WO2009093570A1 - 摩擦ローラ式伝動装置 - Google Patents

摩擦ローラ式伝動装置 Download PDF

Info

Publication number
WO2009093570A1
WO2009093570A1 PCT/JP2009/050749 JP2009050749W WO2009093570A1 WO 2009093570 A1 WO2009093570 A1 WO 2009093570A1 JP 2009050749 W JP2009050749 W JP 2009050749W WO 2009093570 A1 WO2009093570 A1 WO 2009093570A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction roller
friction
crankshaft
roller
bearing support
Prior art date
Application number
PCT/JP2009/050749
Other languages
English (en)
French (fr)
Inventor
Atsuhiro Mori
Eigo Sakagami
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to US12/864,194 priority Critical patent/US8187134B2/en
Priority to EP09704737A priority patent/EP2246593B1/en
Priority to CN2009801029288A priority patent/CN101925758B/zh
Priority to JP2009550518A priority patent/JP5263173B2/ja
Publication of WO2009093570A1 publication Critical patent/WO2009093570A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/02Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion
    • F16H13/04Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion with balls or with rollers acting in a similar manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members

Definitions

  • the present invention relates to a friction roller transmission that is advantageous for use in transfer (driving force distribution device) of a four-wheel drive vehicle.
  • the driving force distribution device described in this document is a transfer of a four-wheel drive vehicle using a planetary gear set.
  • the torque from the transmission is input to the carrier of the planetary gear set, and this torque is distributed from the carrier to the main drive wheel and the slave drive wheel via the sun gear and ring gear, thereby determining the drive force distribution between the master and slave drive wheels.
  • the conventional driving force distribution device distributes the driving force between the main and slave driving wheels using a gear set such as a planetary gear set.
  • the distribution ratio of the torque to the main drive wheel (main drive wheel torque) and the torque to the sub drive wheel (sub drive wheel torque) is the gear specifications (in the configuration of Patent Document 1, the number of sun gear teeth and the number of ring gear teeth) It will be decided uniquely.
  • the main driving wheel torque increases.
  • the driven wheel torque also increases accordingly.
  • the slave driving has the same tendency as the main driving wheel torque.
  • the driven wheel torque exceeds the strength of the driven wheel drive system that must be reduced for the above reason.
  • the conventional gear-type driving force distribution device has a problem that it cannot be used as a transfer for a four-wheel drive vehicle in which the slave drive wheel drive system has to be downsized due to the demand for compactness of the vehicle.
  • the present invention provides a friction roller type transmission device useful as a driving force distribution device or the like capable of setting an upper limit of torque to the driven wheels, thereby eliminating the above-mentioned problem.
  • the purpose is a friction roller type transmission device useful as a driving force distribution device or the like capable of setting an upper limit of torque to the driven wheels, thereby eliminating the above-mentioned problem.
  • the present invention is premised on a friction roller type transmission device in which a pair of friction rollers are pressed against each other in a radial direction so that power can be transferred between the friction rollers.
  • the present invention further makes the friction roller transmission device more useful by controlling the transmission torque capacity by controlling the frictional roller radial pressing force, and the frictional roller radial pressing reaction force is input to the housing. Accordingly, it is an object of the present invention to reduce the weight of the housing in such a manner that the control accuracy of the frictional roller radial pressing force control (transmission torque capacity control) is improved.
  • the friction roller transmission according to the invention is A pair of friction rollers are directly or indirectly pressed against each other in the radial direction so as to be in frictional contact, thereby enabling power to be transferred between the friction rollers,
  • One of the friction rollers is supported so as to be rotatable around an eccentric axis with respect to the crankshaft, and the radial pressing force between the friction rollers can be adjusted by controlling the rotational position of the crankshaft.
  • the crankshaft related to the one friction roller and the friction roller shaft related to the other friction roller to bearing supports arranged on both axial sides of the friction roller pair, the friction roller shaft is fitted.
  • a constricted portion for lowering the support rigidity against the radial pressing reaction force between the friction rollers is provided at a central portion between both end bearing fitting portions of each bearing support.
  • the friction roller transmission according to the present invention is A first friction roller having a rotation axis in a first direction; A second friction roller disposed so as to be capable of transmitting torque by friction with the first friction roller, the second friction roller being located in a second direction from the rotation shaft of the first friction roller, and the first direction
  • the second friction roller having a rotational axis substantially parallel to A crankshaft that rotatably supports the second friction roller about an eccentric axis, the crankshaft changing a radial pressing force between the first and second friction rollers by rotation;
  • a bearing support having a first bearing support portion for supporting the first friction roller and a second bearing support portion for supporting the crankshaft, wherein the first and second portions are interposed between the bearing support portions.
  • the bearing support having a central portion in which the dimension in the direction perpendicular to the two directions is small compared to the bearing support portion; It is what has.
  • the friction roller transmission is A first friction roller having a rotation axis in a first direction; A second friction roller arranged to be able to transmit torque by friction with the first friction roller, the second friction roller having a rotation axis substantially parallel to the first direction; A crankshaft that rotatably supports the second friction roller about an eccentric axis, the crankshaft changing a radial pressing force between the first and second friction rollers by rotation; A bearing support having a first bearing support portion for supporting the first friction roller and a second bearing support portion for supporting the crankshaft, wherein the first direction is between the bearing support portions.
  • the bearing support having a central portion whose size is small compared to the bearing support portion, It is what has.
  • FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle using a friction roller transmission device according to an embodiment of the present invention as a driving force distribution device as viewed from above the vehicle.
  • FIG. 2 is a longitudinal side view of the driving force distribution device (friction roller transmission device) in FIG.
  • FIG. 3 is a longitudinal front view of a driving force transmission portion from a second friction roller to an output shaft, which is a cross-section on the line III-III in FIG.
  • FIG. 4 is a longitudinal side view showing another configuration of the driving force distribution device in FIG.
  • FIG. 5 is a longitudinal front view showing a crankshaft used in the driving force distribution device shown in FIG. FIG.
  • FIG. 3 is a characteristic diagram showing a change characteristic of a friction torque transmission torque capacity with respect to a radial pressing force between friction rollers of the driving force distribution device (friction roller transmission device) shown in FIG. Compare the change characteristics of the frictional roller radial pressing force against the crankshaft rotation angle of the drive force distribution device (friction roller transmission) shown in FIG. 2 with the change characteristics when the countermeasures of FIG. 2 are not taken.
  • FIG. FIG. 2 shows a bearing support of the driving force distribution device (friction roller type transmission device) shown in FIG. 2, (a) is a front view seen in the axial direction of a bearing fitting portion provided on the bearing support, and (b) is a front view thereof. It is a side view.
  • FIG. 9 is a view of a bearing support similar to FIG. 8 showing another embodiment of the present invention, in which (a) is a front view of the bearing support and (b) is a side view of the bearing support.
  • FIG. 9 is a view of a bearing support similar to FIG. 8 showing still another embodiment of the present invention, in which (a) is a front view of the bearing support and (b) is a side view of the bearing support.
  • FIG. 9 is a front view of a bearing support similar to FIG. 8 (a), showing still another embodiment of the present invention.
  • FIG. 10 is a side view of a bearing support similar to FIG. 9 (b), showing yet another embodiment of the present invention.
  • FIG. 9 is a view of a bearing support similar to FIG. 8 showing another embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing a radial pressing force control procedure between the first and second friction rollers in the driving force distribution device (friction roller type transmission device) shown in FIG. 2, and (a) shows the radius of the first and second friction rollers.
  • Explanatory diagram showing the control method for the radial force between the friction rollers when the sum is the same as the distance between the input and output shafts.
  • (B) is the distance between the input and output shafts. It is explanatory drawing which shows the friction roller radial direction pressing force control point at the time of making it larger than this.
  • FIG. 3 is a characteristic diagram showing a correlation between a crankshaft rotation angle of the driving force distribution device (friction roller transmission device) shown in FIG. 2 and crankshaft rotation driving torque and friction roller transmission torque capacity.
  • the friction roller transmission of the present invention Since the power is transferred between the pair of friction rollers by frictional contact, a large torque exceeding the range of the transfer torque capacity determined by the radial pressing force between the friction rollers is not transferred between the rollers.
  • the upper limit of the torque applied to the driven wheels can be set.
  • the friction roller type transmission device of the present invention can be used as a driving force distribution device even in a four-wheel drive vehicle in which the driven wheel drive system has to be downsized due to demands for vehicle miniaturization and the like.
  • the friction roller transmission of the present invention Since one of the friction rollers is rotatably supported around an eccentric axis with respect to the crankshaft, the radial pressing force between the friction rollers can be adjusted by controlling the rotational position of the crankshaft. It is possible to freely control the transmission torque capacity determined by the radial pressing force between the friction rollers, and it is very useful because it can freely meet a wide range of requirements regarding this transmission torque capacity.
  • the bearing supports arranged on both sides in the axial direction of the friction roller pair receive the reaction force between the friction rollers in the radial direction and do not transmit to the housing, the weight of the housing can be reduced.
  • the bearing supports provided on both sides in the axial direction of the friction roller pair for the above purpose have a large supporting rigidity against the reaction force between the friction rollers in the radial direction.
  • force control transmission torque capacity control
  • the frictional roller radial pressing force change rate transmission torque capacity change rate
  • frictional roller radial pressing force control transmission torque
  • the constricted portion for reducing the support rigidity against the frictional roller radial pressing reaction force is provided in the center portion between the bearing fitting portions at both ends of each bearing support.
  • the amount of deflection of the bearing support due to the reaction force between the friction rollers in the radial direction increases, and the friction roller radial pressure change ratio (transmission torque capacity change ratio) relative to the rotation angle of the crankshaft is moderately increased.
  • the rotation angle range of the crankshaft that can be used for the radial direction pressing force control (transmission torque capacity control) is widened, and the accuracy of the control can be improved.
  • FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle provided with a friction roller transmission as a driving force distribution device (transfer) 1 according to an embodiment of the present invention as viewed from above the vehicle.
  • the four-wheel drive vehicle in FIG. 1 is a base vehicle based on a rear-wheel drive vehicle in which rotation from the engine 2 is changed by the transmission 3 and then transmitted to the left and right rear wheels 6L and 6R via the rear propeller shaft 4 and the rear final drive unit 5. age, Part of the torque to the left and right rear wheels (main drive wheels) 6L, 6R is transferred from the friction transmission of the driving force distribution device 1 via the front propeller shaft 7 and the front final drive unit 8 to the left and right front wheels (secondary drive wheels) 7L, 7R.
  • This is a vehicle that enables four-wheel drive traveling by transmitting to the vehicle.
  • the driving force distribution device (friction roller type transmission device) 1 distributes a part of the torque to the left and right rear wheels (main drive wheels) 6L and 6R to the left and right front wheels (secondary drive wheels) 7L and 7R for output. This determines the driving force distribution between the left and right rear wheels (main driving wheels) 6L, 6R and the left and right front wheels (secondary driving wheels) 9L, 9R.
  • this driving force distribution device (friction) The roller type transmission device 1 is configured as shown in FIG.
  • a shaft comprising a long input shaft 12 and a short output shaft 13 in a housing 11 and a crankshaft 41 fitted to the output shaft 13 through a needle bearing 42 so as to be rotatable relative to each other in a coaxial contact state.
  • Units are placed parallel to each other and placed horizontally.
  • Both ends of the input shaft 12 are inserted into shaft through holes 11a and 11b of the housing 11, and ball bearings 14 and 15 are interposed between both ends of the input shaft 12 and the shaft through holes 11a and 11b of the housing 11.
  • the both ends of the input shaft 12 are rotatably supported by the housing 11 via these ball bearings 14 and 15.
  • the shaft unit composed of the output shaft 13 and the crankshaft 41 has both ends of the shaft unit inserted into the shaft through holes 11c and 11d of the housing 11, and both ends of the shaft unit and the shaft through holes 11c and 11d of the housing 11 Ball bearings 16 and 17 are interposed therebetween, and both ends of the shaft unit are rotatably supported by the housing 11 via the ball bearings 16 and 17.
  • the input shaft 12 includes the roller bearings 18, 19 is fitted, and roller bearings 21 and 22 that are also arranged in the housing 11 are fitted to the shaft units 13 and 41.
  • the roller bearings 18 and 21 are located in substantially the same axis perpendicular plane as the needle bearing 42 interposed in the coaxial butt bearing fitting portion of the output shaft 13 and the crankshaft 41, and the roller bearings 19 and 22 , 21 is located in a plane perpendicular to the axis that is axially spaced from 21.
  • roller bearings 18 and 21 for the input / output shafts 12 and 13 positioned in the same axis perpendicular plane as the needle bearing 42 are respectively held in the bearing fitting portions 23a and 23b of the common first bearing support 23. Holding this bearing support 23 along the corresponding inner surface of the housing 11, Also, the roller bearings 19 and 22 for the input shaft 12 and the crankshaft 41, which are positioned in different planes perpendicular to the shaft, are respectively held in the bearing fitting portions 25a and 25b of the common second bearing support 25.
  • the bearing support 25 is arranged along the corresponding inner surface of the housing 11.
  • Both ends of the input shaft 12 protrude from the housing 11 under liquid-tight sealing by seal rings 27 and 28 interposed between both ends of the input shaft 12 and the shaft through holes 11a and 11b of the housing 11, respectively.
  • the left end of the shaft 12 in the drawing is coupled to the output shaft of the transmission 3 (see FIG. 1), and the right end in the drawing is coupled to the rear final drive unit 5 via the rear propeller shaft 4 (see FIG. 1).
  • the left end of the output shaft 13 in the figure is protruded from the housing 11 under liquid tight sealing by a seal ring 29 interposed between the output shaft 13 and the shaft through hole 11c of the housing 11, and the left end of the output shaft 13 protruding Is coupled to the front final drive unit 8 via the front propeller shaft 7 (see FIG. 1).
  • crankshaft 41 has a radius between both end rotation support portion 17 and 42 is an eccentric shaft portion 41a of the R, the eccentric shaft portion 41a is the axis of rotation of the crankshaft 41 and the axis O 3 (the output shaft 13) It is offset from O 2 by ⁇ and positioned in the same axis perpendicular plane as the first friction roller 31 on the input shaft 12.
  • the second friction roller 32 is rotatably mounted on the eccentric shaft portion 41a of the crankshaft 41 through the roller bearing 44 but in an axially positioned state, and the shaft unit composed of the crankshaft 41 and the output shaft 13 is
  • the shaft of the second friction roller 32 (friction roller shaft) is also configured.
  • the configuration of the rotation axis of second friction roller 32 is the same as the axis O 3 of eccentric shaft portion 41a, by controlling the rotational position of the crankshaft 41 of the second friction roller rotation axis O 3 (eccentric shaft portion 41a The center axis) is rotated around the crankshaft rotation axis (output shaft rotation axis) O 2 , whereby the inter-axis distance L1 between the first friction roller 31 and the second friction roller 32 (the rotation axis of the first friction roller 31). If the distance between the rotation axis O 3 of O 1 and the second friction roller 32) is adjusted, The radial pressing force of the second friction roller 32 against the first friction roller 31 (the transmission torque capacity between the first and second friction rollers 31 and 32) can be freely controlled.
  • the right end of the crankshaft 41 far from the output shaft 13 is a seal interposed between the right end of the crankshaft 41 and the shaft through hole 11d of the housing 11. Under the liquid-tight seal by the ring 43, the housing 11 is exposed to the outside.
  • the output shaft 45a of the inter-roller pressing force control motor 45 is drivingly coupled to the exposed end surface of the crankshaft 41 by serration fitting or the like, and the inter-roller pressing force control motor 45 is attached to the housing 11.
  • a flange portion 13a is integrally formed on the inner end of the output shaft 13. The diameter of the flange portion 13a is set so as to face the second friction roller 32 in the axial direction.
  • a plurality of drive pins 46 projecting toward the second friction roller 32 are fixed to the output shaft flange portion 13a facing the second friction roller 32, and these drive pins 46 are arranged on the same circumference as shown in FIG. Are arranged at regular intervals.
  • the drive pins 46 are individually inserted into the end surface of the second friction roller 32 facing the output shaft flange portion 13a.
  • a plurality of holes 47 are formed. Then, as clearly shown in FIG. 3, these drive pin penetration holes 47 are circular holes having a diameter larger than the diameter of the drive pin 46, and the diameter is the rotation axis O 2 of the output shaft 13 and the rotation of the second friction roller 32. while absorbing the eccentricity ⁇ between the axis O 3 and needed diameter to permit torque transmission from second friction roller 32 mentioned above to the output shaft 13 (flange portion 13a).
  • the operation of the friction roller type transmission device (driving force distribution device) 1 shown in FIGS. 1 to 3 will be described below.
  • the output torque from the transmission 3 is input to the shaft 12 from the left end of FIG. 2, and on the other hand, the left and right rear wheels 6L and 6R (main drive wheels) pass through the rear propeller shaft 4 and the rear final drive unit 5 from the input shaft 12 as they are. Is transmitted to.
  • the driving force distribution device (friction roller type transmission device) 1 transfers a part of the torque to the left and right rear wheels 6L, 6R from the first friction roller 31 to the first friction roller 31 and the second friction roller 32.
  • the friction contact portions 31a, 32a, the second friction roller 32, the drive pin 46, and the output shaft flange 13a are sequentially directed toward the output shaft 13, Thereafter, this torque is transmitted from the left end of the output shaft 13 in FIG. 2 to the left and right front wheels (secondary drive wheels) 7L and 7R via the front propeller shaft 7 and the front final drive unit 8.
  • the vehicle is capable of four-wheel drive running by driving all of the left and right rear wheels 6L and 6R (main drive wheels) and the left and right front wheels (secondary drive wheels) 7L and 7R.
  • the driving force distribution device (friction roller type transmission device) 1 distributes a part of the torque to the left and right rear wheels (main driving wheels) 6L and 6R to the left and right front wheels (secondary driving wheels) 7L and 7R as described above.
  • the driving force distribution between the left and right rear wheels (main drive wheels) 6L and 6R and the left and right front wheels (secondary drive wheels) 9L and 9R A large torque exceeding the range of the transmission torque capacity according to the radial pressing force of the second friction roller 32 against the first friction roller 31 (the radial pressing force between the friction rollers) is applied from the first friction roller 31 to the second friction roller 31. It is not transmitted to the roller 32.
  • the upper limit value of the torque to the left and right front wheels is set to a value according to the radial pressing force between the first friction roller 31 and the second friction roller 32, and the left and right rear wheels (main drive wheels)
  • the driving force distribution characteristics between 6L and 6R and the left and right front wheels (secondary driving wheels) 9L and 9R are such that when the input torque increases beyond a certain value, the torque to the left and right front wheels (secondary driving wheels) is kept at the above upper limit. The characteristics can be made.
  • the driving force distribution device 1 is used for a four-wheel drive vehicle in which the drive system of the left and right front wheels (secondary drive wheels) has to be downsized due to a demand for a compact vehicle. It can be used as a driving force distribution device for the four-wheel drive vehicle without worrying about insufficient strength.
  • the second friction roller rotation axis O 3 (the axis of the eccentric shaft portion 41a) is rotated around the crankshaft rotation axis (output shaft rotation axis) O 2 , and the axes of the first friction roller 31 and the second friction roller 32
  • the distance L1 can be adjusted.
  • the radial pressing force of the second friction roller 32 against the first friction roller 31 can be changed and controlled.
  • the transmission torque capacity between the first and second friction rollers can be freely controlled.
  • the friction torque transmission torque capacity Tr between the first friction roller 31 and the second friction roller 32 changes in a proportional relationship as shown in FIG. 6, for example, with respect to the radial pressing force Fr. Therefore, the upper limit value of the torque to the left and right front wheels (secondary drive wheels) can be freely changed by controlling the rotational position of the crankshaft 41 by the motor 45 (controlling the radial force of the second friction roller 32 against the first friction roller 31).
  • the driving force distribution characteristics between the left and right rear wheels (main drive wheels) 6L, 6R and the left and right front wheels (secondary drive wheels) 9L, 9R can always be optimized according to the driving situation.
  • the output shaft 13 that is drivingly engaged with the second friction roller 32 and a coaxial butt bearing fitting portion (roller bearing 42) between the corresponding shaft end of the crankshaft 41 and the shaft perpendicular to the shaft.
  • the first bearing support 23 is provided with a friction roller shaft (output shaft) 13 related to the second friction roller 32 and a friction roller shaft (input shaft) 12 related to the first friction roller 31, respectively, as bearings 21, Mating via 18 and A crankshaft 41 related to the second friction roller 32, and a first bearing support 25 disposed in a plane perpendicular to the axis on the opposite side of the first bearing support 23 across the second friction roller 32, and the first Since the friction roller shaft (input shaft) 12 related to the friction roller 31 is fitted through the bearings 22 and 19, respectively,
  • the first and second bearing supports 23 and 25 receive the radial pressing reaction force between the friction rollers generated when the second friction roller 32 is pressed in the radial direction against the first friction roller 31 and brought into frictional contact with each other.
  • the radial pressing reaction force between the friction rollers disappears as an internal force in the bearing supports 23 and 25, and this radial pressing reaction force between the friction rollers is not input to the housing 11 as it is, thereby increasing the strength of the housing 11.
  • the housing 11 can be reduced in weight by the amount that is not necessary.
  • the friction roller transmission may be configured as shown in FIGS. That is, instead of the solid inner shaft type crankshaft 41, a pair of hollow outer shaft type crankshafts 51L and 51R are used, and the radial displacement of the second roller 32 is caused by the rotational displacement of these crankshafts 51L and 51R. Thus, the inter-axis distance L1 between the first roller 31 and the second roller 32 is changed.
  • the second roller 32 is formed integrally with the output shaft 13, and the hollow crankshafts 51L and 51R are arranged on both sides in the axial direction of the second roller 32.
  • Center holes 51La and 51Ra (radius Ri) of the crankshafts 51L and 51R are fitted to both ends of the output shaft 13 projecting from both sides in the axial direction of the second roller 32, and bearings 52L and 52R are interposed in the fitting portions. is allowed crankshaft output shaft 13 51L, center hole 51La of 51R, in 51Ra, supports that can freely rotate around these central axis O 2.
  • the crankshafts 51L and 51R have outer peripheral portions 51Lb and 51Rb (radius Ro) that are eccentric with respect to the central holes 51La and 51Ra (central axis O 2 ), and these eccentric outer peripheral portions 51Lb and 51Rb
  • the central axis O 3 is offset from the axial line O 2 of the central holes 51La and 51Ra by an eccentricity ⁇ between them.
  • the eccentric outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are rotatably supported in bearing supports 23 and 25 on the corresponding sides via bearings 53L and 53R, respectively.
  • the crankshafts 51L and 51R, together with the second roller 32 are positioned in the axial direction by the thrust bearings 54L and 54R.
  • Ring gears 51Lc and 51Rc of the same specification are integrally provided at adjacent ends of the crankshafts 51L and 51R facing each other.
  • a common crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc.
  • the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc in a state where the crankshafts 51L and 51R are in a rotational position where the eccentric outer peripheral portions 51Lb and 51Rb are aligned with each other in the circumferential direction.
  • crankshaft drive pinion 55 is coupled to the pinion shaft 56, and both ends of the pinion shaft 56 are rotatably supported on the housing 11 by bearings 56a and 56b.
  • the right end of the pinion shaft 56 on the right side of FIG. 4 is exposed outside the housing 11,
  • An output shaft 45a of an inter-roller pressing force control motor 45 attached to the housing 11 is drivingly coupled to the exposed end surface of the pinion shaft 56 by serration fitting or the like.
  • crankshaft 51L and the output shaft 13 are protruded from the housing 11 on the left side of FIG. 4, respectively, and a seal ring 57 is interposed between the housing 11 and the crankshaft 51L at the protruding portion, and a seal is provided between the crankshaft 51L and the output shaft 13.
  • Intervening ring 58 By these seal rings 57 and 58, the crankshaft 51L protruding from the housing 11 and the protruding portion of the output shaft 13 are liquid-tightly sealed.
  • the output shaft 13 can be satisfactorily sealed at a position where the output shaft 13 protrudes from the housing 11 even though the rotation axis O 2 is swung and displaced due to the turning of the output shaft 13.
  • the bearing supports 23 and 25 provided on both sides in the axial direction of the first and second friction rollers 31 and 32 for this purpose have a large support rigidity against the radial reaction force between the friction rollers.
  • the friction roller radial pressing force control transmission torque capacity control
  • the torque capacity change rate As a result, the rotation angle range of the crankshaft that can be used for the radial direction pressing force control (transmission torque capacity control) between the friction rollers becomes a narrow range up to ⁇ 1, and the accuracy of the control tends to deteriorate.
  • a bearing fit is provided at the center between the bearing fitting portions 23a and 23b on both ends of the bearing support 23.
  • the constricted portion 23e is set by providing thickness direction grooves 23c and 23d extending in the direction of the central axes O 1 and O 2 of the joint portions 23a and 23b. That is, the width W of the center portion of the bearing support 23 is set smaller than the maximum widths W1 and W2 of the bearing support portion.
  • This constricted portion 23e reduces the support area of the bearing support 23 against the frictional roller radial pressing reaction force as a result of reducing the cross-sectional area of the central portion between the bearing fitting portions 23a, 23b at both ends of the bearing support 23, The amount of deflection in the corresponding direction of the bearing support 23 due to the radial pressing reaction force between the friction rollers increases.
  • the center axis O 1 of the bearing fitting portions 25a and 25b is formed at the center between the bearing fitting portions 25a and 25b at both ends of the bearing support 25. , setting the thickness direction grooves 25c, constricted portion 25e provided 25d extending the O 2 direction. That is, the width W of the center portion of the bearing support 25 is set smaller than the maximum widths W1 and W2 of the bearing support portion.
  • This constricted portion 25e reduces the support area of the bearing support 25 against the frictional roller radial pressing reaction force as a result of reducing the cross-sectional area of the central portion between the bearing fitting portions 25a, 25b at both ends of the bearing support 25, The amount of deflection in the corresponding direction of the bearing support 25 due to the radial pressing reaction force between the friction rollers is increased.
  • the constricted portions 23e and 25e for reducing the support rigidity against the radial pressing reaction force between the friction rollers at the central portion between the bearing fitting portions 23a and 23b and 25a and 25b at both ends of the bearing supports 23 and 25.
  • the amount of deflection in the corresponding direction of the bearing supports 23 and 25 due to the reaction force between the friction rollers in the radial direction is increased, and the friction with respect to the rotation angle ⁇ of the crankshaft 41 is correspondingly increased as illustrated by the solid line in FIG.
  • the rate of change in the radial pressing force Fr between rollers (change rate of the transmission torque capacity) is moderate, and the rotation angle range of the crankshaft 41 that can be used for radial pressing force control (transmission torque capacity control) between the friction rollers has been expanded to ⁇ 2. And the accuracy of the control can be improved.
  • this operational effect is obtained at the bearing fitting portions 23a, 23b at both ends of the bearing supports 23 and 25 at the center between the bearing fitting portions 23a, 23b and 25a, 25b, respectively.
  • center axis O 1, O 2 surface and the bearing fitting portion 25a containing the 23b, extending widthwise grooves 23f, 23 g and 25f, 25g of providing a direction transverse to the plane including the center axis O 1, O 2 of 25b This can also be achieved by setting the constricted portions 23h and 25h. That is, the thickness T of the center part of the bearing supports 23 and 25 is set to be smaller than the maximum thickness T1 and T2 of the bearing support part.
  • constricted portions 23h and 25h reduce the cross-sectional area of the central portion between the bearing fitting portions 23a and 23b and 25a and 25b at both ends of the bearing supports 23 and 25, respectively.
  • the support rigidity of 23 and 25 is lowered, and the amount of deflection in the corresponding direction of the bearing supports 23 and 25 due to the radial pressing reaction force between the friction rollers is increased.
  • constricted portions 23h and 25h for reducing the support rigidity against the radial pressing reaction force between the friction rollers at the center portion between the bearing fitting portions 23a and 23b and the end portions 25a and 25b of the bearing supports 23 and 25.
  • the amount of deflection in the corresponding direction of the bearing supports 23 and 25 due to the reaction force between the friction rollers in the radial direction is increased by the setting of the constricted portions 23h and 25h, and as shown by the solid line in FIG.
  • the rate of change of the radial pressing force Fr between the friction rollers relative to the torque roller is moderate, and the rotation angle range of the crankshaft 41 that can be used for the frictional roller radial pressing force control (transmission torque capacity control) is ⁇ 2.
  • the accuracy of the control can be improved.
  • FIGS. 10 (a) and 10 (b) show a thickness direction groove 23c, similar to that in FIG. 8, at the center of the bearing support 23 (25) between both end bearing fitting portions 23a and 23b (between 25a and 25b).
  • 23d (25c, 25d) and width direction grooves 23f, 23g (25f, 25g) similar to those in FIG. 9 are provided to set the constricted portion 23i (25i). That is, the width W of the center portion of the bearing support 23 (25) is set to be smaller than the maximum width W1, W2 of the bearing support portion, and the thickness T of the center portion is smaller than the maximum thickness T1, T2 of the bearing support portion. Is set.
  • constricted portions 23i and 25i are obtained by further reducing the cross-sectional area of the central portion between both end bearing fitting portions 23a, 23b and 25a, 25b of the bearing supports 23 and 25 as compared with the embodiment in FIGS.
  • the support rigidity of the bearing supports 23 and 25 against the radial pressing reaction force between the friction rollers is further reduced, and the corresponding direction deflection amount of the bearing supports 23 and 25 due to the radial pressing reaction force between the friction rollers is further increased.
  • the frictional roller radial pressing force control (transmission torque capacity control) is increased by the amount of deflection in the corresponding direction of the bearing supports 23 and 25 due to the radial pressing reaction force between the friction rollers.
  • the rotation angle range of the crankshaft 41 that can be used for the above can be expanded to a rotation angle larger than ⁇ 2 in FIG.
  • the accuracy of the frictional roller radial direction pressing force control (transmission torque capacity control) can be further improved.
  • the thickness direction grooves 23c, 23d (25c, 25d) of the bearing support 23 (25) in FIG. 8 continuously change in curvature in the axial direction, and the bearing fitting portion 23a , 25a (23b, 25b) can be shaped so as to continue smoothly into a circular outer periphery.
  • the thickness T of the center portion of the bearing support 23 (25) is set to be smaller than the maximum thicknesses T1 and T2 of the bearing support portion.
  • the width direction grooves 23f and 23g (25f and 25g) of the bearing support 23 (25) in FIG. 9 have a U-shaped cross section at the bottom of the groove and have no corner at the bottom of the groove. can do. Also in FIG.
  • the thickness T of the center portion of the bearing support 23 (25) is set smaller than the maximum thicknesses T1 and T2 of the bearing support portion.
  • the groove shapes shown in FIGS. 11 and 12 can of course be used in combination. According to these groove shapes, the absence of corners prevents the strength of the bearing support 23 (25) from being lowered. The effect can be achieved.
  • the bearing support central portion may be present between the bearing support portion, the rotation shaft O 1, the position of the central portion of the O 2 between the direction center (center position) between the rotation axis O 1, O 2 only a limited
  • the position may be offset from the center.
  • FIG. 13 is a conceptual diagram of radial pressing force control between the friction rollers 31 and 32.
  • the conceptual diagram of force control is shown.
  • the axis O 3 of the second friction roller 32 becomes the countershaft axis O 2.
  • the second friction roller 32 is displaced from the solid line position toward the broken line position because it is displaced in the corresponding direction on the broken line.
  • the radial overlap amount ⁇ of the second friction roller 32 with respect to the first friction roller 31 gradually increases from 0, and the friction roller radial pressing force that increases in accordance with the friction roller radial overlap amount ⁇ is increased.
  • the transmission torque capacity between the friction rollers 31 and 32 gradually increases from zero.
  • the friction roller radial overlap amount ⁇ becomes the maximum value ⁇ max. Accordingly, the maximum pressing force between the friction rollers in the radial direction is generated, and the transmission torque capacity between the friction rollers 31 and 32 can be maximized.
  • the axis of countershaft eccentric shaft portion 41a that rotatably supports the second friction roller 32 Is required to be the same as the friction roller radial maximum overlap amount ⁇ max determined according to the required maximum transmission torque capacity between the friction rollers 31 and 32.
  • the axis O 3 of the second friction roller 32 becomes the countershaft axis O 2.
  • the second friction roller 32 is displaced from the solid line position toward the broken line position because it is displaced in the corresponding direction on the broken line.
  • the radial overlap amount ⁇ of the second friction roller 32 with respect to the first friction roller 31 gradually increases from 0, and the friction roller radial pressing force that increases in accordance with the friction roller radial overlap amount ⁇ is increased.
  • the transmission torque capacity between the friction rollers 31 and 32 gradually increases from zero.
  • the maximum overlap amount ⁇ max between the friction rollers in the radial direction is the sum of the radius R1 + ⁇ of the friction roller 31 and the radius R2 + ⁇ of the friction roller 32, and the dimensional difference between the input / output shaft distance L0. Determined by ( ⁇ + ⁇ ), This dimensional difference ( ⁇ + ⁇ ) is determined so as to coincide with the maximum friction roller radial maximum overlap amount ⁇ max according to the required maximum transmission torque capacity between the friction rollers 31 and 32.
  • the change rate of the frictional roller radial pressing force Fr change rate of the transmission torque capacity
  • the rotational angle range of the crankshaft 41 that can be used for force control can be expanded to a rotational angle larger than ⁇ 2, and the accuracy of the control can be further improved.
  • the crankshaft rotational drive torque Tc required to rotate the crankshaft 41 during the rotation angle control is calculated by calculating the sum of the radii of the friction rollers 31, 32 from the distance L0 between the input and output shafts As shown by the one-dot chain line characteristic of FIG.
  • the transmission torque capacity Tr between the friction rollers 31 and 32 increases as the rotation axis O 3 of the second friction roller 32 approaches the rotation axis O 1 of the first friction roller 31 (between the friction rollers described above with reference to FIG. 13). Since the larger the radial overlap amount ⁇ ), As the crankshaft rotation angle ⁇ increases, the region ⁇ > ⁇ r also increases reliably as shown by the solid line in FIG.
  • crankshaft rotation angle ⁇ As described above, the crankshaft rotation drive torque Tc, and the friction torque transfer torque capacity Tr, in this embodiment, The maximum value of the rotation angle of the crankshaft 41 in the direction in which the frictional roller radial direction pressing force increases in the radial direction pressing force control between friction rollers (controlling the frictional torque transmission torque capacity control) is positive.
  • the crankshaft rotation angle ⁇ r at the inflection point where the rotation is reversed from negative to larger is preferably set to 180 degrees.
  • the change rate of the frictional roller radial pressing force Fr (change rate of the transmission torque capacity) with respect to the rotation angle ⁇ of the crankshaft 41 illustrated as a solid line in FIG.
  • the rotation angle range of the crankshaft 41 that can be used for the radial force pressing control (transmission torque capacity control) between the friction rollers can be expanded to a rotation angle larger than ⁇ 2, and the accuracy of the control can be increased.
  • the transmission torque capacity Tr between the friction rollers can be increased even though the crankshaft rotation drive torque Tc is reduced, It is possible to achieve an excellent effect of increasing the frictional roller transmission torque capacity Tr while suppressing the driving load of the inter-roller pressing force control motor 45 (see FIG. 2).
  • the friction roller type transmission device (driving force distribution device) 1 is such that the first and second friction rollers 31 and 32 are brought into direct frictional contact with the contact portions 31a and 32a has been described.
  • the above-described idea of the present invention can also be applied based on the same concept even in the case of a friction roller type transmission device in which the first and second friction rollers 31 and 32 are indirectly in frictional contact via idle rollers. Needless to say, in this case, it is needless to say that the same operational effects as described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Friction Gearing (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

 クランクシャフト41の回転による制御下で摩擦ローラ32を摩擦ローラ31に向け径方向へ押し付け、これらローラ31,32間でのトルク伝達を可能にする。ローラ間径方向押し付け反力がベアリングサポート23,25で内力として消失し、ハウジング11に入力されることがない。ベアリングサポート23,25の両端軸受嵌合部間における中央部に、ローラ間径方向押し付け反力に対する支持剛性を低下させるための括れ部を設ける。

Description

摩擦ローラ式伝動装置
 本発明は、四輪駆動車両のトランスファー(駆動力配分装置)等に用いるのに有利な摩擦ローラ式伝動装置に関するものである。
発明の背景
 四輪駆動車両のトランスファー(駆動力配分装置)としては通常、例えば特許文献1に記載のようなものが用いられる。
 この文献に記載の駆動力配分装置は、遊星歯車組を用いた四輪駆動車両のトランスファーで、
 遊星歯車組のキャリアに変速機からのトルクを入力し、このトルクをキャリアから、サンギヤおよびリングギヤを経て主駆動輪および従駆動輪に分配出力することにより、主従駆動輪間の駆動力配分を決定するものである。
特開2005-337442号公報
発明の概要
 しかし、上記のものに代表されるように従来の駆動力配分装置は、遊星歯車組などの歯車組を用いて主従駆動輪間での駆動力配分を行うものであるため、
 主駆動輪へのトルク(主駆動輪トルク)と、従駆動輪へのトルク(従駆動輪トルク)の配分比が、歯車諸元(特許文献1の構成では、サンギヤ歯数およびリングギヤ歯数)で一義的に決まってしまう。
 従って、主駆動輪トルクと従駆動輪トルクの配分比が、全トルク域に亘って同じになり、駆動力配分装置への入力トルクが大きくなると、主駆動輪トルクが大きくなるのは勿論であるが、それに応じて従駆動輪トルクも大きくなる。
 ところで昨今は、地球温暖化や燃料費の高騰から車両の燃費向上が社会的な重要課題となっており、燃費向上の対策としては車両の軽量化が有効な手だてとして知られている。
 そして、かかる車両の軽量化を実現しようとすると、車両のコンパクト化を避けて通れず、そのため、四輪駆動車両における従駆動輪の駆動系も、その強度を必要最小限のものにして小型化する必要がある。
 しかし従来の駆動力配分装置のように、主従駆動輪トルク配分比が全トルク域に亘って同じで、駆動力配分装置への入力トルクが大きくなると、主駆動輪トルクと同様の傾向をもって従駆動輪トルクも大きくなるのでは、
 大トルク入力時に従駆動輪トルクが、上記の理由から小型化せざるを得ない従駆動輪駆動系の強度を越えてしまうことになる。
 従って従来の歯車式駆動力配分装置は、車両のコンパクト化などの要求から従駆動輪駆動系を小型化せざるを得なくなった四輪駆動車両のトランスファーとして用いることができないという問題を有する。
 本発明は、上記の実情に鑑み、従駆動輪へのトルクを上限設定可能な駆動力配分装置等として有用な摩擦ローラ式伝動装置を提供し、もって、上述した問題を解消することを第1の目的とする。
 そこで本発明は、一対の摩擦ローラを互いに径方向に押し付けて摩擦接触させ、これにより該摩擦ローラ間で動力の受け渡しが可能となるような摩擦ローラ式伝動装置を前提とするが、
 本発明は更に、かかる摩擦ローラ式伝動装置を、摩擦ローラ間径方向押し付け力制御により伝達トルク容量を制御可能にして一層有用なものにすると共に、摩擦ローラ間径方向押し付け反力がハウジングに入力されることのないようにしてハウジングの軽量化を実現し、併せて、上記摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)の制御精度を向上させることを目的とする。
 この目的のため、本発明による摩擦ローラ式伝動装置は、
 一対の摩擦ローラを互いに、直接的または間接的に径方向に押し付けて摩擦接触させ、これにより該摩擦ローラ間で動力の受け渡しが可能となるようにしたものであって、
 前記摩擦ローラの一方をクランクシャフトに対して偏心軸線を中心に回転自在に支持して、該クランクシャフトの回転位置制御により前記摩擦ローラ間の径方向押し付け力を加減し得るようになし、
 前記摩擦ローラ対を挟んでその軸線方向両側に配置したベアリングサポートにそれぞれ、前記一方の摩擦ローラに係わるクランクシャフト、および、他方の摩擦ローラに係わる摩擦ローラ軸を軸受嵌合することにより、前記摩擦ローラ間の径方向押し付け反力を前記両ベアリングサポートで受け止めるようになし、
 前記各ベアリングサポートの両端軸受嵌合部間における中央部に、前記摩擦ローラ間径方向押し付け反力に対する支持剛性を低下させるための括れ部を設けたことを特徴とするものである。
 また、本発明による摩擦ローラ式伝動装置は、
 第1の方向の回転軸を有する第1の摩擦ローラと、
 前記第1の摩擦ローラと摩擦によるトルク伝達可能に配置された第2の摩擦ローラであって、前記第1の摩擦ローラの前記回転軸から第2の方向上に位置し、前記第1の方向に略平行の回転軸を有する該第2の摩擦ローラと、
 前記第2の摩擦ローラを偏心軸線を中心に回転自在に支持するクランクシャフトであって、回転によって前記第1及び第2の摩擦ローラ間の径方向押し付け力を変化させる該クランクシャフトと、
 前記第1の摩擦ローラ軸支する第1の軸受支持部、及び前記クランクシャフトを軸支する第2の軸受支持部を有するベアリングサポートであって、該軸受支持部間に、前記第1及び第2の方向に共に垂直な方向の寸法が該軸受支持部と比較して小さい中央部を有する該ベアリングサポート、
 を有するものである。
 また、本発明による摩擦ローラ式伝動装置は、
 第1の方向の回転軸を有する第1の摩擦ローラと、
 前記第1の摩擦ローラと摩擦によるトルク伝達可能に配置された第2の摩擦ローラであって、前記第1の方向に略平行の回転軸を有する該第2の摩擦ローラと、
 前記第2の摩擦ローラを偏心軸線を中心に回転自在に支持するクランクシャフトであって、回転によって前記第1及び第2の摩擦ローラ間の径方向押し付け力を変化させる該クランクシャフトと、
 前記第1の摩擦ローラ軸支する第1の軸受支持部、及び前記クランクシャフトを軸支する第2の軸受支持部を有するベアリングサポートであって、該軸受支持部間に、前記第1の方向の寸法が該軸受支持部と比較して小さい中央部を有する該ベアリングサポート、
 を有するものである。
本発明の一実施例になる摩擦ローラ式伝動装置を駆動力配分装置として用いた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。 図1における駆動力配分装置(摩擦ローラ式伝動装置)の縦断側面図である。 図2のIII-III線上で断面とし、矢の方向に見て示す、第2摩擦ローラから出力軸への駆動力伝達部の縦断正面図である。 図1における駆動力配分装置の別の構成を示す縦断側面図である。 図4に示す駆動力配分装置で用いたクランクシャフトを示す縦断正面図である。 図2に示す駆動力配分装置(摩擦ローラ式伝動装置)の摩擦ローラ間径方向押し付け力に対する摩擦ローラ間伝達トルク容量の変化特性を示す特性線図である。 図2に示す駆動力配分装置(摩擦ローラ式伝動装置)のクランクシャフト回転角に対する摩擦ローラ間径方向押し付け力の変化特性を、図2の対策が行われていない場合における変化特性と比較して示す特性線図である。 図2に示す駆動力配分装置(摩擦ローラ式伝動装置)のベアリングサポートを示し、(a)は、これに設けた軸受嵌合部の軸線方向に見て示す正面図、(b)は、その側面図である。 本発明の他の実施例を示す、図8と同様なベアリングサポートの図面で、(a)は、該ベアリングサポートの正面図、(b)は、該ベアリングサポートの側面図である。 本発明の更に他の実施例を示す、図8と同様なベアリングサポートの図面で、(a)は、該ベアリングサポートの正面図、(b)は、該ベアリングサポートの側面図である。 本発明の更に別の実施例を示す、図8(a)と同様なベアリングサポートの正面図である。 本発明の更に別の実施例を示す、図9(b)と同様なベアリングサポートの側面図である。 図2に示す駆動力配分装置(摩擦ローラ式伝動装置)における第1,2摩擦ローラ間の径方向押し付け力制御要領を示す説明図で、(a)は、第1,2摩擦ローラの半径の和値を入出力軸間距離と同じにした場合の摩擦ローラ間径方向押し付け力制御要領を示す説明図、(b)は、第1,2摩擦ローラの半径の和値を入出力軸間距離よりも大きくした場合の摩擦ローラ間径方向押し付け力制御要領を示す説明図である。 図2に示す駆動力配分装置(摩擦ローラ式伝動装置)のクランクシャフト回転角と、クランクシャフト回転駆動トルクおよび摩擦ローラ間伝達トルク容量との相関関係を示す特性線図である。
詳細な説明
 本発明の摩擦ローラ式伝動装置によれば、
 一対の摩擦ローラ間で摩擦接触により動力の受け渡しを行うことから、摩擦ローラ間径方向押し付け力で決まる伝達トルク容量の範囲を越えた大きなトルクがローラ間で受け渡されることがなく、
 四輪駆動車両の駆動力配分装置として用いた場合において、従駆動輪へのトルクを上限設定し得ることとなる。
 よって、摩擦ローラ式伝動装置への入力トルクが大きくなっても、従駆動輪トルクが上記の上限を越えて大きくなることはなく、
 本発明の摩擦ローラ式伝動装置は、車両コンパクト化などの要求から従駆動輪駆動系を小型化せざるを得なくなった四輪駆動車両においても、その駆動力配分装置として用いることができる。
 また本発明の摩擦ローラ式伝動装置によれば、
 前記摩擦ローラの一方をクランクシャフトに対して偏心軸線を中心に回転自在に支持して、該クランクシャフトの回転位置制御により前記摩擦ローラ間の径方向押し付け力を加減し得るようになしたから、
 摩擦ローラ間径方向押し付け力で決まる伝達トルク容量を自由に制御することができ、この伝達トルク容量に関する広範な要求に自由に応え得て大いに有用である。
 更に本発明の摩擦ローラ式伝動装置によれば、
 摩擦ローラ対の軸線方向両側に配置したベアリングサポートが、摩擦ローラ間径方向押し付け反力を受け止めてハウジングに伝達しないため、ハウジングの軽量化を実現することができる。
 ところで、上記の目的のため摩擦ローラ対の軸線方向両側に設けたベアリングサポートは、摩擦ローラ間径方向押し付け反力に対する大きな支持剛性故に、前記したクランクシャフトの回転位置制御による摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に際し、クランクシャフトの回転角に対する摩擦ローラ間径方向押し付け力変化割合(伝達トルク容量変化割合)を急なものとなし、摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に用い得るクランクシャフトの回転角範囲が狭くなり、当該制御の精度が悪くなる傾向にある。
 しかして本発明によれば、各ベアリングサポートの両端軸受嵌合部間における中央部に、摩擦ローラ間径方向押し付け反力に対する支持剛性を低下させるための括れ部を設けたため、
 摩擦ローラ間径方向押し付け反力によるベアリングサポートの撓み量が大きくなり、その分だけ、クランクシャフトの回転角に対する摩擦ローラ間径方向押し付け力変化割合(伝達トルク容量変化割合)が緩やかで、摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に用い得るクランクシャフトの回転角範囲が広くなり、当該制御の精度を向上させることができる。
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
 図1は、本発明の一実施例になる摩擦ローラ式伝動装置を駆動力配分装置(トランスファー)1として具えた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。
 図1の四輪駆動車両は、エンジン2からの回転を変速機3による変速後、リヤプロペラシャフト4およびリヤファイナルドライブユニット5を経て左右後輪6L,6Rに伝達される後輪駆動車をベース車両とし、
 左右後輪(主駆動輪)6L,6Rへのトルクの一部を、駆動力配分装置1の摩擦伝動より、フロントプロペラシャフト7およびフロントファイナルドライブユニット8を経て左右前輪(従駆動輪)7L,7Rへ伝達することにより、四輪駆動走行が可能となるようにした車両である。
 駆動力配分装置(摩擦ローラ式伝動装置)1は、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)7L,7Rへ分配して出力することにより、左右後輪(主駆動輪)6L,6Rおよび左右前輪(従駆動輪)9L,9R間の駆動力配分を決定するもので、本実施例においては、この駆動力配分装置(摩擦ローラ式伝動装置)1を図2に示すように構成する。
 図2において、ハウジング11内に長い入力軸12、および、短い出力軸13と、この出力軸13にニードルベアリング42を介し同軸突き合わせ状態で相対回転可能に軸受嵌合したクランクシャフト41とよりなる軸ユニットを、相互に平行に配して横架する。
 入力軸12は、その両端をハウジング11の軸貫通孔11a,11bに挿通し、該入力軸12の両端と、ハウジング11の軸貫通孔11a,11bとの間にボールベアリング14,15を介在させ、これらボールベアリング14,15を介し入力軸12の両端をハウジング11に回転自在に支持する。
 出力軸13およびクランクシャフト41とよりなる軸ユニットは、該軸ユニットの両端をハウジング11の軸貫通孔11c,11dに挿通し、該軸ユニットの両端と、ハウジング11の軸貫通孔11c,11dとの間にボールベアリング16,17を介在させ、これらボールベアリング16,17を介し上記軸ユニットの両端をハウジング11に回転自在に支持する。
 上記のごとくハウジング11内に回転自在に横架して支承した入力軸12および軸ユニット(出力軸13およびクランクシャフト41)のうち、入力軸12には、ハウジング11内に配したローラベアリング18,19を嵌合し、軸ユニット13,41には、同じくハウジング11内に配したローラベアリング21,22を嵌合する。
 ローラベアリング18,21はそれぞれ、出力軸13およびクランクシャフト41の同軸突き合わせ軸受嵌合部に介在させたニードルベアリング42とほぼ同じ軸直角面内に位置させ、ローラベアリング19,22は、ローラベアリング18,21から軸線方向に離間した別の軸直角面内に位置させる。
 ニードルベアリング42とほぼ同じ軸直角面内に位置させた、入出力軸12,13用のローラベアリング18,21をそれぞれ、共通な第1のベアリングサポート23の軸受嵌合部23a,23b内に抱持し、このベアリングサポート23をハウジング11の対応する内側面に沿うよう配置し、
 また、別の軸直角面内に位置させた、入力軸12およびクランクシャフト41用のローラベアリング19,22をそれぞれ、共通な第2のベアリングサポート25の軸受嵌合部25a,25b内に抱持し、このベアリングサポート25をハウジング11の対応する内側面に沿うよう配置する。
 入力軸12の両端をそれぞれ、該入力軸12の両端とハウジング11の軸貫通孔11a,11bとの間に介在させたシールリング27,28による液密封止下でハウジング11から突出させ、該入力軸12の図中左端を変速機3(図1参照)の出力軸に結合し、図中右端はリヤプロペラシャフト4(図1参照)を介してリヤファイナルドライブユニット5に結合する。
 出力軸13の図中左端を、該出力軸13とハウジング11の軸貫通孔11cとの間に介在させたシールリング29による液密封止下でハウジング11から突出させ、該出力軸13の突出左端はフロントプロペラシャフト7(図1参照)を介してフロントファイナルドライブユニット8に結合する。
 入力軸12の軸線方向中程には、第1摩擦ローラ31を同心に一体成形して設ける。
 従って入力軸12は、第1摩擦ローラ31の軸(摩擦ローラ軸)をも構成する。
 クランクシャフト41は、両端回転支承部17,42間に半径がRの偏心軸部41aを有し、この偏心軸部41aは、その軸心O3をクランクシャフト41(出力軸13)の回転軸線O2からεだけオフセットさせると共に、入力軸12上の第1摩擦ローラ31と同じ軸直角面内に位置させる。
 そして、クランクシャフト41の偏心軸部41a上にローラベアリング44を介し、第2摩擦ローラ32を回転自在に、しかし軸線方向位置決め状態で取り付け、クランクシャフト41と出力軸13とよりなる軸ユニットは、第2摩擦ローラ32の軸(摩擦ローラ軸)をも構成する。
 上記の構成によって、第2摩擦ローラ32の回転軸線は偏心軸部41aの軸心O3と同じになり、クランクシャフト41の回転位置制御により第2摩擦ローラ回転軸線O3(偏心軸部41aの軸心)を、クランクシャフト回転軸線(出力軸回転軸線)O2の周りに回転させることで、第1摩擦ローラ31および第2摩擦ローラ32の軸間距離L1(第1摩擦ローラ31の回転軸線O1および第2摩擦ローラ32の回転軸線O3間の距離)を加減すれば、
 第1摩擦ローラ31に対する第2摩擦ローラ32の径方向押し付け力(第1,2摩擦ローラ31,32間の伝達トルク容量)を自在に制御することができる。
 この摩擦ローラ間伝達トルク容量制御を可能にするため、出力軸13から遠いクランクシャフト41の図中右端は、該クランクシャフト41の右端とハウジング11の軸貫通孔11dとの間に介在させたシールリング43による液密封止下でハウジング11から外部に露出させる。
 そして、クランクシャフト41の露出端面に、ローラ間押し付け力制御モータ45の出力軸45aをセレーション嵌合などにより駆動結合し、このローラ間押し付け力制御モータ45をハウジング11に取着する。
 上記のモータ45による制御下で第2摩擦ローラ32を第1摩擦ローラ31に向け径方向へ押し付けることにより、これらローラ31,32の外周面同士が符号31a,32aで示す箇所において摩擦接触し、この摩擦接触部31a,32aを経て第1摩擦ローラ31から第2摩擦ローラ32へトルクを伝達することができる。
 これにより回転される第2摩擦ローラ32の回転を、第2摩擦ローラ32の摩擦ローラ軸である出力軸13へ伝達し得るようにするため、出力軸13の内端にフランジ部13aを一体成形して設け、該フランジ部13aの直径を第2摩擦ローラ32と軸線方向に対面する大きさにする。
 第2摩擦ローラ32と対面する出力軸フランジ部13aに、第2摩擦ローラ32へ向けて突出する複数個の駆動ピン46を固設し、これら駆動ピン46を図3に示すごとく同一円周上に等間隔に配置する。
 出力軸フランジ部13aと対面する第2摩擦ローラ32の端面には、駆動ピン46が個々に貫入して第2摩擦ローラ32から出力軸13(フランジ部13a)へのトルク伝達を可能にするための複数個の孔47を穿設する。
 そして、これら駆動ピン貫入孔47を図3に明示するごとく、駆動ピン46の直径よりも大径の円孔とし、その直径は、出力軸13の回転軸線O2および第2摩擦ローラ32の回転軸線O3間の偏心量εを吸収しつつ上記した第2摩擦ローラ32から出力軸13(フランジ部13a)へのトルク伝達を可能にするのに必要な直径とする。
 上記した図1乃至3に示す摩擦ローラ式伝動装置(駆動力配分装置)1の作用を以下に説明する。
 変速機3からの出力トルクは図2の左端から軸12へ入力され、一方では、この入力軸12からそのままリヤプロペラシャフト4およびリヤファイナルドライブユニット5を経て左右後輪6L,6R(主駆動輪)に伝達される。
 他方で駆動力配分装置(摩擦ローラ式伝動装置)1は、左右後輪6L,6Rへのトルクの一部を、第1摩擦ローラ31から、第1摩擦ローラ31および第2摩擦ローラ32間の摩擦接触部31a,32a、第2摩擦ローラ32、駆動ピン46、出力軸フランジ13aを順次経て出力軸13に向かわせ、
 その後このトルクを、出力軸13の図2中左端から、フロントプロペラシャフト7およびフロントファイナルドライブユニット8を経て左右前輪(従駆動輪)7L,7Rへ伝達する。
 かくして車両は、左右後輪6L,6R(主駆動輪)および左右前輪(従駆動輪)7L,7Rの全てを駆動しての四輪駆動走行が可能である。
 ところで駆動力配分装置(摩擦ローラ式伝動装置)1は、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)7L,7Rへ分配して出力することにより、左右後輪(主駆動輪)6L,6Rおよび左右前輪(従駆動輪)9L,9R間の駆動力配分を決定するに際し、
 前記した第1摩擦ローラ31に対する第2摩擦ローラ32の径方向押し付け力(摩擦ローラ間径方向押し付け力)に応じた伝達トルク容量の範囲を越えた大きなトルクを第1摩擦ローラ31から第2摩擦ローラ32へ伝達させることがない。
 よって、左右前輪(従駆動輪)へのトルクの上限値を、第1摩擦ローラ31および第2摩擦ローラ32間の径方向押し付け力に応じた値に設定し、左右後輪(主駆動輪)6L,6Rおよび左右前輪(従駆動輪)9L,9R間の駆動力配分特性を、入力トルクが或る値以上に大きくなると左右前輪(従駆動輪)へのトルクが上記の上限値に保たれるような特性にすることができる。
 従って、駆動力配分装置1への入力トルクが大きくなっても、左右前輪(従駆動輪)へのトルクが上記の上限値を越えて大きくなることはなく、
 駆動力配分装置1は、車両コンパクト化などの要求から左右前輪(従駆動輪)の駆動系を小型化せざるを得なくなった四輪駆動車両においても、左右前輪(従駆動輪)駆動系の強度不足を気にすることなく、当該四輪駆動車両の駆動力配分装置として用いることができる。
 また本実施例においては、ローラ間押し付け力制御モータ45によりクランクシャフト41の軸線O2周りにおける回転位置を制御することで、
 第2摩擦ローラ回転軸線O3(偏心軸部41aの軸心)が、クランクシャフト回転軸線(出力軸回転軸線)O2の周りに回転され、第1摩擦ローラ31および第2摩擦ローラ32の軸間距離L1を加減することができる。
 かように第1摩擦ローラ31および第2摩擦ローラ32の軸間距離L1を変更制御することで、第1摩擦ローラ31に対する第2摩擦ローラ32の径方向押し付け力を変更制御することができ、結果として第1,2摩擦ローラ間の伝達トルク容量を自在に制御することができる。
 ちなみに、第1摩擦ローラ31および第2摩擦ローラ32間の径方向押し付け力Frに対し摩擦ローラ間伝達トルク容量Trは、例えば図6に示すような比例関係をもって変化する。
 従って、左右前輪(従駆動輪)へのトルクの上限値を、モータ45によるクランクシャフト41の回転位置制御(第1摩擦ローラ31に対する第2摩擦ローラ32の径方向押し付け力制御)により自在に変更することができ、左右後輪(主駆動輪)6L,6Rおよび左右前輪(従駆動輪)9L,9R間の駆動力配分特性を、いつも運転状況に応じた最適なものにすることができる。
 更に本実施例においては、第2摩擦ローラ32に駆動係合させた出力軸13と、クランクシャフト41の対応軸端との同軸突き合わせ軸受嵌合部(ローラベアリング42)を含む軸直角面内に配設した第1のベアリングサポート23に、第2摩擦ローラ32に係わる摩擦ローラ軸(出力軸)13、および、第1摩擦ローラ31に係わる摩擦ローラ軸(入力軸)12をそれぞれ、軸受21,18を介して嵌合すると共に、
 第2摩擦ローラ32を挟んで第1のベアリングサポート23と反対の側における軸直角面内に配設した第2のベアリングサポート25に、第2摩擦ローラ32に係わるクランクシャフト41、および、第1摩擦ローラ31に係わる摩擦ローラ軸(入力軸)12をそれぞれ、軸受22,19を介して嵌合することから、
  第1摩擦ローラ31に対し第2摩擦ローラ32を径方向に押し付けて相互に摩擦接触させる時に発生する摩擦ローラ間径方向押し付け反力を第1および第2ベアリングサポート23,25で受け止めることとなる。
 よって、摩擦ローラ間径方向押し付け反力がベアリングサポート23,25内で内力として消失し、この摩擦ローラ間径方向押し付け反力がハウジング11にそのまま入力されることがなく、ハウジング11の強度を大きくする必要がなくなる分だけハウジング11を軽量化することができる。
 摩擦ローラ式伝動装置は図4及び図5に示されるように構成してもよい。すなわち、中実インナーシャフト型式のクランクシャフト41に代え、一対1組の中空アウターシャフト型式のクランクシャフト51L,51Rを用い、これらのクランクシャフト51L,51Rの回転変位により第2ローラ32の径方向変位を惹起して、第1ローラ31および第2ローラ32の軸間距離L1の変更を行うようにしたものである。
 このため、第2ローラ32を出力軸13に一体的に形成し、上記中空のクランクシャフト51L,51Rを、第2ローラ32の軸線方向両側に配置する。
 第2ローラ32の軸線方向両側から突出する出力軸13の両端にそれぞれ、クランクシャフト51L,51Rの中心孔51La,51Ra(半径Ri)を嵌合し、この嵌合部に軸受52L,52Rを介在させて出力軸13をクランクシャフト51L,51Rの中心孔51La,51Ra内で、これらの中心軸線O2の周りに自由に回転し得るよう支持する。
 クランクシャフト51L,51Rには図5に明示するごとく、中心孔51La,51Ra(中心軸線O2)に対し偏心した外周部51Lb,51Rb(半径Ro)を設定し、これら偏心外周部51Lb,51Rbの中心軸線O3は中心孔51La,51Raの軸線O2から、両者間の偏心分εだけオフセットしている。
 クランクシャフト51L,51Rの偏心外周部51Lb,51Rbはそれぞれ、軸受53L,53Rを介して対応する側におけるベアリングサポート23,25内に回転自在に支持し、
 この際、クランクシャフト51L,51Rをそれぞれ、第2ローラ32と共に、スラストベアリング54L,54Rで軸線方向に位置決めする。
 クランクシャフト51L,51Rの相互に向き合う隣接端にそれぞれ、同仕様のリングギヤ51Lc,51Rcを一体に設け、
 これらリングギヤ51Lc,51Rcに、共通のクランクシャフト駆動ピニオン55を噛合させる。
 なおこの噛合に当たっては、クランクシャフト51L,51Rを両者の偏心外周部51Lb,51Rbが円周方向において相互に整列する回転位置にした状態で、リングギヤ51Lc,51Rcにクランクシャフト駆動ピニオン55を噛合させる。
 クランクシャフト駆動ピニオン55はピニオンシャフト56に結合し、ピニオンシャフト56の両端を軸受56a,56bによりハウジング11に回転自在に支持する。
 図4の右側におけるピニオンシャフト56の右端をハウジング11の外に露出させ、
 該ピニオンシャフト56の露出端面には、ハウジング11に取着して設けたローラ間押し付け力制御モータ45の出力軸45aをセレーション嵌合などにより駆動結合する。
 よって、ローラ間押し付け力制御モータ45によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御するとき、出力軸13および第2ローラ32の回転軸線O2が図5に破線で示す軌跡円に沿って旋回し、ローラ軸間距離L1の変更により第1ローラ31に対する第2ローラ32の径方向押圧力を任意に制御することができる。
 従って、ローラ間押し付け力制御モータ45、ピニオン55およびクランクシャフト51L,51Rは、ベアリングサポート23,25と共に本発明におけるローラ間径方向押圧部を構成する。
 クランクシャフト51Lおよび出力軸13をそれぞれ図4の左側においてハウジング11から突出させ、該突出部においてハウジング11およびクランクシャフト51L間にシールリング57を介在させると共に、クランクシャフト51L および出力軸13間にシールリング58を介在させ、
 これらシールリング57,58により、ハウジング11から突出するクランクシャフト51Lおよび出力軸13の突出部をそれぞれ液密封止する。
 なおシールリング57,58の介在に際しては、これらシールリング57,58を位置させるクランクシャフト51Lの端部においてその内径と外径の中心を、出力軸13の支持位置と同様に偏心させ、
 クランクシャフト51Lの上記端部外径とハウジング11との間にシールリング57を介在させ、クランクシャフト51Lの上記端部内径と出力軸13との間にシールリング58を介在させる。
 かかるシール構造によれば、出力軸13の上記旋回によりその回転軸線O2が旋回変位するにもかかわらず、出力軸13をハウジング11から突出する箇所において良好にシールすることができる。
 上記以外は、図2、図3の構成と同様であるため、対応する部分を同一符号で示すにとどめ、重複説明を避けた。
 ところで、かかる目的のため第1,2摩擦ローラ31,32の軸線方向両側に設けたベアリングサポート23,25は、摩擦ローラ間径方向押し付け反力に対する支持剛性が大きいため、クランクシャフト41の回転角制御による摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に際し、本来なら図7に一点鎖線で例示するごとくクランクシャフトの回転角θに対する摩擦ローラ間径方向押し付け力(Fr)変化割合(伝達トルク容量変化割合)を急なものとなし、
 結果として、摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に用い得るクランクシャフトの回転角範囲がθ1までの狭い範囲となり、当該制御の精度が悪くなる傾向にある。
 この問題を解決するために図1乃至3の実施例では、図8(a),(b)に示すように、ベアリングサポート23の両端軸受嵌合部23a,23b間における中央部に、軸受嵌合部23a,23bの中心軸線O1, O2方向へ延在する厚さ方向溝23c,23dを設けて括れ部23eを設定する。すなわち、ベアリングサポート23の中央部の幅Wは軸受支持部の最大幅W1, W2よりも小さく設定されている。
 この括れ部23eは、ベアリングサポート23の両端軸受嵌合部23a,23b間における中央部の横断面積を減ずる結果、摩擦ローラ間径方向押し付け反力に対するベアリングサポート23の支持剛性を低下させることとなり、
 摩擦ローラ間径方向押し付け反力によるベアリングサポート23の対応方向撓み量が大きくなる。
 ベアリングサポート25についても同じく図8(a),(b)に示すように、ベアリングサポート25の両端軸受嵌合部25a,25b間における中央部に、軸受嵌合部25a,25bの中心軸線O1, O2方向へ延在する厚さ方向溝25c,25dを設けて括れ部25eを設定する。すなわち、ベアリングサポート25の中央部の幅Wは軸受支持部の最大幅W1, W2よりも小さく設定されている。
 この括れ部25eは、ベアリングサポート25の両端軸受嵌合部25a,25b間における中央部の横断面積を減ずる結果、摩擦ローラ間径方向押し付け反力に対するベアリングサポート25の支持剛性を低下させることとなり、
 摩擦ローラ間径方向押し付け反力によるベアリングサポート25の対応方向撓み量が大きくなる。
 かように、ベアリングサポート23および25の両端軸受嵌合部23a,23b間および25a,25b間における中央部に、摩擦ローラ間径方向押し付け反力に対する支持剛性を低下させるための括れ部23eおよび25eを設けたことで、
 本実施例においては、摩擦ローラ間径方向押し付け反力によるベアリングサポート23,25の対応方向撓み量が大きくなり、その分だけ図7に実線で例示するごとく、クランクシャフト41の回転角θに対する摩擦ローラ間径方向押し付け力Frの変化割合(伝達トルク容量の変化割合)が緩やかで、摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に用い得るクランクシャフト41の回転角範囲をθ2まで拡大することができ、当該制御の精度を向上させることができる。
 この作用効果は、図9(a),(b)に示すごとく、ベアリングサポート23および25の両端軸受嵌合部23a,23b間および25a,25b間における中央部にそれぞれ、軸受嵌合部23a,23bの中心軸線O1, O2を含む面および軸受嵌合部25a,25bの中心軸線O1, O2を含む面を横切る方向へ延在する幅方向溝23f,23gおよび25f,25gを設けて括れ部23hおよび25hを設定することによっても達成し得る。すなわち、ベアリングサポート23, 25の中央部の厚みTは軸受支持部の最大厚みT1, T2よりも小さく設定されている。
 これら括れ部23hおよび25h はそれぞれ、ベアリングサポート23および25の両端軸受嵌合部23a,23b間および25a,25b間における中央部の横断面積を減ずる結果、摩擦ローラ間径方向押し付け反力に対するベアリングサポート23および25の支持剛性を低下させることとなり、摩擦ローラ間径方向押し付け反力によるベアリングサポート23および25の対応方向撓み量が大きくなる。
 かように、ベアリングサポート23および25の両端軸受嵌合部23a,23b間および25a,25b間における中央部に、摩擦ローラ間径方向押し付け反力に対する支持剛性を低下させるための括れ部23hおよび25hを設けた図9の実施例においても、
 摩擦ローラ間径方向押し付け反力によるベアリングサポート23,25の対応方向撓み量が括れ部23hおよび25hの設定により大きくなり、その分だけ図7に実線で例示するごとく、クランクシャフト41の回転角θに対する摩擦ローラ間径方向押し付け力Frの変化割合(伝達トルク容量の変化割合)が緩やかで、摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に用い得るクランクシャフト41の回転角範囲をθ2まで拡大することができ、当該制御の精度を向上させることができる。
 図10(a),(b)は、ベアリングサポート23(25)の両端軸受嵌合部23a,23b間(25a,25b間)における中央部に、図8におけると同様な厚さ方向溝23c,23d(25c,25d)、および、図9におけると同様な幅方向溝23f,23g(25f,25g)を設けて括れ部23i(25i)を設定したものである。すなわち、ベアリングサポート23(25)の中央部の幅Wは軸受支持部の最大幅W1, W2よりも小さく設定されており、中央部の厚みTは軸受支持部の最大厚みT1, T2よりも小さく設定されている。
 これら括れ部23iおよび25i はそれぞれ、ベアリングサポート23および25の両端軸受嵌合部23a,23b間および25a,25b間における中央部の横断面積を、図8,9における実施例よりも更に減じて、摩擦ローラ間径方向押し付け反力に対するベアリングサポート23および25の支持剛性を更に低下させることとなり、摩擦ローラ間径方向押し付け反力によるベアリングサポート23および25の対応方向撓み量が更に大きくなる。
 よって、図10の実施例においては、摩擦ローラ間径方向押し付け反力によるベアリングサポート23,25の対応方向撓み量が更に大きくなる分だけ、摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に用い得るクランクシャフト41の回転角範囲を図7のθ2よりも更に大きな回転角まで拡大することができ、
 当該摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)の精度を更に向上させることができる。
 なお、図8におけるベアリングサポート23(25)の厚さ方向溝23c,23d(25c,25d)は図11に示すごとく、軸線方向に見た形状が連続的に曲率変化して軸受嵌合部23a,25a(23b,25b)の外周円形に滑らかに連続するような形状にすることができる。図11においても、ベアリングサポート23(25)の中央部の厚みTは軸受支持部の最大厚みT1, T2よりも小さく設定されている。
 また、図9におけるベアリングサポート23(25)の幅方向溝23f,23g(25f,25g)は図12に示すごとく、溝底部の断面形状をU字状として溝底部に角部が存在しない形状にすることができる。図12においても、ベアリングサポート23(25)の中央部の厚みTは軸受支持部の最大厚みT1, T2よりも小さく設定されている。
 これら図11,12に示す溝形状は勿論組み合わせて用いることも可能で、これら溝形状によれば、角部が存在しないことによって、ベアリングサポート23(25)の強度低下を防止しつつ前記の作用効果を達成することができる。
 なお、ベアリングサポート中央部は軸受支持部の間に存在すればよく、回転軸O1, O2間方向の中央部の位置は回転軸O1, O2間の中央(中心位置)だけに限定されるものではなく、中央からオフセットした位置でもよい。
 以下、摩擦ローラ31,32間の径方向押し付け力制御について付言する。
 図13は、摩擦ローラ31,32間の径方向押し付け力制御の概念図で、
 (a)は、摩擦ローラ31の半径R1と摩擦ローラ32の半径R2との和値を、入出力軸12,13間の軸間距離L0、つまり、入力軸12の軸線O1および出力軸13(カウンターシャフト41)の軸線O2間の距離L0と同じにした場合の摩擦ローラ間径方向押し付け力制御の概念図、
 (b)は、摩擦ローラ31の半径R1+αと摩擦ローラ32の半径R2+βとの和値を、入出力軸12,13間の軸間距離L0よりもα+βだけ大きくした場合の摩擦ローラ間径方向押し付け力制御の概念図を示す。
 図13 (a)のように摩擦ローラ31の半径R1と摩擦ローラ32の半径R2との和値を入出力軸12,13間の軸間距離L0と同じにした場合、クランクシャフト41の回転角θが第2摩擦ローラ32を実線で示す位置となす回転角(θ=90度)である時、第2摩擦ローラ32が丁度第1摩擦ローラ31と接触する。しかし、摩擦ローラ31,32間に未だ径方向押し付け力は発生しておらず、両者間の伝達トルク容量も0である。
 クランクシャフト41を上記の回転位置から矢A1で示す方向へ回転させると(カウンターシャフト回転角θを上記の90度から増大させると)、第2摩擦ローラ32の軸線O3がカウンターシャフト軸線O2周りで破線上を対応方向へ変位することから、第2摩擦ローラ32が実線位置から破線位置に向け変位する。
 これにより、第1摩擦ローラ31に対する第2摩擦ローラ32の径方向オーバーラップ量δが0から漸増し、この摩擦ローラ間径方向オーバーラップ量δに応じて大きくなる摩擦ローラ間径方向押し付け力が発生して、摩擦ローラ31,32間の伝達トルク容量が0から漸増する。
 そしてカウンターシャフト41を、第2摩擦ローラ32が破線位置となるまで回転させたとき(カウンターシャフト回転角θを180度にしたとき)、摩擦ローラ間径方向オーバーラップ量δが最大値δmaxになり、これに応じた最大の摩擦ローラ間径方向押し付け力が発生して、摩擦ローラ31,32間の伝達トルク容量を最大となし得る。
 以上のことから明らかなように、カウンターシャフト41の軸線O2から、第2摩擦ローラ32を回転自在に支持するカウンターシャフト偏心軸部41aの軸線(第2摩擦ローラ32の回転軸線)O3までの偏心量εは、要求される摩擦ローラ31,32間の伝達トルク容量最大値に応じて決まる摩擦ローラ間径方向最大オーバーラップ量δmaxと同じにする必要がある。
 ところで図13(b)のごとく、摩擦ローラ31の半径R1+αと摩擦ローラ32の半径R2+βとの和値を、入出力軸12,13間の軸間距離L0よりもα+βだけ大きくした場合、クランクシャフト41の回転角θが第2摩擦ローラ32を実線で示す位置となす回転角(θ=0度)である時、第2摩擦ローラ32が丁度第1摩擦ローラ31と接触する。
 しかし、摩擦ローラ31,32間に未だ径方向押し付け力は発生しておらず、両者間の伝達トルク容量も0である。
 クランクシャフト41を上記の回転位置から矢A2で示す方向へ回転させると(カウンターシャフト回転角θを上記の0度から増大させると)、第2摩擦ローラ32の軸線O3がカウンターシャフト軸線O2周りで破線上を対応方向へ変位することから、第2摩擦ローラ32が実線位置から破線位置に向け変位する。
 これにより、第1摩擦ローラ31に対する第2摩擦ローラ32の径方向オーバーラップ量δが0から漸増し、この摩擦ローラ間径方向オーバーラップ量δに応じて大きくなる摩擦ローラ間径方向押し付け力が発生して、摩擦ローラ31,32間の伝達トルク容量が0から漸増する。
 そしてカウンターシャフト41を、第2摩擦ローラ32が破線位置となるまで回転させたとき(カウンターシャフト回転角θを180度にしたとき)、摩擦ローラ間径方向オーバーラップ量δが最大値δmaxになり、これに応じた最大の摩擦ローラ間径方向押し付け力が発生して、摩擦ローラ31,32間の伝達トルク容量を最大となし得る。
 以上のことから明らかなように、摩擦ローラ間径方向最大オーバーラップ量δmaxは、摩擦ローラ31の半径R1+αと摩擦ローラ32の半径R2+βとの和値、および入出力軸間距離L0間の寸法差(α+β)で決まり、
 この寸法差(α+β)は、要求される摩擦ローラ31,32間の伝達トルク容量最大値に応じた摩擦ローラ間径方向最大オーバーラップ量δmaxと一致するよう定める。
 また、図13(a)の場合と異なり図13(b)の場合は、カウンターシャフト41を回転角θ=0度の位置と、θ=180度の位置との間の広範囲に亘り回転させて摩擦ローラ間径方向押し付け力(摩擦ローラ間伝達トルク容量)を制御することになるから、
 カウンターシャフト41の軸線O2から、第2摩擦ローラ32を回転自在に支持するカウンターシャフト偏心軸部41aの軸線(第2摩擦ローラ32の回転軸線)O3までの偏心量εが、要求される摩擦ローラ31,32間の伝達トルク容量最大値に応じて決まる摩擦ローラ間径方向最大オーバーラップ量δmaxの半分でよく、クランクシャフト41の小径化により構成のコンパクト化を実現することができる。
 更に、図13(b)のような構成により、カウンターシャフト41を回転角θ=0度の位置と、θ=180度の位置との間の広範囲に亘り回転させて摩擦ローラ間径方向押し付け力(摩擦ローラ間伝達トルク容量)を制御する構成にあっては、
 図7に実線で例示した、クランクシャフト41の回転角θに対する摩擦ローラ間径方向押し付け力Frの変化割合(伝達トルク容量の変化割合)を更に緩やかなものにし得て、摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に用い得るクランクシャフト41の回転角範囲をθ2よりも更に大きな回転角まで拡大することができ、当該制御の精度を更に向上させることができる。
 なお、図13 (a)のように摩擦ローラ31,32の半径の和値を入出力軸間距離L0と同じにするか、図13(b)のように摩擦ローラ31,32の半径の和値を入出力軸間距離L0よりも大きくするかに関わらず、
 クランクシャフト41の回転角制御に当たってこれを回転させるのに必要なクランクシャフト回転駆動トルクTcは、図13(b)のように摩擦ローラ31,32の半径の和値を入出力軸間距離L0よりも大きくした場合につき代表的に示した図14の一点鎖線特性のごとく、
 クランクシャフト回転角θが180度(第2摩擦ローラ32の回転軸線O3を第1摩擦ローラ31の回転軸線O1に最接近させる回転角)の手前側におけるθ=θrであるとき最大となり、
 クランクシャフト回転角θがこのθrを越えると、クランクシャフト回転角θの増大につれクランクシャフト回転駆動トルクTcは低下する。
 つまりクランクシャフト回転駆動トルクTcは、クランクシャフト回転角θがθ=θrであるときに最大となる変極点(極大点)を持った特性を呈する。
 一方で摩擦ローラ31,32間の伝達トルク容量Trは、第2摩擦ローラ32の回転軸線O3が第1摩擦ローラ31の回転軸線O1に接近するほど(図13に付き前述した摩擦ローラ間径方向オーバーラップ量δが大きくなるほど)大きくなることから、
 クランクシャフト回転角θが増大するにつれ、θ>θrの領域においても図14に実線で示すごとく確実に大きくなる。
 上記のようなクランクシャフト回転角θと、クランクシャフト回転駆動トルクTcおよび摩擦ローラ間伝達トルク容量Trとの相関関係に鑑み、本実施例においては、
 摩擦ローラ間径方向押し付け力制御(摩擦ローラ間伝達トルク容量制御)に用いるクランクシャフト41の摩擦ローラ間径方向押し付け力増大方向における回転角最大値を、クランクシャフト回転駆動トルクTcの変化割合が正から負へと逆転する変極点のクランクシャフト回転角θrよりも大きくし、好ましくは180度にするのがよい。
 かようにすることで本実施例においては、図7に実線で例示した、クランクシャフト41の回転角θに対する摩擦ローラ間径方向押し付け力Frの変化割合(伝達トルク容量の変化割合)を更に緩やかなものにし得て、摩擦ローラ間径方向押し付け力制御(伝達トルク容量制御)に用い得るクランクシャフト41の回転角範囲をθ2よりも更に大きな回転角まで拡大することができ、当該制御の精度を更に向上させることができるだけでなく、
 クランクシャフト回転角θをθrよりも大きくする領域において、クランクシャフト回
転駆動トルクTcが低下するのに摩擦ローラ間伝達トルク容量Trを増大させることができ、
 ローラ間押し付け力制御モータ45(図2参照)の駆動負荷を抑制しつつ摩擦ローラ間伝達トルク容量Trを増大させ得るという優れた作用効果をも奏し得る。
 なお、上記では摩擦ローラ式伝動装置(駆動力配分装置)1が、第1,2摩擦ローラ31,32を接触部31a,32aにおいて直接に摩擦接触させるようにしたものである場合について説明したが、
 遊転ローラを介し第1,2摩擦ローラ31,32を間接的に摩擦接触させるようにした摩擦ローラ式伝動装置である場合についても、本発明の前記した着想は同様の考え方により適用可能であること勿論であり、この場合も前記したと同様な作用効果が奏し得られることは言うまでもない。

Claims (9)

  1.  一対の摩擦ローラを互いに、直接的または間接的に径方向に押し付けて摩擦接触させ、これにより該摩擦ローラ間で動力の受け渡しが可能となるようにした摩擦ローラ式伝動装置において、
     前記摩擦ローラの一方をクランクシャフトに対して偏心軸線を中心に回転自在に支持して、該クランクシャフトの回転位置制御により前記摩擦ローラ間の径方向押し付け力を加減し得るようになし、
     前記摩擦ローラ対を挟んでその軸線方向両側に配置したベアリングサポートにそれぞれ、前記一方の摩擦ローラに係わるクランクシャフト、および、他方の摩擦ローラに係わる摩擦ローラ軸を軸受嵌合することにより、前記摩擦ローラ間の径方向押し付け反力を前記両ベアリングサポートで受け止めるようになし、
     前記各ベアリングサポートの両端軸受嵌合部間における中央部に、前記摩擦ローラ間径方向押し付け反力に対する支持剛性を低下させるための括れ部を設けた摩擦ローラ式伝動装置。
  2.  請求項1に記載の摩擦ローラ式伝動装置において、
     前記括れ部は、前記ベアリングサポートの中央部に、前記軸受嵌合部の中心軸線方向へ延在する厚さ方向溝を設けて設定した摩擦ローラ式伝動装置。
  3.  請求項1または2に記載の摩擦ローラ式伝動装置において、
     前記括れ部は、前記ベアリングサポートの中央部に、前記両端軸受嵌合部の中心軸線を含む面を横切る方向へ延在する幅方向溝を設けて設定した摩擦ローラ式伝動装置。
  4.  前記一対の摩擦ローラを互いに直接径方向に押し付けて摩擦接触させた、請求項1乃至3のいずれか1項に記載の摩擦ローラ式伝動装置において、
     前記一対の摩擦ローラの半径の合計を、前記一方の摩擦ローラに係わるクランクシャフト、および、他方の摩擦ローラに係わる摩擦ローラ軸間の軸間距離よりも大きくした摩擦ローラ式伝動装置。
  5.  請求項1乃至4のいずれか1項に記載の摩擦ローラ式伝動装置において、
     前記摩擦ローラ間径方向押し付け力の制御に用いる前記クランクシャフトの摩擦ローラ間径方向押し付け力増大方向における回転角最大値を、クランクシャフトの回転に必要なクランクシャフト回転駆動トルクの変化割合が逆転する変極点のクランクシャフト回転角よりも大きくした摩擦ローラ式伝動装置。
  6.  第1の方向の回転軸を有する第1の摩擦ローラと、
     前記第1の摩擦ローラと摩擦によるトルク伝達可能に配置された第2の摩擦ローラであって、前記第1の摩擦ローラの前記回転軸から第2の方向上に位置し、前記第1の方向に略平行の回転軸を有する該第2の摩擦ローラと、
     前記第2の摩擦ローラを偏心軸線を中心に回転自在に支持するクランクシャフトであって、回転によって前記第1及び第2の摩擦ローラ間の径方向押し付け力を変化させる該クランクシャフトと、
     前記第1の摩擦ローラ軸支する第1の軸受支持部、及び前記クランクシャフトを軸支する第2の軸受支持部を有するベアリングサポートであって、該軸受支持部間に、前記第1及び第2の方向に共に垂直な方向の寸法が該軸受支持部と比較して小さい中央部を有する該ベアリングサポート、
     を有する摩擦ローラ式伝動装置。
  7.  第1の方向の回転軸を有する第1の摩擦ローラと、
     前記第1の摩擦ローラと摩擦によるトルク伝達可能に配置された第2の摩擦ローラであって、前記第1の方向に略平行の回転軸を有する該第2の摩擦ローラと、
     前記第2の摩擦ローラを偏心軸線を中心に回転自在に支持するクランクシャフトであって、回転によって前記第1及び第2の摩擦ローラ間の径方向押し付け力を変化させる該クランクシャフトと、
     前記第1の摩擦ローラ軸支する第1の軸受支持部、及び前記クランクシャフトを軸支する第2の軸受支持部を有するベアリングサポートであって、該軸受支持部間に、前記第1の方向の寸法が該軸受支持部と比較して小さい中央部を有する該ベアリングサポート、
     を有する摩擦ローラ式伝動装置。
  8.  請求項6又は7のいずれか1項に記載の摩擦ローラ式伝動装置において、
     前記第1及び第2の摩擦ローラは互いに直接接触してトルク伝達を行い、
     前記第1及び第2の摩擦ローラの半径の合計が、前記クランクシャフトの回転軸及び前記第1の摩擦ローラの前記回転軸間の距離よりも大きい、
     摩擦ローラ式伝動装置。
  9.  請求項6乃至8のいずれか1項に記載の摩擦ローラ式伝動装置において、
     前記クランクシャフトの回転に必要なトルクが、前記クランクシャフトの制御回転範囲の両端以外で変化割合が逆転する変極点をもつ、
     摩擦ローラ式伝動装置。
PCT/JP2009/050749 2008-01-23 2009-01-20 摩擦ローラ式伝動装置 WO2009093570A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/864,194 US8187134B2 (en) 2008-01-23 2009-01-20 Friction roller type power transmission device
EP09704737A EP2246593B1 (en) 2008-01-23 2009-01-20 Friction roller type power transmission device
CN2009801029288A CN101925758B (zh) 2008-01-23 2009-01-20 摩擦辊型传动装置
JP2009550518A JP5263173B2 (ja) 2008-01-23 2009-01-20 摩擦ローラ式伝動装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008012172 2008-01-23
JP2008-012172 2008-01-23

Publications (1)

Publication Number Publication Date
WO2009093570A1 true WO2009093570A1 (ja) 2009-07-30

Family

ID=40901078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050749 WO2009093570A1 (ja) 2008-01-23 2009-01-20 摩擦ローラ式伝動装置

Country Status (5)

Country Link
US (1) US8187134B2 (ja)
EP (1) EP2246593B1 (ja)
JP (1) JP5263173B2 (ja)
CN (1) CN101925758B (ja)
WO (1) WO2009093570A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537246A (zh) * 2010-12-09 2012-07-04 日产自动车株式会社 辊摩擦传动单元
JP2014069768A (ja) * 2012-10-01 2014-04-21 Nissan Motor Co Ltd 駆動力配分装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262588B2 (ja) * 2007-12-26 2013-08-14 日産自動車株式会社 駆動力配分装置
JP5176977B2 (ja) * 2009-01-22 2013-04-03 日産自動車株式会社 駆動力配分装置
JP5326866B2 (ja) * 2009-06-30 2013-10-30 日産自動車株式会社 駆動力配分装置のトランクション伝動容量制御装置
US8903613B2 (en) * 2010-12-24 2014-12-02 Nissan Motor Co., Ltd. Traction transmission capacity control device
US20140013902A1 (en) * 2012-07-10 2014-01-16 Nissan Motor Co., Ltd. Drive force distributing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349653A (ja) * 2001-05-28 2002-12-04 Nsk Ltd 摩擦ローラ式変速機
JP2003028251A (ja) * 2001-04-09 2003-01-29 Nsk Ltd 摩擦ローラ式変速機
JP2003247617A (ja) * 2002-02-21 2003-09-05 Nsk Ltd 摩擦ローラ式変速機
JP2005188701A (ja) * 2003-12-26 2005-07-14 Nissan Motor Co Ltd 摩擦伝動装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538275Y2 (ja) 1988-08-29 1993-09-28
JPH04370447A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 摩擦式動力伝達装置
JP4921632B2 (ja) 2000-05-31 2012-04-25 日本精工株式会社 四輪駆動車における前後輪変速装置
JP2002087091A (ja) 2000-09-14 2002-03-26 Fuji Heavy Ind Ltd 4輪駆動車のトランスミッション
JP2002087092A (ja) 2000-09-20 2002-03-26 Tochigi Fuji Ind Co Ltd 動力伝達装置
JP3934336B2 (ja) * 2000-12-21 2007-06-20 住友重機械工業株式会社 単純遊星歯車機構のバックラッシ低減方法及び同機構の製造方法
US6849025B2 (en) * 2001-04-09 2005-02-01 Nsk Ltd. Frictional roller transmission
DE10315682A1 (de) 2003-04-07 2004-11-11 Zf Friedrichshafen Ag Allrad-Toroidgetriebe für ein Kraftfahrzeug
US7441634B2 (en) 2003-12-26 2008-10-28 Nissan Motor Co., Ltd. Friction drive device
JP2005337442A (ja) 2004-05-28 2005-12-08 Toyota Motor Corp 差動制限装置
US20080064553A1 (en) * 2004-06-08 2008-03-13 Newton Alan R Offset Drive Direct Ratio Gear Coupling
JP2006132738A (ja) 2004-11-09 2006-05-25 Nissan Motor Co Ltd 変速装置
JP4816093B2 (ja) 2006-01-16 2011-11-16 日産自動車株式会社 摩擦伝動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028251A (ja) * 2001-04-09 2003-01-29 Nsk Ltd 摩擦ローラ式変速機
JP2002349653A (ja) * 2001-05-28 2002-12-04 Nsk Ltd 摩擦ローラ式変速機
JP2003247617A (ja) * 2002-02-21 2003-09-05 Nsk Ltd 摩擦ローラ式変速機
JP2005188701A (ja) * 2003-12-26 2005-07-14 Nissan Motor Co Ltd 摩擦伝動装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537246A (zh) * 2010-12-09 2012-07-04 日产自动车株式会社 辊摩擦传动单元
JP2014069768A (ja) * 2012-10-01 2014-04-21 Nissan Motor Co Ltd 駆動力配分装置

Also Published As

Publication number Publication date
EP2246593B1 (en) 2012-06-27
EP2246593A1 (en) 2010-11-03
EP2246593A4 (en) 2011-05-25
JP5263173B2 (ja) 2013-08-14
CN101925758B (zh) 2012-11-21
US8187134B2 (en) 2012-05-29
CN101925758A (zh) 2010-12-22
JPWO2009093570A1 (ja) 2011-05-26
US20100294613A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5263173B2 (ja) 摩擦ローラ式伝動装置
EP2236341B1 (en) Driving force distribution device
EP2246592B1 (en) Friction-roller type transmission mechanism
EP2463535B1 (en) Roller frictional transmission unit
JP5326676B2 (ja) 摩擦伝動装置
EP2390531B1 (en) Torque distributor
JP2014019168A (ja) 駆動力配分装置
JP4941279B2 (ja) 摩擦伝動装置の摩擦ローラ支持構造
WO2013183413A1 (ja) 駆動力配分装置
JP6011132B2 (ja) 駆動力配分装置
JP5782798B2 (ja) 不可逆回転伝動系のロックオン制御装置
JP2015206372A (ja) 駆動力配分装置
WO2014024540A1 (ja) 駆動力配分装置
JP2010059981A (ja) 偏心継手
JP2015205521A (ja) 駆動力配分装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102928.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550518

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12864194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009704737

Country of ref document: EP