 554 from the detection results input from the control circuits of the sensor devices 552a to 554a, and differentiates each pedal by time-differentiating the detection results.
  • the stepping speed (operation speed) of 552 and 553 and the rotation speed (operation speed) of the steering mechanism 554 can be obtained.
  • Other input / output devices 536 shown in FIG. 11 include, for example, a rain sensor for detecting rain, an optical sensor for detecting the state of the road surface G in a non-contact manner, and the like.
  • FIG. 12 is a schematic diagram schematically showing a top view of the vehicle 501.
  • 13 and 14 are schematic views schematically showing a front view of the vehicle 501.
  • FIG. 13 a state where a negative camber is applied to the wheel 502 is illustrated, and in FIG. 14, a positive camber is applied to the wheel 502. The state to which is given is shown.
  • the wheel 502 includes two types of treads, the first tread 521 and the second tread 522. As shown in FIG. 12, in each wheel 502 (front wheels 502FL, 502FR and rear wheels 502RL, 502RR), The first tread 521 is disposed inside the vehicle 501, and the second tread 522 is disposed outside the vehicle 501.
  • the treads 521 and 522 have the same width dimension (dimension in the left-right direction in FIG. 12).
  • the first tread 521 is configured to have a higher grip force (high grip performance) than the second tread 522.
  • the second tread 522 has a characteristic (low rolling resistance) having a smaller rolling resistance than the first tread 521.
  • the camber angle adjusting device 504 when the camber angle adjusting device 504 is operated and controlled, and the camber angles ⁇ L and ⁇ R of the wheels 502 are adjusted in the negative direction (negative camber), the first one disposed inside the vehicle 501. While the ground pressure Rin of the tread 521 is increased, the ground pressure Rout of the second tread 522 disposed outside the vehicle 501 is decreased. Thereby, the high grip performance of the first tread 521 can be used to improve the running performance (for example, turning performance, acceleration performance, braking performance, or vehicle stability in the rain).
  • the camber adjustment device 504 when the camber adjusting devices 504 are operated and controlled, and the camber angles ⁇ L and ⁇ R of the wheels 502 are adjusted in the positive direction (positive camber direction), the camber adjustment device 504 is arranged inside the vehicle 501.
  • the ground pressure of the first tread 521 is decreased, and the ground pressure of the second tread 522 disposed outside the vehicle 501 is increased.
  • the fuel saving performance can be improved by utilizing the low rolling resistance of the second tread 522.
  • FIG. 15 is a flowchart showing the camber control process.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 ms) while the power of the vehicle control device 5100 is turned on. By adjusting the camber angle applied to the wheels 502, The two performances of the above-described running performance and fuel saving performance are achieved.
  • the CPU 71 first determines whether or not the wiper switch 555 is turned on, that is, whether or not the driver has instructed a wiping operation with the windscreen wiper (S501). As a result, when it is determined that the wiper switch 555 is turned on (S501: Yes), it is estimated that the current weather is rainy and a water film may be formed on the road surface G. Therefore, a negative camber is assigned to the wheel 502 (S506), and this camber control process is terminated.
  • the ground pressure Rin of the first tread 521 is increased and the ground pressure Rout of the second tread 522 is decreased (see FIG. 13).
  • the vehicle stability at the time can be improved.
  • the ground pressure Rin of the first tread 521 is increased and the ground pressure Rout of the second tread 522 is decreased (see FIG. 13), whereby the high grip of the first tread 521 is achieved. Therefore, the slip of the wheel 502 can be prevented and the acceleration performance of the vehicle 501 can be improved.
  • the ground pressure Rin of the first tread 521 is increased and the ground pressure Rout of the second tread 522 is decreased (see FIG. 13), whereby the high grip of the first tread 521 is achieved.
  • the ground pressure Rin of the first tread 521 is increased and the ground pressure Rout of the second tread 522 is decreased (see FIG. 13), whereby the high grip of the first tread 521 is achieved.
  • the grip force of the wheel 502 By increasing the grip force of the wheel 502 by utilizing the property, it is possible to prevent the lock and slip, and improve the braking performance and acceleration performance of the vehicle 501.
  • the stopping force of the vehicle 501 (wheel 502) can be secured by using the high grip property of the first tread 521. Therefore, the vehicle 501 is stopped in a stable state. I can leave. Further, when the vehicle restarts after stopping, the ground pressure Rin of the first tread has been increased in advance to prevent the wheels 502 from slipping, so that the vehicle 501 can restart smoothly and with high response. It can be carried out.
  • the ground pressure Rin of the first tread 521 is increased and the ground pressure Rout of the second tread 522 is decreased (see FIG. 13), whereby the high grip of the first tread 521 is achieved.
  • the slip of the wheel 502 can be prevented by utilizing the property, and the turning performance of the vehicle 501 can be improved.
  • the ground pressure Rin of the first tread 521 is increased and the ground pressure Rout of the second tread 522 is decreased (see FIG. 13), whereby the high grip of the first tread 521 is achieved. Therefore, it is possible to prevent slipping of the wheels 502, and to improve the braking performance, acceleration performance, or turning performance of the vehicle 501.
  • the ground pressure Rin of the first tread 521 is increased and the ground pressure Rout of the second tread 522 is decreased (see FIG. 13), whereby the high grip of the first tread 521 is achieved.
  • the slip of the wheel 502 spin of the vehicle 501 can be prevented by utilizing the property, and the turning performance of the vehicle 501 can be improved.
  • the ground pressure Rin of the first tread 521 is decreased and the ground pressure Rout of the second tread 522 is increased (see FIG. 14), so that the wheel using the low rolling resistance of the second tread 522 is utilized.
  • the rolling efficiency of 502 can be improved, and the fuel saving performance of the vehicle 501 can be improved.
  • the camber angles ⁇ R and ⁇ L of the wheel 502 are adjusted by the camber angle adjusting device 504, and the ground pressure Rin in the first tread 521 and the ground pressure Rout in the second tread 522 are adjusted.
  • the ratio By changing the ratio, it is possible to achieve both of the contradictory performances of acceleration performance and braking performance and fuel saving performance.
  • FIG. 16 is a flowchart of fail-safe control when the camber angle becomes uncontrollable when going straight
  • FIG. 17 is a flowchart of fail-safe control when the camber angle becomes uncontrollable during turning.
  • the camber angle of the wheel 502 that has become uncontrollable by the camber angle sensor device 560 when it is determined that the camber angle of at least one wheel is uncontrollable by the determining means during straight traveling, first, the camber angle of the wheel 502 that has become uncontrollable by the camber angle sensor device 560. Whether or not is 0 is determined (S521). In the process of S521, when it is determined that the camber angle is not 0 (S521: No), the control unit matches the camber angle of the controllable wheel 502 with the camber angle of the wheel 502 that has become uncontrollable ( S522), in a state where the vehicle 501 is stabilized, the fail safe control is terminated.
  • the control means matches the camber angle of the controllable wheel 502 with the camber angle of the wheel 502 that has become uncontrollable. (S523), the vehicle 501 is once stabilized. Next, the steering angle is detected by the steering sensor device 554a, the yaw rate is detected by the yaw rate sensor device 558, and the vehicle speed is detected by the vehicle speed sensor device 532 and the wheel rotation speed sensor device 535 (S524).
  • the camber angle of the controllable wheel 502 is set to the wheel 502 that has become uncontrollable.
  • the vehicle 501 is once stabilized.
  • the steering angle is detected by the steering sensor device 554a
  • the yaw rate is detected by the yaw rate sensor device 558
  • the vehicle speed is detected by the vehicle speed sensor device 532 and the wheel rotational speed sensor device 535
  • the gradient is detected by the gradient sensor device 559.
  • the yaw rate value required for turning is calculated by the calculating means from the steering angle, vehicle speed, gradient, and the like obtained in the processing of S532 (S533).
  • the first tread 521 and the second tread 522 arranged in parallel in the width direction with respect to the first tread 521 and disposed outside or inside the vehicle 501 are provided, and the first tread 521 and the first tread 521 are provided.
  • the two treads 522 are configured to have different characteristics, the first tread 521 is configured to have a higher gripping power than the second tread 522, and the second tread 522 is configured to be different from the first tread 521.
  • the wheel 502 configured to have a small rolling resistance
  • the camber angle adjusting device 504 for adjusting the camber angle of the wheel 502, the steering mechanism 554 for steering the wheel 502, and the operation state of the steering mechanism 554 are detected.
  • the dual-purpose control device 5100 determines that the camber angle of at least one wheel 502 is uncontrollable, it controls the camber angle of the controllable wheel 502 so as to be close to the camber angle of the uncontrollable wheel 502, and steering Since the mechanism 554 is controlled, both the high grip performance and the low fuel consumption are achieved at the time of normal driving, and the steering mechanism 554 is controlled when the camber angle adjusting device 504 breaks down and the camber angle becomes uncontrollable. Thus, the vehicle is in a stable state, and the shake of the vehicle 501 can be reduced.
  • the vehicle 501 includes a vehicle speed detection means for detecting the vehicle speed and a yaw rate sensor device 558 for detecting the yaw rate value of the vehicle 501.
  • vehicle speed detection means for detecting the vehicle speed
  • a yaw rate sensor device 558 for detecting the yaw rate value of the vehicle 501.
  • the vehicle includes a vehicle speed detecting means for detecting the vehicle speed of the vehicle 501, a yaw rate sensor device 558 for detecting the yaw rate value of the vehicle 501, and a gradient sensor device 559 for detecting the gradient of the vehicle 501. Since the yaw rate value necessary for turning is calculated from the vehicle speed detecting means 554, the vehicle speed detecting means, the yaw rate sensor device 558, and the gradient sensor device 559, and the steering mechanism 554 is controlled so as to approach the yaw rate value necessary for turning, the camber angle adjusting device 504 When the camber angle becomes uncontrollable due to failure, the vehicle is stabilized by controlling the steering mechanism 554, and can turn smoothly.
  • FIG. 19 is a conceptual diagram of a vehicle in the sixth embodiment of the present invention.
  • reference numeral 611 denotes a body representing a vehicle body
  • WLF, WRF, WLB, and WRB denote front left, front right, rear left, and rear right wheels that are rotatably arranged with respect to the body 611.
  • the front wheels are constituted by the wheels WLF and WRF
  • the rear wheels are constituted by the wheels WLB and WRB.
  • Reference numeral 612 denotes an engine as a drive source
  • 613 denotes a steering wheel as a steering device
  • 614 denotes an accelerator pedal as an acceleration operation member
  • 615 denotes a brake pedal as a deceleration operation member
  • 621 drives the engine 612.
  • 622 is a differential device that differentially transmits the rotation transmitted from the engine 612
  • 624 is a difference by the differential device 622. It is a drive shaft which transmits the rotated rotation to each wheel WLB, WRB.
  • Numerals 631 to 634 are suspension mechanisms that are respectively disposed between the body 611 and the wheels WLF, WRF, WLB, and WRB and press the wheels WLF, WRF, WLB, and WRB against the road surface.
  • the wheels WLF and WRF, the suspension mechanisms 631 and 632 and the like constitute a camber angle adjusting device, and the camber angle adjusting device and the body 611 constitute a suspension system.
  • an engine 612 is used as a drive source, and rotation generated by the engine 612 is transmitted to the wheels WLB and WRB via the propeller shaft 621, the differential device 622, and the drive shaft 624.
  • the engine 612 and the wheels WLF and WRF are connected via a drive shaft (not shown), and the rotation of the engine 612 is transmitted to the wheels WLF and WRF so that the wheels WLF and WRF function as driving wheels. be able to.
  • each wheel WLF, WRF, WLB, WRB is provided with a wheel motor (not shown) as a driving source, and each wheel WLF, WRF, WLB, WRB is directly rotated by driving each wheel motor,
  • the wheels WLF, WRF, WLB, WRB can also function as drive wheels.
  • each of the wheels WLF, WRF, WLB, and WRB includes a wheel (not shown) formed of an aluminum alloy or the like, and a tire 636 disposed so as to be fitted to the outer periphery of the wheel.
  • the tread 637 of the tire 636 is divided into a plurality of regions in the width direction, and in the present embodiment, the regions are divided into two regions.
  • a center line representing the center in the width direction of 637 is defined as a dividing line Ld1
  • a low rolling resistance region 638 having a characteristic of a small loss tangent is provided outside the dividing line Ld1 (on the side away from the body 611).
  • a high grip region 639 having a large loss tangent is formed on the inner side (the body 611 side).
  • groove patterns are formed on the outer peripheral surfaces of the low rolling resistance region 638 and the high grip region 639 in different ways. That is, a rib type tread pattern in which grooves continue in the circumferential direction of the tire 636 is formed in the low rolling resistance region 638, and a lug type tread in which grooves continue in the width direction of the tire 636 in the high grip region 639. A pattern is formed. In addition, a block-type tread pattern including a plurality of independent blocks can be formed in the high grip region 639.
  • the loss tangent indicates the degree of energy absorption when the tread 637 is deformed, and can be represented by the ratio of the loss shear elastic modulus to the storage shear modulus. The smaller the loss tangent is, the less energy is absorbed, so the rolling resistance generated in the tire 636 due to friction with the road surface is reduced, and the grip force representing the force to grip the road surface is also reduced. Further, wear generated in the tire 636 is reduced. On the other hand, the larger the loss tangent, the more energy is absorbed, so the rolling resistance increases and the gripping force also increases. Further, the wear generated on the tire 636 increases.
  • the dividing line Ld1 is set to be the center line of the tread 637. However, the dividing line Ld1 is placed at an arbitrary position in the width direction of the tread 637, and the low rolling resistance region 638 and the high grip are provided. The ground contact areas of the region 639 can be different from each other.
  • the camber angle of the tire 636 is adjusted in each of the suspension mechanisms 631 and 632 according to the traveling mode of the vehicle.
  • FIG. 20 is a plan view showing a suspension system according to the sixth embodiment of the present invention
  • FIG. 21 is a side view showing the suspension system according to the sixth embodiment of the present invention
  • FIG. 22 is a sixth embodiment of the present invention. It is a perspective view which shows the suspension system in the form of. 20 and 4 show the suspension mechanism 631.
  • FIG. 21 is a side view showing the suspension system according to the sixth embodiment of the present invention
  • FIG. 22 is a sixth embodiment of the present invention. It is a perspective view which shows the suspension system in the form of. 20 and 4 show the suspension mechanism 631.
  • FIG. 21 is a side view showing the suspension system according to the sixth embodiment of the present invention
  • FIG. 22 is a sixth embodiment of the present invention. It is a perspective view which shows the suspension system in the form of. 20 and 4 show the suspension mechanism 631.
  • FIG. 21 is a side view showing the suspension system according to the sixth embodiment of the present invention
  • FIG. 22 is a sixth embodiment of the present invention. It is
  • 611 is a body
  • WLF is a wheel
  • 631 and 632 are suspension mechanisms
  • 636 is a tire
  • 637 is a tread
  • 638 is a low rolling resistance region
  • 639 is a high grip region
  • Ld1 is a dividing line
  • GND is a road surface.
  • the suspension mechanisms 631 and 632 have a double wishbone suspension structure, are attached to the wheels w1 and w2 of the wheels WLF and WRF, and are knuckle units 651 as support portions that rotatably support the wheels WLF and WRF.
  • the knuckle unit 651 and the body 611 are connected to each other at the upper end portion of the knuckle unit 651, and the upper arm 652 as a first arm that movably supports the wheel WLF, and the knuckle unit 651 and the body 611 at the lower end portion of the knuckle unit 651.
  • a lower arm 653 as a second arm for movably supporting the wheel WLF, a shock absorber sh1 for connecting the body 611 and the lower arm 653, and the like.
  • the knuckle unit 651 is disposed on the body 611 side on the knuckle arm 655 as the first element disposed on the body 611 so as to be movable in the vertical direction with respect to the body 611, on the wheel WLF and WRF sides, and on the wheel
  • the camber plate 657 as a second element fixed to w1 and w2 and slidably disposed around the camber shaft 656 with respect to the knuckle arm 655, and the camber shaft 656 above the camber shaft 656.
  • a biasing force disposed between the knuckle arm 655 and the camber plate 657 and biasing the camber plate 657 toward the side away from the knuckle arm 655 (counterclockwise in FIGS. 20 and 4) with a predetermined biasing force.
  • a spring 658 or the like as a member is provided.
  • the upper arm 652 has a “V” shape, is formed integrally with the knuckle unit 651 side, and extends to the front side and the rear side so as to spread toward the body 611. Arm portions 652a and 652b. Further, the upper arm 652 is swingably connected to the knuckle arm 655 by a ball joint 661 as a connecting element at one place on the knuckle unit 651 side, and a cylindrical shape as a connecting element at two places on the body 611 side.
  • the bushes 662a and 662b are pivotally connected to the body 611. In this case, the arm portion 652a and the bush 662a are disposed in front of the arm portion 652b and the bush 662b in the traveling direction of the vehicle.
  • the lower arm 653 has a “V” shape, is integrated on the knuckle unit 651 side, and extends toward the body 611 so as to spread diagonally forward and diagonally rearward.
  • Two arm portions 653a and 653b are formed.
  • the lower arm 653 is swingably connected to the knuckle arm 655 by a ball joint 663 as a connecting element at one place on the knuckle unit 651 side, and has a cylindrical shape as a connecting element at two places on the body 611 side.
  • the bushes 664a and 664b are pivotally connected to the body 611. In this case, the arm portion 653a and the bush 664a are disposed in front of the arm portion 653b and the bush 664b in the traveling direction of the vehicle.
  • Each bush 662a, 662b, 664a, 664b is externally fitted so as to surround a beam 665 fixed to the body 611 (only the beam 665 on the bush 662a, 662b side is shown in FIG. 22). .
  • the ball joint 663 is positioned in front of the ball joint 661 in the traveling direction of the vehicle, and an imaginary line connecting the ball joints 661 and 663 is inclined so as to form a predetermined caster angle with respect to the body 611. . That is, the wheel WLF functions as a steering wheel and is supported with a caster angle.
  • the wheels WLF and WRF are supported so that a toe angle that is always a toe-out is given by the inertia of the vehicle when the vehicle is braked.
  • a negative camber angle (negative camber) is given to the wheels WLF and WRF.
  • connection rigidity of the front bushes 662a and 664a to the body 611 is made smaller than the connection rigidity of the rear bushes 662b and 664b to the body 611.
  • FIG. 18 is a view showing a state where a camber angle is given to a wheel in the sixth embodiment of the present invention
  • FIG. 23 is a cross-sectional view showing the structure of the front bush in the sixth embodiment of the present invention.
  • 24 is a cross-sectional view showing the structure of the rear bushing in the sixth embodiment of the present invention
  • FIG. 25 is a diagram showing a state in which a toe angle is given to the wheel in the sixth embodiment of the present invention
  • FIG. 26 is a first diagram illustrating lateral force during braking in the sixth embodiment of the present invention
  • FIG. 27 is a second diagram illustrating lateral force during braking in the sixth embodiment of the present invention. It is.
  • the front bushing 662a is an inner sleeve 671 as a first member made of a material that is hard to be deformed and has high rigidity, for example, a metal, and is arranged concentrically with the inner sleeve 671, and is made of a metal.
  • an intermediate body 673 as a third member which is disposed between the inner sleeve 671 and the outer sleeve 672 and is formed of a material which is easily deformable and has low rigidity, for example, rubber.
  • the inner sleeve 671 is relatively rotatably disposed outside the beam 665, and the arm portion 652a is fixed to the outer sleeve 672.
  • a flange portion 665a for preventing the bush 662a from coming off from the beam 665 is formed at the front end of the beam 665 so as to protrude radially outward.
  • the inner sleeve 671 and the outer sleeve 672 function as rigid bodies, and the intermediate body 673 functions as an elastic body.
  • the rear bushing 662b is disposed concentrically with the inner sleeve 675 as a first member formed of metal and the outer sleeve 676 as a second member formed of metal. And an intermediate body 677 as a third member which is disposed between the inner sleeve 675 and the outer sleeve 676 and is formed of metal, and the inner sleeve 675 rotates relative to the outer side of the beam 665.
  • the arm portion 652b is fixed to the outer sleeve 675.
  • a spherical bearing is constituted by the inner sleeve 675 and the outer sleeve 676, and a spherical surface portion 675a projecting in a convex shape toward the radially outer side is formed on the outer peripheral surface of the central portion in the axial direction of the inner sleeve 675.
  • a support portion 677a having a shape corresponding to the spherical surface portion 675a and supporting the spherical surface portion 675a so as to be swingable and rotatable is formed on the inner peripheral surface of 677.
  • a flange portion 665b for preventing the bush 662b from coming off from the beam 665 is formed at the rear end of the beam 665 so as to protrude radially outward.
  • the inner sleeve 675, the outer sleeve 676, and the outer sleeve 676 function as rigid bodies.
  • the inner sleeve 671 and the outer sleeve 672 function as rigid bodies, and the intermediate body 673 functions as an elastic body. Therefore, when an external force is applied, the outer sleeve 672 moves against the inner sleeve 671. It is moved radially and eccentric.
  • the inner sleeve 675, the outer sleeve 676, and the outer sleeve 676 function as rigid bodies, so that even when an external force is applied, the outer sleeve 676 is radially aligned with the inner sleeve 675. It is not moved and is not eccentric.
  • connection rigidity of the front bushing 662a to the body 611 is made smaller than the connection rigidity of the rear bushing 662b to the body 611.
  • the wheels WLF and WRF are moved forward by the inertia of the vehicle.
  • the rotation is suppressed or prevented, and rolling resistance is generated on the wheels WLF and WRF in the direction opposite to the direction of the tire 636 representing the direction in which the tire 636 rolls.
  • connection rigidity of the front bushing 662a with respect to the body 611 is made smaller than the connection rigidity of the rear bushing 662b with respect to the body 611. Therefore, the rear bushing 662b has an outer sleeve with respect to the inner sleeve 675. 676 is not eccentric, whereas in the front bush 662a, the outer sleeve 672 is eccentric to the side away from the body 611 with respect to the inner sleeve 671.
  • a lateral force Fc is generated outward on the contact surface of each tire 636 with the road surface GND.
  • the spring 658 urges the wheels WLF and WRF toward the side away from the body 611 with the urging force Fs.
  • a sufficiently large grip force can be generated in each of the wheels WLF and WRF during braking, so that an increase in braking distance can be prevented.
  • the camber shaft 656 is disposed on the lower side of the knuckle unit 651 and the spring 658 is disposed on the upper side.
  • the camber shaft 656 is disposed on the upper side of the knuckle unit 651 and the spring is disposed on the lower side. 658 may be disposed. In that case, the spring 658 biases the camber plate 657 toward the side closer to the knuckle arm 655 to form a negative camber angle.
  • the low rolling resistance region 638 is formed outside the dividing line Ld1
  • the high grip region 639 is formed inside the dividing line Ld1.
  • a high grip region is formed on the innermost side of each region, and a negative camber angle is formed. Accordingly, the high grip area can be grounded to the road surface.
  • the values of the toe angle ⁇ and the camber angle are changed by changing the hardness of the intermediate 673.
  • the connection rigidity of the front bushing 662a to the body 611 is increased correspondingly, and the toe angle and the camber angle are decreased.
  • the connection rigidity of the front bushing 662a to the body 611 is reduced correspondingly, and the toe angle and the camber angle are increased.
  • the toe angle ⁇ and the camber angle value are changed by keeping the hardness of the intermediate body 673 constant and changing the filling degree of the intermediate body 673 between the inner sleeve 671 and the outer sleeve 672. Can do.
  • FIG. 28 is a perspective view showing a modified example of the front bushing in the sixth embodiment of the present invention.
  • an intermediate body 673 is an intermediate body formed of a material that is easily deformed and has low rigidity, for example, rubber, and the intermediate body 673 has a predetermined space in the space between the inner sleeve 671 and the outer sleeve 672. Filled locally with filling degree. Therefore, the intermediate body 673 has an arc shape, and includes a plurality of fillers 682 formed of rubber, and gaps 683 formed between the fillers 682. The degree of filling represents the proportion of the volume of the filling body 682 in the space between the inner sleeve 671 and the outer sleeve 672.
  • the connection rigidity of the front bushing 662a to the body 611 is increased correspondingly, and the toe angle ⁇ and the camber angle are decreased. Further, when the filling degree of the intermediate body 673 is lowered, the connection rigidity of the front bushing 662a to the body 611 is reduced correspondingly, and the toe angle ⁇ and the camber angle are increased.
  • FIG. 29 is a perspective view showing a suspension system according to the seventh embodiment of the present invention.
  • the suspension mechanism 731 in the second embodiment has a strut-type suspension structure, is attached to the wheel w1 of the wheel WLF, connects the wheel w1 and the body 611, and rotatably supports the wheel WLF.
  • a support portion, an arm 785 arranged to be swingable with respect to the support portion, a shock absorber sh2 for connecting the body 611 and the support portion, and the like are provided.
  • the arm 785 has a “V” shape, and includes two arm portions 785 a and 785 b that are integrated on the wheel w 1 side and formed to extend toward the body 611.
  • the arm 785 is swingably connected to the body 611 by a ball joint (not shown) as a connecting element at one position on the wheel w1 side, and has a cylindrical shape as a connecting element at two positions on the body 611 side.
  • the bushes 762a and 762b are pivotally connected to the body 611.
  • the wheels WLF and WRF are supported so that a toe angle that is always a toe-out is given by the inertia of the vehicle when the vehicle is braked.
  • a negative camber angle is given to the wheels WLF and WRF.
  • the wheel with the specified angle has a specified angle.
  • a positive camber positive camber angle
  • a strut suspension is exemplified as the suspension device 4.
  • the present invention can be similarly applied to other types such as a double wishbone suspension or a multi-link suspension.
  • the left wheel is compared with the right wheel, the side with possibility of a slip is compared, and the camber angle (negative camber) is provided to the wheel of the side with the possibility of slip
  • the camber angle negative camber
  • other combinations for example, a configuration in which the front wheels and the rear wheels are compared with each other on the side where there is a possibility of slipping, and the camber angle may be given to the wheel on the side where there is a possibility of slipping.
  • the camber angle (negative camber) is applied to the wheels of the vehicle, but the possibility of slipping of a plurality of wheels (for example, two wheels) is determined, and the camber angle is applied to one wheel that is likely to slip. Also good.
  • each wheel 2 for determining a wheel with a possibility of slipping the rotation speed of each wheel 2 in the first embodiment, the ground load of each wheel 2 in the third embodiment, In the fourth embodiment, the stroke amount of each wheel 2 is used. However, the number of rotations of each wheel 2 and the ground load are used together. It may be configured to determine a wheel that is likely to slip.
  • the left and right front wheels (2FL, 2FR) are rotationally driven by the wheel driving device 3, but any vehicle that can give a camber angle to the wheels regardless of the configuration of the wheel driving device.
  • the present invention can be applied. For example, even if it is a vehicle which uses a wheel drive device as a wheel motor or an engine, it should just be a vehicle which can give camber angle to a wheel.
  • the first modified example (vehicle control devices A1 to A3) relates to a vehicle control device that adjusts a camber angle of a wheel and a steering mechanism.
  • an attempt is made to improve the turning performance by taking out the tire capacity sufficiently by increasing the camber angle of the wheel (angle formed by the tire center and the ground) in the minus direction.
  • the camber angle is set to 0 °, for example, the tread contacts the ground in the entire width direction when traveling straight, but the inner tread is lifted off the ground by the roll of the vehicle due to the centrifugal force when turning. This is because the turning performance cannot be obtained. Therefore, by assigning a negative camber angle in advance, the tread can come into contact with the ground widely during turning, and the turning performance can be improved.
  • the side part on one side of the tire is reinforced stronger than the side part on the other side to increase rigidity, and the tread rubber is divided into two parts
  • a technique is disclosed in which the hardness of one side is made lower than that of the other side, or the tread thickness at the end of the tread is increased to ensure wear resistance, heat resistance and high grip (Patent Document 1: Special). (Kaihei 2-185802).
  • Patent Document 2 US Pat. No. 6,347,802.
  • the former technique can demonstrate sufficient performance in terms of maintaining high grip when turning, but is insufficient in terms of both high grip and low fuel consumption (low rolling resistance).
  • the high grip performance is limited at the time of turning. For example, there is a problem that the high grip performance at the time of rapid acceleration / braking during straight running is insufficient. .
  • the latter technique has a problem that it is insufficient in terms of achieving both high grip performance and low fuel consumption.
  • the first modification is made to solve the above-described problems, and can achieve both high grip performance and low fuel consumption, and can stabilize the vehicle when the camber angle becomes uncontrollable. It is an object of the present invention to provide a vehicular control device that can be braked in such a state.
  • the first tread is configured to have a higher gripping force than the second tread, and the second tread has a lower rolling resistance than the first tread.
  • a camber angle adjusting device that adjusts the camber angle of the wheel, a steering mechanism that steers the wheel, a steering sensor device that detects an operation state of the steering mechanism, and a camber angle of the wheel.
  • a camber angle sensor device that detects the camber angle of at least one of the wheels when it is determined that the camber angle is uncontrollable. Controls the Yanba angle as close to the camber angle of uncontrollable said wheels, said control vehicle and controls the steering mechanism unit A1.
  • the first tread and the second tread arranged in parallel in the width direction with respect to the first tread and disposed outside or inside the vehicle, the first tread;
  • the second tread is configured to have different characteristics, and the first tread is configured to have higher gripping power than the second tread, and the second tread is formed from the first tread.
  • a wheel configured to have a low rolling resistance, a camber angle adjusting device that adjusts a camber angle of the wheel, a steering mechanism that steers the wheel, and a steering sensor that detects an operation state of the steering mechanism
  • a camber angle sensor device that detects a camber angle of the wheel, and determines that the camber angle of at least one of the wheels is uncontrollable.
  • controllable camber angle of the wheel is controlled to be close to the uncontrollable camber angle of the wheel, and the steering mechanism is controlled, so that both high grip performance and low fuel consumption are achieved during normal driving.
  • the camber angle adjusting device breaks down and the camber angle becomes uncontrollable, the vehicle is stabilized by controlling the steering mechanism, and the shake of the vehicle can be reduced.
  • the vehicle control device A1 includes vehicle speed detection means for detecting the vehicle speed of the vehicle, and a yaw rate sensor device for detecting the yaw rate value of the vehicle.
  • a vehicle control device A2 that controls the steering mechanism so that the yaw rate value of the vehicle approaches zero.
  • the vehicle speed detection means for detecting the vehicle speed of the vehicle and the yaw rate sensor device for detecting the yaw rate value of the vehicle are provided.
  • the steering mechanism is controlled so that the yaw rate value of the vehicle approaches 0. Therefore, when the camber angle adjusting device fails and the camber angle becomes uncontrollable, By controlling the mechanism, the vehicle becomes stable, and it is possible to reduce the shake of the vehicle.
  • the vehicle control device A1 includes vehicle speed detecting means for detecting the vehicle speed of the vehicle, a yaw rate sensor device for detecting the yaw rate value of the vehicle, and a gradient sensor device for detecting the gradient of the vehicle, and when turning, A yaw rate value required for turning is calculated from the steering sensor device, the vehicle speed detecting means, the yaw rate sensor device, and the gradient sensor device, and the steering mechanism is controlled so as to approach the yaw rate value required for the turning.
  • vehicle speed detection means for detecting the vehicle speed of the vehicle
  • a yaw rate sensor device for detecting the yaw rate value of the vehicle
  • the gradient of the vehicle a yaw rate value required for the turn by calculating a yaw rate value required for the turn from the steering sensor device, the vehicle speed detecting means, the yaw rate sensor device, and the gradient sensor device. Since the steering is controlled so as to approach the vehicle, if the camber angle adjusting device breaks down and the camber angle becomes uncontrollable, the vehicle can be in a stable state by controlling the steering and can turn smoothly. Become.
  • the second modification (suspension systems B1 to B4) relates to a suspension system.
  • suspension systems B1 to B4 Conventionly, in order to improve fuel efficiency, vehicles equipped with tires with reduced rolling resistance by reducing the loss tangent of tread rubber have been provided.
  • the tread is divided in the width direction so that the central region, that is, the center portion is formed of a material having a small loss tangent, and the regions on both sides of the center portion, that is, the shoulder portion, is formed of a material having a large loss tangent.
  • Tires are provided (see, for example, Patent Document 1: Japanese Patent Laid-Open No. 2005-22622).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-2262212.
  • the center portion and the road surface cannot be reliably brought into contact with each other during braking, and the shoulder portion and the road surface cannot be reliably brought into contact with each other during braking.
  • the grip force cannot be increased sufficiently during braking.
  • the second modification aims to provide a suspension system capable of solving the problems of the conventional vehicle and generating a sufficiently large grip force when the vehicle is braked.
  • a vehicle body a plurality of wheels disposed rotatably with respect to the body, and a suspension mechanism disposed between the body and each wheel;
  • the suspension mechanism imparts a toe angle as a toe-out to the front wheels due to the inertia of the vehicle when the vehicle is braked.
  • the suspension system B1 has a structure in which a negative camber angle is provided and the high grip region is grounded to a road surface.
  • the suspension system B1 includes a vehicle body, a plurality of wheels disposed rotatably with respect to the body, and a suspension mechanism disposed between the body and each wheel.
  • a high grip region in which a grip force with respect to the road surface is increased is formed in the tire of the wheel.
  • the suspension mechanism imparts a toe angle that becomes a toe-out to the front wheels due to the inertia of the vehicle during braking of the vehicle, and imparts a negative camber angle as the toe angle is imparted. Is grounded to the road surface.
  • the suspension mechanism has a support portion that rotatably supports the front wheel, and the connection rigidity between the arm and the body formed to extend obliquely forward from the support portion is determined from the support portion.
  • Suspension system B2 that is smaller than the connecting rigidity between the arm and the body formed to extend obliquely rearward.
  • each connecting element that connects each arm and the body is a bush.
  • the support portion rotatably supports the first element disposed on the body side and the wheels, and can swing with respect to the first element with the camber shaft as a swing center.
  • Suspension system B4 provided with the 2nd element arrange
  • the support portion rotatably supports the first element disposed on the body side and the wheels, and swings about the camber shaft with respect to the first element as a swing center.
  • the second element is rotated in a predetermined direction, camber angles are given to each wheel, and the high grip region is grounded to the road surface. Therefore, a sufficiently large grip force can be generated when the vehicle is braked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

 本発明の制御装置及び車両によれば、車両の車輪状態検出手段により検出される各車輪の状態の比較に基づいて、複数の車輪の中にスリップの可能性がある車輪が存在するか否かが判定手段によって判定される。ここで、スリップの可能性がある車輪が存在すると判定された場合には、キャンバ角調整手段によって、キャンバ角調整装置を作動させ、該スリップの可能性があると判定された車輪のキャンバ角を、ネガティブ側又はポジティブ側に所定角度傾斜するように調整する。その結果、車輪の面圧を上げたり車高を下げたりできるので、車輪の接地荷重が高まり、走行中における一時的な車輪のスリップの発生を防止することできる。

Description

制御装置及び車両
 本発明は、車輪のキャンバ角を変更可能な車両及びその車両に用いられる制御装置に関し、特に、走行中における車輪のスリップを防止し得る制御装置及びその制御装置を備えた車両に関するものである。
 従来、特開平10-297239号公報(特許文献1)は、車体と車軸との間に設けたアクチュエータの伸張加速度で車体に垂直方向の慣性力を発生させ、その反力によってタイヤの接地荷重を一時的に増大させることによって、車両重量を超えた加重をタイヤの接地面に一時的に加えてスリップ(空転)を防止し、急発進時や急加速時等の一時的な加速性能を向上させることができる接地荷重制御装置を記載している。
特開平10-297239号公報
 しかしながら、特許文献1に記載される接地荷重制御装置は、急発進時や急加速時におけるタイヤのスリップを防止するための技術であり、走行中に路面状態などに起因して一時的に生じる車輪のスリップについては想定されていない。
 また、特許文献1に記載される接地荷重装置では、急加速時におけるスロットル開度と車速とから駆動輪のスリップを予測するので、走行中における車輪のスリップ予測としては十分でない。さらに、特許文献1に記載される接地荷重装置では、駆動輪のスリップが予測されると、駆動輪の接地荷重を増加させるための付勢接地荷重を算出するが、かかる付勢接地荷重の算出に必要なパラメータの1つである路面状態設定値が、ユーザによるマニュアル設定値であるので、精度の点においても十分でない。
 本発明は上述した事情を鑑みてなされたものであり、走行中における一時的な車輪のスリップの発生を有効に防止し得る制御装置及び車両を提供することを目的としている。
 この目的を解決するために請求項1記載の制御装置は、複数の車輪と、その車輪のキャンバ角を調整するキャンバ角調整装置とを有する車両に用いられるものであって、前記車両は、走行中における前記車輪の各々の状態を検出する車輪状態検出手段を有し、前記車輪状態検出手段により検出された各車輪の状態の比較に基づいて、前記複数の車輪の中にスリップの可能性がある車輪が存在するか否かを判定する判定手段と、前記判定手段により前記スリップの可能性がある車輪が存在すると判定された場合に、前記キャンバ角調整装置を作動させて、前記スリップの可能性があると判定された車輪のキャンバ角を、ネガティブ側又はポジティブ側に所定角度傾斜するように調整するキャンバ角調整手段とを備えている。
 請求項2記載の制御装置は、請求項1記載の制御装置において、前記判定手段は、前記車輪状態検出手段により検出された各車輪の状態の比較に基づいて、前記複数の車輪の中にスリップの可能性がある1の車輪が存在するか否かを判定するか否かを判定する。
 請求項3記載の車両は、車輪と、その車輪のキャンバ角を調整するキャンバ角調整装置と、前記車輪の状態を検出する車輪状態検出手段と、請求項1又は2に記載の制御装置とを有しており、前記車輪は、トレッド面の曲率が所定値より大きく構成され、前記キャンバ角調整装置は、前記車輪のキャンバ回転軸が前記車輪の回転軸より下方に設定されている。
 請求項4記載の車両は、車輪と、その車輪のキャンバ角を調整するキャンバ角調整装置と、前記車輪の状態を検出する車輪状態検出手段と、請求項1又は2に記載の制御装置とを有しており、前記車輪は、トレッド面の曲率が所定値より小さく構成され、前記キャンバ角調整装置は、前記車輪のキャンバ回転軸が前記車輪の回転軸より上方に設定されている。
 請求項5記載の車両は、請求項3又は4に記載の車両において、前記車輪状態検出手段は、前記車輪の回転数を検出する。
 請求項6記載の車両は、請求項3又は4に記載の車両において、前記車輪状態検出手段は、前記車輪の接地荷重を検出する。
 請求項7記載の車両は、請求項3又は4に記載の車両において、前記車輪を車体に懸架するサスペンションを備え、前記車輪状態検出手段は、前記サスペンションのストローク量を検出することを特徴とする。
 請求項1記載の制御装置によれば、車両の車輪状態検出手段により検出される各車輪の状態の比較に基づいて、複数の車輪の中にスリップの可能性がある車輪が存在するか否かが判定手段によって判定される。ここで、スリップの可能性がある車輪が存在すると判定された場合には、キャンバ角調整手段によって、キャンバ角調整装置を作動させ、該スリップの可能性があると判定された車輪のキャンバ角を、ネガティブ側又はポジティブ側に所定角度傾斜するように調整する。
 ここで、車輪にネガティブ側又はポジティブ側に傾斜されるキャンバ角を付与することにより、車輪の面圧を上げることができる。あるいは、車輪にネガティブ側又はポジティブ側に傾斜されるキャンバ角を付与することにより、車高を下げて重心を下げることができる。
 よって、走行中にスリップの可能性がある車輪に対し、ネガティブ側又はポジティブ側に傾斜されるキャンバ角を付与することにより、接地荷重を高めることができるので、走行中における一時的な車輪のスリップの発生を防止することできるという効果がある。
 また、請求項1記載の制御装置によれば、走行中における各車輪の状態の比較、即ち、走行中における相対的な車輪の状態に基づき、複数の車輪の中からスリップの可能性がある車輪が存在するか否かを判定するので、スリップの可能性がある車輪を見出し易く、特に、路面状態(例えば、路面の凹みや、路面上における部分的な摩擦係数の低い部分の存在)などに起因して一部の車輪の荷重が一時的に抜ける状況に対する判定精度が向上する。よって、スリップ防止に対する確実性の高い見込み制御をすることができるという効果がある。
 請求項2記載の制御装置によれば、請求項1記載の制御装置の奏する効果に加えて、次の効果を奏する。車輪状態検出手段により検出された各車輪の状態の比較に基づいて、複数の車輪の中にスリップの可能性がある1の車輪が存在するか否かが判定手段によって判定される。よって、走行中に、いずれか1の車輪にスリップの可能性が生じた場合に、その車輪のスリップを防止することができるので、走行安定性が確保されるという効果がある。
 請求項3及び請求項4に記載の車両によれば、どちらも、請求項1又は2に記載の制御装置とを有するので、上述した請求項1又は2に記載の制御装置が奏する効果と同様の効果を奏する。
 さらに、請求項3記載の車両によれば、車輪のトレッド面の曲率が所定値より大きく構成されると共に、車輪のキャンバ回転軸が車輪の回転軸より下方に設定されているキャンバ角調整装置が用いられているので、走行中にスリップの可能性がある車輪に対してネガティブ側又はポジティブ側に傾斜されるキャンバ角を付与することによって、車輪の面圧を上げ易く、その結果として、走行中における一時的な車輪のスリップの発生を有効に防止することできるという効果がある。
 一方、請求項4記載の車両によれば、車輪のトレッド面の曲率が所定値より小さく構成されると共に、車輪のキャンバ回転軸が車輪の回転軸より上方に設定されているキャンバ角調整装置が用いられているので、走行中にスリップの可能性がある車輪に対してネガティブ側又はポジティブ側に傾斜されるキャンバ角を付与することによって、車高が下がり易く(即ち、重心が下がり易く)、その結果として、走行中における一時的な車輪のスリップの発生を有効に防止することできるという効果がある。
 請求項5記載の車両によれば、請求項3又は4に記載の車両の奏する効果に加えて、次の効果を奏する。車輪状態検出手段によって車輪の回転数が車輪の状態として検出され、各車輪の回転数の比較に基づいて、複数の車輪の中にスリップの可能性がある車輪が存在するか否かが判定手段によって判定される。ここで、車輪の回転数は走行中における該車輪のスリップの可能性を反映する数値であるので、各車輪間で比較する車輪の状態として車輪の回転数を利用することにより、走行中における一時的なスリップの発生の可能性を見い出し易く、スリップ発生を有効に防止し得るという効果がある。
 請求項6記載の車両によれば、請求項3又は4に記載の車両の奏する効果に加えて、次の効果を奏する。車輪状態検出手段によって車輪の接地荷重が車輪の状態として検出され、各車輪の接地荷重の比較に基づいて、複数の車輪の中にスリップの可能性がある車輪が存在するか否かが判定手段によって判定される。ここで、車輪の接地荷重は走行中における該車輪のスリップの可能性を反映する数値であるので、各車輪間で比較する車輪の状態として車輪の接地荷重を利用することにより、走行中における一時的なスリップの発生の可能性を見い出し易く、スリップ発生を有効に防止し得るという効果がある。
 請求項7記載の車両によれば、請求項3又は4に記載の車両の奏する効果に加えて、次の効果を奏する。車輪状態検出手段によって車輪と車体とを懸架するサスペンションのストローク量が車輪の状態として検出され、各車輪に対するサスペンションのストローク量の比較に基づいて、複数の車輪の中にスリップの可能性がある車輪が存在するか否かが判定手段によって判定される。ここで、サスペンションのストローク量は走行中における車輪のスリップの可能性を反映する数値であるので、各車輪間で比較する車輪の状態としてサスペンションのストローク量を利用することにより、走行中における一時的なスリップの発生の可能性を見い出し易く、スリップ発生を有効に防止し得るという効果がある。
本発明の第1実施形態における制御装置が搭載される車両の上面視を模式的に示した模式図である。 懸架装置の正面図である。 制御装置の電気的構成を示したブロック図である。 第1実施形態のスリップ防止処理を示すフローチャートである。 (a)は、キャンバ角が定常角の状態にある第1実施形態の車輪を示す模式的な正面図であり、(b)は、キャンバ角がネガティブに調整された第1実施形態の車輪を示す模式的な正面図である。 (a)は、キャンバ角が定常角の状態にある第2実施形態の車輪を示す模式的な正面図であり、(b)は、キャンバ角がネガティブに調整された第2実施形態の車輪を示す模式的な正面図である。 第3実施形態のスリップ防止処理を示すフローチャートである。 第4実施形態のスリップ防止処理を示すフローチャートである。 本発明の第5実施の形態における車両用制御装置が搭載される車両を模式的に示した模式図である。 (a)は車輪の断面図であり、(b)は車輪の舵角及びキャンバ角の調整方法を模式的に説明する模式図である。 車両用制御装置の電気的構成を示したブロック図である。 車両の上面視を模式的に示した模式図である。 車両の正面視を模式的に図示した模式図であり、車輪にネガティブキャンバが付与された状態である。 車両の正面視を模式的に図示した模式図であり、車輪にポジティブキャンバが付与された状態である。 キャンバ制御処理を示すフローチャートである。 直進時にキャンバ角が制御不能となった場合のフェールセーフ制御のフローチャート図である。 旋回時にキャンバ角が制御不能となった場合のフェールセーフ制御のフローチャート図である。 本発明の第6の実施の形態における車輪にキャンバ角が付与された状態を示す図である。 本発明の第6の実施の形態における車両の概念図である。 本発明の第6の実施の形態におけるサスペンションシステムを示す平面図である。 本発明の第6の実施の形態におけるサスペンションシステムを示す側面図である。 本発明の第6の実施の形態におけるサスペンションシステムを示す斜視図である。 本発明の第6の実施の形態における前側のブッシュの構造を示す断面図である。 本発明の第6の実施の形態における後側のブッシュの構造を示す断面図である。 本発明の第6の実施の形態における車輪にトウ角が付与された状態を示す図である。 本発明の第6の実施の形態における制動時の横力を説明する第1の図である。 本発明の第6の実施の形態における制動時の横力を説明する第2の図である。 本発明の第6の実施の形態における前側のブッシュの変形例を示す斜視図である。 本発明の第7の実施の形態におけるサスペンションシステムを示す斜視図である。
符号の説明
100              制御装置
1                車両
2                車輪
2a               トレッド面
2FL              左前輪(車輪)
2FR              右前輪(車輪)
2RL              左後輪(車輪)
2RR              右後輪(車輪)
70               キャンバ角調整装置
81               車輪速センサ装置(車輪状態検出手段)
82               接地荷重センサ装置(車輪状態検出手段)
83               ストロークセンサ装置(車輪状態検出手段)
S15,S17,S20,S22  判定手段
S16,S21          キャンバ角調整手段
S18,S23          キャンバ角調整手段
S35,S37,S40,S42  判定手段
S38,S43          キャンバ角調整手段
S55,S57,S60,S62  判定手段
S58,S63          キャンバ角調整手段
5100             車両用制御装置
501              車両
502              車輪
502FL            前輪(車輪、左車輪)
502FR            前輪(車輪、右車輪)
502RL            後輪(車輪、左車輪)
502RR            後輪(車輪、右車輪)
521              第1トレッド
522              第2トレッド
504              キャンバ角調整装置
504a             駆動アクチュエータ(キャンバ角調整装置)
504b             キャンバ駆動軸(キャンバ角調整装置)
611              ボディ
631~634、731      サスペンション機構
636              タイヤ
639              高グリップ領域
651              ナックルユニット
652              アッパアーム
653              ロワアーム
655              ナックルアーム
656              キャンバ軸
657              キャンバプレート
658              スプリング
662a、662b、664a、664b、762a、762b  ブッシュ
785              アーム
GND              路面
WLF、WRF、WLB、WRB  車輪
α                トウ角
 以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は、本発明の第1実施形態における制御装置100が搭載される車両1の上面視を模式的に示した模式図である。なお、図1の矢印FWDは、車両1の前進方向を示す。
 まず、車両1の概略構成について説明する。車両1は、図1に示すように、車体フレームBFと、その車体フレームBFに支持される複数(本実施形態では4輪)の車輪2と、それら各車輪2の内の一部(本実施形態では左右の前輪2FL,2FR)を回転駆動する車輪駆動装置3と、各車輪2を車体フレームBFに懸架すると共に各車輪2のキャンバ角を独立に調整する懸架装置4と、ステアリング63の操作に伴って各車輪2の内の一部(本実施形態では左右の前輪2FL,2FR)を操舵するステアリング装置5とを主に備えている。
 車両1は、上述のように懸架装置4が各車輪2のキャンバ角を独立して調整できる構成とされているので、各車輪2のキャンバ角を必要に応じて調整し、走行性能を上げることができる。特に、本実施形態の車両1は、全車輪2FL~2RRのうちの1輪にスリップの可能性が生じた場合に、スリップの可能性のある車輪2のキャンバ角をマイナス方向(ネガティブ)が調整することによって当該車輪のスリップを防止する構成とされている。
 次いで、各部の詳細構成について説明する。車体フレームBFは、車両1の骨格をなすと共に各種装置(車輪駆動装置3など)を搭載するためのものであり、懸架装置4に支持されている。
 車輪2は、図1に示すように、車体BFの前方側(矢印FWD側)に配置される左右の前輪2FL,2FRと、車体フレームBFの後方側(反矢印FWD側)に配置される左右の後輪2RL,2RRとの4輪を備えている。また、左右の前輪2FL,2FRは、車輪駆動装置3から付与される回転駆動力により回転駆動される駆動輪として構成される一方、左右の後輪2RL,2RRは、車両1の走行に伴って従動する従動輪として構成されている。
 なお、本実施形態では、車輪2として、トレッド面(踏面)2aの曲率が大きい車輪を採用している。よって、車輪2を路面に対して傾斜させることにより、接地幅(接地面積)を低下させて車輪2の面圧を上げることができ、その車輪の接地荷重を高めることができる。
 車輪駆動装置3は、上述したように、左右の前輪2FL,2FRに回転駆動力を付与して回転駆動するための装置であり、後述するように電動モータ3aにより構成されている(図7参照)。電動モータ3aは、図1に示すように、ディファレンシャルギヤ(図示せず)及び一対のドライブシャフト31を介して、左右の前輪2FL,2FRに接続されている。
 運転者がアクセルペダル61を操作した場合には、車輪駆動装置3から左右の前輪2FL,2FRに回転駆動力が付与され、それら左右の前輪2FL,2FRがアクセルペダル61の踏み込み状態に応じた回転速度で回転駆動される。なお、左右の前輪2FL,2FRの回転差は、ディファレンシャルギヤにより吸収される。
 懸架装置4は、いわゆるサスペンションとして機能する装置であり、図1に示すように、各車輪2に対応して設けられている。本実施形態における懸架装置4は、本発明のキャンバ角調整装置であるキャンバ角調整装置70(図2,図3参照)を含んでおり、かかるキャンバ角調整装置70により車輪2のキャンバ角を調整できるように構成されている。
 ここで、図2を参照して、懸架装置4の詳細構成について説明する。図2は、懸架装置4の正面図であり、なお、各懸架装置4の構成はそれぞれ共通であるので、ここでは右の前輪2FRに対応する懸架装置4を代表例として図2に図示する。また、図2では、発明の理解を容易とするために、ドライブシャフト31やロアアーム等の図示を省略し、図面を簡素化している。
 本実施形態における懸架装置4は、ストラット式のサスペンションとして構成されており、図2に示すように、車両1のほぼ上下方向に延びるストラット部材41と、車輪2を回動自在に支持する車輪支持部材としてのナックル42と、車両1のほぼ車幅方向に延びるロアアーム(図示せず)とを有している。
 ストラット部材41は、サスペンションスプリング41a及びそのサスペンションスプリング41aの振動を減衰させるショックアブソーバ41bなどから構成されている。このストラット部材41の下端41(ショックアブソーバ41bの筒体側)は、ナックル42に剛結合されている。一方、図示はしないが、ストラット部材41の上端(ショックアブソーバ41bのピストンロッド側)は、車体フレームBFに枢着されている。
 また、本実施形態における懸架装置4は、車輪2のキャンバ角を調整するキャンバ角調整装置70を含み、各車輪2のキャンバ角を独立して調整できるように構成されている。FRアクチュエータ70FRは、油圧シリンダから構成され、ロッド部70bが図示されないジョイント部(ユニバーサルジョイントなど)を介してナックル42に枢着されている。一方、FRアクチュエータ70FRの本体部70aは、車体フレーム側に枢着されている。
 かかるキャンバ角調整装置70を含む懸架装置4によれば、FL~RRアクチュエータ70FL~70RRが伸張されることにより、車輪2(2FL~2RR)が所定のキャンバ軸を中心として揺動されて、キャンバ角がマイナス方向(ネガティブ)に調整される。一方で、FL~RRアクチュエータ70FL~70RRが収縮されることにより、キャンバ角がプラス方向(ポジティブ)に調整される。
 再度、図1に戻って説明する。ステアリング装置5は、ラックアンドピニオン式の機構により構成され、ステアリングシャフト51と、フックジョイント52と、ステアリングギヤ53と、タイロッド54と、連結部材55と、ナックル42(図4(b)参照)とを主に備えている。
 このステアリング装置5によれば、運転者によるステアリング63の操作は、まず、ステアリングシャフト51を介してフックジョイント52に伝達されると共に、フックジョイント52により角度を変えられつつ、ステアリングギヤ53のピニオン53aに回転運動として伝達される。そして、ピニオン53aに伝達された回転運動は、ラック53bの直線運動に変換され、ラック53bが直線運動することで、ラック53bの両端に接続されたタイロッド54が移動して、連結部材55を介してナックル42を押し引きすることで、車輪2の操舵角が調整される。
 ステアリング63は、運転者により操作される操作部材であり、その操作に伴って、車輪2が上述したステアリング装置5により操舵される。また、アクセルペダル61及びブレーキペダル62は、運転者により操作される操作部材であり、各ペダル61,62の踏み込み状態(踏み込み量、踏み込み速度など)に応じて、車両1の加速量や制動量などが決定される。
 制御装置100は、上述したように構成される車両1の各部を制御するための装置であり、例えば、各ペダル61,62の踏み込み状態を検出し、その検出結果に応じて車輪駆動装置3を制御することで、各車輪2を回転駆動する。
 また、本実施形態の制御装置100は、回転数が示す各車輪2の状態を比較することに基づいてスリップの可能性がある車輪2が存在するか否かを判定し、スリップの可能性がある車輪2が存在する場合には、キャンバ角調整装置70を制御して、スリップの可能性がある車輪2のキャンバ角を調整するように構成されている。
 ここで、図3を参照して、本実施形態の制御装置100の詳細構成について説明する。図3は、制御装置100の電気的構成を示したブロック図である。制御装置100は、図3に示すように、CPU71、ROM72及びRAM73を備え、それらがバスライン74を介して入出力ポート75に接続されている。また、入出力ポート75には、車輪駆動装置3等の複数の装置が接続されている。
 CPU71は、バスライン74によって接続された各部を制御する演算装置である。ROM72は、CPU71によって実行される制御プログラム(例えば、図4に図示されるスリップ防止処理のプログラム)や固定値データ等を記憶するための書き換え不能な不揮発性のメモリであり、RAM73は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリである。
 車輪駆動装置3は、上述したように、左右の前輪2FL,2FR(図1参照)を回転駆動するための装置であり、それら左右の前輪2FL,2FRに回転駆動力を付与する電動モータ3aと、その電動モータ3aをCPU71からの命令に基づいて制御する制御回路(図示せず)とを主に備えている。
 キャンバ角調整装置70は、各車輪2(2FL~2RR)のキャンバ角を調整するための装置であり、本発明におけるキャンバ角調整装置として機能するものである。このキャンバ角調整装置70は、4個のFL~RRアクチュエータ70FL~70RRと、それら各アクチュエータ70FL~70RRをCPU71からの命令に基づいて制御する制御回路(図示せず)とを主に備えている。
 なお、FL~RRアクチュエータ70FL~70RRは、上述したように、本体部70aとロッド部70bとを有する油圧シリンダから構成されている。この各油圧シリンダ(FL~RRアクチュエータ70FL~70RR)は、各油圧シリンダにオイル(油圧)を供給する油圧ポンプ(図示せず)と、その油圧ポンプから各油圧シリンダに供給されるオイルの供給方向を切り換える電磁弁(図示せず)とをさらに有している。
 CPU71からの指示に基づいて、キャンバ角調整装置70の制御回路が油圧ポンプを駆動制御すると、その油圧ポンプから供給されるオイル(油圧)によって、各油圧シリンダが伸縮駆動される。また、電磁弁がオン/オフされると、各油圧シリンダの駆動方向(伸長または収縮)が切り替えられる。
 キャンバ角調整装置70の制御回路は、各油圧シリンダの伸縮量を伸縮センサ(図示せず)により監視し、CPU71から指示された目標値(伸縮量)に達した油圧シリンダは、伸縮駆動が停止される。なお、伸縮センサによる検出結果は、制御回路からCPU71に出力され、CPU71は、その検出結果に基づいて各車輪2のキャンバ角を得ることができる。
 車輪速センサ装置81は、各車輪2(2FL~2RR)の回転速度(車輪速)を検出すると共に、その検出結果をCPU71に出力するための装置であり、本発明における車輪状態検出手段として機能するものである。CPU71は、車輪速センサ装置81から出力された結果に基づいて、各車輪2(2FL~2RR)の回転数を得ることができる。
 この車輪速センサ装置81は、左の前輪2FLの車輪速を検出するFL車輪速センサ81FLと、右の前輪2FRの車輪速を検出するFR車輪速センサ81FRと、左の後輪2RLの車輪速を検出するRL車輪速センサ81RLと、右の後輪2RRの車輪速を検出するRR車輪速センサ81RRと、それらの車輪速センサ81FL~81RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。
 なお、本実施形態では、これらの各車輪速センサ81FL~81RRが、車輪2と共に回転するセンターロータ(図示せず)の磁界変動を、ホール素子(図示せず)によって検出する電磁的センサとして構成されている。
 接地荷重センサ装置82は、各車輪2(2FL~2RR)と路面との間に発生する接地荷重を検出すると共に、その結果をCPU71に出力するための装置である。CPU71は、接地荷重センサ装置82から出力された結果に基づいて、各車輪2(2FL~2RR)の接地荷重を得ることができる。
 この接地荷重センサ装置82は、左の前輪2FLの接地荷重を検出するFL荷重センサ82FLと、右の前輪2FRの接地荷重を検出するFR荷重センサ82FRと、左の後輪2RLの接地荷重を検出するRL荷重センサ82RLと、右の後輪2RRの接地荷重を検出するRR荷重センサ82RRと、それらの荷重センサ82FL~82RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。
 なお、本実施形態では、各荷重センサ82FL~82RRがピエゾ抵抗型の3軸荷重センサとして構成されている。これら各荷重センサ82FL~82RRは、各車輪2を保持するストラット部材41上に配設され、各車輪2の接地荷重を車両1の前後方向(図1における上下方向)、左右方向(図1における左右方向)、及び上下方向(図1における紙面表裏方向)で検出する。
 ストロークセンサ装置83は、各車輪2を保持するストラット部材41のショックアブソーバ41bのサスペンションストローク量を検出すると共に、その検出結果をCPU71に出力するための装置である。CPU71は、車輪速センサ装置81から出力された結果に基づいて、各車輪2(2FL~2RR)におけるサスペンションストローク量を得ることができる。
 このストロークセンサ装置83は、左の前輪2FLにおけるサスペンションストローク量を検出するFLストロークセンサ83FLと、右の前輪2FRにおけるサスペンションストローク量を検出するFRストロークセンサ83FRと、左の後輪2RLにおけるサスペンションストローク量を検出するRLストロークセンサ83RLと、右の後輪2RRにおけるサスペンションストローク量を検出するRRストロークセンサ83RRと、それらのストロークセンサ83FL~83RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。なお、本実施形態では、これらの各ストロークセンサ83FL~83RRが、光学式変位センサ(例えば、レーザ変位センサ)として構成されている。
 アクセルペダルセンサ装置61aは、アクセルペダル61の踏み込み状態を検出すると共に、その検出結果をCPU71に出力するための装置であり、アクセルペダル61の踏み込み量を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する処理回路(図示せず)とを備えている。CPU71は、アクセルペダルセンサ装置61aの検出結果(アクセルべダル61の踏み込み量)から、アクセル開度を算出することができる。
 ブレーキペダルセンサ装置62aは、ブレーキペダル62の踏み込み状態を検出すると共に、その検出結果をCPU71に出力するための装置であり、ブレーキペダル62の踏み込み量を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する処理回路(図示せず)とを備えている。CPU71は、ブレーキペダルセンサ装置62aの検出結果(ブレーキべダル62の踏み込み量)から、ブレーキ踏量を算出することができる。
 ステアリングセンサ装置63aは、ステアリング63の操作状態を検出すると共に、その検出結果をCPU71に出力するための装置であり、ステアリング63の回転角を回転方向に対応付けて検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する処理回路(図示せず)とを備えている。
 なお、本実施形態では、各角度センサが電気抵抗を利用した接触型のポテンショメータとして構成されている。CPU71は、各センサ装置61a,62a,63aから入力された各角度センサの検出結果により、各ペダル61,62の踏み込み量およびステアリング63の回転角を得ると共に、その検出結果を時間微分することで、各ペダル61,62の踏み込み速度およびステアリング63の回転速度を得ることができる。
 また、入出力装置84としては、車両1の前後方向の加速度や横加速度を検出する加速度センサ装置や、車両1(車体フレームBF)の路面に対する姿勢(傾斜など)を非接触で計測する光学センサなどが例示される。
 次いで、図4を参照して、上記構成を有する制御装置100(CPU71)により実行されるスリップ防止処理について説明する。図4は、スリップ防止処理を示すフローチャートである。かかるスリップ防止処理は、制御装置100の電源が投入されている間、CPU71により繰り返し(例えば、0.2ms間隔で)実行される。
 図4に示すように、このスリップ防止処理では、まず、全車輪2について、各車輪2FL~2RRの回転数を取得する(S11)。具体的には、S11では、本発明の車輪状態検出手段である車輪速センサ装置81からの出力値に基づいて各車輪2FL~2RRの回転数の取得を行う。
 S11の処理後、アクセルペダルセンサ装置61aからの出力値に基づいてアクセル開度を取得し(S12)、ブレーキペダルセンサ装置62aからの出力値に基づいてブレーキ踏量を取得する(S13)。
 S13の処理後、S12の処理により取得したアクセル開度が規定値以上であるか否かを確認する(S14)。S14の処理により確認した結果、アクセル開度が規定値以上であれば(S14:Yes)、車両1が加速走行中であるので、他輪(他の3輪)の回転数の平均値に比べ、規定値以上の回転数(例えば、他輪の回転数の平均値の約120%以上の回転数)で回転する1の車輪(車輪2FL~2RRのいずれかの車輪)があり、かつ、それら他輪の回転数のばらつきが規定値以内であるかを確認する(S15)。
 このS15の判定処理を実行することによって、各車輪2の状態(具体的には、各車輪2の回転数)の比較に基づいて、加速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在するか否かを判定することができる。なお、S15の処理は、本発明の判定手段に該当する。
 S15の処理により確認した結果、他輪の回転数の平均値に比べ、規定値以上の回転数で回転する1の車輪があり、かつ、それら他輪の回転数のばらつきが規定値以内であれば(S15:Yes)、全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在すると判断して、該当車輪(スリップの可能性がある車輪)に規定角度(例えば、5°)のネガティブキャンバを付与し(S16)、このスリップ防止処理を終了する。なお、S16の処理は、本発明のキャンバ角調整手段に該当する。
 一方で、S15の処理により確認した結果、他輪の回転数の平均値に比べ、規定値以上の回転数で回転する1の車輪がない、又は、比較する他輪の回転数のばらつきが規定値を超えている場合には(S15:No)、S17の処理へ移行する。
 S17の処理では、左輪2FL,2RLの回転数の平均値と右輪2FR,2RRの回転数の平均値との間に規定値以上の差があり(例えば、一方の側の車輪の回転数が他方の側の車輪の回転数に比べて120%以上高い)、かつ、左輪2FL,2RLの回転数のばらつきと右輪2FR,2RRの回転数のばらつきとが各々規定値以内であるかを確認する(S17)。
 このS17の判定処理を実行することによって、各車輪2の状態の比較に基づいて、加速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある車輪が存在するか否か、より具体的には、加速走行中、左輪2FL,2RL又は右輪2FR,2RRのいずれかにスリップの可能性があるか否かを判定することができる。なお、S17の処理は、本発明の判定手段に該当する。
 S17の処理により確認した結果、左輪2FL,2RLの回転数の平均値と右輪2FR,2RRの回転数の平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLの回転数のばらつきと右輪2FR,2RRの回転数のばらつきとが各々規定値以内であれば(S17:Yes)、左輪2FL,2RL又は右輪2FR,2RRのいずれかの側にスリップの可能性があると判断して、スリップの可能性がある回転数の高い側の車輪(左輪2FL,2RL、又は、右輪2FR,2RR)に規定角度(例えば、5°)のネガティブキャンバを付与し(S18)、このスリップ防止処理を終了する。なお、S18の処理は、本発明のキャンバ角調整手段に該当する。
 一方で、S17の処理により確認した結果、左輪2FL,2RLの回転数の平均値と右輪2FR,2RRの回転数の平均値との間に規定値以上の差がない、あるいは、左輪2FL,2RLの回転数のばらつき又は右輪2FR,2RRの回転数のばらつきのうち少なくとも一方が規定値を超えるばらつきを示す場合には(S17:No)、左輪2FL,2RL又は右輪2FR,2RRのいずれの側にもスリップの可能性がないと判断して、車輪2のキャンバ角を調整することなく、このスリップ防止処理を終了する。
 また、S14の処理により確認した結果、アクセル開度が規定値未満であれば(S14:No)、S13の処理により取得したブレーキ踏量が規定値以上であるか否かを確認する(S19)。S19の処理により確認した結果、ブレーキ踏量が規定値未満であれば(S19:No)、スリップ判定を行うべき状態にないので、このスリップ防止処理を終了する。
 一方、S19の処理により確認した結果、ブレーキ踏量が規定値以上であれば(S19:Yes)、車両1が減速走行中であるので、他輪(他の3輪)の回転数の平均値に比べ、規定値以下の回転数(例えば、他輪の回転数の平均値の約80%以下の回転数)で回転する1の車輪(車輪2FL~2RRのいずれかの車輪)があり、かつ、それら他輪の回転数のばらつきが規定値以内であるかを確認する(S20)。
 このS20の判定処理を実行することによって、各車輪2の状態(具体的には、各車輪2の回転数)の比較に基づいて、減速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在するか否かを判定することができる。なお、S20の処理は、本発明の判定手段に該当する。
 S20の処理により確認した結果、他輪の回転数の平均値に比べ、規定値以下の回転数で回転する1の車輪があり、かつ、それら他輪の回転数のばらつきが規定値以内であれば(S20:Yes)、全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在すると判断して、該当車輪(スリップの可能性がある車輪)に規定角度(例えば、5°)のネガティブキャンバを付与し(S21)、このスリップ防止処理を終了する。なお、S21の処理は、本発明のキャンバ角調整手段に該当する。
 一方で、S20の処理により確認した結果、他輪の回転数の平均値に比べ、規定値以下の回転数で回転する1の車輪がない、又は、比較する他輪の回転数のばらつきが規定値を超えている場合には(S20:No)、S22の処理へ移行する。
 S22の処理では、左輪2FL,2RLの回転数の平均値と右輪2FR,2RRの回転数の平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLの回転数のばらつきと右輪2FR,2RRの回転数のばらつきとが各々規定値以内であるかを確認する(S22)。
 このS22の判定処理を実行することによって、各車輪2の状態の比較に基づいて、減速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある車輪が存在するか否か、より具体的には、減速走行中、左輪2FL,2RL又は右輪2FR,2RRのいずれかにスリップの可能性があるか否かを判定することができる。なお、S22の処理は、本発明の判定手段に該当する。
 S22の処理により確認した結果、左輪2FL,2RLの回転数の平均値と右輪2FR,2RRの回転数の平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLの回転数のばらつきと右輪2FR,2RRの回転数のばらつきとが各々規定値以内であれば(S22:Yes)、左輪2FL,2RL又は右輪2FR,2RRのいずれかの側にスリップの可能性があると判断して、スリップの可能性がある回転数の高い側の車輪(左輪2FL,2RL、又は、右輪2FR,2RR)に規定角度(例えば、5°)のネガティブキャンバを付与し(S23)、このスリップ防止処理を終了する。なお、S23の処理は、本発明のキャンバ角調整手段に該当する。
 一方で、S22の処理により確認した結果、左輪2FL,2RLの回転数の平均値と右輪2FR,2RRの回転数の平均値との間に規定値以上の差がない、あるいは、左輪2FL,2RLの回転数のばらつき又は右輪2FR,2RRの回転数のばらつきのうち少なくとも一方が規定値を超えるばらつきを示す場合には(S22:No)、左輪2FL,2RL又は右輪2FR,2RRのいずれの側にもスリップの可能性がないと判断して、車輪2のキャンバ角を調整することなく、このスリップ防止処理を終了する。
 上述した通り、このスリップ防止処理によれば、S15、S17,S20,S22の判定処理により、走行中(加速走行中又は減速走行中)の全車輪2の中にスリップの可能性がある車輪が存在すると判定された場合には、スリップの可能性がある車輪に規定角度のネガティブキャンバ(即ち、マイナス方向のキャンバ角)が付与される。
 ここで、図5を参照して、スリップの可能性がある車輪にネガティブキャンバが付与されることによって得られる効果について説明する。図5(a)は、キャンバ角が定常角(本実施形態では略0°)の状態にある車輪2を示す模式的な正面図であり、図5(b)は、上述したスリップ防止処理によってキャンバ角がネガティブ(マイナス方向)に調整された車輪2を示す模式的な正面図である。なお、図5では、車輪2の代表例として右の前輪2FRを図示している。
 本実施形態では、車輪2として、トレッド面(踏面)2aの曲率が大きい車輪を使用している。このようにトレッド面2aの曲率が大きい車輪2を用いた場合には、車輪2にネガティブキャンバが付与され、車輪2を路面に対して傾斜させることによって、車輪2が傾斜によって変形する。その結果、車輪2のキャンバ角が定常角にある場合に車輪2と路面Gとの接地幅がW1(図5(a))であったのに対し、路面Gとの接地幅がW2に減少する(図5(b))。よって、車輪2の面圧が、接地幅がW1である場合(即ち、定常角の場合)に比べて増加する。
 従って、キャンバ角の付与によって面圧が増加する車輪2を有する車両1は、走行中にスリップの可能性がある車輪2にネガティブキャンバを付与することにより、車輪2の面圧が増加して接地荷重を高めることができるので、荷重抜けを抑制することができ、走行中における一時的な車輪のスリップの発生を防止できる。
 なお、トレッド面2aの曲率が大きい車輪2にキャンバ角を付与する場合、キャンバ回転軸は、路面Gに近ければ近いほど効果的に面圧を上げることができる。よって、トレッド面2aの曲率が大きい車輪2を使用する場合、例えば、キャンバ回転軸は、車輪2の回転軸より下方に設定されていることが好ましく、路面Gの近傍に設定されていることがより好ましい。
 以上説明したように、第1実施形態によれば、走行中(加速走行中又は減速走行中)の全車輪2の中にスリップの可能性がある車輪が存在すると判定された場合には、スリップの可能性がある車輪に規定角度のネガティブキャンバが付与される。ここで、車輪2として、トレッド面2aの曲率が大きくキャンバ角の付与によって面圧が増加する車輪2が使用されているので、ネガティブキャンバの付与により、面圧が増加して接地荷重が増加する。よって、走行中における荷重抜けを抑制し、当該車輪にスリップが発生することを防止することができる。
 また、第1実施形態によれば、走行中における各車輪2の状態(回転数)の比較、即ち、走行中における相対的な車輪の状態に基づき、全車輪2(2FL~2RRの4輪)の中からスリップの可能性がある車輪が存在するか否かを判定するので、スリップの可能性がある車輪を見出し易い。特に、路面状態(例えば、路面の凹みや、路面上における部分的な摩擦係数の低い部分の存在)などに起因して一部の車輪2の荷重が一時的に抜ける状況に対する判定精度が向上する。よって、スリップ防止に対する確実性の高い見込み制御をすることができる。
 ここで、第1実施形態によれば、他の3輪の状態(回転数)との比較によってスリップの可能性がある1の車輪が存在するか否かを判定するので、走行中に、車輪2FL~2RRのうちいずれか1の車輪にスリップの可能性が生じた場合に、その車輪のスリップを防止することができ、走行安定性を確保できる。
 また、第1実施形態によれば、左側に位置する車輪(左輪2FL,2RL)の状態と右側に位置する車輪(右輪2FR,2RR)の状態との比較によって、左輪2FL,2RL又は右輪2FR,2RRのいずれかにスリップの可能性があるか否かを判定するので、走行中に、左右のいずれかの側の車輪にスリップの可能性が生じた場合に、その車輪のスリップを防止することができ、走行安定性を確保できる。
 次に、図6を参照して、第2実施形態について説明する。上述した第1実施形態では、トレッド面2aの曲率が大きい車輪を使用したが、この第2実施形態では、車輪2として、トレッド面2aの曲率が小さい車輪を使用する。なお、上記した第1実施形態と同一の部分には同一の符号を付して、その説明は省略する。
 図6(a)は、キャンバ角が定常角(本実施形態では略0°)の状態にある第2実施形態の車輪2を示す模式的な正面図であり、図6(b)は、上述したスリップ防止処理によってキャンバ角がネガティブ(マイナス方向)に調整された第2実施形態の車輪2を示す模式的な正面図である。なお、図6では、車輪2の代表例として右の前輪2FRを図示している。
 このように、トレッド面2aの曲率が小さい車輪を車輪2とした場合には、ネガティブキャンバの付与によって車高が下がる。即ち、図6(b)に示すように、第2実施形態の車輪2にネガティブキャンバが付与されると、車高がHだけ下がる。
 よって、キャンバ角の付与によって車高が下がる構成(本実施形態では、トレッド面2aの曲率が小さい車輪2)を有する車両1は、走行中にスリップの可能性がある車輪2にネガティブキャンバを付与することにより、車高が下がり、車両1の重心を下げることができるので、荷重抜けを抑制することができ、走行中における一時的な車輪のスリップの発生を防止できる。
 なお、第2実施形態の車輪2(即ち、トレッド面2aの曲率が小さい車輪)にキャンバ角を付与する場合、キャンバ回転軸は、路面Gから離れれば離れるほど効果的に車高を下げることができる。よって、トレッド面2aの曲率が小さい車輪2を使用する場合、例えば、キャンバ回転軸は、車輪2の回転軸より上方に設定されていることが好ましい。
 以上説明したように、第2実施形態によれば、走行中(加速走行中又は減速走行中)の全車輪2の中にスリップの可能性がある車輪が存在すると判定された場合には、スリップの可能性がある車輪に規定角度のネガティブキャンバが付与される。ここで、トレッド面2aの曲率が小さくキャンバ角の付与によって車高を下げることのできる車輪2が使用されているので、ネガティブキャンバの付与により、車高が下がり車両1の重心が下がる。よって、走行中における荷重抜けを抑制し、当該車輪にスリップが発生することを防止することができる。
 次に、図7を参照して、第3実施形態について説明する。上述した第1実施形態では、スリップの可能性のある車輪を判定するための各車輪2の状態として各車輪2の回転数を用いる構成としたが、この第3実施形態では、スリップの可能性のある車輪を判定するための各車輪2の状態として各車輪2の接地荷重を用いる。
 よって、この第3実施形態では、車輪速センサ装置81に換えて接地荷重センサ装置82が車輪状態検出手段として機能する。なお、上記した第1実施形態と同一の部分には同一の符号を付して、その説明は省略する。
 図7は、第3実施形態におけるスリップ防止処理を示すフローチャートである。この第3実施形態におけるスリップ防止処理もまた、第1実施形態におけるスリップ防止処理と同様に、制御装置100の電源が投入されている間、CPU71により繰り返し(例えば、0.2ms間隔で)実行される。
 図7に示すように、この第3実施形態におけるスリップ防止処理では、まず、全車輪2について、各車輪2FL~2RRの接地荷重を取得する(S31)。具体的には、S31では、本発明の車輪状態検出手段である接地荷重センサ装置82からの出力値に基づいて各車輪2FL~2RRの接地荷重の取得を行う。
 S31の処理後、アクセル開度を取得し(S12)、ブレーキ踏量を取得した後(S13)、S12の処理により取得したアクセル開度が規定値以上であるか否かを確認する(S14)。
 S14の処理により確認した結果、アクセル開度が規定値以上であれば(S14:Yes)、他輪(他の3輪)の接地荷重の平均値に比べ、規定値以下の接地荷重(例えば、他輪の接地荷重の約80%以下の接地荷重)を示す1の車輪(車輪2FL~2RRのいずれかの車輪)があり、かつ、それら他輪の接地荷重のばらつきが規定値以内であるかを確認する(S35)。
 このS35の判定処理を実行することによって、各車輪2の状態(具体的には、各車輪2の接地荷重)の比較に基づいて、加速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在するか否かを判定することができる。なお、S35の処理は、本発明の判定手段に該当する。
 S35の処理により確認した結果、他輪の接地荷重の平均値に比べ、規定値以下の接地荷重を示す1の車輪があり、かつ、それら他輪の接地荷重のばらつきが規定値以内であれば(S35:Yes)、全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在すると判断して、該当車輪(スリップの可能性がある車輪)に規定角度(例えば、5°)のネガティブキャンバを付与し(S16)、このスリップ防止処理を終了する。
 一方で、S35の処理により確認した結果、他輪の接地荷重の平均値に比べ、規定値以下の接地荷重を示す1の車輪がない、又は、比較する他輪の接地荷重のばらつきが規定値を超えている場合には(S35:No)、S37の処理へ移行する。
 S37の処理では、左輪2FL,2RLの接地荷重の平均値と右輪2FR,2RRの接地荷重の平均値との間に規定値以上の差があり(例えば、一方の側の車輪の接地荷重が他方の側の車輪の接地荷重に比べて120%以上高い)、かつ、左輪2FL,2RLの接地荷重のばらつきと右輪2FR,2RRの接地荷重のばらつきとが各々規定値以内であるかを確認する(S37)。
 このS37の判定処理を実行することによって、各車輪2の状態の比較に基づいて、加速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある車輪が存在するか否か、より具体的には、加速走行中、左輪2FL,2RL又は右輪2FR,2RRのいずれかにスリップの可能性があるか否かを判定することができる。なお、S37の処理は、本発明の判定手段に該当する。
 S37の処理により確認した結果、左輪2FL,2RLの接地荷重の平均値と右輪2FR,2RRの接地荷重の平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLの接地荷重のばらつきと右輪2FR,2RRの接地荷重のばらつきとが各々規定値以内であれば(S37:Yes)、左輪2FL,2RL又は右輪2FR,2RRのいずれかの側にスリップの可能性があると判断して、スリップの可能性がある接地荷重の低い側の車輪(左輪2FL,2RL、又は、右輪2FR,2RR)に規定角度(例えば、5°)のネガティブキャンバを付与し(S38)、このスリップ防止処理を終了する。なお、S38の処理は、本発明のキャンバ角調整手段に該当する。
 一方で、S37の処理により確認した結果、左輪2FL,2RLの接地荷重の平均値と右輪2FR,2RRの接地荷重の平均値との間に規定値以上の差がない、あるいは、左輪2FL,2RLの接地荷重のばらつき又は右輪2FR,2RRの接地荷重のばらつきのうち少なくとも一方が規定値を超えるばらつきを示す場合には(S37:No)、左輪2FL,2RL又は右輪2FR,2RRのいずれの側にもスリップの可能性がないと判断して、車輪2のキャンバ角を調整することなく、このスリップ防止処理を終了する。
 また、S14の処理により確認した結果、アクセル開度が規定値未満であれば(S14:No)、S13の処理により取得したブレーキ踏量が規定値以上であるか否かを確認し(S19)、ブレーキ踏量が規定値未満であれば(S19:No)、このスリップ防止処理を終了する。
 一方、S19の処理により確認した結果、ブレーキ踏量が規定値以上であれば(S19:Yes)、他輪(他の3輪)の接地荷重の平均値に比べ、規定値以上の接地荷重(例えば、他輪の接地荷重の平均値の約120%以上の接地荷重)を示す1の車輪(車輪2FL~2RRのいずれかの車輪)があり、かつ、それら他輪の接地荷重のばらつきが規定値以内であるかを確認する(S40)。
 このS40の判定処理を実行することによって、各車輪2の状態(具体的には、各車輪2の接地荷重)の比較に基づいて、減速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在するか否かを判定することができる。なお、S40の処理は、本発明の判定手段に該当する。
 S40の処理により確認した結果、他輪の接地荷重の平均値に比べ、規定値以上の接地荷重を示す1の車輪があり、かつ、それら他輪の接地荷重のばらつきが規定値以内であれば(S40:Yes)、全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在すると判断して、該当車輪(スリップの可能性がある車輪)に規定角度(例えば、5°)のネガティブキャンバを付与し(S21)、このスリップ防止処理を終了する。
 一方で、S40の処理により確認した結果、他輪の接地荷重の平均値に比べ、規定値以上の接地荷重を示す1の車輪がない、又は、比較する他輪の接地荷重のばらつきが規定値を超えている場合には(S40:No)、S42の処理へ移行する。
 S42の処理では、左輪2FL,2RLの接地荷重の平均値と右輪2FR,2RRの接地荷重の平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLの接地荷重のばらつきと右輪2FR,2RRの接地荷重のばらつきとが各々規定値以内であるかを確認する(S42)。
 このS42の判定処理を実行することによって、各車輪2の状態の比較に基づいて、減速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある車輪が存在するか否か、より具体的には、減速走行中、左輪2FL,2RL又は右輪2FR,2RRのいずれかにスリップの可能性があるか否かを判定することができる。なお、S42の処理は、本発明の判定手段に該当する。
 S42の処理により確認した結果、左輪2FL,2RLの接地荷重の平均値と右輪2FR,2RRの接地荷重の平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLの接地荷重のばらつきと右輪2FR,2RRの接地荷重のばらつきとが各々規定値以内であれば(S42:Yes)、左輪2FL,2RL又は右輪2FR,2RRのいずれかの側にスリップの可能性があると判断して、スリップの可能性がある接地荷重の低い側の車輪(左輪2FL,2RL、又は、右輪2FR,2RR)に規定角度(例えば、5°)のネガティブキャンバを付与し(S43)、このスリップ防止処理を終了する。なお、S43の処理は、本発明のキャンバ角調整手段に該当する。
 一方で、S42の処理により確認した結果、左輪2FL,2RLの接地荷重の平均値と右輪2FR,2RRの接地荷重の平均値との間に規定値以上の差がない、あるいは、左輪2FL,2RLの接地荷重のばらつき又は右輪2FR,2RRの接地荷重のばらつきのうち少なくとも一方が規定値を超えるばらつきを示す場合には(S42:No)、左輪2FL,2RL又は右輪2FR,2RRのいずれの側にもスリップの可能性がないと判断して、車輪2のキャンバ角を調整することなく、このスリップ防止処理を終了する。
 上述した通り、第3実施形態におけるスリップ防止処理によれば、S35、S37,S40,S42の判定処理により、走行中(加速走行中又は減速走行中)の全車輪2の中にスリップの可能性がある車輪が存在すると判定された場合には、スリップの可能性がある車輪に規定角度のネガティブキャンバ(即ち、マイナス方向のキャンバ角)が付与される。
 以上説明したように、この第3実施形態によれば、走行中における各車輪2の状態(接地荷重)の比較、即ち、走行中における相対的な車輪の状態に基づき、全車輪2(2FL~2RRの4輪)の中からスリップの可能性がある車輪が存在するか否かを判定するので、第1実施形態と同様に、スリップ防止に対する確実性の高い見込み制御をすることができる。
 次に、図8を参照して、第4実施形態について説明する。上述した第1実施形態では、スリップの可能性のある車輪を判定するための各車輪2の状態として各車輪2の回転数を用いる構成としたが、この第4実施形態では、スリップの可能性のある車輪を判定するための各車輪2の状態として各車輪2のストローク量(サスペンションストローク量)を用いる。
 よって、この第4実施形態では、車輪速センサ装置81に換えてストロークセンサ装置83が車輪状態検出手段として機能する。なお、上記した第1実施形態と同一の部分には同一の符号を付して、その説明は省略する。
 図8は、第4実施形態におけるスリップ防止処理を示すフローチャートである。この第4実施形態におけるスリップ防止処理もまた、第1実施形態におけるスリップ防止処理と同様に、制御装置100の電源が投入されている間、CPU71により繰り返し(例えば、0.2ms間隔で)実行される。
 図8に示すように、この第4実施形態におけるスリップ防止処理では、まず、全車輪2について、各車輪2FL~2RRのストロークを取得する(S51)。具体的には、S51では、本発明の車輪状態検出手段であるストロークセンサ装置83からの出力値に基づいて各車輪2FL~2RRのストロークの取得を行う。
 S51の処理後、アクセル開度を取得し(S12)、ブレーキ踏量を取得した後(S13)、S12の処理により取得したアクセル開度が規定値以上であるか否かを確認する(S14)。
 S14の処理により確認した結果、アクセル開度が規定値以上であれば(S14:Yes)、他輪(他の3輪)のストロークの平均値に比べ、規定値以上のストローク(例えば、他輪のストロークの約120%以上のストローク)を示す1の車輪(車輪2FL~2RRのいずれかの車輪)があり、かつ、それら他輪のストロークのばらつきが規定値以内であるかを確認する(S55)。
 このS55の判定処理を実行することによって、各車輪2の状態(具体的には、各車輪2のストローク)の比較に基づいて、加速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在するか否かを判定することができる。なお、S55の処理は、本発明の判定手段に該当する。
 S55の処理により確認した結果、他輪のストロークの平均値に比べ、規定値以上のストロークを示す1の車輪があり、かつ、それら他輪のストロークのばらつきが規定値以内であれば(S55:Yes)、全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在すると判断して、該当車輪(スリップの可能性がある車輪)に規定角度(例えば、5°)のネガティブキャンバを付与し(S16)、このスリップ防止処理を終了する。
 一方で、S55の処理により確認した結果、他輪のストロークの平均値に比べ、規定値以上のストロークを示す1の車輪がない、又は、比較する他輪のストロークのばらつきが規定値を超えている場合には(S55:No)、S57の処理へ移行する。
 S57の処理では、左輪2FL,2RLのストロークの平均値と右輪2FR,2RRのストロークの平均値との間に規定値以上の差があり(例えば、一方の側の車輪のストロークが他方の側の車輪のストロークに比べて120%以上大きい)、かつ、左輪2FL,2RLのストロークのばらつきと右輪2FR,2RRのストロークのばらつきとが各々規定値以内であるかを確認する(S57)。
 このS57の判定処理を実行することによって、各車輪2の状態の比較に基づいて、加速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある車輪が存在するか否か、より具体的には、加速走行中、左輪2FL,2RL又は右輪2FR,2RRのいずれかにスリップの可能性があるか否かを判定することができる。なお、S57の処理は、本発明の判定手段に該当する。
 S57の処理により確認した結果、左輪2FL,2RLのストロークの平均値と右輪2FR,2RRのストロークの平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLのストロークのばらつきと右輪2FR,2RRのストロークのばらつきとが各々規定値以内であれば(S57:Yes)、左輪2FL,2RL又は右輪2FR,2RRのいずれかの側にスリップの可能性があると判断して、スリップの可能性があるストロークの大きい側の車輪(左輪2FL,2RL、又は、右輪2FR,2RR)に規定角度(例えば、5°)のネガティブキャンバを付与し(S58)、このスリップ防止処理を終了する。なお、S58の処理は、本発明のキャンバ角調整手段に該当する。
 一方で、S57の処理により確認した結果、左輪2FL,2RLのストロークの平均値と右輪2FR,2RRのストロークの平均値との間に規定値以上の差がない、あるいは、左輪2FL,2RLのストロークのばらつき又は右輪2FR,2RRのストロークのばらつきのうち少なくとも一方が規定値を超えるばらつきを示す場合には(S57:No)、左輪2FL,2RL又は右輪2FR,2RRのいずれの側にもスリップの可能性がないと判断して、車輪2のキャンバ角を調整することなく、このスリップ防止処理を終了する。
 また、S14の処理により確認した結果、アクセル開度が規定値未満であれば(S14:No)、S13の処理により取得したブレーキ踏量が規定値以上であるか否かを確認し(S19)、ブレーキ踏量が規定値未満であれば(S19:No)、このスリップ防止処理を終了する。
 一方、S19の処理により確認した結果、ブレーキ踏量が規定値以上であれば(S19:Yes)、他輪(他の3輪)のストロークの平均値に比べ、規定値以下のストローク(例えば、他輪のストロークの平均値の約80%以下のストローク)を示す1の車輪(車輪2FL~2RRのいずれかの車輪)があり、かつ、それら他輪のストロークのばらつきが規定値以内であるかを確認する(S60)。
 このS60の判定処理を実行することによって、各車輪2の状態(具体的には、各車輪2のストローク)の比較に基づいて、減速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在するか否かを判定することができる。なお、S60の処理は、本発明の判定手段に該当する。
 S60の処理により確認した結果、他輪のストロークの平均値に比べ、規定値以下のストロークを示す1の車輪があり、かつ、それら他輪のストロークのばらつきが規定値以内であれば(S60:Yes)、全車輪2(2FL~2RR)の中にスリップの可能性がある1の車輪が存在すると判断して、該当車輪(スリップの可能性がある車輪)に規定角度(例えば、5°)のネガティブキャンバを付与し(S21)、このスリップ防止処理を終了する。
 一方で、S60の処理により確認した結果、他輪のストロークの平均値に比べ、規定値以下のストロークを示す1の車輪がない、又は、比較する他輪のストロークのばらつきが規定値を超えている場合には(S60:No)、S62の処理へ移行する。
 S62の処理では、左輪2FL,2RLのストロークの平均値と右輪2FR,2RRのストロークの平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLのストロークのばらつきと右輪2FR,2RRのストロークのばらつきとが各々規定値以内であるかを確認する(S62)。
 このS62の判定処理を実行することによって、各車輪2の状態の比較に基づいて、減速走行中の全車輪2(2FL~2RR)の中にスリップの可能性がある車輪が存在するか否か、より具体的には、減速走行中、左輪2FL,2RL又は右輪2FR,2RRのいずれかにスリップの可能性があるか否かを判定することができる。なお、S62の処理は、本発明の判定手段に該当する。
 S62の処理により確認した結果、左輪2FL,2RLのストロークの平均値と右輪2FR,2RRのストロークの平均値との間に規定値以上の差があり、かつ、左輪2FL,2RLのストロークのばらつきと右輪2FR,2RRのストロークのばらつきとが各々規定値以内であれば(S62:Yes)、左輪2FL,2RL又は右輪2FR,2RRのいずれかの側にスリップの可能性があると判断して、スリップの可能性があるストロークの大きい側の車輪(左輪2FL,2RL、又は、右輪2FR,2RR)に規定角度(例えば、5°)のネガティブキャンバを付与し(S63)、このスリップ防止処理を終了する。なお、S63の処理は、本発明のキャンバ角調整手段に該当する。
 一方で、S62の処理により確認した結果、左輪2FL,2RLのストロークの平均値と右輪2FR,2RRのストロークの平均値との間に規定値以上の差がない、あるいは、左輪2FL,2RLのストロークのばらつき又は右輪2FR,2RRのストロークのばらつきのうち少なくとも一方が規定値を超えるばらつきを示す場合には(S62:No)、左輪2FL,2RL又は右輪2FR,2RRのいずれの側にもスリップの可能性がないと判断して、車輪2のキャンバ角を調整することなく、このスリップ防止処理を終了する。
 上述した通り、第4実施形態におけるスリップ防止処理によれば、S55、S57,S60,S62の判定処理により、走行中(加速走行中又は減速走行中)の全車輪2の中にスリップの可能性がある車輪が存在すると判定された場合には、スリップの可能性がある車輪に規定角度のネガティブキャンバ(即ち、マイナス方向のキャンバ角)が付与される。
 以上説明したように、この第4実施形態によれば、走行中における各車輪2の状態(ストローク)の比較、即ち、走行中における相対的な車輪の状態に基づき、全車輪2(2FL~2RRの4輪)の中からスリップの可能性がある車輪が存在するか否かを判定するので、第1実施形態と同様に、スリップ防止に対する確実性の高い見込み制御をすることができる。
 次いで、第5実施の形態について添付図面を参照して説明する。図9は、本発明の第5実施の形態における車両用制御装置5100が搭載される車両501を模式的に示した模式図である。なお、図9の矢印FWDは、車両501の前進方向を示す。
 まず、車両501の概略構成について説明する。車両501は、図9に示すように、車体フレームBFと、その車体フレームBFに支持される複数(本実施の形態では4輪)の車輪502と、それら各車輪502を独立に回転駆動する車輪駆動装置503と、各車輪502のキャンバ角の調整等を行うキャンバ角調整装置504とを主に備え、車輪502のキャンバ角を車両用制御装置5100により制御して、車輪502に設けられた2種類のトレッドを使い分けることで(図13及び図14参照)、走行性能の向上と省燃費の達成とを図ることができるように構成されている。
 次いで、各部の詳細構成について説明する。車輪502は、図9に示すように、車両501の進行方向前方側に位置する左右の前輪502FL,502FRと、進行方向後方側に位置する左右の後輪502RL,502RRとの4輪を備え、これら前後輪502FL~502RRは、車輪駆動装置503から回転駆動力を付与されて、それぞれ独立に回転可能に構成されている。
 車輪駆動装置503は、各車輪502を独立に回転駆動するための回転駆動装置であり、図9に示すように、4個の電動アクチュエータ(FL~RRアクチュエータ503FL~503RR)を各車輪502に(即ち、インホイールモータとして)配設して構成されている。運転者がアクセルペダル552を操作した場合には、各車輪駆動装置503から回転駆動力が各車輪502に付与され、各車輪502がアクセルペダル552の操作量に応じた回転速度で回転される。
 また、車輪502(前後輪502FL~502RR)は、キャンバ角調整装置504によりキャンバ角が調整可能に構成されている。キャンバ角調整装置504は、各車輪502のキャンバ角を調整するための駆動装置であり、図9に示すように、各車輪502に対応する位置に合計4個(FL~RRアクチュエータ504FL~504RR)が配置されている。
 また、キャンバ角調整装置504は、車両501の走行状態(例えば、定速走行時または加減速時、或いは、直進時または旋回時)や車輪502が走行する路面Gの状態(例えば、乾燥路面時と雨天路面時)などの状態変化に応じて、車両用制御装置5100により作動制御され、車輪502のキャンバ角を調整する。
 ここで、図10を参照して、車輪駆動装置503とキャンバ角調整装置504との詳細構成について、左前側の車輪502FLを例に説明する。図10は、車輪502のキャンバ軸を通る断面図である。なお、図10では、車輪駆動装置503に駆動電圧を供給するための電源配線などの図示が省略されている。
 図10に示すように、車輪502(前後輪502FL~502RR)は、ゴム状弾性材から構成されるタイヤ502aと、アルミニウム合金などから構成されるホイール502bとを主に備えて構成され、ホイール502bの内周部には、車輪駆動装置503(FL~RRモータ503FL~503RR)がインホイールモータとして配設されている。
 タイヤ502aは、車両501の内側(図10右側)に配置される第1トレッド521と、その第1トレッド521と特性が異なり、車両501の外側(図10左側)に配置される第2トレッド522とを備える。なお、車輪502(タイヤ502a)の詳細構成については図12を参照して後述する。
 車輪駆動装置503は、図10に示すように、その前面側(図10左側)に突出された車輪駆動軸503aがホイール502bに連結固定されており、車輪駆動軸503aを介して、回転駆動力を車輪502へ伝達可能に構成されている。
 キャンバ角調整装置504は、駆動アクチュエータ504a及びキャンバ駆動軸504bを備えており、駆動アクチュエータ504aは車体フレームBFに固定され、キャンバ駆動軸504bを回転駆動させる。キャンバ駆動軸504bは車輪駆動装置503(FL~RRモータ503FL~503RR)のブラケット503bの孔503cに挿通され、連結固定されている。また、キャンバ駆動軸504bは、車体フレームBFに固定された車体側ブラケットBFaの孔部BFbに対して軸受等を介して回転可能に挿通されている。なお、キャンバ駆動軸504bは車両501の前後方向に対して前方が外側になるように傾斜して配置される。
 これにより、駆動アクチュエータ504aを回転駆動することで、車輪駆動装置503がキャンバ軸Cとなるキャンバ駆動軸504bを揺動中心として揺動駆動され、その結果、各車輪502に所定のキャンバ角が付与される。
 例えば、車輪502が中立位置(車両501の直進状態)にある状態で、駆動アクチュエータ504aが矢印A方向に回転駆動されると、キャンバ駆動軸504bが回転され、車輪駆動装置503がキャンバ軸C回りに回転され、車輪502にマイナス方向(ネガティブキャンバ)のキャンバ角が付与される。一方、これとは逆の方向に駆動アクチュエータ504aが回転駆動されると、車輪502にプラス方向(ポジティブキャンバ)のキャンバ角が付与される。
 図9に戻って説明する。アクセルペダル552及びブレーキペダル553は、運転者により操作される操作部材であり、各ペダル552,553の踏み込み状態(踏み込み量、踏み込み速度など)に応じて、車両501の走行速度や制動力が決定され、車輪駆動装置503の作動制御が行われる。
 ステアリング機構554は、運転者により操作される操作部材であり、その操作状態(回転角度、回転速度など)に応じて、車両501の旋回半径などが決定され、キャンバ角調整装置504の作動制御が行われる。ワイパースイッチ555は、運転者により操作される操作部材であり、その操作状態(操作位置など)に応じて、ワイパー(図示せず)の作動制御が行われる。
 同様に、ウインカスイッチ556及び高グリップスイッチ557は、運転者により操作される操作部材であり、その操作状態(操作位置など)に応じて、前者の場合はウインカー(図示せず)の作動制御が行われ、後者の場合はキャンバ角調整装置504の作動制御が行われる。
 なお、高グリップスイッチ557がオンされた状態は、車輪502の特性として高グリップ性が選択された状態に対応し、高グリップスイッチ557がオフされた状態は車輪502の特性として低転がり抵抗が選択された状態に対応する。
 車両用制御装置5100は、上述のように構成された車両501の各部を制御するための車両用制御装置であり、例えば、各ペダル552,553の操作状態を検出し、その検出結果に応じて車輪駆動装置503を作動させることで、各車輪502の回転速度を制御する。
 或いは、アクセルペダル552、ブレーキペダル553やステアリング機構554の操作状態を検出し、その検出結果に応じてキャンバ角調整装置504を作動させ、各車輪のキャンバ角を調整することで、車輪502に設けられた2種類のトレッド521,522を使い分けて(図13及び図14参照)、走行性能の向上と省燃費の達成とを図る。ここで、図11を参照して
、車両用制御装置5100の詳細構成について説明する。
 図11は、車両用制御装置5100の電気的構成を示したブロック図である。車両用制御装置5100は、図11に示すように、制御手段、判別手段及び算出手段としてのCPU71、ROM72及びRAM73を備え、これらはバスライン74を介して入出力ポート75に接続されている。また、入出力ポート75には、車輪駆動装置503等の複数の装置が接続されている。
 CPU71は、バスライン74により接続された各部を制御する演算装置である。ROM72は、CPU71により実行される制御プログラムや固定値データ等を格納した書き換え不能な不揮発性のメモリであり、RAM73は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリである。なお、ROM72内には、図15に図示されるフローチャート(キャンバ制御処理)のプログラムが格納されている。
 車輪駆動装置503は、上述したように、各車輪502(図9参照)を回転駆動するための装置であり、各車輪502に回転駆動力を付与する4個のFL~RRモータ503FL~503RRと、それら各モータ503FL~503RRをCPU71からの命令に基づいて駆動制御する駆動回路(図示せず)とを主に備えている。
 キャンバ角調整装置504は、上述したように、各車輪502のキャンバ角を調整するための装置であり、各車輪502(車輪駆動装置503)に角度調整のための駆動力を付与する4個のFL~RR駆動アクチュエータ504FL~504RRと、それら各駆動アクチュエータ504FL~504RRをCPU71からの命令に基づいて駆動制御する駆動回路(図示せず)とを主に備えている。
 CPU71からの指示に基づいて、キャンバ角調整装置504の駆動回路が駆動アクチュエータ504aを駆動制御すると、キャンバ駆動軸504bが回転駆動される。キャンバ角調整装置504の駆動回路は、各駆動アクチュエータ504aの回転角を回転角センサにより監視し、CPU71から指示された目標値(伸縮量)に達した駆動アクチュエータ504aは、その回転駆動が停止される。なお、回転角センサによる検出結果は、駆動回路からCPU71に出力され、CPU71は、その検出結果に基づいて各車輪502の現在のキャンバ角を得ることができる。
 車両速度センサ装置532は、路面Gに対する車両501の対地速度(絶対値及び進行方向)を検出すると共に、その検出結果をCPU71に出力するための装置であり、前後及び左右方向加速度センサ532a,532bと、それら各加速度センサ532a,532bの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 前後方向加速度センサ532aは、車両501(車体フレームBF)の前後方向(図9上下方向)の加速度を検出するセンサであり、左右方向加速度センサ532bは、車両501(車体フレームBF)の左右方向(図9左右方向)の加速度を検出するセンサである。なお、本実施の形態では、これら各加速度センサ532a,532bが圧電素子を利用した圧電型センサとして構成されている。
 CPU71は、車両速度センサ装置532の制御回路から入力された各加速度センサ532a,532bの検出結果(加速度値)を時間積分して、2方向(前後及び左右方向)の速度をそれぞれ算出すると共に、それら2方向成分を合成することで、車両501の対地速度(絶対値及び進行方向)を得ることができる。
 接地荷重センサ装置534は、各車輪502の接地面が路面Gから受ける荷重を検出すると共
に、その検出結果をCPU71に出力するための装置であり、各車輪502が受ける荷重をそれぞれ検出するFL~RR荷重センサ534FL~534RRと、それら各荷重センサ534FL~534RRの検出結果を処理してCPU71に出力する処理回路(図示せず)とを備えている。
 なお、本実施の形態では、各荷重センサ534FL~534RRがピエゾ抵抗型の3軸荷重センサとして構成されている。これら各荷重センサ534FL~534RRは、各車輪502のサスペンション軸(図示せず)上に配設され、上述した車輪502が路面Gから受ける荷重を車両501の前後方向、左右方向及び上下方向の3方向で検出する。
 CPU71は、接地荷重センサ装置534から入力された各荷重センサ534FL~534RRの検出結果(接地荷重)より、各車輪502の接地面における路面Gの摩擦係数μを次のように推定する。
 例えば、前輪502FLに着目すると、FL荷重センサ534FLにより検出される車両501の前後方向、左右方向および垂直方向の荷重がそれぞれFx、Fy及びFzであれば、前輪502FLの接地面に対応する部分の路面Gにおける車両501前後方向の摩擦係数μは、前輪502FLが路面Gに対してスリップしているスリップ状態ではFx/Fzとなり(μx=Fx/Fz)、前輪502FLが路面Gに対してスリップしていない非スリップ状態ではFx/Fzよりも大きい値であると推定される(μx>Fx/Fz)。
 なお、車両501の左右方向の摩擦係数μyについても同様であり、スリップ状態ではμy=Fy/Fzとなり、非スリップ状態ではFy/Fzよりも大きな値と推定される。また、摩擦係数μを他の手法により検出することは当然可能である。他の手法としては、例えば、特開2001-315633号公報や特開2003-118554号に開示される公知の技術が例示される。
 車輪回転速度センサ装置535は、各車輪502の回転速度を検出すると共に、その検出結果をCPU71に出力するための装置であり、各車輪502の回転速度をそれぞれ検出する4個のFL~RR回転速度センサ535FL~535RRと、それら各回転速度センサ535FL~535RRの検出結果を処理してCPU71に出力する処理回路(図示せず)とを備えている。
 なお、本実施の形態では、各回転センサ535FL~535RRが各車輪502に設けられ、各車輪502の角速度を回転速度として検出する。即ち、各回転センサ535FL~535RRは、各車輪502に連動して回転する回転体と、その回転体の周方向に多数形成された歯の有無を電磁的に検出するピックアップとを備えた電磁ピックアップ式のセンサとして構成されている。
 CPU71は、車輪回転速度センサ装置535から入力された各車輪502の回転速度と、予めROM72に記憶されている各車輪502の外径とから、各車輪502の実際の周速度をそれぞれ得ることができ、その周速度と車両501の走行速度(対地速度)とを比較することで、各車輪502がスリップしているか否かを判断することができる。
 アクセルペダルセンサ装置552aは、アクセルペダル552の操作状態を検出すると共に、その検出結果をCPU71に出力するための装置であり、アクセルペダル552の踏み込み状態を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 ブレーキペダルセンサ装置553aは、ブレーキペダル553の操作状態を検出すると共に
、その検出結果をCPU71に出力するための装置であり、ブレーキペダル553の踏み込み状態を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 ステアリングセンサ装置554aは、ステアリング機構554の操作状態を検出すると共に、その検出結果をCPU71に出力するための装置であり、ステアリング機構554の操作状態を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 ワイパースイッチセンサ装置555aは、ワイパースイッチ555の操作状態を検出すると共に、その検出結果をCPU71に出力するための装置であり、ワイパースイッチ555の操作状態(操作位置)を検出するポジショニングセンサ(図示せず)と、そのポジショニングセンサの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 ウィンカスイッチセンサ装置556aは、ウィンカスイッチ556の操作状態を検出すると共に、その検出結果をCPU71に出力するための装置であり、ウィンカスイッチ556の操作状態(操作位置)を検出するポジショニングセンサ(図示せず)と、そのポジショニングセンサの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 高グリップスイッチセンサ装置557aは、高グリップスイッチ557の操作状態を検出すると共に、その検出結果をCPU71に出力するための装置であり、高グリップスイッチ557の操作状態(操作位置)を検出するポジショニングセンサ(図示せず)と、そのポジショニングセンサの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 ヨーレートセンサ装置558は、車両501に加わるヨーレートを検出すると共に、その検出結果をCPU71に出力するための装置であり、車両501のヨーレート状態を検出するヨーレートセンサ(図示せず)と、そのヨーレートセンサの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 勾配センサ装置559は、車両501の勾配を検出すると共に、その検出結果をCPU71に出力するための装置であり、車両501の勾配状態を検出する勾配センサ(図示せず)と、その勾配センサの検出結果を処理してCPU71に出力する制御回路(図示せず)とを主に備えている。
 キャンバ角センサ装置560は、各車輪502のキャンバ角を検出すると共に、その検出結果をCPU71に出力するための装置であり、各車輪502のキャンバ角をそれぞれ検出する4個のFL~RRキャンバ角センサ560FL~560RRと、それら各キャンバ角センサ560FL~560RRの検出結果を処理してCPU71に出力する処理回路(図示せず)とを備えている。
 なお、本実施の形態では、各角度センサが電気抵抗を利用した接触型のポテンショメータとして構成されている。CPU71は、各センサ装置552a~554aの制御回路から入力された検出結果により各ペダル552,553の踏み込み量及びステアリング機構554の操作角を得ると共に、その検出結果を時間微分することにより、各ペダル552,553の踏み込み速度(操作速度)及びステアリング機構554の回転速度(操作速度)を得ることができる。
 図11に示す他の入出力装置536としては、例えば、雨量を検出するための雨量センサや路面Gの状態を非接触で検出する光学センサなどが例示される。
 次いで、図12から図14を参照して、車輪502の詳細構成について説明する。図12は、車両501の上面視を模式的に示した模式図である。図13及び図14は、車両501の正面視を模式的に図示した模式図であり、図13では、車輪502にネガティブキャンバが付与された状態が図示され、図14では、車輪502にポジティブキャンバが付与された状態が図示されている。
 上述したように、車輪502は、第1トレッド521及び第2トレッド522の2種類のトレッドを備え、図12に示すように、各車輪502(前輪502FL,502FR及び後輪502RL,502RR)において、第1トレッド521が車両501の内側に配置され、第2トレッド522が車両501の外側に配置されている。
 本実施の形態では、両トレッド521,522の幅寸法(図12左右方向寸法)が同一に構成されている。また、第1トレッド521は、第2トレッド522に比して、グリップ力の高い特性(高グリップ性)に構成される。一方、第2トレッド522は、第1トレッド521に比して、転がり抵抗の小さい特性(低転がり抵抗)に構成されている。
 例えば、図13に示すように、キャンバ角調整装置504が作動制御され、車輪502のキャンバ角θL,θRがマイナス方向(ネガティブキャンバ)に調整されると、車両501の内側に配置される第1トレッド521の接地圧Rinが増加されると共に、車両501の外側に配置される第2トレッド522の接地圧Routが減少される。これにより、第1トレッド521の高グリップ性を利用して、走行性能(例えば、旋回性能、加速性能、制動性能或いは雨天時の車両安定性など)の向上を図ることができる。
 一方、図14に示すように、キャンバ各調整装置504が作動制御され、車輪502のキャンバ角θL,θRがプラス方向(ポジティブキャンバ方向)に調整されると、車両501の内側に配置される第1トレッド521の接地圧が減少されると共に、車両501の外側に配置される第2トレッド522の接地圧が増加される。これにより、第2トレッド522の低転がり抵抗を利用して、省燃費性能の向上を図ることができる。
 次いで、図15を参照して、キャンバ制御処理について説明する。図15は、キャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置5100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2ms間隔で)実行される処理であり、車輪502に付与するキャンバ角を調整することで、上述した走行性能と省燃費性能との2つの性能の両立を図る。
 CPU71は、キャンバ制御処理に関し、まず、ワイパースイッチ555がオンされているか否か、即ち、フロントガラスのワイパーによる拭き取り動作が運転者により指示されているか否かを判断する(S501)。その結果、ワイパースイッチ555がオンされていると判断される場合には(S501:Yes)、現在の天候が雨天であり、路面Gに水膜が形成されている可能性があると推定されるので、車輪502にネガティブキャンバを付与して(S506)、このキャンバ制御処理を終了する。
 これにより、第1トレッド521の接地圧Rinが増加されると共に第2トレッド522の接地圧Routが減少されることで(図13参照)、第1トレッド521の高グリップ性を利用して、雨天時の車両安定性の向上を図ることができる。
 S501の処理において、ワイパースイッチ555はオンされていないと判断される場合には(S501:No)、雨天ではなく、路面Gの状態は良好であると推定されるので、次いで、
アクセルペダル552の踏み込み量は所定値以上であるか否か、即ち、所定以上の加速(急加速)が運転者により指示されているか否かを判断する(S502)。
 その結果、アクセルペダル552の踏み込み量が所定値以上であると判断される場合には(S502:Yes)、急加速が運転者より指示されており、車輪502がスリップするおそれがあるので、車輪502にネガティブキャンバを付与して(S506)、このキャンバ処理を終了する。
 これにより、上述した場合と同様に、第1トレッド521の接地圧Rinが増加されると共に第2トレッド522の接地圧Routが減少されることで(図13参照)、第1トレッド521の高グリップ性を利用して、車輪502のスリップを防止することができ、車両501の加速性能の向上を図ることができる。
 S502の処理において、アクセルペダル552の踏み込み量が所定値に達していないと判断される場合には(S502:No)、急加速は指示されておらず、緩やかな加速又は定速走行であると推定されるので、次いで、ブレーキペダル553の踏み込み量は所定値以上であるか否か、即ち、所定以上の制動(急制動)が運転者により指示されているか否かを判断する(S503)。
 その結果、ブレーキペダル553の踏み込み量が所定値以上であると判断される場合には(S503:Yes)、急制動が運転者より指示されており、車輪502がロックするおそれがあるので、車輪502にネガティブキャンバを付与して(S506)、このキャンバ処理を終了する。
 これにより、上述した場合と同様に、第1トレッド521の接地圧Rinが増加されると共に第2トレッド522の接地圧Routが減少されることで(図13参照)、第1トレッド521の高グリップ性を利用して、車輪502のロックを防止することができ、車両501の制動性能の向上を図ることができる。
 S503の処理において、ブレーキペダル553の踏み込み量が所定値に達していないと判断される場合には(S503:No)、急制動は指示されておらず、緩やかな制動か加速又は定速走行であると推定されるので、次いで、車両速度(対地速度)は所定値(例えば、時速15km)以下であるか否か、即ち、低速走行であるか否かを判断する(S517)。
 その結果、車両速度が所定値以下(即ち、低速走行中)であると判断される場合には(S517:Yes)、車両速度が所定値を越えている場合と比較して、車両501がその後に減速し停車する可能性や加速する可能性も高いといえる。よって、これらの場合には車両501(車輪502)のグリップ力や停止力を予め確保しておく必要があるので、車輪502にネガティブキャンバを付与して(S506)、このキャンバ処理を終了する。
 これにより、上述した場合と同様に、第1トレッド521の接地圧Rinが増加されると共に第2トレッド522の接地圧Routが減少されることで(図13参照)、第1トレッド521の高グリップ性を利用して、車輪502のグリップ力を増加させることで、そのロックやスリップを防止して、車両501の制動性能や加速性能の向上を図ることができる。
 また、車両501が停車した後は、第1トレッド521の高グリップ性を利用して、車両501(車輪502)の停止力を確保することができるので、車両501を安定した状態で停車させておくことができる。更に、その停車後に再発進する場合には、予め第1トレッドの接地圧Rinが増加されていることで、車輪502がスリップすることを防止して、車両501の再発進をスムーズ且つ高レスポンスで行うことができる。
 S517の処理において、車両速度が所定値よりも大きいと判断される場合には(S517:No)、車両速度が低速ではなく、加減速の際の駆動力・制動力が比較的小さな値になると推定されるので、次いで、ウィンカスイッチ556はオンであるか否か、即ち、右左折や車線変更を行う旨が運転者により指示されているか否かを判断する(S518)。
 その結果、ウィンカスイッチ556がオンであると判断される場合には(S518:Yes)、右左折や車線変更に伴って、車両501の旋回動作やその準備のための減速が行われる可能性が高いので、車輪502にネガティブキャンバを付与して(S506)、このキャンバ処理を終了する。
 これにより、上述した場合と同様に、第1トレッド521の接地圧Rinが増加されると共に第2トレッド522の接地圧Routが減少されることで(図13参照)、第1トレッド521の高グリップ性を利用して、車輪502のスリップを防止することができ、車両501の旋回性能の向上を図ることができる。
 S518の処理において、ウィンカスイッチ556はオンされていないと判断される場合には(S518:No)、右左折や車線変更に伴う車両501の旋回動作は行われないと推定されるので、次いで、高グリップスイッチ557はオンであるか否か、即ち、車輪502の特性として高グリップ性を選択する旨が運転者により指示されているか否かを判断する(S519)。
 その結果、高グリップスイッチ557がオンであると判断される場合には(S519:Yes)、車輪502の特性として高グリップ性が選択されたということであるので、車輪502にネガティブキャンバを付与して(S506)、このキャンバ処理を終了する。
 これにより、上述した場合と同様に、第1トレッド521の接地圧Rinが増加されると共に第2トレッド522の接地圧Routが減少されることで(図13参照)、第1トレッド521の高グリップ性を利用して、車輪502のスリップを防止することができ、車両501の制動性能や加速性能、或いは旋回性能の向上を図ることができる。
 S519の処理において、高グリップスイッチ557はオンされていないと判断される場合には(S519:No)、次いで、ステアリング機構554の操作角は所定値以上であるか否か、即ち、所定以上の旋回(急旋回)が運転者により指示されているか否かを判断する(S504)。
 その結果、ステアリング機構554の操作角が所定値以上であると判断される場合には(S504:Yes)、急旋回が運転者より指示されており、車輪502がスリップして、車両501がスピンするおそれがあるので、車輪502にネガティブキャンバを付与して(S506)、このキャンバ処理を終了する。
 これにより、上述した場合と同様に、第1トレッド521の接地圧Rinが増加されると共に第2トレッド522の接地圧Routが減少されることで(図13参照)、第1トレッド521の高グリップ性を利用して、車輪502のスリップ(車両501のスピン)を防止することができ、車両501の旋回性能の向上を図ることができる。
 一方、S504の処理において、ステアリング機構554の操作角が所定値に達していないと判断される場合には(S504:No)、急旋回は指示されておらず、緩やかな旋回又は直進走行であり、また、S501からS503の処理より、路面状態は良好であり、急加速や急制動も指示されていないと推定される(S501:No、S502:No、S503:No)。
 よって、この場合には(S501:No、S502:No、S503:No、S504:No)、車輪502の性能として高グリップ性を得る必要はなく、低転がり抵抗による省燃費性能を得ることが好ましいと判断できるので、車輪502にポジティブキャンバを付与して(S505)、このキャンバ処理を終了する。
 これにより、第1トレッド521の接地圧Rinが減少されると共に第2トレッド522の接地圧Routが増加されることで(図14参照)、第2トレッド522の低転がり抵抗を利用して、車輪502の転がり効率を向上させることができ、車両501の省燃費性能の向上を図ることができる。
 このように、本実施の形態によれば、キャンバ角調整装置504により車輪502のキャンバ角θR,θLを調整して、第1トレッド521における接地圧Rinと第2トレッド522における接地圧Routとの比率を変更することで、加速性能及び制動性能と省燃費性能との互いに背反する2つの性能の両立を図ることができる。
 次に、キャンバ角調整装置504がキャンバ角調整装置504又は車両用制御装置5100等の故障により制御不能となった場合のフェールセーフ制御について説明する。図16は直進時にキャンバ角が制御不能となった場合のフェールセーフ制御のフローチャート図、図17は旋回時にキャンバ角が制御不能となった場合のフェールセーフ制御のフローチャート図である。
 図16に示すように、直進時に判別手段により少なくとも1つの車輪のキャンバ角が制御不能であると判断した場合には、まず、キャンバ角センサ装置560により、制御不能となった車輪502のキャンバ角が0か否かを判断する(S521)。S521の処理において、キャンバ角が0でないと判断される場合には(S521:No)、制御手段は、制御可能な車輪502のキャンバ角を、制御不能となった車輪502のキャンバ角に合わせ(S522)、車両501を安定させた状態で、フェールセーフ制御を終了する。
 S521の処理において、キャンバ角が0であると判断される場合には(S521:Yes)、制御手段は、制御可能な車輪502のキャンバ角を、制御不能となった車輪502のキャンバ角に合わせ(S523)、車両501を一旦安定させた状態とする。次に、ステアリング角をステアリングセンサ装置554aで検出し、ヨーレートをヨーレートセンサ装置558で検出し、車速を車両速度センサ装置532や車輪回転速度センサ装置535で検出する(S524)。
 次に、ヨーレートが0であるか否かを判断する(S525)。S525の処理において、ヨーレートが0であると判断される場合には(S525:Yes)、フェールセーフ制御を終了する。S525の処理において、ヨーレートが0でないと判断される場合には(S525:No)、制御手段は、ヨーレートが0となるようにステアリング機構554を制御する(S526)。
 次に、車両速度が所定の速度よりも小さいか否かを判断する(S527)。S527の処理において、車両速度が所定の速度よりも小さいと判断される場合には(S527:Yes)、ステアリング制御を終了し(S528)、フェールセーフ制御を終了する。S527の処理において、車両速度が所定の速度よりも大きいと判断される場合には(S527:No)、S524に戻る。
 図17に示すように、旋回時に判別手段により少なくとも1つの車輪のキャンバ角が制御不能であると判断した場合には、まず、制御可能な車輪502のキャンバ角を、制御不能
となった車輪502のキャンバ角に合わせ(S531)、車両501を一旦安定させた状態とする。次に、ステアリング角をステアリングセンサ装置554aで検出し、ヨーレートをヨーレートセンサ装置558で検出し、車速を車両速度センサ装置532や車輪回転速度センサ装置535で検出し、勾配を勾配センサ装置559で検出する(S532)。続いて、S532の処理において求めたステアリング角、車速及び勾配等から、旋回に必要なヨーレート値を算出手段により算出する(S533)。
 次に、旋回に必要なヨーレート値か否かを判断する(S534)。S534の処理において、旋回に必要なヨーレート値であると判断される場合には(S534:Yes)、フェールセーフ制御を終了する。S534の処理において、旋回に必要なヨーレート値でないと判断される場合には(S534:No)、制御手段は、旋回に必要なヨーレート値になるようにステアリング機構554を制御する(S535)。
 このように、第1トレッド521と、その第1トレッド521に対して幅方向に並設され車両501の外側又は内側に配置される第2トレッド522と、を備えると共に、第1トレッド521と第2トレッド522とが互いに異なる特性に構成され、第1トレッド521は、第2トレッド522に比して、グリップ力の高い特性に構成されると共に、第2トレッド522は、第1トレッド521に比して、転がり抵抗の小さい特性に構成された車輪502と、車輪502のキャンバ角を調整するキャンバ角調整装置504と、車輪502を操舵するステアリング機構554と、ステアリング機構554の操作状態を検出するステアリングセンサ装置554aと、車輪502のキャンバ角を検出するキャンバ角センサ装置560と、を備えた車両用制御装置5100において、少なくとも一つの車輪502のキャンバ角が制御不能であると判断した場合、制御可能な車輪502のキャンバ角を制御不能な車輪502のキャンバ角に近づけるように制御すると共に、ステアリング機構554を制御するので、通常走行時は高グリップ性と低燃費との両立を図ると共に、キャンバ角調整装置504が故障し、キャンバ角が制御不能になった場合、ステアリング機構554を制御することで車両が安定した状態となり、車両501のぶれを低減させることが可能となる。
 また、車両501の車速を検知する車速検知手段と、車両501のヨーレート値を検知するヨーレートセンサ装置558と、を備え、直進時に、車両501の車速が所定速度以上の場合、車両501のヨーレート値が0に近づくようにステアリング機構554を制御するので、キャンバ角調整装置504が故障し、キャンバ角が制御不能になった場合、ステアリング機構554を制御することで車両501が安定した状態となり、車両501のぶれを低減させることが可能となる。
 また、車両501の車速を検知する車速検知手段と、車両501のヨーレート値を検知するヨーレートセンサ装置558と、車両501の勾配を検知する勾配センサ装置559と、を備え、旋回時に、ステアリングセンサ装置554a、車速検知手段、ヨーレートセンサ装置558及び勾配センサ装置559から旋回に必要なヨーレート値を算出し、旋回に必要なヨーレート値に近づくようにステアリング機構554を制御するので、キャンバ角調整装置504が故障し、キャンバ角が制御不能になった場合、ステアリング機構554を制御することで車両が安定した状態となり、円滑に旋回することが可能となる。
 次いで、第6の実施の形態について図面を参照しながら詳細に説明する。図19は本発明の第6の実施の形態における車両の概念図である。
 図において、611は車両の本体を表すボディ、WLF、WRF、WLB、WRBは、ボディ611に対して回転自在に配設された前方左側、前方右側、後方左側及び後方右側の車輪である。車輪WLF、WRFによって前輪が、車輪WLB、WRBによって後輪が構成される。
 また、612は駆動源としてのエンジン、613は操舵装置としてのステアリングホイール、614は加速操作部材としてのアクセルペダル、615は減速操作部材としてのブレーキペダル、621は、前記エンジン612を駆動することによって発生させられた回転を駆動輪として機能する車輪WLB、WRBに伝達する回転伝達部材としてのプロペラシャフト、622はエンジン612から伝達された回転を差動させるディファレンシャル装置、624は該ディファレンシャル装置622によって差動させられた回転を各車輪WLB、WRBに伝達するドライブシャフトである。
 そして、631~634は、それぞれ、ボディ611と各車輪WLF、WRF、WLB、WRBとの間に配設され、各車輪WLF、WRF、WLB、WRBを路面に押し付けるサスペンション機構である。なお、前記各車輪WLF、WRF、サスペンション機構631、632等によってキャンバ角調整装置が、該キャンバ角調整装置及びボディ611によってサスペンションシステムが構成される。
 本実施の形態においては、駆動源としてエンジン612が使用され、該エンジン612によって発生させられた回転が、プロペラシャフト621、ディファレンシャル装置622及びドライブシャフト624を介して各車輪WLB、WRBに伝達されるようになっているが、エンジン612と車輪WLF、WRFとを図示されないドライブシャフトを介して連結し、エンジン612の回転を各車輪WLF、WRFに伝達し、車輪WLF、WRFを駆動輪として機能させることができる。また、各車輪WLF、WRF、WLB、WRBに、それぞれ駆動源としての図示されないホイールモータを配設し、各ホイールモータを駆動することによって各車輪WLF、WRF、WLB、WRBを直接回転させ、各車輪WLF、WRF、WLB、WRBを駆動輪として機能させることもできる。
 ところで、該各車輪WLF、WRF、WLB、WRBは、アルミニウム合金等によって形成された図示されないホイール、及び該ホイールの外周に嵌(かん)合させて配設されたタイヤ636を備える。そして、各車輪WLF、WRF、WLB、WRBのうちの車輪WLF、WRFにおいては、タイヤ636のトレッド637が幅方向における複数の領域に、本実施の形態においては、二つの領域に分割され、トレッド637の幅方向における中心を表す中心線を区分線Ld1としたとき、該区分線Ld1より外側(ボディ611から離れる側)に、損失正接が小さい特性を有する低転がり抵抗領域638が、区分線Ld1より内側(ボディ611側)に、損失正接が大きい特性を有する高グリップ領域639が形成される。
 そのために、前記低転がり抵抗領域638及び高グリップ領域639の各外周面には、溝のパターン(以下「トレッドパターン」という。)が異ならせて形成される。すなわち、低転がり抵抗領域638には、タイヤ636の円周方向において溝が連続するリブタイプのトレッドパターンが形成され、高グリップ領域639には、タイヤ636の幅方向において溝が連続するラグタイプのトレッドパターンが形成される。また、高グリップ領域639に、独立した複数のブロックを備えるブロックタイプのトレッドパターンを形成することもできる。
 なお、前記損失正接は、トレッド637が変形する際のエネルギーの吸収度合いを示し、貯蔵剪(せん)断弾性率に対する損失剪断弾性率の比で表すことができる。損失正接が小さいほどエネルギーの吸収が少なくなるので、路面との摩擦によってタイヤ636に発生する転がり抵抗が小さくなり、路面を掴む力を表すグリップ力も小さくなる。また、タイヤ636に発生する摩耗が少なくなる。これに対して、損失正接が大きいほどエネルギーの吸収が多くなるので、転がり抵抗が大きくなり、グリップ力も大きくなる。また、タイヤ636に発生する摩耗が多くなる。
 本実施の形態においては、区分線Ld1がトレッド637の中心線にされるようになっているが、区分線Ld1をトレッド637の幅方向における任意の位置に置き、低転がり抵抗領域638及び高グリップ領域639の各接地面積を互いに異ならせることができる。
 前記構成の車両においては、通常走行時に、低転がり抵抗領域638を路面に接地させると、転がり抵抗が小さくされるので、燃費をよくすることができる。また、車両の制動時に、高グリップ領域639を路面に接地させると、グリップ力が大きくされるので、制動距離を短くしたり、横すべりが発生するのを防止したりすることができる。
 そのために、本実施の形態においては、前記各サスペンション機構631、632において、車両の走行の態様に応じてタイヤ636のキャンバ角が調整されるようになっている。
 そこで、各サスペンション機構631、632について説明する。
 図20は本発明の第6の実施の形態におけるサスペンションシステムを示す平面図、図21は本発明の第6の実施の形態におけるサスペンションシステムを示す側面図、図22は本発明の第6の実施の形態におけるサスペンションシステムを示す斜視図である。なお、図20及び4はサスペンション機構631を示す。
 図において、611はボディ、WLFは車輪、631、632はサスペンション機構、636はタイヤ、637はトレッド、638は低転がり抵抗領域、639は高グリップ領域、Ld1は区分線、GNDは路面である。
 前記サスペンション機構631、632は、ダブルウィッシュボーン式の懸架構造を有し、車輪WLF、WRFのホイールw1、w2に取り付けられ、車輪WLF、WRFを回転自在に支持する支持部としてのナックルユニット651、該ナックルユニット651の上端部においてナックルユニット651とボディ611とを連結し、車輪WLFを移動自在に支持する第1のアームとしてのアッパアーム652、前記ナックルユニット651の下端部においてナックルユニット651とボディ611とを連結し、車輪WLFを移動自在に支持する第2のアームとしてのロワアーム653、前記ボディ611とロワアーム653とを連結するショックアブソーバsh1等を備える。
 また、前記ナックルユニット651は、ボディ611側に、ボディ611に対して上下方向に移動自在に配設された第1の要素としてのナックルアーム655、車輪WLF、WRF側に配設され、前記ホイールw1、w2に固定されるとともに、ナックルアーム655に対してキャンバ軸656を揺動中心にして揺動自在に配設された第2の要素としてのキャンバプレート657、前記キャンバ軸656より上方における前記ナックルアーム655とキャンバプレート657との間に配設され、該キャンバプレート657をナックルアーム655から離す側に向けて(図20及び4において反時計回りに)所定の付勢力で付勢する付勢部材としてのスプリング658等を備える。
 前記アッパアーム652は、「V」字状の形状を有し、ナックルユニット651側において一体にされ、ボディ611に向けて広がるように、斜め前側及び斜め後側に延在させて形成された2本のアーム部652a、652bを備える。また、前記アッパアーム652は、ナックルユニット651側において1箇所で連結要素としてのボールジョイント661によってナックルアーム655に対して揺動自在に連結され、ボディ611側において2箇所で連結要素としての筒状のブッシュ662a、662bによってボディ611に対して揺動自在に連結される。この場合、車両の走行方向において、アーム部652a及びブッシュ662aはアーム部652b及びブッシュ662bより前側に配設される。
 前記ロワアーム653は、前記アッパアーム652と同様に、「V」字状の形状を有し、ナックルユニット651側において一体にされ、ボディ611に向けて、斜め前側及び斜め後側に広がるように延在させて形成された2本のアーム部653a、653bを備える。そして、前記ロワアーム653は、ナックルユニット651側において1箇所で連結要素としてのボールジョイント663によってナックルアーム655に対して揺動自在に連結され、ボディ611側において2箇所で連結要素としての筒状のブッシュ664a、664bによってボディ611に対して揺動自在に連結される。この場合、車両の走行方向において、アーム部653a及びブッシュ664aはアーム部653b及びブッシュ664bより前側に配設される。
 また、前記各ブッシュ662a、662b、664a、664bは、ボディ611に固定されたビーム665(図22において、ブッシュ662a、662b側のビーム665だけが示される。)を包囲するように外嵌させられる。
 なお、車両の走行方向においてボールジョイント663はボールジョイント661より前方に位置しせられ、ボールジョイント661、663を結ぶ仮想線は、ボディ611に対して所定のキャスタ角を形成するように傾斜させられる。すなわち、車輪WLFは、操舵輪として機能し、キャスタ角を付けて支持される。
 ところで、前記車輪WLF、WRFは、車両の制動時に、車両の慣性によって必ずトウアウトとなるトウ角が付与されるように支持される。そして、トウ角が付与されることによって、車輪WLF、WRFに負の値のキャンバ角(ネガティブキャンバ)が付与される。
 そのために、前側のブッシュ662a、664aにおけるボディ611に対する連結剛性は、後側のブッシュ662b、664bにおけるボディ611に対する連結剛性より小さくされる。
 次に、ブッシュ662a、662b、664a、664bの構造について説明する。この場合、前側のブッシュ662a、664aは互いに同じ構造を、後側のブッシュ662b、664bは互いに同じ構造を有するので、前側のブッシュ662a及び後側のブッシュ662bについて説明する。
 図18は本発明の第6の実施の形態における車輪にキャンバ角が付与された状態を示す図、図23は本発明の第6の実施の形態における前側のブッシュの構造を示す断面図、図24は本発明の第6の実施の形態における後側のブッシュの構造を示す断面図、図25は本発明の第6の実施の形態における車輪にトウ角が付与された状態を示す図、図26は本発明の第6の実施の形態における制動時の横力を説明する第1の図、図27は本発明の第6の実施の形態における制動時の横力を説明する第2の図である。
 前側のブッシュ662aは、変形しにくく剛性の高い材料、例えば、金属によって形成された第1の部材としての内側スリーブ671、該内側スリーブ671と同心状に配設され、金属によって形成された第2の部材としての外側スリーブ672、及び前記内側スリーブ671と外側スリーブ672との間に配設され、変形しやすく剛性の低い材料、例えば、ゴムによって形成された第3の部材としての中間体673を備え、前記ビーム665の外側に前記内側スリーブ671が相対的に回動自在に配設され、前記外側スリーブ672に前記アーム部652aが固定される。前記ビーム665の前端に、ブッシュ662aのビーム665からの抜けを防止するためのフランジ部665aが径方向外方に向けて突出させて形成される。前記内側スリーブ671及び外側スリーブ672は剛体として、中間体673は弾性体として機能する。
 また、後側のブッシュ662bは、金属によって形成された第1の部材としての内側スリーブ675、該内側スリーブ675と同心状に配設され、金属によって形成された第2の部材としての外側スリーブ676、及び前記内側スリーブ675と外側スリーブ676との間に配設され、金属によって形成された第3の部材としての中間体677を備え、前記ビーム665の外側に前記内側スリーブ675が相対的に回動自在に配設され、前記外側スリーブ675に前記アーム部652bが固定される。前記内側スリーブ675及び外側スリーブ676によって球面ベアリングが構成され、内側スリーブ675の軸方向における中央部分の外周面に、径方向外方に向けて凸面状に突出する球面部675aが形成され、中間体677の内周面に、前記球面部675aと対応する形状を有し、球面部675aを揺動自在に、かつ、回転自在に支持する支持部677aが形成される。
 また、前記ビーム665の後端に、ブッシュ662bのビーム665からの抜けを防止するためのフランジ部665bが径方向外方に向けて突出させて形成される。前記内側スリーブ675、外側スリーブ676及び外側スリーブ676は剛体として機能する。
 この場合、前記前側のブッシュ662aにおいては、前記内側スリーブ671及び外側スリーブ672が剛体として、中間体673が弾性体として機能するので、外力が加わると、内側スリーブ671に対して外側スリーブ672が、径方向に移動させられ、偏心させられる。これに対して、後側のブッシュ662bは、前記内側スリーブ675、外側スリーブ676及び外側スリーブ676が剛体として機能するので、外力が加わっても、内側スリーブ675に対して外側スリーブ676が、径方向に移動させられず、偏心させられることはない。
 すなわち、前述されたように、前側のブッシュ662aにおけるボディ611に対する連結剛性は、後側のブッシュ662bにおけるボディ611に対する連結剛性より小さくされる。
 ところで、例えば、運転者がブレーキペダル615(図19)を踏み込み、車両を制動すると、車両の慣性によって車輪WLF、WRFを前方に移動させようとするが、制動に伴って、車輪WLF、WRFの回転が抑制又は阻止され、車輪WLF、WRFには、タイヤ636が転がる方向を表すタイヤ636の向きと逆方向に転がり抵抗が発生する。
 そして、このとき、前側のブッシュ662aにおけるボディ611に対する連結剛性は、後側のブッシュ662bにおけるボディ611に対する連結剛性より小さくされるので、後側のブッシュ662bにおいては、内側スリーブ675に対して外側スリーブ676が偏心させられることがないのに対して、前側のブッシュ662aにおいては、内側スリーブ671に対して、外側スリーブ672がボディ611から離れる側に偏心させられる。
 したがって、車輪WLF、WRFが開かれ、車輪WLF、WRFに、互いにトウアウトの方向に、図26に示されるようなトウ角αが付与される。
 そして、車両の制動に伴って、各タイヤ636における路面GNDとの接地面に、車両の走行方向と反対側に向けてブレーキ力Fbが発生すると、該ブレーキ力Fbにおける車輪WLF、WRFの回転軸と平行な方向の分力が横力Fc
  Fc=Fb・sinα
として発生する。
 この場合、図27に示されるように、各タイヤ636における路面GNDとの接地面に、外側に向けて横力Fcが発生させられる。また、前記スプリング658は車輪WLF、WRFを付勢力Fsでボディ611から離れる側に向けて付勢する。
 したがって、前記キャンバ軸656とスプリング658の中心との間の距離をL1とし、キャンバ軸656と路面GNDとの間の距離をL2としたとき、車輪WLFにおいては、キャンバ軸656を中心として、横力Fc及び付勢力Fsよって互いに逆方向にモーメントが発生する。この場合、各モーメントが釣り合うと、
  Fs・L1=Fc・L2
になり、そのときの付勢力Fsは、
  Fs=Fc・L2/L1
になる。そこで、付勢力Fsが値Fc・L2/L1より小さくなるように設定すると、図18に示されるように、横力Fcを発生源として、車輪WLF、WRFに負の値のキャンバ角が形成される。
 したがって、図18に示されるように、各車輪WLF、WRFのトレッド637において、高グリップ領域639だけが路面GNDと接触させられる。したがって、十分に大きなグリップ力を発生させながら車輪WLF、WRFを停止させ、車両を停止させることができる。
 このように、本実施の形態においては、制動時に、各車輪WLF、WRFにおいて、十分に大きなグリップ力を発生させることができるので、制動距離が長くなるのを防止することができる。
 また、各車輪WLF、WRFにキャンバ角を付与するために、アクチュエータを配設する必要がないので、制動時に消費されるエネルギーを少なくすることができる。したがって、燃費をよくすることができる。
 本実施の形態においては、ナックルユニット651における下側にキャンバ軸656が、上側にスプリング658が配設されるようになっているが、ナックルユニット651における上側にキャンバ軸656を、下側にスプリング658を配設することができる。その場合、スプリング658は負の値のキャンバ角を形成するために、キャンバプレート657をナックルアーム655に近づける側に向けて付勢する。
 また、本実施の形態においては、各車輪WLF、WRFのタイヤ636のトレッド637において、区分線Ld1より外側に低転がり抵抗領域638が、区分線Ld1より内側に高グリップ領域639が形成されるようになっているが、トレッド637の幅方向において三つ以上の領域が形成される場合、各領域のうちの最も内側に高グリップ領域を形成し、負の値のキャンバ角が形成されるのに伴って、高グリップ領域を路面に接地させることができる。
 なお、前記トウ角α及びキャンバ角の値は、中間体673の硬度を変化させることによって変更される。中間体673の硬度を高くすると、前側のブッシュ662aにおけるボディ611に対する連結剛性がその分大きくなり、トウ角及びキャンバ角が小さくなる。また、中間体673の硬度を低くすると、前側のブッシュ662aにおけるボディ611に対する連結剛性がその分小さくなり、トウ角及びキャンバ角が大きくなる。
 なお、中間体673の硬度を一定にし、内側スリーブ671と外側スリーブ672との間における中間体673の充填(てん)度を変化させることによって、前記トウ角α及びキャンバ角の値を変更することができる。
 図28は本発明の第6の実施の形態における前側のブッシュの変形例を示す斜視図である。
 図において、中間体673は、変形しやすく剛性の低い材料、例えば、ゴムによって形成された中間体であり、該中間体673は、内側スリーブ671と外側スリーブ672との間の空間において、所定の充填度で局部的に充填される。そのために、中間体673は、弧状の形状を有し、ゴムによって形成された複数の充填体682、及び該各充填体682間に形成された空隙(げき)683を備える。なお、前記充填度は、内側スリーブ671と外側スリーブ672との間の空間に占める充填体682の体積の割合いを表す。
 この場合、中間体673の充填度を高くすると、前側のブッシュ662aにおけるボディ611に対する連結剛性がその分大きくなり、トウ角α及びキャンバ角が小さくなる。また、中間体673の充填度を低くすると、前側のブッシュ662aにおけるボディ611に対する連結剛性がその分小さくなり、トウ角α及びキャンバ角が大きくなる。
 次に、ストラット式の懸架構造に適用した本発明の第7の実施の形態について説明する。なお、第6の実施の形態と同じ構造を有するものについては、同じ符号を付与し、同じ構造を有することによる発明の効果については同実施の形態の効果を援用する。
 図29は本発明の第7の実施の形態におけるサスペンションシステムを示す斜視図である。
 第2の実施の形態におけるサスペンション機構731は、ストラット式の懸架構造を有し、車輪WLFのホイールw1に取り付けられ、ホイールw1とボディ611とを連結し、車輪WLFを回転自在に支持する図示されない支持部、該支持部に対して揺動自在に配設されたアーム785、前記ボディ611と支持部との間を連結するショックアブソーバsh2等を備える。
 前記アーム785は、「V」字状の形状を有し、ホイールw1側において一体にされ、ボディ611に向けて広がるように延在させて形成された2本のアーム部785a、785bを備える。また、前記アーム785は、ホイールw1側において1箇所で連結要素としての図示されないボールジョイントによってボディ611に対して揺動自在に連結され、ボディ611側において、2箇所で連結要素としての筒状のブッシュ762a、762bによってボディ611に対して揺動自在に連結される。
 この場合、第6の実施の形態と同様に、前記車輪WLF、WRFは、車両の制動時に、車両の慣性によって必ずトウアウトとなるトウ角が付与されるように支持される。そして、トウ角が付与されることによって、車輪WLF、WRFに負の値のキャンバ角が付与される。
 以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
 例えば、上記各実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。また、上記各実施形態における構成の一部または全部を他の実施形態における構成の一部または全部と組み合わせることは当然可能である。
 また、上記各実施形態では、スリップ防止処理により、走行中の全車輪2の中にスリップの可能性がある車輪が存在すると判定された場合には、スリップの可能性がある車輪に規定角度のネガティブキャンバを付与する構成としたが、ポジティブキャンバ(プラス方向のキャンバ角)を付与する構成としてもよい。
 また、上記各実施形態では、懸架装置4として、ストラット式サスペンションを例示したが、その他の形式、例えば、ダブルウィッシュボーン式サスペンションやマルチリンク式サスペンションなど用いる場合であっても同様に適用できる。
 また、上記第2実施形態では、トレッド面2aの曲率が小さい車輪2を用いることにより、キャンバ角の付与に伴う車高の低下を実現する構成としたが、懸架装置4の構造として、車輪2へのキャンバ角の付与によって車高を下げる構造を利用する構成であってもよい。
 また、上記各実施形態では、左車輪と右車輪とを比較して、スリップの可能性のある側を比較し、スリップの可能性のある側の車輪にキャンバ角(ネガティブキャンバ)を付与する構成としたが、その他の組み合わせ、例えば、前車輪と後車輪とにおいてスリップの可能性のある側を比較し、スリップの可能性のある側の車輪にキャンバ角を付与する構成としてもよい。
 また、上記各実施形態では、複数の車輪2(上記実施形態では、4つの車輪2)のうち、1の車輪にスリップの可能性があるか否かを判定し、スリップの可能性のある1の車輪にキャンバ角(ネガティブキャンバ)を付与する構成としたが、複数輪(例えば、2輪)のスリップ可能性を判定し、スリップの可能性のある1の車輪にキャンバ角を付与する構成としてもよい。
 また、スリップの可能性のある車輪を判定するための各車輪2の状態として、上記第1実施形態では各車輪2の回転数を、上記第3実施形態では各車輪2の接地荷重を、上記第4実施形態では各車輪2のストローク量を、それぞれ用いる構成としたが、各車輪2の回転数及び接地荷重を共に用いるなど、各車輪2の状態として複数種類のパラメータを用い、これらを組み合わせてスリップの可能性のある車輪を判定するように構成してもよい。
 また、上記各実施形態では、車輪駆動装置3により左右前輪(2FL,2FR)を回転駆動させる構成としたが、車輪駆動装置の構成にかかわらず、車輪にキャンバ角を付与可能な車両であれば、本発明を適用できる。例えば、車輪駆動装置をホイールモータやエンジンとする車両であっても、車輪にキャンバ角を付与可能な車両であればよい。
 以下に本発明の変形例を示す。第1の変形例(車両用制御装置A1~A3)は、車輪のキャンバ角及びステアリング機構を調整する車両用制御装置に関するものである。
 ここで、車輪のキャンバ角(タイヤ中心と地面とがなす角度)をマイナス方向で大きくとることで、タイヤの能力を十分に引き出して、旋回性能の向上を図る試みが行われている。これは、キャンバ角を例えば0°に設定していると、直進走行時にはトレッドが幅方向の全域で地面に接地するが、旋回時には遠心力による車両のロールにより内側のトレッドが地面から浮き上がり、十分な旋回性能を得られないからである。従って、マイナス方向のキャンバ角を予め付与しておくことで、旋回時にトレッドが地面へ幅広く接地でき、旋回性能の向上を図ることができる。
 しかしながら、マイナス方向に大きなキャンバ角で車輪を車両に装着すると、タイヤの旋回性能は向上されるが、直進走行時に内側のトレッド端部における接地圧が高くなり、タイヤが偏磨耗して不経済であると共に、トレッド端部の温度が高温になるという問題点があった。
 そこで、マイナス方向に大きなキャンバ角で車両に車輪を装着する場合に、タイヤの一方側のサイド部を他方側のサイド部より強く補強して剛性を大ならしめると共に、トレッドゴムを2分して、その一方側を他方側より硬度を低くする、或いはトレッド端部のトレッド厚みを厚くして、耐摩耗性、耐熱性及び高グリップ性を確保する技術が開示されている(特許文献1:特開平2-185802号公報)。
 また、車輪のキャンバ角をアクチュエータの駆動力によってアクティブ制御するサスペンションシステムが開示されている(特許文献2:米国特許6,347,802号公報)。
 しかしながら、前者の技術では、旋回時の高グリップ性を維持するという点では十分な性能を発揮し得るが、高グリップ性と低燃費(低転がり抵抗)との両立という点では不十分であるという問題点があった。また、上述した従来の技術では、高グリップ性は旋回時に限られるものであり、例えば、直進走行時の急加速・急制動時における高グリップ性の発揮が不十分であるという問題点があった。同様に、後者の技術では、高グリップ性と低燃費との両立という点では不十分であるという問題点があった。また、キャンバ角が制御不能となった場合の対策については何ら開示されていない。
 第1の変形例は上述した問題点を解決するためになされたものであり、高グリップ性と低燃費との両立を図ることができると共に、キャンバ角が制御不能となった場合に車両を安定した状態で制動することが可能な車両用制御装置を提供することを目的としている。
 第1トレッドと、その第1トレッドに対して幅方向に並設され車両の外側又は内側に配置される第2トレッドと、を備えると共に、前記第1トレッドと前記第2トレッドとが互いに異なる特性に構成され、前記第1トレッドは、前記第2トレッドに比して、グリップ力の高い特性に構成されると共に、前記第2トレッドは、前記第1トレッドに比して、転がり抵抗の小さい特性に構成された車輪と、前記車輪のキャンバ角を調整するキャンバ角調整装置と、前記車輪を操舵するステアリング機構と、前記ステアリング機構の操作状態を検出するステアリングセンサ装置と、前記車輪のキャンバ角を検出するキャンバ角センサ装置と、を備え、少なくとも一つの前記車輪のキャンバ角が制御不能であると判断した場合、制御可能な前記車輪のキャンバ角を制御不能な前記車輪のキャンバ角に近づけるように制御すると共に、前記ステアリング機構を制御することを特徴とする車両用制御装置A1。
 車両用制御装置A1によれば、第1トレッドと、その第1トレッドに対して幅方向に並設され車両の外側又は内側に配置される第2トレッドと、を備えると共に、前記第1トレッドと前記第2トレッドとが互いに異なる特性に構成され、前記第1トレッドは、前記第2トレッドに比して、グリップ力の高い特性に構成されると共に、前記第2トレッドは、前記第1トレッドに比して、転がり抵抗の小さい特性に構成された車輪と、前記車輪のキャンバ角を調整するキャンバ角調整装置と、前記車輪を操舵するステアリング機構と、前記ステアリング機構の操作状態を検出するステアリングセンサ装置と、前記車輪のキャンバ角を検出するキャンバ角センサ装置と、を備え、少なくとも一つの前記車輪のキャンバ角が制御不能であると判断した場合、制御可能な前記車輪のキャンバ角を制御不能な前記車輪のキャンバ角に近づけるように制御すると共に、前記ステアリング機構を制御するので、通常走行時は高グリップ性と低燃費との両立を図ると共に、キャンバ角調整装置が故障し、キャンバ角が制御不能になった場合、ステアリング機構を制御することで車両が安定した状態となり、車両のぶれを低減させることが可能となる。
 車両用制御装置A1において、前記車両の車速を検知する車速検知手段と、前記車両のヨーレート値を検知するヨーレートセンサ装置と、を備え、直進時に、前記車両の車速が所定速度以上の場合、前記車両のヨーレート値が0に近づくように前記ステアリング機構を制御することを特徴とする車両用制御装置A2。
 車両用制御装置A2によれば、車両用制御装置A1の奏する効果に加え、前記車両の車速を検知する車速検知手段と、前記車両のヨーレート値を検知するヨーレートセンサ装置と、を備え、直進時に、前記車両の車速が所定速度以上の場合、前記車両のヨーレート値が0に近づくように前記ステアリング機構を制御するので、キャンバ角調整装置が故障し、キャンバ角が制御不能になった場合、ステアリング機構を制御することで車両が安定した状態となり、車両のぶれを低減させることが可能となる。
 車両用制御装置A1において、前記車両の車速を検知する車速検知手段と、前記車両のヨーレート値を検知するヨーレートセンサ装置と、前記車両の勾配を検知する勾配センサ装置と、を備え、旋回時に、前記ステアリングセンサ装置、前記車速検知手段、前記ヨーレートセンサ装置及び前記勾配センサ装置から旋回に必要なヨーレート値を算出し、前記旋回に必要なヨーレート値に近づくように前記ステアリング機構を制御することを特徴とする車両用制御装置A3。
 車両用制御装置A3によれば、車両用制御装置A1の奏する効果に加え、前記車両の車速を検知する車速検知手段と、前記車両のヨーレート値を検知するヨーレートセンサ装置と、前記車両の勾配を検知する勾配センサ装置と、を備え、旋回時に、前記ステアリングセンサ装置、前記車速検知手段、前記ヨーレートセンサ装置及び前記勾配センサ装置から旋回に必要なヨーレート値を算出し、前記旋回に必要なヨーレート値に近づくように前記ステアリングを制御するので、キャンバ角調整装置が故障し、キャンバ角が制御不能になった場合、ステアリングを制御することで車両が安定した状態となり、円滑に旋回することが可能となる。
 第2の変形例(サスペンションシステムB1~B4)は、サスペンションシステムに関するものである。ここで、従来、車両においては、燃費をよくするために、例えば、トレッドゴムの損失正接を小さくすることによって、転がり抵抗を小さくしたタイヤが搭載されたものが提供されている。
 ところが、転がり抵抗を小さくすると、タイヤのグリップ力がその分小さくなり、制動時における制動距離が長くなったり、旋回時に横すべりが発生しやすくなったりする。
 そこで、トレッドを幅方向において分割し、中央の領域、すなわち、センタ部を、損失正接が小さい材料で、センタ部の両側の領域、すなわち、ショルダ部を、損失正接が大きい材料で形成するようにしたタイヤが提供されている(例えば、特許文献1:特開2005-22622号公報参照)
 しかしながら、前記従来の車両においては、車両を直進で走行させているとき、すなわち、通常走行時にセンタ部と路面とを、車両の制動時にショルダ部と路面とを確実に接触させることができず、制動時にグリップ力を十分に大きくすることができない。
 第2の変形例は、前記従来の車両の問題点を解決して、車両の制動時に十分に大きなグリップ力を発生させることができるサスペンションシステムを提供することを目的とする。
 車両のボディと、該ボディに対して回転自在に配設された複数の車輪と、前記ボディと各車輪との間に配設されたサスペンション機構とを有し、各車輪のタイヤに、路面に対するグリップ力が大きくされた高グリップ領域が形成されたサスペンションシステムにおいて、前記サスペンション機構は、車両の制動時に、車両の慣性によって前輪に、トウアウトとなるトウ角を付与し、トウ角の付与に伴って、負の値のキャンバ角を付与し、前記高グリップ領域を路面に接地させる構造を有することを特徴とするサスペンションシステムB1。
 サスペンションシステムB1によれば、車両のボディと、該ボディに対して回転自在に配設された複数の車輪と、前記ボディと各車輪との間に配設されたサスペンション機構とを有し、各車輪のタイヤに、路面に対するグリップ力が大きくされた高グリップ領域が形成されるようになっている。そして、前記サスペンション機構は、車両の制動時に、車両の慣性によって前輪に、トウアウトとなるトウ角を付与し、トウ角の付与に伴って、負の値のキャンバ角を付与し、前記高グリップ領域を路面に接地させる構造を有する。この場合、車両の制動時に、車両の慣性によって前輪に、トウアウトとなるトウ角が付与され、トウ角の付与に伴って、負の値のキャンバ角が付与され、前記高グリップ領域が路面に接地させられる。したがって、車両の制動時に十分に大きなグリップ力を発生させることができる。
 サスペンションシステムB1において、前記サスペンション機構は、前輪を回転自在に支持する支持部を有するとともに、該支持部から斜め前側に延在させて形成されたアームとボディとの連結剛性が、前記支持部から斜め後側に延在させて形成されたアームとボディとの連結剛性より小さくされるサスペンションシステムB2。
 サスペンションシステムB2において、各アームとボディとを連結する各連結要素はブッシュであるサスペンションシステムB3。
 サスペンションシステムB2において、前記支持部は、ボディ側に配設された第1の要素、前記各車輪を回転自在に支持し、第1の要素に対してキャンバ軸を揺動中心にして揺動自在に配設された第2の要素、及び第1、第2の要素間に配設され、所定の付勢力で第2の要素を付勢する付勢部材を備えるサスペンションシステムB4。
 サスペンションシステムB4によれば、前記支持部は、ボディ側に配設された第1の要素、前記各車輪を回転自在に支持し、第1の要素に対してキャンバ軸を揺動中心にして揺動自在に配設された第2の要素、及び第1、第2の要素間に配設され、所定の付勢力で第2の要素を付勢する付勢部材を備える。この場合、タイヤに加わる横力及び付勢部材の付勢力に応じて、第2の要素が所定の方向に回動させられ、各車輪にキャンバ角が付与され、高グリップ領域が路面に接地させられるので、車両の制動時に十分に大きなグリップ力を発生させることができる。
 

Claims (7)

  1.  複数の車輪と、その車輪のキャンバ角を調整するキャンバ角調整装置とを有する車両に用いられる制御装置であって、
     前記車両は、走行中における前記車輪の各々の状態を検出する車輪状態検出手段を有し、
     前記車輪状態検出手段により検出された各車輪の状態の比較に基づいて、前記複数の車輪の中にスリップの可能性がある車輪が存在するか否かを判定する判定手段と、
     前記判定手段により前記スリップの可能性がある車輪が存在すると判定された場合に、前記キャンバ角調整装置を作動させて、前記スリップの可能性があると判定された車輪のキャンバ角を、ネガティブ側又はポジティブ側に所定角度傾斜するように調整するキャンバ角調整手段とを備えていることを特徴とする制御装置。
  2.  前記判定手段は、前記車輪状態検出手段により検出された各車輪の状態の比較に基づいて、前記複数の車輪の中にスリップの可能性がある1の車輪が存在するか否かを判定するか否かを判定することを特徴とする請求項1記載の制御装置。
  3.  車輪と、
     その車輪のキャンバ角を調整するキャンバ角調整装置と、
     前記車輪の状態を検出する車輪状態検出手段と、
     請求項1又は2に記載の制御装置とを有する車両であって、
     前記車輪は、トレッド面の曲率が所定値より大きく構成され、
     前記キャンバ角調整装置は、前記車輪のキャンバ回転軸が前記車輪の回転軸より下方に設定されていることを特徴とする車両。
  4.  車輪と、
     その車輪のキャンバ角を調整するキャンバ角調整装置と、
     前記車輪の状態を検出する車輪状態検出手段と、
     請求項1又は2に記載の制御装置とを有する車両であって、
     前記車輪は、トレッド面の曲率が所定値より小さく構成され、
     前記キャンバ角調整装置は、前記車輪のキャンバ回転軸が前記車輪の回転軸より上方に設定されていることを特徴とする車両。
  5.  前記車輪状態検出手段は、前記車輪の回転数を検出することを特徴とする請求項3又は4に記載の車両。
  6.  前記車輪状態検出手段は、前記車輪の接地荷重を検出することを特徴とする請求項3又は4に記載の車両。
  7.  前記車輪を車体に懸架するサスペンションを備え、
     前記車輪状態検出手段は、前記サスペンションのストローク量を検出することを特徴とする請求項3又は4に記載の車両。
PCT/JP2009/052042 2008-02-07 2009-02-06 制御装置及び車両 WO2009099178A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/866,620 US20100320706A1 (en) 2008-02-07 2009-02-06 Control device and vehicle
CN2009801046156A CN101939179A (zh) 2008-02-07 2009-02-06 控制装置以及车辆
EP09709036A EP2241462A4 (en) 2008-02-07 2009-02-06 CONTROL AND VEHICLE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-027204 2008-02-07
JP2008027204A JP2009184540A (ja) 2008-02-07 2008-02-07 制御装置及び車両
JP2008-077677 2008-03-25
JP2008077677A JP5110290B2 (ja) 2008-03-25 2008-03-25 車両用制御装置
JP2008143193A JP2009286349A (ja) 2008-05-30 2008-05-30 サスペンションシステム
JP2008-143193 2008-05-30

Publications (1)

Publication Number Publication Date
WO2009099178A1 true WO2009099178A1 (ja) 2009-08-13

Family

ID=40952250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052042 WO2009099178A1 (ja) 2008-02-07 2009-02-06 制御装置及び車両

Country Status (4)

Country Link
US (1) US20100320706A1 (ja)
EP (1) EP2241462A4 (ja)
CN (1) CN101939179A (ja)
WO (1) WO2009099178A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016258A1 (ja) * 2009-08-07 2011-02-10 株式会社エクォス・リサーチ 車両
CN102574439A (zh) * 2009-09-30 2012-07-11 株式会社爱考斯研究 车辆用控制装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008048569A1 (de) * 2008-09-23 2010-03-25 Audi Ag Radaufhängung für Kraftfahrzeuge
EP2517948B1 (en) * 2009-12-25 2014-06-25 Honda Motor Co., Ltd. Rear-wheel toe-angle control device for a vehicle
DE102010021210A1 (de) * 2010-05-21 2011-11-24 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs, sowie Kraftfahrzeug
DE102012206003A1 (de) * 2012-04-12 2013-10-17 Robert Bosch Gmbh Verfahren zur Regelung eines pedalgetriebenen Fahrzeugs und Regelungsvorrichtung
JP6030520B2 (ja) * 2013-08-30 2016-11-24 本田技研工業株式会社 後輪サスペンション装置
JP6030521B2 (ja) 2013-08-30 2016-11-24 本田技研工業株式会社 後輪サスペンション装置
KR102016550B1 (ko) * 2013-10-23 2019-08-30 한화디펜스 주식회사 조향 시스템
DE102014011194B4 (de) * 2014-07-26 2020-12-10 Audi Ag Radträger für ein zweispuriges Kraftfahrzeug mit Drehwinkelanschlägen für die Spur-/Sturzverstellung
JP6909071B2 (ja) * 2017-06-23 2021-07-28 Ntn株式会社 補助転舵機能付ハブユニットおよび車両
DE102017214380A1 (de) * 2017-08-18 2019-02-21 Volkswagen Aktiengesellschaft Lenkwinkelregler
US10864959B2 (en) 2017-10-23 2020-12-15 Honda Motor Co., Ltd. Vehicle and related control system
JP6915507B2 (ja) * 2017-11-23 2021-08-04 株式会社デンソー 路面状態判別装置
US10806106B2 (en) 2018-04-03 2020-10-20 Valmont Industries, Inc. System, method and apparatus for providing a pull-out force compensating gearbox mount
CN112238722B (zh) * 2019-07-19 2021-12-21 吉林大学 悬架调整方法、存储介质及系统
KR20210135797A (ko) * 2020-05-06 2021-11-16 현대자동차주식회사 차량의 서스펜션 제어 장치 및 그 방법
GB2601353B (en) * 2020-11-27 2023-05-31 Jaguar Land Rover Ltd Camber modification for different driving surfaces
CN112590477B (zh) * 2020-12-25 2022-05-03 南京航空航天大学 一种具有空中飞行和地面扑跑功能的仿鸟机器人
CN112927517B (zh) * 2021-01-24 2022-09-13 成笑笑 一种闲时封闭的超载监控设备
CN112829831B (zh) * 2021-03-17 2022-10-25 合肥工业大学 一种具有前束值调整机构的车辆前桥总成

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178851A (ja) * 1989-12-06 1991-08-02 Japan Electron Control Syst Co Ltd 車両用アンチロックブレーキ装置
JP2003002024A (ja) * 2001-04-05 2003-01-08 Soc De Technol Michelin キャンバ角変化を許容するサスペンション装置
JP2006056462A (ja) * 2004-08-23 2006-03-02 Toyota Motor Corp 車両懸架システム
JP2006327571A (ja) * 2005-04-27 2006-12-07 Equos Research Co Ltd 制御装置
WO2008001913A1 (en) * 2006-06-30 2008-01-03 Equos Research Co., Ltd. Control device for vehicle
JP2008213557A (ja) * 2007-02-28 2008-09-18 Equos Research Co Ltd 車両用制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347569A (en) * 1980-08-12 1982-08-31 General Signal Corporation Wheel slip system
DE3534022A1 (de) * 1985-05-07 1987-03-26 Lucas Ind Plc Verfahren zum ermitteln des reibungskoeffizienten zwischen reifen und fahrbahn
US4752079A (en) * 1985-07-31 1988-06-21 Surfco Enhanced traction wheel assembly
JPH0741823B2 (ja) * 1986-08-27 1995-05-10 日本電装株式会社 車輪スリツプ制御装置
JPH03231017A (ja) * 1990-02-07 1991-10-15 Mitsubishi Motors Corp 車輪のキャンバ角制御装置
JP3617680B2 (ja) * 1995-01-31 2005-02-09 富士重工業株式会社 4輪駆動車のトラクション制御装置
US6279920B1 (en) * 1996-11-21 2001-08-28 Khalid M. Choudhery Variable camber suspension system
JP3834920B2 (ja) * 1997-03-26 2006-10-18 株式会社デンソー 車両のキャンバ角制御装置
DE19836440A1 (de) * 1998-08-12 2000-02-24 Daimler Chrysler Ag Radaufhängung für Kraftfahrzeuge, insbesondere unabhängige Radaufhängung für Personenkraftwagen
US6982635B2 (en) * 2000-09-21 2006-01-03 American Calcar Inc. Technique for assisting a vehicle user to make a turn
JP4114044B2 (ja) * 2001-07-17 2008-07-09 トヨタ自動車株式会社 タイヤ作用力検出装置
DE10325056A1 (de) * 2003-06-02 2004-12-23 Fag Kugelfischer Ag Anordnung einer schwenkbaren Radlagereinheit
DE10330894A1 (de) * 2003-07-09 2005-02-10 Daimlerchrysler Ag Lenkbares Fahrzeug und Verfahren zur Beeinflussung der Fahrtrichtung
WO2006070842A1 (ja) * 2004-12-27 2006-07-06 Equos Research Co., Ltd. 車輪制御装置及び制御装置
FR2884795B1 (fr) * 2005-04-26 2007-08-10 Michelin Soc Tech Dispositif de suspension a carrossage variable
JP2007015473A (ja) * 2005-07-06 2007-01-25 Nissan Motor Co Ltd 車両用操舵装置
JP4848994B2 (ja) * 2006-12-22 2011-12-28 株式会社エクォス・リサーチ 車両用制御装置
US8249790B2 (en) * 2007-06-04 2012-08-21 Advics Co., Ltd. Vehicle behavior control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178851A (ja) * 1989-12-06 1991-08-02 Japan Electron Control Syst Co Ltd 車両用アンチロックブレーキ装置
JP2003002024A (ja) * 2001-04-05 2003-01-08 Soc De Technol Michelin キャンバ角変化を許容するサスペンション装置
JP2006056462A (ja) * 2004-08-23 2006-03-02 Toyota Motor Corp 車両懸架システム
JP2006327571A (ja) * 2005-04-27 2006-12-07 Equos Research Co Ltd 制御装置
WO2008001913A1 (en) * 2006-06-30 2008-01-03 Equos Research Co., Ltd. Control device for vehicle
JP2008213557A (ja) * 2007-02-28 2008-09-18 Equos Research Co Ltd 車両用制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2241462A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016258A1 (ja) * 2009-08-07 2011-02-10 株式会社エクォス・リサーチ 車両
CN102574439A (zh) * 2009-09-30 2012-07-11 株式会社爱考斯研究 车辆用控制装置
CN102574439B (zh) * 2009-09-30 2015-05-20 株式会社爱考斯研究 车辆用控制装置

Also Published As

Publication number Publication date
EP2241462A4 (en) 2012-10-03
EP2241462A1 (en) 2010-10-20
US20100320706A1 (en) 2010-12-23
CN101939179A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
WO2009099178A1 (ja) 制御装置及び車両
US10639953B2 (en) Automatic tilting vehicle
US10464601B2 (en) Automatic tilting vehicle
JP4569560B2 (ja) 車両用制御装置
US8798869B2 (en) Vehicle motion control system
JP5109009B2 (ja) 車両用制御装置
JP4760754B2 (ja) 車両用制御装置
JP2008247234A (ja) 車両用制御装置
JP2009227203A (ja) キャンバー角調整装置
JP2009090971A (ja) キャンバ角制御装置
JP4946514B2 (ja) 車両用制御装置
JP2009184540A (ja) 制御装置及び車両
JP5141890B2 (ja) キャンバー角調整装置
JP2009184540A5 (ja)
JP5056704B2 (ja) 車両用制御装置
JP4952949B2 (ja) トウ・キャンバー角調整装置
JP5076552B2 (ja) 車両用制御装置
JP5110290B2 (ja) 車両用制御装置
JP4760735B2 (ja) 車両用制御装置
JP2009051497A5 (ja)
JP2009046124A5 (ja)
JP2009040412A5 (ja)
JP2009007004A5 (ja)
JP2021169248A (ja) 車両用ステアリングシステム
JP2009012541A (ja) 車両用制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104615.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12866620

Country of ref document: US

Ref document number: 2009709036

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP