WO2009096117A1 - 油圧ポンプ・モータ - Google Patents

油圧ポンプ・モータ Download PDF

Info

Publication number
WO2009096117A1
WO2009096117A1 PCT/JP2008/073286 JP2008073286W WO2009096117A1 WO 2009096117 A1 WO2009096117 A1 WO 2009096117A1 JP 2008073286 W JP2008073286 W JP 2008073286W WO 2009096117 A1 WO2009096117 A1 WO 2009096117A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder block
rotation sensor
swash plate
hydraulic pump
motor
Prior art date
Application number
PCT/JP2008/073286
Other languages
English (en)
French (fr)
Inventor
Kenichi Ogasawara
Kazuhiro Maruta
Mutsumi Ono
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO2009096117A1 publication Critical patent/WO2009096117A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2035Cylinder barrels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0636Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F03C1/0644Component parts
    • F03C1/0652Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0805Rotational speed of a rotating cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring

Definitions

  • the present invention relates to a hydraulic pump / motor provided with a rotation sensor.
  • an axial-type swash plate hydraulic pump / motor is reciprocally movable in a plurality of cylinder holes formed in the cylinder block, a rotary shaft that is rotatably mounted in the casing, a cylinder block that rotates together with the rotary shaft.
  • a plurality of pistons fitted into the shaft a swash plate that is provided in the casing so as to be inclined with respect to the rotation axis, and that slidably supports the piston tip, and a valve plate that is slidably contacted with the rear end surface of the cylinder block
  • the oil is circulated into the cylinder hole through a port provided in the valve plate.
  • this swash plate type hydraulic pump / motor When this swash plate type hydraulic pump / motor is used as a hydraulic pump, it is sucked into the cylinder hole from the port on the low pressure side by rotating the cylinder block by rotating the rotary shaft with an engine etc. and reciprocating the piston.
  • the pressurized oil is pressurized by the piston and discharged from the port on the high pressure side.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a swash plate type hydraulic pump / motor disclosed in Patent Document 1.
  • the swash plate hydraulic pump / motor 100 includes a casing 110, a lid 120, a rotating shaft 130, a cylinder block 140, a piston 150, a valve plate 160, and a swash plate 170.
  • detected recesses 520 are formed with a predetermined interval.
  • An electromagnetic pickup type rotation sensor 500 that detects the detected recess 520 is disposed at a position facing the detected recess 520 and is fixed to the casing 110.
  • each detected recess 520 passes through the position of the rotation sensor 500, and thus the distance (magnetic field) between the rotation sensor 500 and the detected recess 520 changes periodically.
  • the rotation sensor 500 transmits a detection signal corresponding to the magnetic field change to a controller (not shown).
  • the controller shapes the AC waveform of the detection signal from the rotation sensor 500 and calculates the frequency as the number of rotations of the cylinder block 140.
  • the swash plate type hydraulic pump described above changes the position of the piston sliding in the cylinder holes arranged on the same circumference by rotating the cylinder block.
  • the swash plate hydraulic motor rotates the cylinder block by supplying high-pressure oil into the cylinder holes arranged on the same circumference, thereby changing the position of the piston sliding in the cylinder hole over time.
  • the rotation of the cylinder block is a whirling rotation accompanied by vibration in the inclination angle direction (arrow in FIG. 7) of the swash plate 170 as shown in FIG.
  • the rotation sensor 500 is disposed in a plane including both the line in the inclination angle direction of the swash plate 170 and the axis 130a. For this reason, the distance between the rotation sensor 500 to which the casing 110 is attached and the detected recess 520 provided in the cylinder block 140 changes due to the swing of the cylinder block 140. There is a problem that an error occurs in detection.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a hydraulic pump / motor that can accurately detect the rotation speed of a cylinder block regardless of the swinging of the cylinder block.
  • a hydraulic pump / motor that reciprocates within a plurality of cylinder holes formed in the cylinder block, a rotary shaft that is rotatably mounted in a casing, a cylinder block that rotates together with the rotary shaft, and the cylinder block.
  • a hydraulic pump having a plurality of pistons that are movably inserted, and a swash plate that is provided in the casing so as to be inclined with respect to the rotation shaft and that slides the tip portions of the plurality of pistons in a sliding manner.
  • a detected portion formed on the outer peripheral surface of the cylinder block, and a rotation sensor provided on the casing so as to face the detected portion and provided with a detecting portion that detects the detected portion.
  • the detection unit of the rotation sensor is arranged in a plane including both the line on the swash plate perpendicular to the axis of the rotation axis and the axis.
  • a hydraulic pump / motor according to a second aspect of the present invention is the hydraulic pump / motor according to the first aspect, wherein the rotation sensor is located between the deepest part of the cylinder hole and the rear end surface of the cylinder block in the axial direction of the cylinder block. It is provided in a corresponding position.
  • the hydraulic pump / motor of the present invention has a detection part formed on the outer peripheral surface of a cylinder block, and a rotation sensor having a detection part for detecting the detection part. It is set as the structure arrange
  • the position of the rotation sensor is a position that is not easily affected by the swing of the cylinder block. Therefore, the distance between the detection unit and the detected unit is kept substantially constant regardless of the swing of the cylinder block. As a result, the detection accuracy of the rotational speed of the cylinder block can be improved as compared with the conventional case.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a hydraulic motor applied to the fan drive device according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA of the hydraulic motor shown in FIG. 3 is a cross-sectional view of the hydraulic motor shown in FIG. 1 taken along line BB.
  • FIG. 4 is a rear view of the fan driving apparatus according to the present embodiment.
  • FIG. 5 is a cross-sectional view taken along the line CC of the fan driving device shown in FIG. 6 is a cross-sectional view of the fan driving device shown in FIG. 4 taken along the line DD.
  • FIG. 7 is a sectional view showing a schematic configuration of a conventional hydraulic pump / motor.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a swash plate type hydraulic motor 10 (cross-sectional view in the XZ plane), and FIG. 2 is a cross-sectional view of the swash plate type hydraulic motor shown in FIG.
  • FIG. 3 is a sectional view taken along the line BB of the swash plate type hydraulic motor 10 shown in FIG. 4 is a rear view of the fan drive device to which the swash plate type hydraulic motor shown in FIG. 1 is applied
  • FIG. 5 is a sectional view taken along the line CC of FIG. 4
  • FIG. 6 is a line DD in FIG. It is sectional drawing.
  • the fan drive device 60 is rotatably attached to a swash plate type hydraulic motor 10 (hereinafter referred to as “hydraulic motor” for short), a bracket 61 that supports the hydraulic motor 10, and a rotating shaft of the hydraulic motor 10.
  • a fan 62 driven by the motor 10 and a shroud 63 are included.
  • the hydraulic motor 10 converts oil supplied from the hydraulic pump 2 (see FIG. 1) into rotational force, and rotates the fan 62. As shown in FIG. 5, a rotation sensor 50 that detects the number of rotations of the fan 62 is attached to the rear end side of the hydraulic motor 10. The hydraulic motor 10 and the rotation sensor 50 will be described in detail later.
  • the bracket 61 is a plate-like member to which the hydraulic motor 10 is attached.
  • the bracket 61 has a base 65 having a long plate shape whose longitudinal dimension is substantially the same as that of the radiator 80, and a flat plate bent at right angles from both side edges of the base 65 toward the rear. And a side wall portion 66 formed.
  • a through hole 64 for attaching the hydraulic motor 10 is formed at the center of the base 65.
  • the tip of the rotating shaft 13 protrudes from the surface side (fan installation side) of the base portion 65 of the bracket 61, and the rotation sensor 50 is positioned near the back surface of the base portion 65. In the state, it is inserted into the through hole 64 and fixed to the base portion 65 by a plurality of bolts 71.
  • a part located on the rear side of the base part of the hydraulic motor 10, that is, a rear end side of the casing 11 and an end cover 12 described later, are covered with side wall parts 66 of the bracket 61.
  • the fan 62 is composed of a fan boss 67 and a plurality of blades 68. Each blade 68 is fastened to a fan boss 67 by a bolt, and the fan boss 67 is fastened to the rotating shaft 13 of the hydraulic motor 10 by a bolt 72. When the hydraulic motor 10 is driven, the fan 62 rotates.
  • the shroud 63 is a square frame-like member arranged in a front view so as to surround the fan 62 in order to improve the air blowing performance of the fan 62, and is attached to the radiator 80 and the bracket 61 using an appropriate means. It has been. As shown in FIG. 4, a circular opening 69 is provided in the center of the shroud 63.
  • the fan drive device 60 having the above-described configuration, when the hydraulic motor 10 is driven, the fan 62 rotates, and the low-temperature air sucked by the rotation of the fan 62 passes through the radiator 80, thereby facilitating heat exchange of the radiator 80. Is done.
  • the hydraulic motor 10 that drives the fan 62 will be described in detail with reference to FIGS.
  • the hydraulic motor 10 includes a casing 11, an end cover 12, a rotating shaft 13, a cylinder block 14, a piston 15, a valve plate 16, and a swash plate 17.
  • the casing 11 accommodates the rotary shaft 13, the cylinder block 14, the valve plate 16, and the swash plate 17 in the inside thereof, and has a cylindrical shape composed of a cylindrical portion 21 having one end opened and an end wall portion 22. Is made.
  • the end wall portion 22 side of the casing 11 is referred to as “front end side”, and the opening side is referred to as “rear end side”.
  • the cylindrical portion 21 is formed with a flange-shaped attachment portion 18 that protrudes radially outward from the end portion on the opening side.
  • the attachment portion 18 is provided with a bolt hole (not shown) for attaching the hydraulic motor 10 to the bracket 61 of the fan drive device described above.
  • the attachment portion 18 is brought into contact with the back surface of the base portion 65 when the hydraulic motor 10 is attached to the base portion 65 of the bracket 61 in the fan driving device, and is fastened to the base portion 65 by the bolt 71. Is done.
  • the end cover 12 is a lid that closes the opening on the rear end side of the casing 11.
  • a direction switching valve 1 is built in the end cover 12, and the supply / discharge direction of oil from the hydraulic pump 2 is switched by switching the spool 1 a.
  • An oil seal 23 a is provided between the end wall portion 22 of the cylindrical portion 21 in the casing 11 and the rotary shaft 13.
  • An oil seal 23 b is provided between the casing 11 and the end cover 12. Oil is sealed in the casing 11 by the oil seal 23a and the oil seal 23b.
  • the rotating shaft 13 is rotatably supported by the casing 11 and the end cover 12 via bearings 24a and 24b.
  • the above-described fan boss 67 of the fan 62 is attached to the tip of the rotating shaft 13.
  • the side on which the rotating shaft 13 is supported by the bearing 24a is referred to as the proximal end side of the rotating shaft
  • the side on which the rotating shaft 13 is supported by the bearing 24b is referred to as the distal end side of the rotating shaft.
  • the cylinder block 14 is connected to the rotary shaft 13 via the spline 26 and rotates integrally with the rotary shaft 13 in the casing 11.
  • the cylinder block 14 has a front end surface 27 (hereinafter referred to as “front end surface 27”) facing the swash plate 17, while a rear end side surface 28 (hereinafter referred to as “rear end surface 28”) is the valve plate 16. It is arranged so as to be in sliding contact with the surface of the valve, and is rotatable while in contact with the valve plate 16.
  • a plurality of cylinder holes 29 are formed in the cylinder block 14 at equal intervals in the circumferential direction around the axis of the cylinder block 14 and in parallel with the rotation shaft 13.
  • a cylinder port 32 communicating with a supply / exhaust port 31 of a valve plate 16 described later is formed at the base end portion of each cylinder hole 29 located on the rear end face 28 side of the cylinder block 14.
  • each piston 15 In each cylinder hole 29, a piston 15 is removably inserted.
  • the piston 15 presses the swash plate by supplying oil into the cylinder hole 29, and generates a rotational force in the cylinder block 14 by the force of the rotational direction component generated when the swash plate 17 is pressed. is there.
  • the tip of each piston 15 has a structure in which a piston shoe 33 is attached to a concave spherical portion.
  • the piston shoe 33 is slidably slidably contacted with the sliding surface S of the swash plate 17 by the shoe retainer 34.
  • the valve plate 16 is formed in a disc shape, and is fixed to the end cover 12 so as to be in sliding contact with the rear end surface 28 of the cylinder block 14. As shown in FIG. 3, the valve plate 16 includes long hole-shaped supply / discharge ports 31, 31 formed along the circumferential direction. As shown in FIG. 1, each supply / exhaust port 31 passes through the valve plate 16 in the axial direction, and the opening on the side in contact with the cylinder block 14 can communicate with a plurality of cylinder ports 32. The opening on the side of each supply / discharge port 31 that contacts the end cover 12 communicates with supply / discharge passages 42, 42 formed inside the end cover 12. The supply / discharge passages 42, 42 formed in the end cover 12 are connected to the hydraulic pump 2 or the oil tank 5 via the pipelines 3, 4 and the direction switching valve 1.
  • the swash plate 17 is provided between the end wall portion 22 of the casing 11 and the cylinder block 14, and as shown in FIG. 2, a flat sliding surface S inclined at a predetermined angle in a plane parallel to the XY plane. have.
  • each piston shoe 33 slides in a circular shape while being pressed onto the sliding surface S as the cylinder block 14 rotates.
  • a fixed capacity type in which the swash plate 17 is fixed to the end wall portion 22 as shown in FIG. 2 is applied.
  • a variable displacement type equipped with a swash plate tilting device that changes the tilt angle of the swash plate 17 can also be applied. In the case of the variable displacement type, it is possible to change the displacement of the motor by changing the inclination angle of the sliding surface S and changing the distance that the piston 15 reciprocates.
  • oil from the hydraulic pump 2 is supplied to the cylinder hole 29 through one supply / discharge passage 42 and the supply / discharge port 31, while each cylinder hole 29 oil is discharged to the supply / discharge passage 42 through the other supply / discharge port 31 and returned to the oil tank 5.
  • the piston 15 in the cylinder hole 29 supplied with oil presses the swash plate 17.
  • a rotational force is generated by the force of the rotational direction component generated in the piston 15. This rotational force is transmitted to the rotary shaft 13 via the cylinder block 14 and rotates the rotary shaft 13.
  • a through hole 25 penetrating in the radial direction is formed on the rear end side of the casing 11 described above, and a rotation sensor 50 is mounted in the through hole 25.
  • a surface that is perpendicular to the rotation shaft 13 and includes the mounting portion 18 in FIG. 1 is considered, and the rotation sensor 50 is installed so as to include a part of the surface.
  • the rotation sensor 50 detects the number of rotations of the cylinder block 14 within a predetermined time.
  • the cylinder block 14 and the rotating shaft 13 rotate integrally, and the rotating shaft 13 and the fan 62 rotate integrally. Accordingly, the rotational speed of the cylinder block 14 is equal to the rotational speed of the fan 62.
  • the rotation sensor 50 includes a detection unit 51 that detects a detected unit 52 provided on the outer peripheral surface of the cylinder block 14.
  • the detection unit 51 is fixed to the casing 11 in a state where the detection unit 51 faces the detected unit 52 with a predetermined interval.
  • the detection result by the detection unit 51 is transmitted to a calculation unit (not shown).
  • the calculation unit calculates the rotation speed of the cylinder block 14 based on the detection result of the detection unit 51.
  • the rotation sensor 50 for example, an electromagnetic pickup type sensor using an MR element (magnetoresistance effect element) or a Hall element can be applied.
  • the electromagnetic pickup type rotation sensor is a general sensor having a structure in which a coil is wound around a permanent magnet, and detects a change in magnetic flux between a detection unit and a detection target unit.
  • the detected portion 52 is a gear-shaped concavo-convex portion formed by cutting the concave portion 53 at a constant interval around the circumference of the outer peripheral surface of the cylinder block 14.
  • the detected portion 52 is formed at a position corresponding to the position where the rotation sensor 50 is arranged, that is, at the rear end side of the cylinder block 14.
  • the concave portion 53 and the convex portion 54 of the detected portion 52 pass through the position of the rotation sensor 50, thereby periodically changing the distance (magnetic field) between the detecting portion 51 and the detected portion 52.
  • the detection unit 51 of the rotation sensor 50 outputs the AC voltage generated by the magnetic field change as a signal, and transmits this signal to the calculation unit.
  • the calculation unit shapes the AC voltage into pulses, counts the number of pulses, and calculates the rotation speed of the cylinder block 14 (that is, the rotation speed of the fan 62).
  • the detection unit 51 of the rotation sensor 50 is arranged in the XZ plane.
  • the “XZ plane” is a surface including both the line on the sliding surface S of the swash plate 17 orthogonal to the axis 13a of the rotating shaft 13 and the axis 13a. That is, the “line on the sliding surface S of the swash plate 17 orthogonal to the axis 13a” is a line orthogonal to the line in the inclination angle direction of the sliding surface S of the swash plate 17.
  • the “surface including both the line on the sliding surface S of the swash plate 17 orthogonal to the axis 13a and the axis 13a” is the line and axis in the direction of the inclination angle of the sliding surface S of the swash plate 17. It is a plane orthogonal to a plane (XY plane in FIG. 2) including both the core 13a.
  • the reason why the detection unit 52 of the rotation sensor 50 is arranged in the XZ plane is as follows. As described above, the hydraulic motor 10 rotates the cylinder block while changing the position of the piston sliding in the cylinder holes arranged on the same circumference with time. For this reason, when the cylinder block 14 rotates, a swing in the Y direction occurs in the XY plane shown in FIG. Accordingly, when the rotation sensor 50 is disposed in the XZ plane orthogonal to the XY plane, the rotation sensor 50 is hardly affected by the vibration of the cylinder block 14 in the XY direction.
  • the “plane including both the line on the sliding surface of the swash plate perpendicular to the axis of the rotating shaft and the axis” includes the XZ plane shown in FIG. 1 around the axis of the rotating shaft 13. The surface rotated about several degrees is also included.
  • the XZ plane is the axis (not shown) of the swash plate rotation shaft that tilts the swash plate 17.
  • a surface including both the axis 13a of the rotating shaft 13 is meant.
  • the rotating shaft 13 is supported on the proximal end side and the distal end side by bearings 24a and 24b, respectively. Therefore, the center portion between the proximal end side and the distal end side is the largest in the shake of the rotating shaft 13 due to the swirling rotation. Therefore, in the present embodiment, in order to minimize the influence of the shake of the rotating shaft 13, the detection unit 51 of the rotation sensor 50 is connected to the base end side of the rotating shaft 13, as shown in FIG. 11 is arranged on the rear end side.
  • the distance between the deepest portion 41 of the portion where the inner diameter of the cylinder hole 29 is the piston diameter in the axial direction of the cylinder block 14 and the rear end surface 28 of the cylinder block 14 is provided. It is a position opposite to the position.
  • the detected unit 52 includes a deepest portion 41 where the inner diameter of the cylinder hole 29 is the piston diameter and the rear end of the cylinder block 14 in the axial direction of the cylinder block 14. It is formed between the side end faces 28.
  • the outer peripheral part of the formation position of the cylinder port 32 is larger than the outer peripheral part of the formation position of the cylinder hole 29. It is thick.
  • the outer peripheral part of the formation position of the cylinder hole 29 is thin.
  • the concave portion 53 is formed between the adjacent cylinder holes so as to avoid this thin portion. Need to form.
  • the number of recesses 53 formed is the same as the number of cylinder holes 29.
  • the uneven portion can be continuously formed in a gear shape, so that it is easy to cut and is related to the number of cylinder holes 29.
  • the recessed part 53 can be formed without.
  • the fan driving device 60 shown in FIGS. 4 to 6 when the fan driving device 60 shown in FIGS. 4 to 6 is driven, the fan 62 having a large shape rotates at the tip of the hydraulic motor 10, so that the tip of the hydraulic motor 10 is most likely to vibrate.
  • the base portion 65 since the base portion 65 is fixed, the vibration is small near the base portion 65, and the vibration increases as the distance from the base portion 65 increases. For this reason, when the hydraulic motor 10 is attached to the base 65, it is preferable to place the rotation sensor 50 as close to the base 65 as possible in order to minimize the vibration transmitted to the rotation sensor 50 when the hydraulic motor is driven.
  • the hydraulic motor 10 is attached to the base portion 65 by inserting the casing 11 into the through hole 64 of the base portion 65 and affixing the attachment portion 18 to the back surface of the base portion 65 and bolting.
  • the rotation sensor 50 is installed in the casing 11 so as to include a part of a surface that is perpendicular to the rotation shaft 13 and includes the mounting portion 18. For this reason, when the hydraulic motor 10 is attached to the base 65, the rotation sensor 50 is disposed at a position close to the back surface of the base 65. Therefore, the vibration transmitted to the rotation sensor 50 when the hydraulic motor is driven can be minimized.
  • the fan driving device 60 provides the detected portion 52 on the outer peripheral surface of the cylinder block 14 of the hydraulic motor 10 that drives the fan 62 and detects the detected portion 52.
  • the unit 51 is arranged in an XZ plane orthogonal to the XY plane.
  • the fan driving device 60 of the present embodiment has a configuration in which the rotation sensor 50 is disposed on the rear end side of the casing 11 that is the base end side of the rotating shaft 13.
  • the detected portion 52 includes the deepest portion 41 where the inner diameter of the cylinder hole 29 is the piston diameter in the axial direction of the cylinder block 14 and the cylinder block 14.
  • the detected portion 52 includes the deepest portion 41 where the inner diameter of the cylinder hole 29 is the piston diameter in the axial direction of the cylinder block 14 and the cylinder block 14.
  • the hydraulic motor 10 is attached to the bracket 61 in a state where the rotation sensor 50 is brought close to the back surface of the base 65, so that when the hydraulic motor is driven, Since the vibration transmitted to the rotation sensor 50 can be suppressed to the minimum, the possibility of causing a failure due to the vibration of the rotation sensor can be reduced.
  • the hydraulic motor 10 is attached to the bracket 61 in a state where the rotation sensor 50 is positioned on the back surface side of the bracket 61, so that it can be externally applied. Intruding dust and mud can be prevented from adhering to the rotation sensor 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Hydraulic Motors (AREA)

Abstract

 本発明の油圧ポンプ・モータは、シリンダブロック14の外周面に形成された被検出部52と、この被検出部52に対向して配置され、被検出部52を検出する検出部51を備えた回転センサ50とを有する。回転センサ50の検出部51は、回転軸13の軸心13aに直交する斜板17の摺動面S上の線と軸心13aとの両方を含む面内に配置される。上記構成とすることで、シリンダブロック14の振れ回りに拘わらず、検出部51と被検出部52との間の距離はほぼ一定に保たれることになり、シリンダブロックの回転数の検出精度を向上させることができる。

Description

油圧ポンプ・モータ
 本発明は、回転センサを備えた油圧ポンプ・モータに関する。
 従来、建設機械などでは、エンジンによって駆動される油圧ポンプや、油によって駆動される油圧モータが多用されている。
 例えば、アキシャル型の斜板式油圧ポンプ・モータは、ケーシング内に回転可能に取付けられた回転軸と、この回転軸とともに回転するシリンダブロックと、シリンダブロックに形成した複数のシリンダ孔内に往復動自在に嵌挿された複数のピストンと、回転軸に対して傾斜するようにケーシング内に設けられピストン先端部を摺接自在に支持する斜板と、シリンダブロック後端面に摺接する弁板とを備えており、弁板に設けたポートを介して、シリンダ孔の内部に油を流通させるように構成したものである。
 この斜板式油圧ポンプ・モータを油圧ポンプとして用いる場合には、回転軸をエンジン等で回転駆動してシリンダブロックを回転させ、ピストンを往復動させることにより、低圧側のポートからシリンダ孔に吸い込まれた油をピストンによって加圧して高圧側のポートから吐出する。
 また、斜板式油圧ポンプ・モータを油圧モータとして用いる場合には、高圧側のポートから油をシリンダ孔に供給し、ピストンをシリンダ孔から突出させて斜板を押圧することによって、シリンダブロックとともに回転軸を回転させる。
 このような斜板式油圧ポンプ・モータにおいて、シリンダブロックの回転数の検出を行う回転センサを備えたものが知られている(特許文献1を参照)。図7は、特許文献1の斜板式油圧ポンプ・モータの概要構成を示す断面図である。この斜板式油圧ポンプ・モータ100は、ケーシング110、蓋体120、回転軸130、シリンダブロック140、ピストン150、弁板160、及び、斜板170とを備えている。シリンダブロック140の外周面には、所定の間隔をあけて被検出凹部520が形成されている。この被検出凹部520に対向する位置には、被検出凹部520を検出する電磁ピックアップ式の回転センサ500が配置され、ケーシング110に固定されている。シリンダブロック140が回転すると、各被検出凹部520が回転センサ500の位置を通過することにより、回転センサ500と被検出凹部520との間の距離(磁界)が周期的に変化する。回転センサ500は、磁界変化に応じた検出信号を図示しないコントローラに送信する。コントローラは、回転センサ500からの検出信号の交流波形を波形整形し、その周波数をシリンダブロック140の回転数として算出する。
特開2002-267679号公報
 ところで、上述した斜板式油圧ポンプは、シリンダブロックを回転させることにより、同一円周上に並んだシリンダ孔内を摺動するピストンの位置を変化させる。また、斜板式油圧モータは、同一円周上に並んだシリンダ孔内に高圧の油を供給することにより、シリンダ穴内を摺動するピストンの位置が時間とともに変化させられることによって、シリンダブロックを回転させる。このため、ポンプ・モータいずれの場合においても、シリンダブロックの回転は、図7に示すように斜板170の傾斜角方向(図7中の矢印)の振動を伴う振れ回り回転となる。
 図7に示す斜板式油圧ポンプ・モータでは、斜板170の傾斜角方向の線と軸心130aとの両方を含む面内に、回転センサ500が配置されている。このため、シリンダブロック140の振れ回りにより、ケーシング110の取付けられた回転センサ500とシリンダブロック140に設けられた被検出凹部520との間の距離が変化してしまうため、シリンダブロックの回転数の検出に誤差が生じるという問題がある。
 本発明は、上記に鑑みてなされたものであって、シリンダブロックの振れ回りに拘わらず、精度よくシリンダブロックの回転数を検出することができる油圧ポンプ・モータを提供することを目的とする。
 本発明の請求項1に係る油圧ポンプ・モータは、ケーシング内に回転可能に取付けられた回転軸と、前記回転軸とともに回転するシリンダブロックと、前記シリンダブロックに形成した複数のシリンダ孔内に往復動自在に嵌挿された複数のピストンと、前記回転軸に対して傾斜するように前記ケーシング内に設けられ前記複数のピストンの先端部を摺接自在に摺動させる斜板とを有する油圧ポンプ・モータにおいて、前記シリンダブロックの外周面に形成された被検出部と、前記被検出部に対向する状態で前記ケーシングに配置され、該被検出部を検出する検出部を備えた回転センサとを有し、前記回転センサの検出部が、前記回転軸の軸心に直交する斜板上の線と前記軸心との両方を含む面内に配置されていることを特徴とする。
 本発明の請求項2に係る油圧ポンプ・モータは、上記請求項1において、前記回転センサが、前記シリンダブロックの軸方向において、前記シリンダ孔の最深部から前記シリンダブロックの後端面までの間に対応する位置に設けられることを特徴とする。
 本発明の油圧ポンプ・モータは、シリンダブロックの外周面に被検出部を形成するとともに、この被検出部を検出する検出部を備えた回転センサを、回転軸の軸心に直交する斜板の摺動面上の線と軸心との両方を含む面内に配置した構成としている。この回転センサの配置位置は、シリンダブロックの振れ回りの影響を受けにくい位置である。従って、シリンダブロックの振れ回りに拘わらず、検出部と被検出部との間の距離はほぼ一定に保たれることになる。その結果、従来と比べてシリンダブロックの回転数の検出精度を向上させることができる。
図1は、本実施の形態であるファン駆動装置に適用される油圧モータの概要構成を示す断面図である。 図2は、図1に示した油圧モータのA-A線断面図である。 図3は、図1に示した油圧モータのB-B線断面図である。 図4は、本実施の形態であるファン駆動装置の背面図である。 図5は、図4に示したファン駆動装置のC-C線断面図である。 図6は、図4に示したファン駆動装置のD-D線断面図である。 図7は、従来の油圧ポンプ・モータの概要構成を示す断面図である。
符号の説明
  1 方向切換弁
  2 油圧ポンプ
  3,4 管路
  5 油タンク
  10 斜板式油圧モータ
  11 ケーシング
  12 エンドカバー
  13 回転軸
  13a 軸心
  14 シリンダブロック
  15 ピストン
  16 弁板
  17 斜板
  18 取付部
  21 筒部
  22 端壁部
  23 オイルシール
  24a,24b ベアリング
  25 貫通孔
  26 スプライン
  27 先端側端面
  28 後端側端面
  29 シリンダ孔
  31 給排ポート
  32 シリンダポート
  33 ピストンシュー
  34 シューリテーナ
  35 (シリンダブロックの)凸部
  36 リテーナガイド
  37 ばね
  38 シート
  39 ピン
  41 シリンダ孔最深部
  42 給排通路
  50 回転センサ
  51 検出部
  52 被検出部
  53 凹部
  54 凸部
  60 ファン駆動装置
  61 ブラケット
  62 ファン
  63 シュラウド
  64 貫通孔
  65 基部
  66 側壁部
  67 ファンボス
  68 羽根
  69 開口
  71,72 ボルト
  80 ラジエータ
 以下に添付図面を参照して、本発明の油圧ポンプ・モータにおける好適な実施の形態について詳細に説明する。なお、以下の実施の形態では、本発明の油圧ポンプ・モータを、ファン駆動装置のファンを駆動する斜板式油圧モータに適用した例について説明する。
 図1は、斜板式油圧モータ10の概要構成を示す断面図(X-Z平面における断面図)、図2は、図1に示した斜板式油圧モータのA-A線断面図(X-Y平面における断面図)、図3は、図1に示した斜板式油圧モータ10のB-B断面図である。また、図4は、図1に示した斜板式油圧モータを適用したファン駆動装置の背面図、図5は、図4のC-C線断面図、図6は、図4のD-D線断面図である。
 図4~図6に示すファン駆動装置60は、建設機械等のエンジンのラジエータ80を冷却するためのファンを駆動する装置である。このファン駆動装置60は、斜板式油圧モータ10(以下、省略して「油圧モータ」という)と、油圧モータ10を支持するブラケット61と、油圧モータ10の回転軸に回転自在に取付けられ、油圧モータ10によって駆動されるファン62、及び、シュラウド63とから構成されている。
 油圧モータ10は、油圧ポンプ2(図1を参照)から供給される油を回転力に変換し、ファン62を回転させるものである。図5に示すように、油圧モータ10の後端側には、ファン62の回転数を検出する回転センサ50が取り付けられている。この油圧モータ10と回転センサ50については後で詳しく説明する。
 ブラケット61は、油圧モータ10が取付けられる板状の部材である。このブラケット61は、長手方向の寸法がラジエータ80の寸法とほぼ同一に形成された長尺平板状を成す基部65と、基部65の両側縁部からそれぞれ後方に向けて直角に屈曲した平板状を成す側壁部66とから構成されている。基部65の中央部には、油圧モータ10を取付けるための貫通孔64が形成されている。
 図5に示すように、油圧モータ10は、ブラケット61の基部65の表面側(ファン設置側)に回転軸13の先端を突出させ、かつ、回転センサ50を基部65の裏面近傍に位置させた状態で貫通孔64に嵌挿され、複数のボルト71によって基部65に対して固定されている。図6に示すように、油圧モータ10の基部裏面側に位置する部位、すなわち、後述するケーシング11の後端側及びエンドカバー12は、その両側がブラケット61の側壁部66によって覆われている。
 ファン62は、ファンボス67と複数の羽根68とで構成されている。各羽根68はボルトによってファンボス67にそれぞれ締結され、ファンボス67は、ボルト72によって油圧モータ10の回転軸13に締結されており、油圧モータ10を駆動させるとファン62が回転する。
 シュラウド63は、ファン62の送風性能を向上させるために、ファン62の周りを取り囲む態様で配設された正面視正方形の枠状部材であり、適宜な手段を用いてラジエータ80とブラケット61に取付けられている。シュラウド63の中央には、図4に示すように、円形の開口部69が設けられている。
 上記構成を有するファン駆動装置60では、油圧モータ10が駆動するとファン62が回転し、ファン62の回転により吸い込まれた温度の低い空気がラジエータ80を通過することにより、ラジエータ80の熱交換が促進される。
 次に、図1~図3を用いて、ファン62を駆動する油圧モータ10について詳しく説明する。油圧モータ10は、ケーシング11、エンドカバー12、回転軸13、シリンダブロック14、ピストン15、弁板16、及び、斜板17とを備えている。
 ケーシング11は、その内部に回転軸13、シリンダブロック14、弁板16及び斜板17を収容するものであり、一端が開口した筒状部21と、端壁部22とから構成される円筒形状を成している。以下、ケーシング11の端壁部22側を「先端側」といい、開口側を「後端側」という。図1~図3に示すように、筒状部21には、開口側の端部から径外方向に突出するフランジ状の取付部18が形成されている。この取付部18には、上述したファン駆動装置のブラケット61に油圧モータ10を取付けるためのボルト孔(図示せず)が設けてある。取付部18は、図5及び図6に示すように、油圧モータ10をファン駆動装置におけるブラケット61の基部65に取付ける際に、基部65の裏面に当接させられ、ボルト71によって基部65に締結される。
 エンドカバー12は、ケーシング11の後端側の開口を塞ぐ蓋体である。このエンドカバー12の内部には、方向切換弁1が内蔵されており、スプール1aを切換えることによって、油圧ポンプ2からの油の給排方向を切り換えている。ケーシング11における筒状部21の端壁部22と回転軸13との間にはオイルシール23aが設けてある。また、ケーシング11とエンドカバー12との間にはオイルシール23bが設けてある。このオイルシール23aとオイルシール23bとでケーシング11に油を封入している。
 回転軸13は、ケーシング11及びエンドカバー12に、ベアリング24a,24bを介して回転自在に支承されている。回転軸13の先端部には、上述したファン62のファンボス67が取付けられる。なお、以下の説明では、回転軸13がベアリング24aによって支持される側を、回転軸の基端側とよび、回転軸13がベアリング24bによって支持される側を、回転軸の先端側とよぶ。
 シリンダブロック14は、スプライン26を介して回転軸13と連結され、ケーシング11内で回転軸13と一体に回転するものである。このシリンダブロック14は、先端側の端面27(以下、「先端面27」という)が斜板17に対向する一方、後端側の端面28(以下、「後端面28」という)が弁板16の表面に摺接するように配置されており、弁板16に接触したまま回転可能となっている。シリンダブロック14には、図1に示すように、シリンダブロック14の軸を中心に周方向に等間隔かつ回転軸13に平行に、複数のシリンダ孔29が穿設されている。そして、シリンダブロック14の後端面28側に位置する各シリンダ孔29の基端部分には、後述する弁板16の給排ポート31と連通するシリンダポート32が形成されている。
 各シリンダ孔29には、ピストン15が往復動自在に嵌挿されている。ピストン15は、シリンダ孔29内に油が供給されることによって斜板を押圧し、この斜板17を押圧したときに発生する回転方向成分の力によりシリンダブロック14に回転力を発生させるものである。図1に示すように、各ピストン15の先端部は、凹球形状部分にピストンシュー33が取付けられた構造となっている。ピストンシュー33は、シューリテーナ34で斜板17の摺動面Sに摺接自在に摺動する。
 弁板16は、円板状に形成されたものであり、シリンダブロック14の後端面28に摺接するように、エンドカバー12に固定されている。この弁板16は、図3に示すように、周方向に沿って形成された長孔形状の給排ポート31,31を備えている。各給排ポート31は、図1に示すように、弁板16を軸方向に貫通しており、シリンダブロック14に当接する側の開口は、複数のシリンダポート32に連通することができる。そして、各給排ポート31のエンドカバー12に当接する側の開口は、エンドカバー12の内部に形成された給排通路42,42に連通している。なお、エンドカバー12に形成された給排通路42,42は、管路3,4及び方向切換弁1を介して油圧ポンプ2又は油タンク5に接続されている。
 斜板17は、ケーシング11の端壁部22とシリンダブロック14との間に設けられ、図2に示すように、X-Y平面に平行な面内で所定角度傾斜した平坦な摺動面Sを有している。上述したように、各ピストンシュー33は、シリンダブロック14の回転に伴って、この摺動面S上に押圧されながら円状に摺動する。本実施の形態では、図2に示すように斜板17が端壁部22に固定された固定容量式のものを適用している。なお、斜板17の傾斜角度を変更する斜板傾転装置を備えた可変容量式のものを適用することもできる。可変容量式の場合、摺動面Sの傾斜角度を変更してピストン15が往復動する距離を変化させることにより、モータの容量を変更することが可能である。
 上記構成を有する油圧モータ10では、図1に示すように、油圧ポンプ2からの油が、一方の給排通路42及び給排ポート31を介してシリンダ孔29に供給される一方、各シリンダ孔29の油が、もう一方の給排ポート31を介して給排通路42に排出され、油タンク5に戻される。油が供給されたシリンダ孔29内のピストン15は斜板17を押圧する。そして、ピストン15に発生する回転方向成分の力により回転力が発生する。この回転力はシリンダブロック14を介して回転軸13に伝えられ、回転軸13を回転させる。
 次に、上述した油圧モータ10に設けられた回転センサ50と、この回転センサ50によって検出される被検出部52ついて詳しく説明する。
 図1に示すように、上述したケーシング11の後端側には、径方向に貫通する貫通孔25が形成されており、この貫通孔25に回転センサ50が装着されている。なお、本実施の形態では、図1において回転軸13に垂直で取付部18を含む面を考え、その面の一部を含むように、回転センサ50が設置されている。この回転センサ50は、上述したシリンダブロック14の所定時間内の回転数を検出するものである。シリンダブロック14と回転軸13は一体に回転し、回転軸13とファン62は一体に回転する。従って、シリンダブロック14の回転数はファン62の回転数に等しくなる。
 回転センサ50は、シリンダブロック14の外周面に設けられた被検出部52を検出する検出部51を備えている。この検出部51は、被検出部52と所定の間隔をおいて対向した状態で、ケーシング11に固定されている。検出部51による検出結果は図示しない演算部に送信される。演算部は、検出部51の検出結果に基づいてシリンダブロック14の回転数を算出する。
 上記の回転センサ50としては、例えばMR素子(磁気抵抗効果素子)やホール素子を用いた電磁ピックアップ式のセンサを適用することができる。電磁ピックアップ式の回転センサは、永久磁石の周囲にコイルを巻いた構造を有する一般的なセンサであり、検出部と被検出部との間の磁束の変化を検出するものである。
 被検出部52は、図3に示すように、シリンダブロック14の外周面の一周に亘って一定の間隔で凹部53を切削することにより形成したギア形状の凹凸部である。この被検出部52は、上述した回転センサ50の配置位置に対応する位置、すなわち、シリンダブロック14の後端側に形成されている。
 シリンダブロック14が回転すると、被検出部52の凹部53と凸部54とが回転センサ50の位置を通過することにより、検出部51と被検出部52との間の距離(磁界)が周期的に変化する。回転センサ50の検出部51は、この磁界変化により発生した交流電圧を信号として出力し、この信号を演算部に送信する。演算部は、この交流電圧をパルスに整形し、パルス数をカウントしてシリンダブロック14の回転数(すなわちファン62の回転数)を算出する。
 上述した回転センサ50の配置位置についてより詳細に説明する。図1に示すように、本実施の形態では、回転センサ50の検出部51を、X-Z平面内に配置した構成としている。
 ここで、「X-Z平面」とは、回転軸13の軸心13aに直交する斜板17の摺動面S上の線と、軸心13aとの両方を含む面である。すなわち、「軸心13aに直交する斜板17の摺動面S上の線」とは、斜板17の摺動面Sの傾斜角方向の線と直交する線である。換言すると、「軸心13aに直交する斜板17の摺動面S上の線と軸心13aとの両方を含む面」は、斜板17の摺動面Sの傾斜角方向の線と軸心13aとの両方を含む面(図2におけるX-Y平面)と直交する面である。
 回転センサ50の検出部52をX-Z平面内に配置する理由は以下のとおりである。上述したように、油圧モータ10は、同一円周上に並んだシリンダ孔内を摺動するピストンの位置を時間とともに変化させながら、シリンダブロックを回転させている。このため、シリンダブロック14が回転する際には、図2に示すX-Y平面内でのY方向の振れ回りが生じる。従って、回転センサ50を、X―Y平面に直交するX-Z平面内に配置した場合、シリンダブロック14のX-Y方向の振動の影響をほとんど受けることがない。すなわち、シリンダブロック14の外周面に形成された被検出部52と回転センサ50の検出部51との間の距離は、シリンダブロック14の振れ回りに拘わらず常にほぼ一定に保たれることになる。なお、「回転軸の軸心に直交する斜板の摺動面上の線と軸心との両方を含む面」には、図1に示したX-Z平面を回転軸13の軸心回りに数度程度回転させた面も含まれるものとする。
 なお、斜板17の傾斜角度が変更可能な可変容量式を適用した場合には、上記のX-Z平面は、斜板17を傾転させる斜板回転軸の軸心(図示せず)と回転軸13の軸心13aとの両方を含む面を意味する。
 また、回転軸13は、ベアリング24a,24bによって基端側と先端側とがそれぞれ支持されている。従って、振れ回り回転による回転軸13のぶれは、基端側と先端側との間の中央部分が最も大きくなる。このため、本実施の形態では、回転軸13のぶれの影響を最小限度に抑えるために、回転センサ50の検出部51を、図1に示すように回転軸13の基端側、すなわち、ケーシング11の後端側に配置した構成としている。
 ここで、「ケーシングの後端側」の目安としては、シリンダブロック14の軸方向においてシリンダ孔29の内径がピストン径である部分の最深部41と、シリンダブロック14の後端面28までの間の位置に対向する位置である。
 上述した検出部51の配置位置に対応して、被検出部52は、シリンダブロック14の軸方向において、シリンダ孔29の内径がピストン径である部分の最深部41と、シリンダブロック14の後端側端面28までの間に形成される。図1に示すように、シリンダポート32のZ方向の寸法は、シリンダ孔29の径寸法よりも小さいため、シリンダポート32の形成位置の外周部位は、シリンダ孔29の形成位置の外周部位よりも肉厚となっている。この肉厚部分を利用して被検出部52を形成する場合、以下の利点がある。
 図1に示すように、シリンダ孔29の形成位置の外周部位は肉薄となっている。このため、被検出部52を図1に示す位置よりもシリンダブロック先端側に形成する場合、強度確保のために、この肉薄部位を避けるようにして、隣接するシリンダ孔同士の間に凹部53を形成する必要がある。この場合、凹部53の形成個数はシリンダ孔29の個数と同数個となる。これに対して、上記の肉厚部位に被検出部52を設ける場合、凹凸部分をギア状に連続して形成することができるため、切削加工が容易である上、シリンダ孔29の個数に関係なく凹部53を形成することができる。
 また、図4~図6に示すファン駆動装置60を駆動させた場合、大きな形状を有するファン62が油圧モータ10の先端で回転するため、油圧モータ10の先端が最も振動しやすい。それに対して、基部65は固定されているため、基部65の近くは振動が小さく、基部65から離れる程振動が大きくなる。このため、油圧モータ10を基部65に取付ける場合、油圧モータ駆動時に回転センサ50に伝わる振動を最小限度に抑えるには、回転センサ50をできるだけ基部65に近接させて配置するのが好ましい。上述したように、油圧モータ10は、ケーシング11を基部65の貫通孔64に嵌挿し、取付部18を基部65の裏面に当接させてボルト止めすることによって、基部65に取付けられる。また、上述したように、回転センサ50は、回転軸13に垂直で取付部18を含む面の一部を含むように、ケーシング11に設置されている。このため、油圧モータ10を基部65に取付けた場合、回転センサ50は、基部65の裏面に近接する位置に配置されることになる。よって、油圧モータ駆動時に回転センサ50に伝わる振動を最小限度に抑えることができる。
 なお、ファン駆動装置60を駆動させると、外部から空気とともに塵や泥等が吸い込まれる。これらの塵や泥等は、ラジエータ80、ファン62及びシュラウド63の開口部69を通過する。しかし、図6に示すように、油圧モータ10の後端側は、ブラケット61の基部65の裏面側に位置し、かつ、側壁部66によってその両側を覆われた状態にある。従って、回転センサ50は外部から吸い込まれた塵や泥から保護される。
 以上説明したように、本実施の形態のファン駆動装置60は、ファン62を駆動する油圧モータ10のシリンダブロック14の外周面に被検出部52を設けるとともに、この被検出部52を検出する検出部51を、X-Y平面に直交するX-Z平面内に配置した構成としている。上記構成とすることで、シリンダブロック14のX-Y平面内の振れ回りに拘わらず、回転センサ50と被検出部52との間の距離をほぼ一定に保つことができる。その結果、従来と比べてシリンダブロックの回転数の検出精度を向上させることができ、精度の高いファン制御を行うことが可能となる。
 また、本実施の形態のファン駆動装置60は、上記回転センサ50を、回転軸13の基端側であるケーシング11の後端側に配置した構成としている。上記構成とすることで、振れ回り回転に伴う軸ぶれの影響を受けにくくなるため、シリンダブロックの回転数の検出精度をさらに向上させることができる。
 また、本実施の形態のファン駆動装置60によれば、上記被検出部52を、シリンダブロック14の軸方向において、シリンダ孔29の内径がピストン径である部分の最深部41と、シリンダブロック14の後端側端面28までの間の肉厚部位に形成したことで、切削加工を容易に行うことができる。また、シリンダ孔29の個数に関係なく凹部53の形成個数を増やすことが可能であるから、シリンダブロック14の回転数の検出精度をさらに向上させることができる。
 さらに、本実施の形態のファン駆動装置60によれば、上記回転センサ50を基部65の裏面に近接させた状態で、油圧モータ10をブラケット61に取付けた構成としたことで、油圧モータ駆動時に回転センサ50に伝わる振動を最小限度に抑えることができるため、回転センサの振動による故障を招来するおそれを少なくすることができる。
 加えて、本実施の形態のファン駆動装置60によれば、上記回転センサ50をブラケット61の裏面側に位置させた状態で、油圧モータ10をブラケット61に取付けた構成としたことで、外部から侵入する塵や泥が回転センサ50に付着するのを防止することができる。
 なお、上記実施の形態では、本発明の油圧ポンプ・モータをファン駆動装置に適用した場合について説明したが、本発明はこれらに限定されるものではなく、他の駆動装置あるいは斜板式油圧ポンプにも適用することができる。

Claims (2)

  1.  ケーシング内に回転可能に取付けられた回転軸と、前記回転軸とともに回転するシリンダブロックと、前記シリンダブロックに形成した複数のシリンダ孔内に往復動自在に嵌挿された複数のピストンと、前記回転軸に対して傾斜するように前記ケーシング内に設けられ前記複数のピストンの先端部を摺接自在に摺動させる斜板とを有する油圧ポンプ・モータにおいて、
     前記シリンダブロックの外周面に形成された被検出部と、
     前記被検出部に対向する状態で前記ケーシングに配置され、該被検出部を検出する検出部を備えた回転センサとを有し、
     前記回転センサの検出部は、
     前記回転軸の軸心に直交する斜板の摺動面上の線と前記軸心との両方を含む面内に配置されていることを特徴とする油圧ポンプ・モータ。
  2.  前記回転センサは、
     前記シリンダブロックの軸方向において、前記シリンダ孔の最深部から前記シリンダブロックの後端面までの間に対応する位置に設けられることを特徴とする請求項1に記載の油圧ポンプ・モータ。
PCT/JP2008/073286 2008-01-28 2008-12-22 油圧ポンプ・モータ WO2009096117A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008016738A JP2009174504A (ja) 2008-01-28 2008-01-28 油圧ポンプ・モータ
JP2008-016738 2008-01-28

Publications (1)

Publication Number Publication Date
WO2009096117A1 true WO2009096117A1 (ja) 2009-08-06

Family

ID=40912475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073286 WO2009096117A1 (ja) 2008-01-28 2008-12-22 油圧ポンプ・モータ

Country Status (2)

Country Link
JP (1) JP2009174504A (ja)
WO (1) WO2009096117A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017153386A3 (en) * 2016-03-07 2017-10-19 Te Connectivity Germany Gmbh Subassembly for a compressor, in particular in a motor car

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989636B (zh) * 2015-08-11 2018-01-30 贵阳海之力液压有限公司 一种斜盘式柱塞泵、马达的配流盘及其配合的缸体
JP7390151B2 (ja) * 2019-10-03 2023-12-01 株式会社小松製作所 油圧ポンプモータ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458070A (ja) * 1990-06-27 1992-02-25 Hitachi Constr Mach Co Ltd 液圧回転機
JPH062647A (ja) * 1992-06-19 1994-01-11 Honda Motor Co Ltd 静油圧式無段変速機におけるシリンダブロックの製造方法
JP2003232278A (ja) * 2002-01-16 2003-08-22 Denison Hydraulics Inc 改良された可変吐出量アキシァルピストンポンプ
JP2007522387A (ja) * 2004-02-11 2007-08-09 ハルデックス・ハイドローリクス・コーポレーション 回転式液圧装置および制御器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458070A (ja) * 1990-06-27 1992-02-25 Hitachi Constr Mach Co Ltd 液圧回転機
JPH062647A (ja) * 1992-06-19 1994-01-11 Honda Motor Co Ltd 静油圧式無段変速機におけるシリンダブロックの製造方法
JP2003232278A (ja) * 2002-01-16 2003-08-22 Denison Hydraulics Inc 改良された可変吐出量アキシァルピストンポンプ
JP2007522387A (ja) * 2004-02-11 2007-08-09 ハルデックス・ハイドローリクス・コーポレーション 回転式液圧装置および制御器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017153386A3 (en) * 2016-03-07 2017-10-19 Te Connectivity Germany Gmbh Subassembly for a compressor, in particular in a motor car
US11614080B2 (en) 2016-03-07 2023-03-28 Te Connectivity Germany Gmbh Subassembly for a compressor

Also Published As

Publication number Publication date
JP2009174504A (ja) 2009-08-06

Similar Documents

Publication Publication Date Title
JP5183225B2 (ja) 油圧ポンプ・モータ及びファン駆動装置
WO2016027376A1 (ja) 回転検出機構付き油圧ポンプ・モータ
WO2009096117A1 (ja) 油圧ポンプ・モータ
JP4803027B2 (ja) コンプレッサ
KR100212525B1 (ko) 압축기
EP1591664B1 (en) Sealing mechanism for water pump
WO2018030375A1 (ja) 駆動装置
JP6868703B2 (ja) 圧縮機
JP2017218957A (ja) ファン装置
JPH11336656A (ja) 調節可能な流体静力学的なアキシアルピストン機械
US8985963B2 (en) Stop mechanism for vane compressor
WO2014103590A1 (ja) アキシャルピストンモータ
JP2005083325A (ja) 回転速度検出機構を備えた容量可変型圧縮機
JP2010210493A (ja) 接触式ストロークセンサ
KR102130409B1 (ko) 압축기
JP2016205211A (ja) ベーンロータリー圧縮機
JP4652225B2 (ja) コンプレッサ
JP2010210494A (ja) 接触子
JP2008043053A (ja) 軸方向空隙型電動機
JP7281918B2 (ja) 油圧モータ
JP2012080657A (ja) 回転装置
JP2687835B2 (ja) 圧縮機
CN114233718B (zh) 测量定位的旋转驱动装置
KR102198516B1 (ko) 압축기
JP3296512B2 (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871760

Country of ref document: EP

Kind code of ref document: A1