WO2009093425A1 - 広帯域光増幅器、光パルス発生装置及び光学機器 - Google Patents

広帯域光増幅器、光パルス発生装置及び光学機器 Download PDF

Info

Publication number
WO2009093425A1
WO2009093425A1 PCT/JP2009/000136 JP2009000136W WO2009093425A1 WO 2009093425 A1 WO2009093425 A1 WO 2009093425A1 JP 2009000136 W JP2009000136 W JP 2009000136W WO 2009093425 A1 WO2009093425 A1 WO 2009093425A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
amplified
range
amplifier
Prior art date
Application number
PCT/JP2009/000136
Other languages
English (en)
French (fr)
Inventor
Kumiko Nishimura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to CN2009801025516A priority Critical patent/CN101918889B/zh
Priority to JP2009550452A priority patent/JP5463913B2/ja
Publication of WO2009093425A1 publication Critical patent/WO2009093425A1/ja
Priority to US12/839,991 priority patent/US8248687B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3507Arrangements comprising two or more nonlinear optical devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity

Definitions

  • the present invention relates to a broadband optical amplifier for generating an ultrashort optical pulse, an optical pulse generator using the amplifier, and an optical apparatus using the optical pulse generator.
  • a femtosecond pulse laser As an application example of a femtosecond pulse laser, there is an application to spectroscopy utilizing high time resolution. There are a number of phenomena characteristic of the femtosecond region, such as phase relaxation, internal conversion, photochemical reaction, and molecular vibration, and the applicability of femtosecond pulse lasers is expanding. Since such a phenomenon is observed in a very early time region of several tens of femtoseconds or less, a femtosecond pulse laser light source in an earlier time region is required. JP 2001-066653 A
  • a femtosecond pulse laser light source that is an optical pulse generator for ultrashort light pulses or attosecond pulses of less than 5 femtoseconds.
  • the broadband optical amplifier according to the first aspect is configured to obtain amplified light having a wavelength in the first range amplified from a predetermined wavelength range from the amplified light having a predetermined wavelength range and the first pumping light having the first wavelength.
  • a wavelength in a second range different from the first range was amplified from the first amplifier to be emitted, the light to be amplified in which the wavelength in the first range was amplified, and the second pumping light having a second wavelength different from the first wavelength.
  • An optical pulse generator includes a basic laser light source that outputs a predetermined frequency, a first converter that converts laser light from the basic laser light source into an Nth harmonic and emits first excitation light, A second converter that converts laser light from a basic laser light source into N + 1 harmonics and emits second excitation light, amplified light having a predetermined visible range, amplified light, and first excitation light
  • the optical instrument according to the third aspect is an optical instrument using the optical pulse generator according to the second aspect.
  • 1 is a schematic diagram of a broadband optical amplifier 10 of a first embodiment. It is a figure which shows that signal light is amplified by excitation light. It is the schematic of the broadband optical amplifier 30 of 2nd Example. It is a conceptual diagram regarding the amplification of the white light WH of 1st Example and 2nd Example. It is the schematic of the broadband optical amplifier 30 of 3rd Example. It is the schematic of the broadband optical amplifier 40 of 4th Example. It is a schematic block diagram of the two-photon excitation fluorescence microscope apparatus 51 using the femtosecond pulse laser light source using the broadband optical amplifier from 1st to 4th embodiment as a light source. It is a block diagram of the microscope part of the nonlinear optical microscope apparatus 53 using the femtosecond pulse laser light source using the broadband optical amplifier from 1st to 4th embodiment as a light source.
  • Beam expander 114 ... Relay optical system 115 ... Dichroic mirror 117A, 119 ... Aperture 117 ... Objective lens 118 ... Imaging lenses 120, 124, 127, 129 ... Lens DESCRIPTION OF SYMBOLS 121 ... Femtosecond pulse laser light source, 122 ... Laser light source 125 ... Mirror 126 ... Spectroscopic element 128 ... Light shielding member 130 ... Control unit 200, 300 ... Detection part 201 ... Photomultiplier tube (PMT) 211 ... Band-pass filter for observation of two-photon excitation 211 '... Band-pass filter that transmits second harmonic and transmits other light
  • FIG. 1 is a schematic diagram of a broadband optical amplifier 10.
  • the broadband optical amplifier 10 includes a titanium sapphire laser light source TSL, a beam splitter BS, and a first frequency converter and a second frequency converter into which one light beam L1 branched by the beam splitter BS is incident. It has.
  • the first frequency converter is, for example, a second harmonic generator SHG
  • the second frequency converter is, for example, a third harmonic generator THG.
  • the broadband optical amplifier 10 includes a self-phase modulator SPM on which the other light beam L1 branched by the beam splitter BS enters, a prism PR that is a refractive optical element that refracts the light beam, and a first non-collinear optical parametric amplifier ( Non-collinear Optical Parametric Amplifier) NOPA1 and a second non-collinear optical parametric amplifier NOPA2.
  • the principle of the non-collinear optical parametric amplifier NOPA is an extension of the generally known OPA principle, and is simply as follows.
  • OPA is amplification by second-order nonlinear polarization of a nonlinear optical crystal, and amplification occurs in the nonlinear optical crystal under the condition that the excitation light, signal light, and idler light satisfy the energy conservation law and the momentum conservation law simultaneously.
  • the law of conservation of momentum is equivalent to the phase matching condition between the excitation light and the signal light.
  • the signal light is amplified by an optical parametric effect.
  • the band satisfying the phase matching condition is limited to a narrow range, and the pulse width is not narrowed to about 20 fs or less.
  • NOPA makes it possible to amplify broadband light such as white light by removing such restrictions.
  • the signal light and the excitation light are incident on the nonlinear optical crystal at a certain non-coaxial angle, the projection component in the signal light direction of the group velocity of the idler light matches the group velocity of the signal light, and the group of the signal light and the idler light The speed mismatch disappears and a bandwidth that is an order of magnitude larger than that of the coaxial arrangement can be obtained.
  • phase matching type-I and type-II.
  • NOPA is a type-I phase matching in which the excitation light is an extraordinary ray and signal light and idler light are ordinary rays. Configure.
  • the gain and gain band due to amplification depend on parameters such as the cutting angle of the nonlinear optical crystal, the non-coaxial angle between the pumping light and the signal light, and the incident angle of the pumping light. These optimum values can be calculated by numerical calculation. Is possible.
  • the titanium sapphire laser light source TSL emits a light beam L1 having an output of 1.4 w, a pulse width of 100 fs, a repetitive pulse of 1 kHz, and a wavelength of 790 nm.
  • the light beam L1 emitted from the titanium sapphire laser light source TSL is branched by the beam splitter BS.
  • About 90% of the light beam L1 emitted by the titanium sapphire laser light source TSL is directed to the second harmonic generator SHG, and about 10% or less of the light beam L1 is directed to the self-phase modulator SPM.
  • One light beam L1 branched by the beam splitter BS is incident on the second harmonic generator SHG, and the light beam L1 from the second harmonic generator SHG and the light beam L2 which is the second harmonic light having a wavelength of 395 nm are generated. Emitted.
  • the light beam L1 and the light beam L2 are incident on the third harmonic generator THG, and the light beam L1, the light beam L2, and a light beam L3 having a wavelength of 263 nm are emitted from the third harmonic generator THG.
  • the light beam L2 and the light beam L3 become pump light of a white light beam WH described later.
  • the light beam L1, the light beam L2, and the light beam L3 are incident on the refractive optical element.
  • the refractive optical element is, for example, a prism PR.
  • the prism PR separates the light beam L1, the light beam L2, and the light beam L3 according to the difference in refractive index depending on the wavelength.
  • the separated light beam L2 is reflected by the first mirror M1 so as to enter the first non-collinear optical parametric amplifier NOPA1 at a predetermined angle.
  • the separated light beam L3 is reflected by the second mirror M2 so as to enter the second non-collinear optical parametric amplifier NOPA2 at a predetermined angle.
  • the other light beam L1 branched by the beam splitter BS enters the self-phase modulator SPM.
  • the self-phase modulator SPM can modulate the frequency by a nonlinear refractive index change that occurs when the light is strongly condensed on the nonlinear medium, and convert the input light into white light having a broadband spectrum.
  • the self-phase modulator SPM is specifically fluoride glass which is a nonlinear optical element, and converts the light beam L1 of the titanium sapphire laser light source TSL into a white light beam WH having a wavelength width of at least 350 nm to 790 nm.
  • This white light WH becomes signal light that is the amplified light of the broadband optical amplifier 10, and is transmitted to the first non-collinear optical parametric amplifier NOPA1 and the second non-collinear optical parametric amplifier NOPA2 at a predetermined angle. Reflected by the third mirror M3 and the fourth mirror M4 so as to enter.
  • the first non-collinear optical parametric amplifier NOPA1 and the second non-collinear optical parametric amplifier NOPA2 are composed of nonlinear optical crystals, specifically, BBO ( ⁇ -BaB 2 O 4 ) crystal, KABO (K 2 Al 2 B). 2 O 7 ) crystals, BNA crystals or LBO (LiB 3 O 5 ) crystals can be used. These are crystals that have the property of interacting simultaneously with two or more types of light waves. Since the performance of BBO crystals and the like varies depending on humidity, dry nitrogen purge is performed to keep the performance of BBO crystals and the like constant.
  • the white light beam WH as the signal light and the light beam L2 as the excitation light are incident on the first non-collinear optical parametric amplifier NOPA1 at a non-coaxial angle. Then, the light L2 enters the first non-collinear optical parametric amplifier NOPA1, thereby exciting the first non-collinear optical parametric amplifier NOPA1 and generating idler light ID in the first non-collinear optical parametric amplifier NOPA1.
  • the white light beam WH that is the signal light is amplified.
  • the first non-collinear optical parametric amplifier NOPA1 emits the amplified signal light L11.
  • the amplified signal light L11 is incident on the second non-collinear optical parametric amplifier NOPA2 at a non-coaxial angle with the light beam L3 that is the excitation light. Then, the light beam L3 is incident on the second non-collinear optical parametric amplifier NOPA2 to excite the second non-collinear optical parametric amplifier NOPA2, and idler light ID is generated in the second non-collinear optical parametric amplifier NOPA2.
  • the projection component in the signal light direction of the group velocity of the idler light ID coincides with the group velocity of the signal light L11, the signal light L11 is amplified. Then, the second non-collinear optical parametric amplifier NOPA2 emits the amplified signal light L12.
  • the white light WH has a wavelength width of at least 350 nm to 790 nm and a low intensity.
  • 1 is a diagram showing the wavelength and intensity of the light beam L11 from the first non-collinear optical parametric amplifier NOPA1 to the second non-collinear optical parametric amplifier NOPA2.
  • the wavelength range from about 500 nm to 790 nm of the light beam L11 is amplified by several tens to several hundred times by the excitation of the light beam L2 (wavelength 395 nm).
  • the wavelength range of about 350 nm to 500 nm of the light beam L11 is not amplified by the excitation of the light beam L2 (wavelength 395).
  • 1 is a diagram showing the wavelength and intensity of the light beam L12 after the second non-collinear optical parametric amplifier NOPA2.
  • the wavelength range of about 350 nm to 500 nm is amplified about several tens to several hundred times by the excitation of the light beam L3 (wavelength 263 nm).
  • the light beam L12 is amplified in the wavelength range of about 350 nm to 790 nm, together with the wavelength range of about 500 nm to 790 nm of the already amplified light beam L11.
  • FIG. 2 (a) when the light beam L2 which is pumping light enters the first non-collinear optical parametric amplifier NOPA1, the first non-collinear optical parametric amplifier NOPA1 is excited, idler ID is generated, and the white light WH is generated. Amplify. In (a), it is depicted as amplification several times, but it can be amplified several tens to several hundreds. Similarly, when the light beam L3 which is pumping light enters the second non-collinear optical parametric amplifier NOPA2, the second non-collinear optical parametric amplifier NOPA2 is excited, idler light ID is generated, and the signal light L11 is amplified. However, FIG. 2A is drawn on the assumption that the projection component in the signal light direction of the group velocity of the idler light ID matches the group velocity of the signal light L11.
  • the direction in which the idler light ID is generated differs depending on the wavelength of the excitation light entering the non-colinear optical parametric amplifier NOPA such as a BBO crystal, the type of BBO crystal, the crystal axis, and the like.
  • NOPA non-colinear optical parametric amplifier
  • FIG. 2B shows the relationship between the signal light and the excitation light incident on the non-colinear optical parametric amplifier NOPA such as a BBO crystal.
  • NOPA non-colinear optical parametric amplifier
  • FIG. 2C shows the amplified signal light when the parameters such as the inner angle ⁇ and the angle ⁇ are optimum
  • FIG. 2D shows the signal light amplified when the parameters such as the inner angle ⁇ and the angle ⁇ are inappropriate. Signal light is shown.
  • the signal light is appropriately amplified in the first non-collinear optical parametric amplifier NOPA1 and the second non-collinear optical parametric amplifier NOPA2, it is amplified in a wide range from 350 nm to 790 nm. .
  • the inner angle ⁇ and the angle ⁇ are not appropriate, a part of a wide area from 350 nm to 790 nm may not be amplified as shown in FIG. This makes it impossible to generate an ultrashort light pulse having a pulse width of less than 5 femtoseconds.
  • wavelength range that is amplified by the first non-collinear optical parametric amplifier NOPA1 and the wavelength range that is amplified by the second non-collinear optical parametric amplifier NOPA2 partially overlap, as long as there is no wavelength range that is not amplified. May be.
  • the amplified light and the first excitation light enter the first amplifier, the first range of wavelengths is amplified, and the first range of wavelengths is amplified.
  • the second excitation light enters the second amplifier, and a wavelength in a second range different from the first range is amplified. For this reason, it is possible to amplify broadband light combining the wavelength in the first range and the wavelength in the second range.
  • the first excitation light and the second excitation light of the Nth harmonic and the (N + 1) th harmonic are generated from the basic laser light source that outputs laser light of a predetermined wavelength.
  • the first amplifier wavelength and the second amplifier wavelength of the amplified light having a predetermined wavelength range are amplified by the first amplifier and the second amplifier, respectively.
  • it is possible to amplify broadband light combining the wavelength of the first range and the wavelength of the second range it is possible to generate an ultrashort optical pulse having a pulse width of less than 5 femtoseconds using the broadband light. Can do.
  • FIG. 3 is a schematic diagram of the broadband optical amplifier 20.
  • the same members as those in the first embodiment are denoted by the same reference numerals. Particularly, differences from the first embodiment will be described.
  • the broadband optical amplifier 20 of the second embodiment is different from the broadband optical amplifier 10 of the first embodiment in that the positions of the first non-collinear optical parametric amplifier NOPA1 and the second non-collinear optical parametric amplifier NOPA2 are switched. Therefore, the first mirror M1 has a different arrangement position so that the light beam L2 is incident on the first non-collinear optical parametric amplifier NOPA1 at a predetermined angle, and the light beam L3 is incident on the second non-colinear light beam at a predetermined angle. The arrangement position of the second mirror M2 is different in order to enter the parametric amplifier NOPA2.
  • the lower right diagram in FIG. 3 shows the white light WH from the self-phase modulator SPM to the second non-collinear optical parametric amplifier NOPA2, as in the first embodiment, and the intensity of the white light WH is weak.
  • the wavelength range of about 350 nm to 500 nm is amplified about several tens to several hundred times by the excitation of the light beam L3 (wavelength 263 nm). That is, unlike the first embodiment, the wavelength range of about 350 nm to 500 nm is amplified first.
  • FIG. 3 is a diagram showing the wavelength and intensity of the light beam L22 after the first non-collinear optical parametric amplifier NOPA1.
  • the wavelength range of about 500 nm to 790 nm is amplified about several tens to several hundred times by the excitation of the light beam L2 (wavelength 395 nm).
  • the light beam L22 is amplified in the wavelength range from about 350 nm to 790 nm, together with the wavelength range from about 350 nm to 500 nm of the already amplified light beam L21.
  • FIG. 4 is a conceptual diagram relating to amplification of white light WH in the first and second embodiments.
  • the signal light has a wavelength range from 350 nm to 790 nm as shown in FIG.
  • the white light WH that is the signal light and the second harmonic light (wavelength 395 nm) that is the excitation light are phase-matched non-coaxially by the first non-collinear optical parametric amplifier NOPA1 shown in FIG.
  • the projection component of the signal velocity direction of the group velocity of the idler ID matches the group velocity of the idler light ID.
  • the wavelength range of about 500 nm to 790 nm of the white light WH is amplified by several tens to several hundred times.
  • the white light WH and the third harmonic light (wavelength 263 nm) as excitation light are phase-matched non-coaxially by the second non-collinear optical parametric amplifier NOPA2 shown in FIG. Projection components in the signal light direction of the group velocity of the idler light ID match.
  • the wavelength range of about 350 nm to 500 nm of the white light WH is amplified by several tens to several hundred times.
  • the wavelength range of about 350 nm to 790 nm is amplified as shown in FIG. ing.
  • the following work is required.
  • the angle at which the white light beam WH enters the first non-collinear optical parametric amplifier NOPA1 and the second non-collinear optical parametric amplifier NOPA2 is adjusted.
  • the angle at which the light beam L2 (second harmonic light (wavelength 395 nm)) enters the first non-collinear optical parametric amplifier NOPA1 and the light beam L3 (third harmonic light (wavelength 263 nm)) are the second non-collinear optical parametric amplifier NOPA2. Adjust the angle of incidence.
  • the broadband optical amplifier 10 or the broadband optical amplifier 20 can amplify a wide range of light from about 350 nm to 790 nm, the theoretical calculation shown in FIG. 4E enables a wide range of amplification up to 478 THz (terahertz). can do. That is, it is possible to obtain an optical pulse generator that generates an ultrashort optical pulse having a pulse width of about 2 femtoseconds.
  • FIG. 5 is a schematic diagram of the broadband optical amplifier 30, and the same members as those in the first embodiment are denoted by the same reference numerals. Particularly, differences from the first embodiment will be described.
  • the broadband optical amplifier 30 of the third embodiment does not have the beam splitter BS and the self-phase modulator SPM. Instead, it has a white light source LP and a condenser lens LEN.
  • the broadband optical amplifier 30 generates white light WH having a wavelength width of at least 350 nm to 790 nm by the white light source LP.
  • the white light source LP emits coherent light having a wavelength width of 300 nm to 900 nm.
  • a coherent light source having a wavelength width of 300 to 900 nm a light source utilizing properties such as a nonlinear optical fiber, a solid-state laser, or the like can be used.
  • the white light WH becomes signal light of the broadband optical amplifier 30 and enters the first non-collinear optical parametric amplifier NOPA1 and the second non-collinear optical parametric amplifier NOPA2 at a predetermined angle.
  • the light beam L1 of the titanium sapphire laser light source TSL enters the second harmonic generator SHG and enters the third harmonic generator THG. That is, in the third embodiment, the light beam L1 from the titanium sapphire laser light source TSL is used only for generating excitation light (light beam L2, light beam L3).
  • the broadband optical amplifier 30 of the third embodiment uses, for example, a cylindrical lens CL having a small Abbe number as a refractive optical element. By using a high dispersion lens with a small Abbe number, it can be separated greatly for each wavelength.
  • the cylindrical lens CL separates the light beam L1, the light beam L2, and the light beam L3 based on the difference in refractive index depending on the wavelength.
  • FIG. 6 is a schematic diagram of the broadband optical amplifier 40, and the same members as those in the first embodiment are denoted by the same reference numerals. Particularly, differences from the first embodiment will be described.
  • the broadband optical amplifier 40 of the fourth embodiment further includes a fourth harmonic generator FHG and a third non-collinear optical parametric amplifier NOPA3.
  • the fourth harmonic generator FHG emits a light beam L4 that is fourth harmonic light having a wavelength of 198 nm.
  • the broadband optical amplifier 40 sets the fifth mirror M5 so that the light beam L4, which is the fourth harmonic light beam refracted by the prism PR, enters the third non-collinear optical parametric amplifier NOPA3 at a predetermined angle. Have.
  • the self-phase modulator SPM of the fourth embodiment converts the light beam L1 of the titanium sapphire laser light source TSL into a white light beam WH having a wavelength width of at least 310 nm to 790 nm.
  • the white light beam WH as the signal light and the light beam L2 as the excitation light are incident on the first non-collinear optical parametric amplifier NOPA1 at a non-coaxial angle.
  • the excitation of the light beam L2 (wavelength 395 nm)
  • the light beam L11 is amplified about several tens to several hundred times in the wavelength range of about 500 nm to 790 nm.
  • the amplified signal light L11 is incident on the second non-collinear optical parametric amplifier NOPA2 at a non-coaxial angle with the light beam L3 that is the excitation light. Then, the light beam L12 is amplified about several tens to several hundred times in the wavelength range of about 350 nm to 500 nm by excitation of the light beam L3 (wavelength 263 nm).
  • the further amplified signal light L12 is incident on the third non-collinear optical parametric amplifier NOPA3 at a non-coaxial angle with the light beam L4 that is the excitation light. Then, by the excitation of the light beam L4 (wavelength 198 nm), the light beam L13 is amplified about several tens to several hundred times in the wavelength range of about 310 nm to 350 nm. The light beam L13 is amplified in the wavelength range from about 310 nm to 790 nm, including the already amplified wavelength range of about 500 nm to 790 nm of the light beam L11 and the wavelength range of about 350 nm to 500 nm of the light beam L12.
  • the broadband optical amplifier 40 of the fourth embodiment can enable a wide range of amplification up to 580 THz (terahertz) or more in theoretical calculation. As described above, by arranging the high-order harmonic generator FHG and the non-collinear optical parametric amplifier NOPA suitable for the pumping light, the broadband white light WH can be amplified.
  • the femtosecond pulse is an optical pulse generator that can generate an ultrashort optical pulse whose pulse width is less than 5 femtoseconds.
  • a laser light source can be provided.
  • the present invention is not limited to the first to fourth embodiments, and many changes and modifications are possible.
  • the broadband optical amplifier 10 can use third harmonic light and fourth harmonic light.
  • the titanium sapphire laser light source TSL can be disposed outside the housing 11.
  • FIG. 7 is a schematic configuration diagram of a two-photon excitation fluorescence microscope apparatus 51 using the femtosecond pulse laser light source 110 which is the optical pulse generator of the above embodiment.
  • the two-photon excitation fluorescence microscope apparatus 51 includes a femtosecond pulsed laser light source 110, a stage 111 on which a specimen SM is placed, a beam expander 113, and a dichroic mirror 115.
  • the femtosecond pulse laser light source 110 includes the broadband optical amplifier 10 described in the first embodiment.
  • the broadband optical amplifier 20, 30 or 40 described in the second to fourth embodiments may be used.
  • the microscope apparatus 51 also includes a scanner 116 in which a pair of galvanometer mirrors (X scanning mirror and Y scanning mirror) are arranged so that their rotation axes are orthogonal to each other, a relay optical system 114, an aperture 117A, and an objective lens 117.
  • the detection unit 200, the stage 111, and the control unit 130 are provided.
  • the aperture size of the aperture 117A is the same size as the pupil of the objective lens 117 or slightly larger than the pupil, and illumination light (or excitation light) described later is not blocked by the aperture 117A.
  • the detection unit 200 includes an imaging lens 118, a diaphragm 119, a lens 120, a band pass filter 211, and a photomultiplier tube (PMT) 201.
  • the bandpass filter 211 transmits light of a predetermined wavelength and does not pass light of other wavelengths.
  • the PMT 201 converts light into an electrical signal (fluorescence signal indicating the amount of fluorescence).
  • the PMT 201 reads the fluorescence signal for each position in the observation area of the specimen SM.
  • the control unit 130 creates a fluorescence image of the observation region of the sample SM based on each fluorescence signal read by the PMT 201.
  • the control unit 130 rotates the galvanometer mirror of the scanner 116 to move the illumination light irradiation area (laser spot) within the plane of the stage 111. Further, the control unit 130 can move the stage 111 in the optical axis direction of the illumination light (the arrow direction in FIG. 7).
  • the sample SM is placed on the stage 111.
  • the specimen SM is a cell sample labeled with, for example, a fluorescent dye.
  • the fluorescent dye has an excitation wavelength (wavelength excited by one-photon excitation) of 395 nm and a fluorescence wavelength of 450 nm.
  • the femtosecond pulse laser light source 110 emits femtosecond pulse laser light having a center wavelength of 790 nm as illumination light at a frequency of 1 kHz, for example.
  • This illumination light is an ultrashort light pulse whose pulse width is less than 5 femtoseconds.
  • Illumination light (near 790 nm) emitted from the femtosecond pulse laser light source 110 is converted into a light beam having a large diameter by the beam expander 113 and enters the dichroic mirror 115.
  • the characteristic of the dichroic mirror 115 is set to a characteristic that reflects light having a wavelength in the vicinity of 790 nm and transmits light having a wavelength in the vicinity of 450 nm.
  • the illumination light emitted from the femtosecond pulse laser light source 110 is reflected by the dichroic mirror 115, and after passing through the scanner 116, the relay optical system 114, the stop 117A, and the objective lens 117 in this order, is condensed toward the sample SM.
  • the fluorescent molecules are excited two-photon to generate fluorescence that is signal light (two-photon excitation fluorescence).
  • the size of the laser spot depends on the NA of the objective lens 117, and the larger the NA, the smaller the laser spot size, so that the spatial resolution of the apparatus increases.
  • the two-photon excitation fluorescence (near 450 nm) generated at the laser spot traces the optical path of the illumination light forming the laser spot in the reverse direction, and sequentially passes through the objective lens 117, the aperture 117A, the relay optical system 114, and the scanner 116. Thereafter, the light passes through the dichroic mirror 115 and enters the detection unit 200.
  • the two-photon excitation fluorescence that has entered the detection unit 200 enters the PMT 201 through the imaging lens 118, the diaphragm 119, the lens 120, and the bandpass filter 211 in this order.
  • the characteristic of the band pass filter 211 is set to a characteristic that transmits light having a wavelength near 450 nm and removes light of other wavelengths. Therefore, the two-photon excitation fluorescence passes through the band-pass filter 211 and is converted into an electric signal (fluorescence signal indicating the amount of fluorescence) by the PMT 201.
  • the laser spot scans two-dimensionally in the observation region on the specimen SM (in the field of view of the objective lens 117).
  • the PMT 201 reads the fluorescence signal.
  • Each fluorescence signal read out at each position is sent to the control unit 130.
  • the control unit 130 creates a fluorescence image of the observation area based on each fluorescence signal. If the control unit 130 moves the stage 11 up and down in the optical axis direction and further reads each fluorescence signal while scanning the laser spot in a two-dimensional manner, a three-dimensional image of the sample SM can be obtained.
  • the optical pulse generator having the broadband optical amplifier of the first to fourth embodiments is used. Therefore, since an ultrashort light pulse having a pulse width of less than 5 femtoseconds can be generated, the two-photon excitation fluorescence microscope apparatus 51 can further increase the time resolution and observe a faster phenomenon of the sample SM.
  • FIG. 8 is a configuration diagram of a microscope portion of the nonlinear optical microscope apparatus 53.
  • the nonlinear optical microscope apparatus 53 of the sixth embodiment employs detection principles of second harmonic generation and coherent anti-Stokes Raman scattering in addition to two-photon excitation.
  • the nonlinear optical microscope apparatus 53 of the present embodiment includes two laser light sources 121 and 122.
  • One laser light source is a femtosecond pulse laser light source 121 used for two-photon excitation observation, second harmonic generation observation, and coherent anti-Stokes Raman scattering observation, and the other laser light source is a coherent anti-Stokes Raman.
  • a laser light source 122 used for scattering observation.
  • the femtosecond pulse laser light source 121 is used as a light source for anti-Stokes light
  • the laser light source 122 is used as a light source for pump light.
  • the nonlinear optical microscope apparatus 53 of the sixth embodiment includes a first detection unit 220 and a second detection unit 240.
  • a dichroic mirror 115 ′ is disposed between the dichroic mirror 115 and the first detection unit 220.
  • the dichroic mirror 115 ′ reflects the coherent Stokes Raman scattering light generated in the sample SM and guides it to the second detection unit 240, and transmits the two-photon excitation fluorescence and the second harmonic generated in the sample SM. 1 is guided to the detection unit 220.
  • the first detection unit 220 is a detection unit that is used for both two-photon excitation observation and second harmonic generation observation, and has the same configuration as the detection unit 200 in the fifth embodiment.
  • the first detection unit 220 includes a bandpass filter 211 and a bandpass filter 211 ′.
  • the bandpass filter 211 is a filter for observation of two-photon excitation
  • the bandpass filter 211 ′ is a filter that transmits the second harmonic and cuts other light.
  • the second detector 240 is a detector used for coherent anti-Stokes Raman scattering observation.
  • a lens 124, a mirror 125, a spectroscopic element 126, a lens 127, a light shielding member 128, a lens 129, and a detector 130 are arranged.
  • the light shielding member 128 has a function of allowing the coherent Stokes Raman scattering light to pass therethrough and shielding other light.
  • the sample SM is irradiated with anti-Stokes light and excitation light.
  • the second harmonic and two-photon excitation fluorescence generated in the sample SM enter the first detection unit 220.
  • the coherent Stokes Raman scattering light generated in the sample SM is detected by the second detection unit 240.
  • the first detection unit 220 can detect two-photon excitation fluorescence. If a bandpass filter 211 ′ that transmits the second harmonic is inserted in the optical path of the first detector 220, the first detector 220 can detect the second harmonic.
  • the femtosecond pulse laser light source 121 that emits an ultrashort light pulse whose pulse width is less than 5 femtoseconds is used as in the fifth embodiment. Therefore, the nonlinear optical microscope apparatus 53 can observe the faster phenomenon of the specimen SM with higher time resolution.
  • a microscope apparatus using a femtosecond pulse laser light source that emits an ultrashort light pulse whose pulse width is less than 5 femtoseconds is shown.
  • An example of an optical instrument that uses a femtosecond pulse laser light source that emits an ultrashort light pulse of less than 5 femtoseconds is not limited to a microscope apparatus.
  • a femtosecond pulse laser that emits an ultrashort light pulse is a laser. It can be applied to processing machines.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

  【課題】 広帯域の信号増幅を可能とする広帯域光増幅器(10)を提供する。 【解決手段】 広帯域光増幅器(10)は、所定の波長範囲を有する被増幅光(WH)と第1波長の第1励起光(L2)とから、所定の波長範囲のうち第1範囲の波長が増幅された被増幅光を射出する第1増幅器(NOPA1)と、この第1範囲の波長が増幅された被増幅光と第1波長と異なる第2波長の第2励起光(L3)とから、第1範囲と異なる第2範囲の波長が増幅された被増幅光を射出する第2増幅器(NOPA2)と、を備える。    

Description

広帯域光増幅器、光パルス発生装置及び光学機器
 本発明は、超短光パルスを発生させるための広帯域光増幅器、この増幅器を使った光パルス発生装置及びこの光パルス発生装置を使った光学機器に関するものである。
 フェムト秒パルスレーザーの活用例としては、高時間分解能を生かした分光への応用がある。位相緩和・内部転換・光化学反応・分子振動等、フェムト秒領域に特徴的な現象は数知れず、フェムト秒パルスレーザーの応用性は広がりつつある。このような現象は、数十フェムト秒以下での非常に早い時間領域で観察される現象であるため、より早い時間領域のフェムト秒パルスレーザー光源が求められている。
特開2001-066653号公報
 しかしながら、更なる短パルス化という観点からより速い現象を観測するためにより高い時間分解能が求められている。つまり、5フェムト秒を下回る超短光パルスやアト秒パルスの光パルス発生装置であるフェムト秒パルスレーザー光源が要望されている。
 本発明の目的は、超短光パルスを発生させるために、広帯域の信号増幅を可能とする広帯域光増幅器を提供することである。また本発明の目的は、この広帯域光増幅器を使った光パルス発生装置及びこの光パルス発生装置を使った光学機器を提供することである。
 第1の観点による広帯域光増幅器は、所定の波長範囲を有する被増幅光と第1波長の第1励起光とから、所定の波長範囲のうち第1範囲の波長が増幅された被増幅光を射出する第1増幅器と、第1範囲の波長が増幅された被増幅光と第1波長と異なる第2波長の第2励起光とから、第1範囲と異なる第2範囲の波長が増幅された被増幅光を射出する第2増幅器と、を備える。
 第2の観点による光パルス発生装置は、所定周波数を出力する基本レーザー光源と、基本レーザー光源からのレーザー光を第N高調波に変換して第1励起光を射出する第1変換器と、基本レーザー光源からのレーザー光を第N+1高調波に変換して第2励起光を射出する第2変換器と、所定の可視範囲を有する被増幅光と、被増幅光と第1励起光とを入射し、第1範囲の波長が増幅された被増幅光を射出する第1増幅器と、この第1範囲の波長が増幅された被増幅光と第2励起光とを入射し、第1範囲と異なる第2範囲の波長が増幅された被増幅光を射出する第2増幅器と、を備える。
 第3の観点による光学機器は、第2の観点の光パルス発生装置を使用した光学機器である。
 本発明によれば、広帯域の信号増幅を可能とする広帯域光増幅器を提供することができる。
第1実施例の広帯域光増幅器10の概略図である。 信号光が励起光によって増幅されることを示す図である。 第2実施例の広帯域光増幅器30の概略図である。 第1実施例及び第2実施例の白色光線WHの増幅に関する概念図である。 第3実施例の広帯域光増幅器30の概略図である。 第4実施例の広帯域光増幅器40の概略図である。 第1から第4実施形態までの広帯域光増幅器を用いたフェムト秒パルスレーザー光源を光源として利用した二光子励起蛍光顕微鏡装置51の概略構成図である。 第1から第4実施形態までの広帯域光増幅器を用いたフェムト秒パルスレーザー光源を光源として利用した非線形光学顕微鏡装置53の顕微鏡部分の構成図である。
符号の説明
BS … ビームスプリッタ
NOPA … 非共直線光パラメトリック増幅器
M1,M2,M3,M4,M5 … 平面ミラー
SHG … 第2高調波発生器
THG … 第3高調波発生器
FHG … 第4高調波発生器
TSL … チタンサファイヤレーザー光源
CL … シリンドリカルレンズ
PR … プリズム
WH … 白色光線
L11、L12、L13、L21、L22 … 増幅された信号光
L1、L2、L3、L4 … 励起光である光線(790nm)、光線(395nm)、光線(263nm)、光線(198nm)
SM … 標本
110 … フェムト秒パルスレーザー光源
111 … ステージ
113 … ビームエキスパンダ
114 … リレー光学系
115 … ダイクロイックミラー
117A,119 … 絞り
117 … 対物レンズ
118 … 結像レンズ
120,124,127,129 … レンズ
121 … フェムト秒パルスレーザー光源、122 … レーザー光源
125 … ミラー
126 … 分光素子
128 … 遮光部材
130 … コントロールユニット
200,300 … 検出部
201 … 光電子増倍管(PMT)
211 … 二光子励起観察用のバンドパスフィルタ
211’ … 第二高調波を透過しそれ以外の光をバンドパスフィルタ
<第1実施例>
 本発明による第1実施例の広帯域光増幅器10の実施の形態を、図1を参照して詳細に説明する。図1は、広帯域光増幅器10の概略図である。
 この広帯域光増幅器10は、筐体11内にチタンサファイヤレーザー光源TSLと、ビームスプリッタBSと、ビームスプリッタBSで分岐された一方の光線L1が入射する第1周波数変換器及び第2周波数変換器とを備えている。第1周波数変換器は例えば第2高調波発生器SHGであり、第2周波数変換器は例えば第3高調波発生器THGである。また広帯域光増幅器10は、ビームスプリッタBSで分岐された他方の光線L1が入射する自己位相変調器SPMと、光線を屈折させる屈折光学素子であるプリズムPRと、第1非共直線光パラメトリック増幅器(Non-collinear Optical Parametric Amplifier)NOPA1と、第2非共直線光パラメトリック増幅器NOPA2とを備えている。非共直線光パラメトリック増幅器NOPAの原理は、一般に知られているOPAの原理を拡張したものであり、簡単には以下の通りである。OPAは非線形光学結晶の2次の非線形分極による増幅であり、非線形光学結晶内で励起光と信号光とアイドラー光とがエネルギー保存則と運動量保存則を同時に満たす条件で増幅が起きる。運動量保存則は、励起光と信号光との位相整合条件と等価である。励起光の照射によって非線形光学結晶が励起されている間に、信号光が入射すると、この信号光は光パラメトリック効果によって増幅を受ける。この場合には、屈折率の異方性が充分に大きくとれないので、位相整合条件を満たす帯域が狭い範囲に限定され、パルス幅が20fs程度以下に狭くならない。このような制約を取り除き、白色光のような広帯域光の増幅を行うことを可能にしたのがNOPAである。信号光と励起光をある非同軸角で非線形光学結晶中に入射させると、アイドラー光の群速度の信号光方向の射影成分が、信号光の群速度と一致し、信号光とアイドラー光の群速度不整合が消失して、同軸配置に比べて一桁も大きなバンド幅が得られるようになる。一般に位相整合には、type-Iとtype-IIの2種類があるが、本実施形態では、励起光を異常光線、信号光とアイドラー光とを常光線とするtype-Iの位相整合でNOPAを構成する。増幅による利得と利得帯域は、非線形光学結晶のカッティングアングル、励起光と信号光との非同軸角、励起光の入射角などのパラメーターに依存し、これらの最適値は数値計算により算出することが可能である。
 チタンサファイヤレーザー光源TSLは、出力1.4w、パルス幅100fs、繰り返しパルス1kHz及び波長790nmの光線L1を発する。そのチタンサファイヤレーザー光源TSLが発した光線L1はビームスプリッタBSによって分岐される。チタンサファイヤレーザー光源TSLが発した光線L1の約90パーセントの光線L1が第2高調波発生器SHGに向かい、約10パーセント以下の光線L1が自己位相変調器SPMに向かう。
 ビームスプリッタBSによって分岐された一方の光線L1は、第2高調波発生器SHGに入射し、この第2高調波発生器SHGから光線L1と395nmの波長の第2高調波光である光線L2とが出射される。また、光線L1と光線L2とは第3高調波発生器THGに入射し、この第3高調波発生器THGから光線L1、光線L2及び263nmの波長の光線L3を出射する。光線L2及び光線L3は、後述する白色光線WHの励起(pump)光となる。
 光線L1、光線L2及び光線L3は、屈折光学素子に入射する。屈折光学素子は例えばプリズムPRである。プリズムPRは波長による屈折率の違いにより、光線L1、光線L2及び光線L3をそれぞれ分離する。分離された光線L2は所定の角度で第1非共直線光パラメトリック増幅器NOPA1に入射するように第1ミラーM1で反射される。また分離された光線L3は所定の角度で第2非共直線光パラメトリック増幅器NOPA2に入射するように第2ミラーM2で反射される。
 ビームスプリッタBSによって分岐された他方の光線L1は、自己位相変調器SPMに入射する。自己位相変調器SPMにより、非線形性媒質に光を強く集光した際におこる非線形屈折率変化によって周波数を変調させ、入力光を広帯域のスペクトルを持つ白色光に変換することができる。自己位相変調器SPMは、具体的には非線形光学素子であるフッ化物ガラスであり、チタンサファイヤレーザー光源TSLの光線L1を少なくとも350nmから790nmの波長幅を有する白色光線WHに変換する。この白色光線WHは、広帯域光増幅器10の被増幅光であるところの信号(Signal)光となり、所定の角度で第1非共直線光パラメトリック増幅器NOPA1と第2非共直線光パラメトリック増幅器NOPA2とに入射するように、第3ミラーM3及び第4ミラーM4で反射される。
 第1非共直線光パラメトリック増幅器NOPA1と第2非共直線光パラメトリック増幅器NOPA2は、非線形光学結晶から構成され、具体的にはBBO(β-BaB)結晶、KABO(KAl)結晶、BNA結晶又はLBO(LiB)結晶を使用することができる。これらは二種類以上の光波と同時に相互作用するような性質をもっている結晶である。なお、BBO結晶などは湿度により性能が変動するので乾燥窒素パージを行い、BBO結晶などの性能を一定に維持する。
 信号光である白色光線WHと励起光である光線L2とが非同軸角で第1非共直線光パラメトリック増幅器NOPA1に入射する。すると、光線L2が第1非共直線光パラメトリック増幅器NOPA1に入射することで第1非共直線光パラメトリック増幅器NOPA1が励起され、第1非共直線光パラメトリック増幅器NOPA1内にアイドラー光IDが発生する。そのアイドラー光IDの群速度の信号光方向の射影成分が白色光線WHの群速度と一致した時、信号光である白色光線WHが増幅される。そして第1非共直線光パラメトリック増幅器NOPA1は増幅された信号光L11を出射する。
 増幅された信号光L11は、励起光である光線L3と非同軸角で第2非共直線光パラメトリック増幅器NOPA2に入射する。すると、光線L3が第2非共直線光パラメトリック増幅器NOPA2に入射することで第2非共直線光パラメトリック増幅器NOPA2が励起され、第2非共直線光パラメトリック増幅器NOPA2内にアイドラー光IDが発生する。アイドラー光IDの群速度の信号光方向の射影成分が信号光L11の群速度と一致した時、信号光L11が増幅される。そして第2非共直線光パラメトリック増幅器NOPA2は増幅された信号光L12を出射する。
 図1の右下図は、自己位相変調器SPMから第1非共直線光パラメトリック増幅器NOPA1までの白色光線WHの波長と強度とを示した図である。この右下図に示すように白色光線WHは少なくとも350nmから790nmの波長幅を有し強度は弱い。
 図1の右中図は、第1非共直線光パラメトリック増幅器NOPA1から第2非共直線光パラメトリック増幅器NOPA2までの光線L11の波長と強度とを示した図である。この右中図に示すように、光線L2(波長395nm)の励起によって光線L11は約500nmから790nmの波長範囲が数十倍から数百倍程度増幅されている。但し光線L2(波長395)の励起によって光線L11の約350nmから500nmの波長範囲が増幅されていない。
 図1の右上図は、第2非共直線光パラメトリック増幅器NOPA2以降の光線L12の波長と強度とを示した図である。この右上図に示すように、光線L3(波長263nm)の励起によって光線L12は約350nmから500nmの波長範囲が数十倍から数百倍程度増幅されている。光線L12は、すでに増幅されている光線L11の約500nmから790nmの波長範囲と合わせて、約350nmから790nmまでの波長範囲が増幅されている。
 図2を使って信号光が励起光によって増幅される概念について説明する。
 図2(a)において、励起光である光線L2が第1非共直線光パラメトリック増幅器NOPA1に入ると第1非共直線光パラメトリック増幅器NOPA1が励起され、アイドラー光IDが発生し、白色光線WHを増幅させる。(a)では数倍の増幅のように描かれているが数十倍から数百倍に増幅することができる。同様に、励起光である光線L3が第2非共直線光パラメトリック増幅器NOPA2に入ると第2非共直線光パラメトリック増幅器NOPA2が励起され、アイドラー光IDが発生し、信号光L11を増幅させる。但し、図2(a)はアイドラー光IDの群速度の信号光方向の射影成分が信号光L11の群速度と一致していることを前提として描かれている。
 アイドラー光IDが発生する方向は、BBO結晶などの非共直線光パラメトリック増幅器NOPAに入る励起光の波長、並びにBBO結晶などの種類及び結晶軸などによって異なる。
 図2(b)は、BBO結晶などの非共直線光パラメトリック増幅器NOPAに入射する信号光と励起光との関係を示している。信号光と励起光との非線型結晶内部での内角度α及び励起光とBBO結晶などの光軸OAとのなす角度θに基づいて、位相整合ゲイン(増幅効率の目安)の最大値を求める。位相整合ゲインが最大となるように導き出された内角度α及び角度θ等のパラメータに従って、非共直線光パラメトリック増幅器NOPAの光軸OAを決めたり、ミラーM3及びミラーM4、並びに非共直線光パラメトリック増幅器NOPAの配置を決めたりする。
 図2(c)は内角度α及び角度θ等のパラメータが最適な場合に増幅された信号光を示し、図2(d)は内角度α及び角度θ等のパラメータが不適な場合に増幅された信号光を示している。
 図2(c)に示すように第1非共直線光パラメトリック増幅器NOPA1と第2非共直線光パラメトリック増幅器NOPA2とにおいて適切に信号光が増幅されれば、350nmから790nmまでの広域において増幅される。一方、内角度α及び角度θなどが適切でないと、図2(d)に示すように350nmから790nmまでの広域の一部が増幅されないことが起こる。これでは、パルス幅が5フェムト秒を下回る超短光パルスを発生させることができない。なお、増幅されない波長範囲が生じなければよいので、第1非共直線光パラメトリック増幅器NOPA1によって増幅される波長範囲と第2非共直線光パラメトリック増幅器NOPA2によって増幅される波長範囲とが一部重なっていてもよい。
 このように第1実施例の構成によれば、被増幅光及び第1励起光が第1増幅器に入射し第1範囲の波長が増幅され、第1範囲の波長が増幅された被増幅光及び第2励起光が第2増幅器に入射し、第1範囲と異なる第2範囲の波長が増幅される。このため、第1範囲の波長と第2範囲の波長とを合わせた広帯域の光を増幅できる。
 また、第1実施例の構成によれば、所定波長のレーザー光を出力する基本レーザー光源から第N高調波及び第N+1高調波の第1励起光及び第2励起光を作り出す。そして所定の波長範囲を有する被増幅光の第1範囲の波長と第2範囲の波長とをそれぞれ第1増幅器と第2増幅器とによって増幅する。このため、第1範囲の波長と第2範囲の波長とを合わせた広帯域の光を増幅できるため、この広帯域の光を使って、パルス幅が5フェムト秒を下回る超短光パルスを発生させることができる。
<第2実施例>
 本発明による第2実施例の広帯域光増幅器20の実施の形態を、図3を参照して詳細に説明する。
 図3は、広帯域光増幅器20の概略図である。第1実施例と同じ部材などには同じ符号を付している。特に第1実施例と異なる箇所について説明する。
 第2実施例の広帯域光増幅器20は、第1実施例の広帯域光増幅器10と異なり、第1非共直線光パラメトリック増幅器NOPA1と第2非共直線光パラメトリック増幅器NOPA2との位置が入れ替わっている。このため、光線L2を所定の角度で第1非共直線光パラメトリック増幅器NOPA1に入射するようにするため第1ミラーM1は配置位置が異なり、また光線L3を所定の角度で第2非共直線光パラメトリック増幅器NOPA2に入射するようにするため第2ミラーM2の配置位置が異なっている。
 図3の右下図は、第1実施例と同じように、自己位相変調器SPMから第2非共直線光パラメトリック増幅器NOPA2までの白色光線WHを示しており、その白色光線WHの強度は弱い。
 図3の右中図は、第2非共直線光パラメトリック増幅器NOPA2から第1非共直線光パラメトリック増幅器NOPA1までの光線L21の波長と強度とを示した図である。この右中図に示すように、光線L3(波長263nm)の励起によって光線L21は約350nmから500nmの波長範囲が数十倍から数百倍程度増幅されている。つまり、第1実施例と異なり先に約350nmから500nmの波長範囲が増幅されている。
 図3の右上図は、第1非共直線光パラメトリック増幅器NOPA1以降の光線L22の波長と強度とを示した図である。この右上図に示すように、光線L2(波長395nm)の励起によって光線L22は約500nmから790nmの波長範囲が数十倍から数百倍程度増幅されている。光線L22は、すでに増幅されている光線L21の約350nmから500nmの波長範囲と合わせて、約350nmから790nmまでの波長範囲が増幅されている。
 図4は、第1実施例及び第2実施例の白色光線WHの増幅に関する概念図である。
 第1及び第2実施例の形態によれば、信号光は図4(a)に示すように350nmから790nmまでの波長範囲を有している。この信号光である白色光線WHと励起光である第2高調波光(波長395nm)を図4(b)に示す第1非共直線光パラメトリック増幅器NOPA1で非同軸に位相整合することで、信号光の群速度とアイドラー光IDの群速度の信号光方向の射影成分が一致する。これにより図4(c)に示すように白色光線WHの約500nmから790nmの波長範囲が数十倍から数百倍程度増幅される。
 また白色光線WHと励起光である第3高調波光(波長263nm)を図4(b)に示す第2非共直線光パラメトリック増幅器NOPA2で非同軸に位相整合することで、信号光の群速度とアイドラー光IDの群速度の信号光方向の射影成分が一致する。これにより図4(c)に示すように白色光線WHの約350nmから500nmの波長範囲が数十倍から数百倍程度増幅される。
 図4(c)に示す増幅された約350nmから500nmと増幅された約500nmから790nmの波長範囲とを足し合わせれば図4(d)のように、約350nmから790nmまでの波長範囲が増幅されている。但し、足し合わせるためには、次のような作業が必要となる。
 すなわち、白色光線WHが第1非共直線光パラメトリック増幅器NOPA1及び第2非共直線光パラメトリック増幅器NOPA2に入射する角度を調整する。また光線L2(第2高調波光(波長395nm))が第1非共直線光パラメトリック増幅器NOPA1に入射する角度及び光線L3(第3高調波光(波長263nm))が第2非共直線光パラメトリック増幅器NOPA2に入射する角度を調整する。
 広帯域光増幅器10又は広帯域光増幅器20は、約350nmから790nmまでの広範囲の光を増幅できるため、図4(e)に示す理論上の計算では、478THz(テラヘルツ)に及ぶ広範囲の増幅を可能にすることができる。すなわちパルス幅が約2フェムト秒の超短光パルスを発生させる光パルス発生装置を得ることができる。
<第3実施例>
 本発明による第3実施例の広帯域光増幅器30の実施の形態を、図5を参照して詳細に説明する。
 図5は、広帯域光増幅器30の概略図であり、第1実施例と同じ部材などには同じ符号を付している。特に第1実施例と異なる箇所について説明する。
 第3実施例の広帯域光増幅器30は、第1実施例の広帯域光増幅器10と異なり、ビームスプリッタBS及び自己位相変調器SPMを有していない。その代わりに白色光源LPと集光レンズLENを有している。広帯域光増幅器30は少なくとも350nmから790nmの波長幅を有する白色光線WHを白色光源LPで発生させる。白色光源LPは300nmから900nmの波長幅を有するコヒーレント光を照射する。300から900nmの波長幅を有するようなコヒーレント光源としては、非線形光ファイバなどの性質を利用した光源、固体レーザーなどを使用することができる。この白色光線WHは、広帯域光増幅器30の信号(Signal)光となり、所定の角度で第1非共直線光パラメトリック増幅器NOPA1と第2非共直線光パラメトリック増幅器NOPA2とに入射する。
 チタンサファイヤレーザー光源TSLの光線L1は、第2高調波発生器SHGに入射し、第3高調波発生器THGに入射する。つまり、第3実施例ではチタンサファイヤレーザー光源TSLから光線L1は励起光(光線L2、光線L3)を発生するためのみに使われる。
 また、第3実施例の広帯域光増幅器30は、屈折光学素子として例えばアッベ数の小さいシリンドリカルレンズCLを使用している。アッベ数の小さい高分散レンズを使用することで波長ごとに大きく分離できる。シリンドリカルレンズCLは波長による屈折率の違いにより、光線L1、光線L2及び光線L3をそれぞれ分離している。
<第4実施例>
 本発明による第4実施例の広帯域光増幅器40の実施の形態を、図6を参照して詳細に説明する。
 図6は、広帯域光増幅器40の概略図であり、第1実施例と同じ部材などには同じ符号を付している。特に第1実施例と異なる箇所について説明する。
 第4実施例の広帯域光増幅器40は、第1実施例の広帯域光増幅器10と異なり、さらに第4高調波発生器FHG及び第3非共直線光パラメトリック増幅器NOPA3を有している。この第4高調波発生器FHGから198nmの波長の第4高調波光である光線L4が出射される。また、広帯域光増幅器40は、第4高調波光である光線L4がプリズムPRにより屈折させられた光線L4を所定の角度で第3非共直線光パラメトリック増幅器NOPA3に入射するように第5ミラーM5を有している。
 第4実施例の自己位相変調器SPMが、チタンサファイヤレーザー光源TSLの光線L1を少なくとも310nmから790nmの波長幅を有する白色光線WHに変換する。信号光である白色光線WHと励起光である光線L2とが非同軸角で第1非共直線光パラメトリック増幅器NOPA1に入射する。すると、光線L2(波長395nm)の励起によって光線L11は約500nmから790nmの波長範囲が数十倍から数百倍程度増幅される。
 増幅された信号光L11は、励起光である光線L3と非同軸角で第2非共直線光パラメトリック増幅器NOPA2に入射する。すると、光線L3(波長263nm)の励起によって光線L12は約350nmから500nmの波長範囲が数十倍から数百倍程度増幅される。
 さらに増幅された信号光L12は、励起光である光線L4と非同軸角で第3非共直線光パラメトリック増幅器NOPA3に入射する。すると、光線L4(波長198nm)の励起によって光線L13は約310nmから350nmの波長範囲が数十倍から数百倍程度増幅される。光線L13は、すでに増幅されている光線L11の約500nmから790nmの波長範囲と、光線L12の約350nmから500nmの波長範囲と合わせて、約310nmから790nmまでの波長範囲が増幅されている。第4実施例の広帯域光増幅器40は、理論上の計算では、580THz(テラヘルツ)以上に及ぶ広範囲の増幅を可能にすることができる。このように、高次高調波発生器FHG及びその励起光に適した非共直線光パラメトリック増幅器NOPAを配置することにより、広帯域の白色光線WHを増幅することができる。
 このように第1実施例から第4実施例によれば、450THz以上に及ぶ広帯域の信号増幅を可能とする広帯域光を増幅することができる。そして、これらの実施例によれば、帯域とパルス幅はおおよそ逆数の関係があることからパルス幅が5フェムト秒を下回る超短光パルスを発生させることができる光パルス発生装置であるフェムト秒パルスレーザー光源を提供することができる。
 さらに、第1実施例から第4実施例に限定されるものではなく、幾多の変更及び変形が可能である。例えば、広帯域光増幅器10において、第3高調波光と第4高調波光を使用することもできる。また、上記実施形態において、筐体11の外にチタンサファイヤレーザー光源TSLを配置することもできる。
 <第5実施形態>
 次に、上記実施形態の光パルス発生装置であるフェムト秒パルスレーザー光源110を用いた光学機器について簡単に説明する。
 図7は上記実施形態の光パルス発生装置であるフェムト秒パルスレーザー光源110を用いた二光子励起蛍光顕微鏡装置51の概略構成図である。図7に示されるとおり二光子励起蛍光顕微鏡装置51にはフェムト秒パルスレーザー光源110と、標本SMが載置されるステージ111と、ビームエキスパンダ113と、ダイクロイックミラー115とを備えている。フェムト秒パルスレーザー光源110は実施形態1で説明された広帯域光増幅器10を備えている。実施形態2から実施形態4で説明された広帯域光増幅器20、30又は40であってもよい。
 また本顕微鏡装置51は、一対のガルバノミラー(X走査鏡、Y走査鏡)を互いの回転軸が直交するように配置したスキャナ116と、リレー光学系114と、絞り117Aと、対物レンズ117と、検出部200と、ステージ111と、コントロールユニット130とを備えている。なお、絞り117Aの開口サイズは、対物レンズ117の瞳と同等のサイズ又は瞳より若干大きいサイズであって、この絞り117Aによって後述する照明光(又は励起光)が遮光されないものとする。
 検出部200は、結像レンズ118と、絞り119と、レンズ120と、バンドパスフィルタ211と、光電子増倍管(PMT)201とを備えている。バンドパスフィルタ211は所定の波長の光を透過しそれ以外の波長の光は通過させない。PMT201は光を電気信号(蛍光量を示す蛍光信号)に変換する。PMT201は標本SMの観察領域内の各位置について蛍光信号を読み出す。
 コントロールユニット130は、PMT201で読み出された各蛍光信号に基づき標本SMの観察領域の蛍光画像を作成する。また、コントロールユニット130はスキャナ116のガルバノミラーを回転させて、照明光の照射領域(レーザスポット)をステージ111の平面内で移動させる。また、コントロールユニット130はステージ111を照明光の光軸方向(図7の矢印方向)に移動させることができる。
 次に二光子励起蛍光顕微鏡装置51の動作について説明する。
 標本SMがステージ111に載置される。標本SMは、例えば蛍光色素により標識された細胞試料である。その蛍光色素の励起波長(一光子励起により励起する波長)は395nm、蛍光波長は450nmである。
 フェムト秒パルスレーザー光源110は照明光として、中心波長が790nmのフェムト秒パルスレーザー光を例えば1kHzの周波数で射出する。そしてこの照明光は、パルス幅が5フェムト秒を下回る超短光パルスである。フェムト秒パルスレーザー光源110から射出した照明光(790nmの近傍)は、ビームエキスパンダ113により径の太い光束に変換され、ダイクロイックミラー115へ入射する。ダイクロイックミラー115の特性は、波長が790nmの近傍である光を反射し、波長が450nmの近傍である光を透過する特性に設定されている。よって、フェムト秒パルスレーザー光源110から射出した照明光はダイクロイックミラー115を反射し、スキャナ116、リレー光学系114、絞り117A、対物レンズ117を順に介した後、標本SMに向けて集光する。
 標本SMにおける照明光の照射領域(レーザスポット)の中央では、蛍光分子が二光子励起され、信号光である蛍光(二光子励起蛍光)を発生させる。なお、レーザースポットのサイズは、対物レンズ117のNAに依存し、そのNAが大きいほどレーザースポットのサイズは小さくなるので本装置の空間解像度は高まる。
 レーザースポットで発生した二光子励起蛍光(450nmの近傍)は、そのレーザースポットを形成した照明光の光路を逆向きに辿り、対物レンズ117、絞り117A、リレー光学系114、スキャナ116を順に介した後、ダイクロイックミラー115を透過し、検出部200へ入射する。
 検出部200へ入射した二光子励起蛍光は、結像レンズ118、絞り119、レンズ120、バンドパスフィルタ211を順に介してPMT201へ入射する。なお、バンドパスフィルタ211の特性は、波長が450nmの近傍である光を透過し、他の波長の光を除去する特性に設定されている。よって、その二光子励起蛍光はバンドパスフィルタ211を透過し、PMT201にて電気信号(蛍光量を示す蛍光信号)に変換される。
 スキャナ116がコントロールユニット130によって駆動されると、レーザースポットが標本SM上の観察領域内(対物レンズ117の視野内)を二次元状に走査する。レーザースポットが観察領域内の各位置にあるときにPMT201が蛍光信号を読み出す。各位置において読み出された各蛍光信号はコントロールユニット130に送られる。コントロールユニット130は、各蛍光信号に基づいて観察領域の蛍光画像を作成する。コントロールユニット130がステージ11を光軸方向へ上下動させて、さらにレーザースポットが二次元状に走査させながら各蛍光信号を読み出せば、標本SMの三次元画像を得ることができる。
 フェムト秒パルスレーザー光源110として、実施形態1ないし実施形態4の広帯域光増幅器を有する光パルス発生装置を用いている。したがって、パルス幅が5フェムト秒を下回る超短光パルスを発生させることができるため、二光子励起蛍光顕微鏡装置51は時間分解能をより高めて、より速い標本SMの現象を観測することができる。
 <第6実施形態>
 次に、第6実施形態としてハイブリッド型の非線形光学顕微鏡装置53を説明する。ここでは第5実施形態との相違点のみ説明する。
 図8は、非線形光学顕微鏡装置53の顕微鏡部分の構成図である。
 図8に示されるとおり、第6実施形態の非線形光学顕微鏡装置53は、二光子励起に加えて、第二高調波発生、コヒーレントアンチストークスラマン散乱の各検出原理が適用されている。
 本実施形態の非線形光学顕微鏡装置53は、2つのレーザー光源121、122を備えている。一方のレーザー光源は、二光子励起観察と、第二高調波発生観察と、コヒーレントアンチストークスラマン散乱観察とに兼用されるフェムト秒パルスレーザー光源121であり、他方のレーザー光源は、コヒーレントアンチストークスラマン散乱観察に使用されるレーザー光源122である。なお、コヒーレントアンチストークスラマン散乱観察時、フェムト秒パルスレーザー光源121はアンチストークス光の光源として使用され、レーザー光源122は励起(pump)光の光源として使用される。
 また、第6実施形態の非線形光学顕微鏡装置53は、第1検出部220及び第2検出部240を備えている。また、ダイクロイックミラー115と第1検出部220との間にはダイクロイックミラー115’が配置される。ダイクロイックミラー115’は、標本SMで発生したコヒーレントストークスラマン散乱光を反射して第2検出部240へ導光し、かつ標本SMで発生した二光子励起蛍光及び第二高調波を透過して第1検出部220へ導光する。
 第1検出部220は、二光子励起観察と第二高調波発生観察とに兼用される検出部であって、第5実施形態における検出部200と同様の構成をしている。但し、第1検出部220は、バンドパスフィルタ211とバンドパスフィルタ211’を備えている。バンドパスフィルタ211は二光子励起観察用のフィルタであり、バンドパスフィルタ211’は第二高調波を透過しそれ以外の光をカットするフィルタである。
 また、第2検出部240は、コヒーレントアンチストークスラマン散乱観察に使用される検出部である。第2検出部240には、レンズ124と、ミラー125と、分光素子126と、レンズ127と、遮光部材128と、レンズ129と、検出器130とが配置されている。なお、遮光部材128には、コヒーレントストークスラマン散乱光を通過させ、それ以外の光を遮光する機能がある。
 非線形光学顕微鏡装置53において、フェムト秒パルスレーザー光源121及びレーザー光源122の双方が駆動されるとアンチストークス光と励起光とが標本SMに照射される。このとき標本SMで発生した第二高調波及び二光子励起蛍光は、第1検出部220へ入射する。また、標本SMで発生したコヒーレントストークスラマン散乱光は、第2検出部240によって検出される。
 このとき、第1検出部220の光路に二光子励起観察用のバンドパスフィルタ211が挿入されれば、第1検出部220は二光子励起蛍光を検出することができる。また第1検出部220の光路に第二高調波を透過するバンドパスフィルタ211’が挿入されれば、第1検出部220は第二高調波を検出することができる。
 本実施形態においても、第5実施形態と同様、パルス幅が5フェムト秒を下回る超短光パルスを射出するフェムト秒パルスレーザー光源121を使用した。したがって、非線形光学顕微鏡装置53は、時間分解能をより高めて、より速い標本SMの現象を観測することができる。
 第5及び第6実施形態では、パルス幅が5フェムト秒を下回る超短光パルスを射出するフェムト秒パルスレーザー光源を使用した顕微鏡装置を示した。5フェムト秒を下回る超短光パルスを射出するフェムト秒パルスレーザー光源を利用した光学機器の例として顕微鏡装置に限定されるものではなく、例えば、超短光パルスを射出するフェムト秒パルスレーザーをレーザー加工機等に対して応用できる。

Claims (11)

  1.  所定の波長範囲を有する被増幅光と第1波長の第1励起光とから、前記所定の波長範囲のうち第1範囲の波長が増幅された被増幅光を射出する第1増幅器と、
     前記第1範囲の波長が増幅された被増幅光と前記第1波長と異なる第2波長の第2励起光とから、前記第1範囲と異なる第2範囲の波長が増幅された被増幅光を射出する第2増幅器と、
    を備えることを特徴とする広帯域光増幅器。
  2.  前記第1範囲の波長は前記所定の波長範囲のうち長波長側の範囲の波長であり、前記第2範囲の波長は前記所定の波長範囲のうち短波長側の範囲の波長であることを特徴とする請求項1に記載の広帯域光増幅器。
  3.  前記所定の波長範囲を有する被増幅光は白色光であることを特徴とする請求項1又は請求項2に記載の広帯域光増幅器。
  4.  前記所定の波長範囲は350nmから790nmを含むことを特徴とする請求項1又は請求項2に記載の広帯域光増幅器。
  5.  所定波長のレーザー光を第N高調波に変換して前記第1励起光にする第1変換器と、
     前記所定波長のレーザー光を第N+1高調波に変換して前記第2励起光にする第2変換器と、
    を備えることを特徴とする請求項1ないし請求項4のいずれか一項に記載の広帯域光増幅器。
  6.  所定波長のレーザー光を前記白色光に変換する非線形変換器を備えることを特徴とする請求項3に記載の広帯域光増幅器。
  7.  前記レーザー光を分光するビームスプリッタを備えることを特徴とする請求項5又は請求項6に記載の広帯域光増幅器。
  8.  前記第1増幅器は第1の非線形結晶であり、前記第1の非線形結晶の光軸と前記第1励起光とのなす角度及び前記第1の非線形結晶内で前記被増幅光と前記第1励起光とのなす内角度が調整されて配置されており、
     前記第2増幅器は第2の非線形結晶であり、前記第2の非線形結晶の光軸と前記第2励起光とのなす角度及び前記第2の非線形結晶内で前記被増幅光と前記第2励起光とのなす内角度が調整されて配置されていることを特徴とする請求項1ないし請求項7のいずれか一項に記載の広帯域光増幅器。
  9.  前記第1励起光と前記第2励起光とを同一方向から入射し、前記第1励起光と前記第2励起光とを異なる方向に射出する屈折部を備えることを特徴とする請求項1ないし請求項8のいずれか一項に記載の広帯域光増幅器。
  10.  所定波長のレーザー光を出力する基本レーザー光源と、
     前記レーザー光を第N高調波に変換して第1励起光を射出する第1変換器と、
     前記レーザー光を第N+1高調波に変換して第2励起光を射出する第2変換器と、
     所定の波長範囲を有する被増幅光と前記第1励起光とから、前記所定の波長範囲のうち第1範囲の波長が増幅された被増幅光を射出する第1増幅器と、
     前記第1範囲の波長が増幅された被増幅光と前記第2励起光とから、前記第1範囲と異なる第2範囲の波長が増幅された被増幅光を射出する第2増幅器と、
    を備えることを特徴とする光パルス発生装置。
  11.  請求項10に記載の光パルス発生装置を光源として用いることを特徴とする光学機器。
PCT/JP2009/000136 2008-01-21 2009-01-16 広帯域光増幅器、光パルス発生装置及び光学機器 WO2009093425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801025516A CN101918889B (zh) 2008-01-21 2009-01-16 宽频带光放大器、光脉冲发生装置及光学机器
JP2009550452A JP5463913B2 (ja) 2008-01-21 2009-01-16 広帯域光増幅器、光パルス発生装置及び光学機器
US12/839,991 US8248687B2 (en) 2008-01-21 2010-07-20 Wide-band optical amplifier, optical pulse generator, and optical instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-010071 2008-01-21
JP2008010071 2008-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/839,991 Continuation US8248687B2 (en) 2008-01-21 2010-07-20 Wide-band optical amplifier, optical pulse generator, and optical instrument

Publications (1)

Publication Number Publication Date
WO2009093425A1 true WO2009093425A1 (ja) 2009-07-30

Family

ID=40900937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000136 WO2009093425A1 (ja) 2008-01-21 2009-01-16 広帯域光増幅器、光パルス発生装置及び光学機器

Country Status (4)

Country Link
US (1) US8248687B2 (ja)
JP (1) JP5463913B2 (ja)
CN (1) CN101918889B (ja)
WO (1) WO2009093425A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192040A1 (ja) * 2013-05-29 2014-12-04 三菱電機株式会社 光学素子支持体、波長変換装置、及び光学素子支持体の製造方法
WO2023032357A1 (ja) * 2021-09-01 2023-03-09 浜松ホトニクス株式会社 レーザ増幅装置及びレーザ増幅方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441720B2 (en) * 2008-02-28 2013-05-14 Temple University Of The Commonwealth System Of Higher Education Methods and devices for generation of broadband pulsed radiation
US20140212141A1 (en) * 2013-01-25 2014-07-31 Electronics And Telecommunications Research Institute Light output apparatus and method
WO2014121844A1 (en) 2013-02-08 2014-08-14 Carl Zeiss Laser Optics Gmbh Beam reverser module and optical power amplifier having such a beam reverser module
US9563101B2 (en) * 2014-08-01 2017-02-07 New York University Common-path noncollinear optical parametric amplifier
JP6588707B2 (ja) * 2015-02-06 2019-10-09 スペクトロニクス株式会社 レーザ光源装置及びレーザパルス光生成方法
CN105841816B (zh) * 2016-04-18 2017-06-06 深圳市太赫兹科技创新研究院 太赫兹时域光谱系统
CN106092986B (zh) * 2016-06-08 2018-12-21 福建师范大学 脑组织的无标记高分辨成像系统
CN111900942A (zh) * 2020-08-03 2020-11-06 河南大学 基于光传感技术的音频放大器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08328052A (ja) * 1995-05-30 1996-12-13 Nippon Telegr & Teleph Corp <Ntt> 高繰り返し光パルス発生装置
JP2005208472A (ja) * 2004-01-26 2005-08-04 Hamamatsu Photonics Kk コヒーレント光源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528612A (en) * 1993-11-19 1996-06-18 The United States Of America As Represented By The Secretary Of The Navy Laser with multiple gain elements
US5541946A (en) * 1993-11-19 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Laser with multiple gain elements pumped by a single excitation source
JP2001066653A (ja) 1999-08-27 2001-03-16 Univ Tokyo 超短光パルス発生装置
JP2003134089A (ja) * 2001-10-26 2003-05-09 Fujitsu Ltd 伝送装置
US6791743B2 (en) * 2001-12-13 2004-09-14 The Regents Of The University Of California High average power scaling of optical parametric amplification through cascaded difference-frequency generators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08328052A (ja) * 1995-05-30 1996-12-13 Nippon Telegr & Teleph Corp <Ntt> 高繰り返し光パルス発生装置
JP2005208472A (ja) * 2004-01-26 2005-08-04 Hamamatsu Photonics Kk コヒーレント光源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WITTE S. ET AL.: "A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification", OPTICS EXPRESS, vol. 14, no. 18, 4 September 2006 (2006-09-04), pages 8168 - 8177 *
YAMAKAWA K. ET AL.: "Ultra-broadband optical parametric chirped-pulse amplification using an Yb:LiYF4 chirped-pulse amplification pump laser", OPTICS EXPRESS, vol. 15, no. 8, 16 April 2007 (2007-04-16), pages 5018 - 5023 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192040A1 (ja) * 2013-05-29 2014-12-04 三菱電機株式会社 光学素子支持体、波長変換装置、及び光学素子支持体の製造方法
WO2023032357A1 (ja) * 2021-09-01 2023-03-09 浜松ホトニクス株式会社 レーザ増幅装置及びレーザ増幅方法

Also Published As

Publication number Publication date
CN101918889A (zh) 2010-12-15
CN101918889B (zh) 2013-10-16
JPWO2009093425A1 (ja) 2011-05-26
US8248687B2 (en) 2012-08-21
JP5463913B2 (ja) 2014-04-09
US20110013265A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5463913B2 (ja) 広帯域光増幅器、光パルス発生装置及び光学機器
TWI612745B (zh) 193奈米雷射及檢視系統
CN108303806B (zh) 一种深度成像超分辨显微成像系统
US8785884B2 (en) Optical sources
TWI665840B (zh) 使用單體頻寬窄化裝置之雷射總成及檢測系統
US20120287428A1 (en) Nonlinear raman spectroscopic apparatus, microspectroscopic apparatus, and microspectroscopic imaging apparatus
JP5649828B2 (ja) レーザ顕微鏡装置
US20210191229A1 (en) Supercontinuum source, method for generating and emitting a supercontinuum, multiphoton excitation fluorescence microscope, and multiphoton excitation method
WO2010013118A1 (en) System for generating raman vibrational analysis signals
US8873039B2 (en) Non-linear Raman spectroscopy apparatus, non-linear system, and non-linear raman spectroscopy method
JP2013113623A (ja) 誘導ラマン散乱計測装置
US9933686B2 (en) Scanning microscope and acousto-optical main beam splitter for a scanning microscope
JP6075963B2 (ja) 蛍光観察方法及び蛍光観察装置
US10914676B2 (en) Observation apparatus and observation method
WO2023029471A1 (zh) 一种多模态非线性显微成像系统
CN114324271B (zh) 自相位调制光谱选择驱动的显微镜系统、其方法及显微镜
JPH11149045A (ja) 組込み短パルスレーザをもつハイコンパクトレーザ走査型顕微鏡
JP5259157B2 (ja) レーザ顕微鏡
CN110567927B (zh) 双光子显微成像系统
JP5536908B2 (ja) 共鳴非線形光信号を検出するための方法およびその方法を実装するための装置
JP6103008B2 (ja) 非線形ラマン分光装置、顕微分光装置及び顕微分光イメージング装置
WO2024058237A1 (ja) 光学装置、光加工装置、顕微鏡装置、および走査方法
JP2008058918A (ja) テラヘルツ電磁波発生方法及び分光・イメージング測定装置
KR20070059404A (ko) 제거형 가간섭성 반스토크스 라만 분광법을 이용한 광학장치
JP2015062026A (ja) 誘導ラマン散乱計測装置および誘導ラマン散乱計測方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102551.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009550452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09703158

Country of ref document: EP

Kind code of ref document: A1