WO2009096134A1 - 多価アルコールの水素化分解物の製造方法 - Google Patents
多価アルコールの水素化分解物の製造方法 Download PDFInfo
- Publication number
- WO2009096134A1 WO2009096134A1 PCT/JP2008/073713 JP2008073713W WO2009096134A1 WO 2009096134 A1 WO2009096134 A1 WO 2009096134A1 JP 2008073713 W JP2008073713 W JP 2008073713W WO 2009096134 A1 WO2009096134 A1 WO 2009096134A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyhydric alcohol
- glycerin
- catalyst
- producing
- reaction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/60—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration
Definitions
- the present invention relates to a method for efficiently converting polyhydric alcohol and producing a hydrocracked product thereof with high selectivity.
- C3 alcohols are useful as various industrial raw materials.
- the C3 alcohols there are 1,3-propanediol and 1,2-propanediol as diols, and 1,3-propanediol is attracting attention as a polyester and polyurethane raw material.
- 1,2-propanediol is used in, for example, polyester resins, paints, alkyd resins, various plasticizers, antifreezes, brake oils, and the like, and further includes food humectants, fruit juice viscosity enhancers, cellophane softeners for foods, Useful for cosmetics, pharmaceuticals, etc.
- 1,2-propanediol (hereinafter referred to as “1,2-PD”) by hydrogenolysis of glycerin. ) Is known.
- a method using a fixed bed continuous liquid phase reaction system (1) a method using a copper-chromium catalyst (see, for example, Patent Document 1), (2) a method using a cobalt-copper-manganese-molybdenum catalyst ( For example, refer to Patent Document 2), (3) a method using a copper-zinc-aluminum catalyst (for example, refer to Patent Document 3), (4) a method using a nickel-rhenium catalyst (for example, refer to Patent Document 4), (5 ) A method using a copper catalyst (see, for example, Patent Document 5) is known.
- a solvent may be used when performing a hydrogenation reaction in the liquid phase.
- Patent Documents 1 to 5 water is used as the solvent as in Patent Documents 1 to 5.
- Patent Document 2 has an example of a water content of 13.5% by mass
- Patent Document 5 has a water content of 10% by mass.
- the method (for example, refer patent document 6) using a fixed bed continuous gas phase reaction system has a catalyst protection effect by using water as a solvent.
- An object of the present invention is to improve the conversion rate and selectivity of a polyhydric alcohol hydrocracked product using a catalyst.
- the present inventors have found no catalytic protection effect on water, It has been found that when no water is added to the catalyst, the life of the catalyst is longer and both the conversion and selectivity can be improved. That is, the present invention provides a method for producing a hydrocracked product of a polyhydric alcohol in which a polyhydric alcohol solution having a water content of less than 10% by mass is hydrocracked by a fixed bed continuous liquid phase reaction in the presence of a hydrogenation catalyst. provide.
- the polyhydric alcohol solution is a solution containing a polyhydric alcohol, and may be a polyhydric alcohol having a water content less than a specified value.
- Example 6 is a graph showing the reaction rate and 1,2-PD selectivity with respect to the liquid flow rate of glycerin under the conditions of Example 1 and Comparative Example 1.
- the polyhydric alcohol is hydrocracked by heating the polyhydric alcohol and hydrogen in the presence of a catalyst.
- the polyhydric alcohol is preferably a compound having 2 to 6 hydroxyl groups, and examples thereof include aliphatic or alicyclic polyhydric alcohols having 2 to 60 carbon atoms.
- various propanediols various butanediols, various pentanediols, various pentanetriols, various hexanediols, various hexanetriols, glycerin, diglycerin, triglycerin, various cyclohexanediols, various cyclohexanetriols, pentaerythritol, trimethylol
- propane and sugar alcohols such as sorbitol and mannitol.
- sugar alcohols such as glycerin, sorbitol and mannitol that are easily obtained from biomass such as sugars and fats and oils are preferred, and glycerin has become surplus and inexpensive due to the recent spread of biodiesel. Therefore, glycerin is particularly preferable.
- the hydrocracked product of polyhydric alcohol in the present invention is obtained by causing hydrogen to act on polyhydric alcohol to decompose hydroxyl groups, and decomposes it to the extent that at least one hydroxyl group remains. The compound obtained is shown.
- hydrogenolysis products of glycerin are C3 diol (hydroxyl groups in molecule: 2) and C3 monool (number of hydroxyl groups in molecule: 1).
- hydrocracking some sugar alcohols, such as sorbitol and mannitol the same reaction is shown via glycerol.
- a solid or complex catalyst used for hydrogenation of unsaturated hydrocarbon compounds such as alkenes, alkynes, aromatics, and carbonyl compounds
- these catalysts for example, metal species such as copper, nickel, cobalt, ruthenium, palladium, platinum and rhodium can be used, and solid catalysts having these metal species supported on a support can also be used. Copper-containing catalysts are preferred, and copper / silica catalysts, copper Raney catalysts, and copper-iron-aluminum catalysts are particularly preferred.
- the shapes of the molded articles of these catalysts can be arbitrarily determined within a range that does not hinder the operation of the fixed bed reactor.
- a catalyst precursor that is tableted or extruded into a cylindrical shape or a catalyst precursor that is formed into spherical particles of 1 to 20 mm is preferably used because it can be easily and inexpensively produced.
- these catalysts commercially available catalysts may be used, or catalysts prepared by extrusion molding after preparing a catalyst powder by a conventionally known method such as a precipitation method may be used.
- the reduction activation of the formed catalyst can be performed by a gas phase reduction method performed under the flow of an inert gas containing hydrogen, or by reduction with hydrogen gas or an inert gas containing hydrogen under the flow of a solvent.
- the polyhydric alcohol solution subjected to the reaction is preferably a polyhydric alcohol solution selected from glycerin, sorbitol and mannitol, most preferably a solution containing glycerin (sometimes referred to as “glycerin solution”).
- the amount of water contained therein is less than 10% by mass, preferably 5% by mass or less, more preferably 2% by mass or less, and most preferably 1% by mass or less.
- the lower limit of the moisture content is preferably 0.1% by mass or more, more preferably 0.3% by mass or more.
- the polyhydric alcohol solution used in the reaction of the present invention may contain an organic solvent that does not affect the reaction, such as methanol or ethanol, as an optional component. However, in the present invention, it is desirable to carry out the reaction without solvent in consideration of productivity. That is, the polyhydric alcohol solution is preferably a solution consisting only of polyhydric alcohol and water.
- the reaction temperature is preferably 130 to 300 ° C, more preferably 180 to 250 ° C, still more preferably 210 to 230 ° C.
- the reaction pressure is preferably 0.1 MPa or more, more preferably 5 MPa or more, further preferably 10 MPa or more, and particularly preferably 15 MPa or more. Further, the upper limit of the reaction pressure is preferably 30 MPa or less, more preferably 27 MPa or less, further preferably 22 MPa or less, and particularly preferably 20 MPa or less.
- the liquid hourly space velocity (LHSV) [unit: h ⁇ 1 ] of the raw material supply is arbitrarily determined according to the reaction conditions, but is 0.1 to 5.0 h ⁇ 1 in consideration of productivity or reactivity.
- a range is preferable, and a range of 0.2 to 1.0 h ⁇ 1 is more preferable.
- This hydrocracking is carried out while contacting and supplying hydrogen gas or a mixed gas of hydrogen and an inert gas to the catalyst precursor.
- nitrogen, helium, argon, methane, or the like can be used as an inert gas for diluting hydrogen.
- the supply rate of hydrogen is such that the molar ratio of H 2 / glycerol is 1 to 100, preferably 2 to 50, more preferably 3 to 30, based on glycerol.
- hydrogen gas hydrogen concentration 100%
- a flow rate of 4.5 NL / hour gas space velocity 150 h ⁇ 1
- a temperature of 40 to 50 ° C. a temperature of 40 to 50 ° C.
- Examples 2 to 10 Reaction was carried out under the conditions described in Table 1 using the same glycerin as the raw material as in Example 1.
- Examples 11-12 The reaction was carried out under the conditions described in Table 1 using a glycerin aqueous solution (glycerin 91 mass%, water 9 mass%) as a raw material.
- Comparative Examples 1 to 4 Reaction was carried out under the conditions shown in Table 1 using a glycerin aqueous solution (glycerin 80 mass%, water 20 mass%) as a raw material.
- Example 1 and 11 and Comparative Example 1, Example 2 and Comparative Example 2 In Example 5 and Comparative Example 3, Example 9 and Example 12 and Comparative Example 4, each example had better conversion and selectivity at low pressure (2.0 MPa), and high pressure ( 20.0 MPa), the conversion is good.
- the production efficiency of 1,2-PD is better when glycerin with less water is used.
- the glycerin flow rate was interrupted at 1300 mL for 192 hours.
- Example 1 the water-free raw material of Example 1 was less likely to have a decreased catalytic activity, and was practically usable with a reaction rate of 77% and a selectivity of 73% even after the passage of 6192 mL of glycerin and 876 hours.
- the results are shown in FIG. From this result, in the hydrocracking of glycerin, when water and water and lower alcohol are used as a solvent, water is said to protect the catalyst in addition to lowering the viscosity of the reaction object. As is clear from FIG. 1, it was found that the catalytic activity is less likely to be lowered in Example 1 having a moisture content of 0.3% by mass compared to the result of Comparative Example 1 in which glycerin contains 20% by mass of water. .
- the present invention relates to a process for producing a hydrocracked product from a polyhydric alcohol using a hydrogenation catalyst and a polyhydric alcohol solution having a water content of less than 10% by mass in a fixed bed continuous liquid phase reaction.
- -It can be used as a method for efficiently producing PD with high conversion and selectivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
一方、多価アルコールとして、食品や医療などに使用されているグリセリンは、年々生産量を増やしてきている。その理由として、化石化燃料の供給不安や、地球温暖化問題を背景にして延びてきた、バイオディーゼル燃料の普及が挙げられる。植物原料から製造されるバイオディーゼル燃料はその製造過程でグリセリンを生成する。しかしながら、現状ではグリセリンの用途は限られていることから、供給過剰になりつつあり、その有効利用が求められている。その一つとして触媒反応を用いたC3アルコール類への変換が世界的に注目されている。
また、1,2-プロパンジオールは、例えばポリエステル樹脂、塗料、アルキッド樹脂、各種可塑剤、不凍液、ブレーキオイル等に用いられ、さらには食品保潤剤、果汁粘度増強剤、食品用セロハン柔軟剤、化粧品、医薬品等に有用である。
そこで、グリセリンの有効利用として、グリセリンをプロパンジオールに転化させることが考えられており、グリセリンを水素化分解して、1,2-プロパンジオール(以下、「1,2-PD」ということがある)を製造する方法が知られている。
固定床連続反応方式において、液相で水素化反応を行う場合、溶媒を使用することがあるが、グリセリンの水素化分解においては、特許文献1~5のように、いずれも水が溶媒として使用されている。そこには10質量%以上の水を含有する反応例が記載されており、特許文献2には、水分量が13.5質量%の例が、また特許文献5には水分量10質量%の例が記載されている。なおその効果については、固定床連続気相反応方式を用いる方法(例えば、特許文献6参照)には、水を溶媒に用いることで触媒保護効果があることが記載されている。
本発明者らは、多価アルコールを原料とする固定床連続反応方式を用いた水素化分解に関し、水の添加による触媒への影響について検討した結果、水の触媒保護効果は認められず、逆に水を添加しない方が触媒の寿命が長く、転化率及び選択性が共に向上し得ることを見出した。
すなわち、本発明は、水分量が10質量%未満の多価アルコール溶液を、水素化触媒存在下で固定床連続液相反応よって水素化分解する、多価アルコールの水素化分解物の製造方法を提供する。
なお、本発明において多価アルコール溶液とは、多価アルコールを含有する溶液のことであって、水分量が規定値未満の多価アルコールのそのものであってもよい。
多価アルコールとしては、水酸基2~6の化合物が好ましく、炭素数2~60の脂肪族又は脂環式多価アルコールを挙げることができる。具体的には、各種プロパンジオール、各種ブタンジオール、各種ペンタンジオール、各種ペンタントリオール、各種ヘキサンジオール、各種ヘキサントリオール、グリセリン、ジグリセリン、トリグリセリン、各種シクロヘキサンジオール、各種シクロヘキサントリオール、ペンタエリスリトール、トリメチロールプロパン、さらにはソルビトールやマンニトール等の糖アルコール等を例示することができる。これらの中では、持続可能社会の構築という観点から、糖類、油脂等のバイオマスから容易に得られるグリセリンやソルビトール、マンニトール等の糖アルコールが好ましく、最近バイオディーゼルの普及によってグリセリンは余剰、安価になっていることから、特にグリセリンが好ましい。
また、本発明における多価アルコールの水素化分解物とは、多価アルコールに水素を作用させて、水酸基を分解させて得られたものであり、少なくとも1つ以上の水酸基を残す程度に分解させて得られる化合物を示す。例えばグリセリン(分子内の水酸基数:3つ)の水素化分解物は、C3ジオール(分子内の水酸基:2つ)、C3モノオール(分子内の水酸基数:1つ)である。なおソルビトールやマンニトール等の一部の糖アルコールを水素化分解する場合も、グリセリンを経由して同様な反応を示す。
成形触媒の還元活性化は、水素を含有する不活性ガスの流通下で行う気相還元法や、溶媒の流通下、水素ガスまたは水素を含有する不活性ガスによる還元により行うことができる。
つまり、本発明において、多価アルコール溶液とは、多価アルコールを含有する溶液のことであって、水分量が規定値未満の多価アルコールそのものであることが特に好ましい。
26g(30mL)の日揮化学社製 銅/シリカ触媒(品番F01B、円柱状押し出し成形品、直径1mm、長さ2~8mm、銅/シリカ=1/0.55(原子比))を固定床連続反応器に充填した後、40~50℃の温度下、4.5NL/時間(ガス空間速度で150h-1)流速で水素ガス(水素濃度100%)を導入し、次いで15mL/時間の流速(液空間速度で0.5h-1)でラウリルアルコール(純度=99.8%)を通液した。
ガスの流速が安定した後、2.0MPa(ゲージ圧)の水素圧下、10℃/時間の速度で昇温を開始した。昇温後100℃で24時間、触媒の還元活性化を行った。
その後、ラウリルアルコールをグリセリン(純度99.7%、水分0.3%)に切り換え、80℃で24時間、液置換を行った。その後230℃、2.0MPa、液空間速度0.5h-1、グリセリンに対し5モル倍の水素流通条件下(ガス空間速度で610h-1)、水素化分解反応を行った。
反応開始後36時間目の溶液を、下記条件のガスクロマトグラフィーにて分析し、生成物を定量した。生成物として、1,2-プロパンジオール、ヒドロキシアセトン、エチレングリコール、及びその他不明物質が得られた。これらの結果を表1に示す。
カラム:Ultra-alloy キャピラリーカラム 15.0m×250μm×0.15μm(Frontier Laboratories 社製)、検出器:FID、インジェクション温度:300℃、ディテクター温度:350℃、He流量:4.6mL/min.
原料のグリセリンとして実施例1と同じものを用い、表1に記載の条件にて反応を実施した。
実施例11~12
原料にグリセリン水溶液(グリセリン91質量%、水9質量%)を用い表1に記載の条件にて反応を実施した。
原料にグリセリン水溶液(グリセリン80質量%、水20質量%)を用い表1に記載の条件にて反応を実施した。
このように水分が少ないグリセリンを用いた方が、1,2-PDの生産効率が良い。
この結果より、グリセリンの水素化分解では、溶媒として水及び水と低級アルコールを用いる場合、水は反応対象物の粘度を低下させる以外に、触媒を保護すると言われているのに反して、図1より明確なように、グリセリンに20質量%の水分を含む比較例1の結果と比較して、0.3質量%の水分率の実施例1において、触媒活性が低下し難いことが判明した。
Claims (5)
- 水分量が10質量%未満の多価アルコール溶液を、水素化触媒存在下で固定床連続液相反応よって水素化分解する、多価アルコールの水素化分解物の製造方法。
- 水素化触媒が銅含有触媒である、請求項1に記載の多価アルコール水素化分解物の製造方法。
- 水素化触媒が銅/シリカ触媒である、請求項1~2のいずれかに記載の多価アルコール水素化分解物の製造方法。
- 多価アルコールがグリセリンである、請求項1~3のいずれかに記載の多価アルコール水素化分解物の製造方法。
- 水素化分解物の主生成物が1,2-プロパンジオールである、請求項4に記載の多価アルコール水素化分解物の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/864,654 US8258351B2 (en) | 2008-01-30 | 2008-12-26 | Method for producing hydrogenolysis product of polyhydric alcohol |
ES08871698.0T ES2664575T3 (es) | 2008-01-30 | 2008-12-26 | Método para producir producto de hidrogenólisis de poliol |
EP08871698.0A EP2239247B1 (en) | 2008-01-30 | 2008-12-26 | Method for producing hydrogenolysis product of polyhydric alcohol |
CN200880125651.6A CN101925564B (zh) | 2008-01-30 | 2008-12-26 | 多元醇的氢解产物的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008019819A JP5612806B2 (ja) | 2008-01-30 | 2008-01-30 | 多価アルコールの水素化分解物の製造方法 |
JP2008-019819 | 2008-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009096134A1 true WO2009096134A1 (ja) | 2009-08-06 |
Family
ID=40912492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/073713 WO2009096134A1 (ja) | 2008-01-30 | 2008-12-26 | 多価アルコールの水素化分解物の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8258351B2 (ja) |
EP (1) | EP2239247B1 (ja) |
JP (1) | JP5612806B2 (ja) |
CN (1) | CN101925564B (ja) |
ES (1) | ES2664575T3 (ja) |
MY (1) | MY150056A (ja) |
WO (1) | WO2009096134A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102070422B (zh) * | 2009-11-20 | 2013-06-19 | 中国科学院大连化学物理研究所 | 丙三醇脱水、加氢制备丙酮醇及1,2-丙二醇的方法 |
US9447011B2 (en) | 2012-11-21 | 2016-09-20 | University Of Tennessee Research Foundation | Methods, systems and devices for simultaneous production of lactic acid and propylene glycol from glycerol |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5350059B2 (ja) * | 2008-04-22 | 2013-11-27 | 三井化学株式会社 | プロピレングリコールの製造方法 |
JP5562541B2 (ja) * | 2008-09-11 | 2014-07-30 | 花王株式会社 | 触媒の調製方法 |
JP5562542B2 (ja) * | 2008-09-11 | 2014-07-30 | 花王株式会社 | 触媒の調製方法 |
CN102153446B (zh) * | 2011-03-10 | 2013-12-11 | 江苏大学 | Cu/MgO催化剂、制备方法及其催化甘油氢解的方法 |
CN103570934A (zh) * | 2013-11-15 | 2014-02-12 | 安徽悦康凯悦制药有限公司 | 一种聚桂醇制备工艺 |
WO2015156802A1 (en) * | 2014-04-10 | 2015-10-15 | Archer Daniels Midland Company | Synthesis of reduced sugar alcohols, furan derivatives |
PL3541771T3 (pl) * | 2016-11-16 | 2021-05-31 | Archer Daniels Midland Company | Sposób wytwarzania 1,2-propanodiolu z glicerolu |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08208541A (ja) * | 1994-11-26 | 1996-08-13 | Basf Ag | プロパンジオール−1,2の製法 |
WO2007010299A1 (en) * | 2005-07-15 | 2007-01-25 | Davy Process Technology Ltd | Process |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1219003A (en) * | 1981-09-30 | 1987-03-10 | William J. Bartley | Production of monethylene glycol and ethanol from hydrogenolysis of polyalkylene glycols |
US4820880A (en) * | 1987-05-18 | 1989-04-11 | Michigan Biotechnology Institute | Process for the production of 3,4-dideoxyhexitol |
DE4302464A1 (de) * | 1993-01-29 | 1994-08-04 | Henkel Kgaa | Herstellung von 1,2-Propandiol aus Glycerin |
US6555717B2 (en) * | 2000-06-20 | 2003-04-29 | E. I. Du Pont De Nemours And Company | Catalytic dehydroxylation of diols and polyols |
AU2001292243A1 (en) * | 2000-09-27 | 2002-04-08 | Showa Denko K K | Process for producing fluorinated methyl-benzyl alcohol |
EP2298721B1 (en) * | 2004-03-25 | 2014-06-04 | Galen J. Suppes | Process for producing an antifreeze composition containing lower alcohols and glycerol via alcoholysis of a glyceride |
EA018774B1 (ru) * | 2006-03-03 | 2013-10-30 | Басф Се | Способ получения 1,2-пропандиола |
DE102007027371A1 (de) * | 2007-06-11 | 2008-12-18 | Cognis Oleochemicals Gmbh | Verfahren zur Herstellung einer Verbindung aufweisend mindestens eine Ester-Gruppe |
DE102007027372A1 (de) * | 2007-06-11 | 2008-12-18 | Cognis Oleochemicals Gmbh | Verfahren zur Hydrierung von Glycerin |
CN101085719B (zh) * | 2007-06-29 | 2011-09-21 | 上海华谊丙烯酸有限公司 | 一种甘油加氢制备1,2-丙二醇的方法 |
CN101214440A (zh) * | 2008-01-14 | 2008-07-09 | 南京工业大学 | 一种用于甘油氢解制1,2-丙二醇的催化剂及其制备方法 |
-
2008
- 2008-01-30 JP JP2008019819A patent/JP5612806B2/ja not_active Expired - Fee Related
- 2008-12-26 US US12/864,654 patent/US8258351B2/en not_active Expired - Fee Related
- 2008-12-26 MY MYPI2010003557A patent/MY150056A/en unknown
- 2008-12-26 WO PCT/JP2008/073713 patent/WO2009096134A1/ja active Application Filing
- 2008-12-26 EP EP08871698.0A patent/EP2239247B1/en not_active Not-in-force
- 2008-12-26 CN CN200880125651.6A patent/CN101925564B/zh not_active Expired - Fee Related
- 2008-12-26 ES ES08871698.0T patent/ES2664575T3/es active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08208541A (ja) * | 1994-11-26 | 1996-08-13 | Basf Ag | プロパンジオール−1,2の製法 |
WO2007010299A1 (en) * | 2005-07-15 | 2007-01-25 | Davy Process Technology Ltd | Process |
Non-Patent Citations (1)
Title |
---|
See also references of EP2239247A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102070422B (zh) * | 2009-11-20 | 2013-06-19 | 中国科学院大连化学物理研究所 | 丙三醇脱水、加氢制备丙酮醇及1,2-丙二醇的方法 |
US9447011B2 (en) | 2012-11-21 | 2016-09-20 | University Of Tennessee Research Foundation | Methods, systems and devices for simultaneous production of lactic acid and propylene glycol from glycerol |
Also Published As
Publication number | Publication date |
---|---|
US8258351B2 (en) | 2012-09-04 |
CN101925564B (zh) | 2014-05-21 |
ES2664575T3 (es) | 2018-04-20 |
MY150056A (en) | 2013-11-29 |
EP2239247A1 (en) | 2010-10-13 |
EP2239247A4 (en) | 2013-11-06 |
EP2239247B1 (en) | 2018-02-14 |
US20110046418A1 (en) | 2011-02-24 |
JP2009179594A (ja) | 2009-08-13 |
JP5612806B2 (ja) | 2014-10-22 |
CN101925564A (zh) | 2010-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009096134A1 (ja) | 多価アルコールの水素化分解物の製造方法 | |
CN101006036B (zh) | 甘油气相氢化方法 | |
Rozmysłowicz et al. | Influence of hydrogen in catalytic deoxygenation of fatty acids and their derivatives over Pd/C | |
Yadav et al. | Hydrogenolysis of glycerol to 1, 2-propanediol over nano-fibrous Ag-OMS-2 catalysts | |
EP2318343B1 (en) | Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst | |
EP2392558A1 (en) | Ethanol production from acetic acid utilising a cobalt catalyst | |
CN108117480B (zh) | 一种催化转化甲醇和乙醇混合液制备异丁醇的方法 | |
WO2008069120A1 (ja) | 多価アルコールの水素化分解物の製造方法 | |
WO2018170932A1 (zh) | 一种四氢糠醇氢解制1,5-戊二醇的催化剂及制备方法及其应用 | |
JP2012144491A (ja) | 多価アルコールからのグリコールの製造方法 | |
EP2565175B1 (en) | Catalytic process for the production of 1,2-propanediol from crude glycerol stream | |
JP5555867B2 (ja) | グリセリンからのグリコール及び1−プロパノールの製造方法 | |
JP5305669B2 (ja) | 多価アルコールの水素化分解物の製造方法 | |
Irmak et al. | Does reduced or non-reduced biomass feed produce more gas in aqueous-phase reforming process? | |
JP5684657B2 (ja) | ポリオールの水素化分解物の製造方法 | |
JP6304524B2 (ja) | 炭化水素の製造方法 | |
CN102020532A (zh) | 以醇、醛、酸和酯的水溶液混合物为原料加氢制醇的方法 | |
Yuan et al. | Strategies for Selective Synthesis of Biomass-Based 1, 13-Tridecanediol from Furfural | |
Sulman et al. | Pd-Containing Catalysts In Fatty Alcohols Production | |
CN100390123C (zh) | 醇的制造方法 | |
Li et al. | Chemoselective oxidation of bio-glycerol with nano-sized metal catalysts | |
Ahmed et al. | Hydrogenolysis of Glycerol over γ-Al2O3-Supported Iridium Catalyst | |
Manjoro et al. | Hydrogenolysis as a Means of Valorization of Biodiesel‐Derived Glycerol: A Review | |
RU2592849C2 (ru) | Катализатор и способ получения алифатических углеводородов из рапсового масла | |
Majumder | HYDROGENOLYSIS OF GLYCEROL OVER NICKEL (Ni), PLATINUM (Pt), RUTHENIUM (Ru) AND COPPER (Cu) LOADED ON HYDROXYAPETITE TO FORM 1, 2-PROPANDIOL AND ETHYLENE GLYCOL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880125651.6 Country of ref document: CN |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08871698 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12010501703 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008871698 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: PI 2010003557 Country of ref document: MY |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12864654 Country of ref document: US |