CN106092986B - 脑组织的无标记高分辨成像系统 - Google Patents

脑组织的无标记高分辨成像系统 Download PDF

Info

Publication number
CN106092986B
CN106092986B CN201610399966.6A CN201610399966A CN106092986B CN 106092986 B CN106092986 B CN 106092986B CN 201610399966 A CN201610399966 A CN 201610399966A CN 106092986 B CN106092986 B CN 106092986B
Authority
CN
China
Prior art keywords
light
brain tissue
signal
laser
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610399966.6A
Other languages
English (en)
Other versions
CN106092986A (zh
Inventor
陈建新
王舒
卓双木
朱小钦
郑莉琴
李连煌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201610399966.6A priority Critical patent/CN106092986B/zh
Publication of CN106092986A publication Critical patent/CN106092986A/zh
Application granted granted Critical
Publication of CN106092986B publication Critical patent/CN106092986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/655Stimulated Raman

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种基于探测脑组织内源性不同分子的双光子激发荧光信号、二次谐波信号和特征拉曼光谱信号,对脑组织的微结构进行无标记高分辨成像的系统。钛宝石飞秒激光器产生飞秒激光脉冲通过分光镜将飞秒激光分成两路,一路入射到光学参量振动器后经由光声调制器进行高频强度调制,通过全反射镜与另一路同步汇合,经过双色分光镜,由光纤耦合透镜聚焦,入射到光纤,光纤的另一端连接激发信号光探头,将光聚焦到脑组织上,激光与脑组织产生的双光子激发荧光信号、二次谐波信号和受激拉曼散射光信号,反向通过相同的小型激发信号光探头收集,经光纤和光纤耦合透镜收集,由双色分光镜反射到探测系统。本发明能对脑组织内源性不同成分的微结构进行高对比度成像。

Description

脑组织的无标记高分辨成像系统
技术领域
本发明涉及一种基于探测脑组织内源性不同分子的双光子激发荧光信号、二次谐波信号和特征拉曼光谱信号,对脑组织的微结构进行无标记高分辨成像的系统。
技术背景
无标记成像技术因其具有可以用于术中原位病理状态实时诊断的潜力,而在医学成像技术领域引起关注。双光子激发荧光显微成像技术和二次谐波成像技术是无标记多光子显微成像技术的主要成像模式,自1990年Denk 和 Webb 实现了双光子激发荧光显微成像以来,生物组织的许多内源性分子,如:弹力蛋白、角蛋白、NADH、FAD等,被发现在无须外加分子探针的情况就能产生较强的双光子激发荧光信号,同时,生物组织内源性具有非中心对称结构的胶原蛋白、肌浆球蛋白和微管等能产生较强的二次谐波信号。基于脑组织内源性不同分子的双光子激发荧光和二次谐波信号,可以获得达到组织病理学高分辨率的神经元细胞、胶质细胞、柱状上皮细胞、神经纤维束、弹力纤维束、胶原纤维束等脑组织微结构成像。受激拉曼散射显微技术是一种新型的相干拉曼散射成像技术,通过受激过程增强拉曼信号,利用生物组织中脂类、蛋白和核酸等不同分子的特征拉曼光谱性质,实现不同生物分子的无标记显微成像。因其具有不受非共振背景的干扰、光谱与自发拉曼光谱高度相似以及信号强度正比于探测分子的浓度等独特优势,成为可以实现对活细胞的无标记和新型非荧光标记成像的一种新技术,在脑组织等生命科学成像领域显示了极大的应用潜力。上述脑组织的无标记高分辨成像技术,从三种完全不同的物理机制出发,实现对脑组织中不同微结构的无标记高分辨成像。集三种先进的无标记成像技术于一身的高分辨成像系统,将能够更全面地反映脑组织的生理病理状态变化引起的组织中不同成分的改变,从而拓展无标记高分辨成像在生物医学领域的应用。
发明内容
本发明涉及一种基于探测脑组织内源性不同分子的双光子激发荧光信号、二次谐波信号和特征拉曼光谱信号,对脑组织的微结构进行无标记高分辨成像的系统。
本发明采用以下技术方案实现:一种脑组织的无标记高分辨成像系统,其包括一钛宝石飞秒激光器;所述钛宝石飞秒激光器产生飞秒激光脉冲通过一个分光镜将飞秒激光分成两路,一路拥有80%能量的光作为泵浦光,入射到光学参量振动器后产生斯托克斯光,再经由光声调制器进行高频强度调制,再通过全反射镜与另一路拥有20%能量的飞秒激光脉冲线性同步汇合;汇合后的光经过第一双色分光镜,再由光纤耦合透镜聚焦,入射到能够同时传输激发光源和激发信号的空芯双包层光子晶体光纤,所述光纤的另一端连接一小型激发信号光探头,所述激发信号光探头由光纤扫描器和梯度折射率透镜构成;所述激发信号光探头将光聚焦到脑组织上;激光与脑组织产生的双光子激发荧光信号、二次谐波信号和受激拉曼散射光信号,反向通过相同的激发信号光探头收集,经光纤和光纤耦合透镜收集,由第二双色分光镜反射到探测系统;双光子激发荧光和二次谐波信号由光电倍增管探测,光电倍增管探测将光信号转换成电信号接至计算机的输入端;受激拉曼散射光信号由光电二极管探测,经锁相放大器放大接至计算机的输入端,最后由计算机同时显示来自脑组织内源性不同成分微结构的高对比度成像。
在本发明一实施例中,所述钛宝石飞秒激光器的激发波长选用810nm,频率为80MHz;经光学参量振动器后产生的斯托克斯光波长应选在1052.56 nm,频率为80MHz;斯托克斯光,经由光声调制器4进行高频强度调制,脉冲重复频率调制到10MHz;此时,拉曼散射频率位移为2845cm-1, 将有利于脑组织中脂类、蛋白、核酸及其他不同分子的无标记受激拉曼散射显微成像。
在本发明一实施例中,所述第一双色分光镜能透过810nm的泵浦光源,并同时反射1052.56nm的斯托克斯光。
在本发明一实施例中,所述第二双色分光镜能透过810nm的泵浦光源和1052.56nm的斯托克斯光,同时反射激发光源与脑组织样品相互作用产生的发射信号光。
在本发明一实施例中,所述长通滤波片选择LPF420 nm,透射大于420nm的双光子激发荧光信号,反射小于420nm的二次谐波信号光,所述的滤波片15 应透过395nm-415nm波段的二次谐波信号。
本发明的显著优点在于: (1) 钛宝石飞秒激光器产生810 nm、80MHz的飞秒激光脉冲,既作为生物内源性分子的双光子激发荧光和二次谐波信号的激发光源,又作为生物内源性分子的受激拉曼散射光信号的泵浦光源。(2)斯托克斯光经由光声调制器进行高频强度调制,脉冲重复频率调制到10MHz,同时,由光电二极管探测到的受激拉曼散射光信号经锁相放大器放大接至计算机的输入端,二者的结合,保证了在较弱的受激拉曼散射信号强度下,也可获得清晰的受激拉曼散射成像。(3) 能够同时传输激发光源和激发信号光的空芯双包层光子晶体光纤,连接由光纤扫描器和梯度折射率透镜构成的小型激发信号光探头,可以实现在自由移动的脑组织上的成像。
附图说明
图1为本发明一实施例的构造示意图。
【标号说明】:1为钛宝石飞秒激光器,2为分光镜,3为光学参量振荡器,4为光声调制器,5为全反射镜,6为双色分光镜,7为光纤耦合透镜,8为光纤,9为小型激发信号光探头,10为双色分光镜;11为半透半反镜,12为长通滤波片,13为光电倍增管;14为计算机;15为滤波片,16为光电倍增管,17为光电二极管,18为锁相放大器。
具体实施方式
以下结合附图对本发明的实施例作进一步的阐述,以使本发明更明显易懂。
本发明提供一种脑组织的无标记高分辨成像系统,其包括一钛宝石飞秒激光器;所述钛宝石飞秒激光器产生飞秒激光脉冲通过一个分光镜将飞秒激光分成两路,一路拥有80%能量的光作为泵浦光,入射到光学参量振动器后产生斯托克斯光,再经由光声调制器进行高频强度调制,再通过全反射镜与另一路拥有20%能量的飞秒激光脉冲线性同步汇合;汇合后的光经过第一双色分光镜,再由光纤耦合透镜聚焦,入射到能够同时传输激发光源和激发信号的空芯双包层光子晶体光纤,所述光纤的另一端连接一小型激发信号光探头,所述激发信号光探头由光纤扫描器和梯度折射率透镜构成;所述激发信号光探头将光聚焦到脑组织上;激光与脑组织产生的双光子激发荧光信号、二次谐波信号和受激拉曼散射光信号,反向通过相同的激发信号光探头收集,经光纤和光纤耦合透镜收集,由第二双色分光镜反射到探测系统;双光子激发荧光和二次谐波信号由光电倍增管探测,光电倍增管探测将光信号转换成电信号接至计算机的输入端;受激拉曼散射光信号由光电二极管探测,经锁相放大器放大接至计算机的输入端,最后由计算机同时显示来自脑组织内源性不同成分微结构的高对比度成像。
具体实施例参见图1。
钛宝石飞秒激光器1产生810 nm、80MHz的飞秒激光脉冲,通过一个80/20的分光镜2将飞秒激光分成两路,一路光拥有80%能量的光作为泵浦光,入射到光学参量振动器3后产生1052.56 nm、80MHz的斯托克斯光,经由光声调制器4进行高频强度调制,脉冲重复频率调制到10MHz,通过全反射镜5与另一路拥有20%能量的810 nm、80MHz的飞秒激光脉冲在时间上和空间上线性同步汇合,经过双色分光镜6,由光纤耦合透镜7聚焦,入射到能够同时传输激发光源和激发信号的空芯双包层光子晶体光纤8,光纤8的另一端连接由光纤扫描器和梯度折射率透镜构成的小型激发信号光探头9,将光聚焦到脑组织上,激光与脑组织相互作用产生的双光子激发荧光信号、二次谐波信号和受激拉曼散射光信号,反向通过相同的小型激发信号光探头9收集,经光纤8和光纤耦合透镜7收集,由双色分光镜10反射,通过半透半反镜11,将激发信号光分成两路,一路由长通滤波片12 (LPF420 nm) 透射大于420nm的双光子激发荧光信号,到达光电倍增管13,将光信号转换成电信号接至计算机14的输入端,探测810 nm的光激发产生的430 nm-700 nm波段的双光子激发荧光信号;长通滤波片12(LPF420 nm) 反射小于420nm的光信号,经由滤波片15到达光电倍增管16,将光信号转换成电信号接至计算机14的输入端,探测810 nm的光激发产生的395nm-415nm波段的二次谐波信号;另一路由光电二极管17探测受激拉曼散射光信号,经锁相放大器18放大接至计算机14的输入端,最后由计算机同时显示来自脑组织内源性不同成分微结构的高对比度成像。
在本发明的最佳实施例中,钛宝石飞秒激光器1的激发波长选用810nm,该激发波长有利于同时获得较强的生物组织内源性分子的双光子激发荧光和二次谐波信号,从而获得神经元细胞、胶质细胞、柱状上皮细胞、神经纤维束、弹力纤维束、胶原纤维束等脑组织微结构高对比度成像。
当钛宝石飞秒激光器1作为生物组织内源性分子受激拉曼散射光信号的泵浦光源的波长选用810nm,经光学参量振动器3后产生的斯托克斯光波长应选在1052.56 nm,此时,拉曼散射频率位移为2845cm-1, 将有利于脑组织中脂类、蛋白和核酸等不同分子的无标记受激拉曼散射显微成像。
上述的第一双色分光镜6,应该满足可透过810nm的泵浦光源,并同时反射1052.56nm的斯托克斯光。
上述的第二双色分光镜10,应该满足可透过810nm的泵浦光源和1052.56nm的斯托克斯光,同时,反射激发光源与脑组织样品相互作用产生的发射信号光。
上述的长通滤波片12 选择LPF420 nm,透射大于420nm的双光子激发荧光信号,反射小于420nm的二次谐波信号光。
上述的滤波片15 透过395nm-415nm波段的二次谐波信号。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种脑组织的无标记高分辨成像系统,其特征在于:包括一钛宝石飞秒激光器;所述钛宝石飞秒激光器产生飞秒激光脉冲通过一个分光镜将飞秒激光分成两路,一路拥有80%能量的光作为泵浦光,入射到光学参量振动器后产生斯托克斯光,再经由光声调制器进行高频强度调制,再通过全反射镜与另一路拥有20%能量的飞秒激光脉冲线性同步汇合;汇合后的光经过第一双色分光镜,再由光纤耦合透镜聚焦,入射到能够同时传输激发光源和激发信号的空芯双包层光子晶体光纤,所述光纤的另一端连接一小型激发信号光探头,所述激发信号光探头由光纤扫描器和梯度折射率透镜构成;所述激发信号光探头将光聚焦到脑组织上;激光与脑组织产生的双光子激发荧光信号、二次谐波信号和受激拉曼散射光信号,反向通过相同的激发信号光探头收集,经光纤和光纤耦合透镜收集,由第二双色分光镜反射到探测系统;双光子激发荧光和二次谐波信号由光电倍增管探测,光电倍增管探测将光信号转换成电信号接至计算机的输入端;受激拉曼散射光信号由光电二极管探测,经锁相放大器放大接至计算机的输入端,最后由计算机同时显示来自脑组织内源性不同成分微结构的高对比度成像。
2.根据权利要求1所述的脑组织的无标记高分辨成像系统,其特征在于:所述钛宝石飞秒激光器的激发波长选用810nm,频率为80MHz;经光学参量振动器后产生的斯托克斯光波长应选在1052.56 nm,频率为80MHz;斯托克斯光,经由光声调制器进行高频强度调制,脉冲重复频率调制到10MHz;此时,拉曼散射频率位移为2845cm-1, 将有利于脑组织中脂类、蛋白、核酸及其他不同分子的无标记受激拉曼散射显微成像。
3.根据权利要求1所述的脑组织的无标记高分辨成像系统,其特征在于:所述第一双色分光镜能透过810nm的泵浦光源,并同时反射1052.56nm的斯托克斯光。
4.根据权利要求1所述的脑组织的无标记高分辨成像系统,其特征在于:所述第二双色分光镜能透过810nm的泵浦光源和1052.56nm的斯托克斯光,同时反射激发光源与脑组织样品相互作用产生的发射信号光。
5.根据权利要求1所述的脑组织的无标记高分辨成像系统,其特征在于:第二双色分光镜反射光通过半透半反镜,将激发信号光分成两路,一路由一长通滤波片透射大于420nm的双光子激发荧光信号,到达光电倍增管,将该光信号转换成电信号接至计算机的输入端,探测810 nm的光激发产生的430 nm-700 nm波段的双光子激发荧光信号;长通滤波片反射的小于420nm的光信号经一滤波片到达光电倍增管,将该光信号转换成电信号接至计算机的输入端,探测810 nm的光激发产生的395nm-415nm波段的二次谐波信号;另一路由光电二极管探测受激拉曼散射光信号,经锁相放大器放大接至计算机的输入端,最后由计算机同时显示来自脑组织内源性不同成分微结构的高对比度成像;所述长通滤波片选择LPF420 nm,透射大于420nm的双光子激发荧光信号并反射小于420nm的二次谐波信号光,所述的滤波片应透过395nm-415nm波段的二次谐波信号。
CN201610399966.6A 2016-06-08 2016-06-08 脑组织的无标记高分辨成像系统 Active CN106092986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610399966.6A CN106092986B (zh) 2016-06-08 2016-06-08 脑组织的无标记高分辨成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610399966.6A CN106092986B (zh) 2016-06-08 2016-06-08 脑组织的无标记高分辨成像系统

Publications (2)

Publication Number Publication Date
CN106092986A CN106092986A (zh) 2016-11-09
CN106092986B true CN106092986B (zh) 2018-12-21

Family

ID=57228082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610399966.6A Active CN106092986B (zh) 2016-06-08 2016-06-08 脑组织的无标记高分辨成像系统

Country Status (1)

Country Link
CN (1) CN106092986B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478637B (zh) * 2017-07-07 2021-04-30 复旦大学 快速无标记的区分正常血红蛋白和含铁血黄素的成像方法
CN109038204B (zh) * 2018-07-05 2020-08-04 上海理工大学 基于光子晶体光纤的受激拉曼散射成像光源
CN108982454B (zh) * 2018-07-30 2021-03-02 华中科技大学苏州脑空间信息研究院 一种轴向多层并行扫描显微成像方法及系统
CN111323399A (zh) * 2018-12-15 2020-06-23 中国科学院深圳先进技术研究院 多色荧光同步检测的液滴微流控芯片
CN109730626B (zh) * 2019-01-31 2024-03-15 北京超维景生物科技有限公司 腔体内窥镜探测装置及三维非线性激光扫描腔体内窥镜
CN110403572A (zh) * 2019-07-01 2019-11-05 清华大学 阿兹海默症无标记病理成像诊断方法及装置
CN110584612B (zh) * 2019-09-27 2022-07-22 中国科学院深圳先进技术研究院 用于血管成像的光学显微系统
CN110823852B (zh) * 2019-11-22 2022-02-18 重庆大学 光纤爆炸物传感器荧光敏感薄膜制备方法、光纤爆炸物传感器及爆炸物蒸气检测系统
CN111122541B (zh) * 2019-12-25 2023-03-14 桂林电子科技大学 一种区分拉曼信号和荧光信号的光纤探针系统
CN117982108B (zh) * 2024-04-03 2024-06-07 吉林大学第一医院 适用于生物组织摆镜扫描式在位检测的拉曼探测头装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060142746A1 (en) * 2002-12-11 2006-06-29 Beth Friedman Device and method for inducing vascular injury and/or blockage in an animal model
US20090323059A1 (en) * 2006-06-29 2009-12-31 Wanxin Sun SHG Quantification of Matrix-Related Tissue Dynamic and Disease
US20110013265A1 (en) * 2008-01-21 2011-01-20 Nishimura Kumiko Wide-band optical amplifier, optical pulse generator, and optical instrument
EP2494399A2 (en) * 2009-10-29 2012-09-05 California Institute of Technology Multiple-photon excitation light sheet illumination microscope
US20130162994A1 (en) * 2010-06-22 2013-06-27 President And Fellows Of Harvard College Systems and methods providing efficient detection of back-scattered illumination in modulation transfer microscopy or micro-spectroscopy
CN103868595A (zh) * 2014-03-06 2014-06-18 湖南大学 一种空间分离的泵浦-探测瞬态吸收光谱仪及实现方法
CN104359892A (zh) * 2014-11-20 2015-02-18 福建师范大学 一种不同模态分子振动光谱检测与成像装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512698B2 (ja) * 2005-08-30 2010-07-28 ナノフォトン株式会社 レーザ顕微鏡

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060142746A1 (en) * 2002-12-11 2006-06-29 Beth Friedman Device and method for inducing vascular injury and/or blockage in an animal model
US20090323059A1 (en) * 2006-06-29 2009-12-31 Wanxin Sun SHG Quantification of Matrix-Related Tissue Dynamic and Disease
US20110013265A1 (en) * 2008-01-21 2011-01-20 Nishimura Kumiko Wide-band optical amplifier, optical pulse generator, and optical instrument
EP2494399A2 (en) * 2009-10-29 2012-09-05 California Institute of Technology Multiple-photon excitation light sheet illumination microscope
US20130162994A1 (en) * 2010-06-22 2013-06-27 President And Fellows Of Harvard College Systems and methods providing efficient detection of back-scattered illumination in modulation transfer microscopy or micro-spectroscopy
CN103868595A (zh) * 2014-03-06 2014-06-18 湖南大学 一种空间分离的泵浦-探测瞬态吸收光谱仪及实现方法
CN104359892A (zh) * 2014-11-20 2015-02-18 福建师范大学 一种不同模态分子振动光谱检测与成像装置及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord;Ortrud Uckermann等;《BioMed Research International》;20151231;全文 *
Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure;Xiyi Chen;《Nat Protoc》;20150223;全文 *
甲状腺组织的双光子荧光成像;李钻芳等;《中国激光》;20090331;全文 *
相干拉曼散射显微术;陈涛 等;《中国科学:化学》;20111125;全文 *

Also Published As

Publication number Publication date
CN106092986A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106092986B (zh) 脑组织的无标记高分辨成像系统
US8237131B2 (en) System and method for carrying out fibre-type multiphoton microscopic imaging of a sample
US8582096B2 (en) System and method for efficient coherence anti-stokes raman scattering endoscopic and intravascular imaging and multimodal imaging
Oheim et al. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches
US7414729B2 (en) System and method for coherent anti-Stokes Raman scattering endoscopy
KR100860947B1 (ko) 적외선 비선형 분자진동 분광 이미징 장치
Wang et al. Multiparametric photoacoustic microscopy of the mouse brain with 300-kHz A-line rate
US20070213618A1 (en) Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope
Zeng et al. Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation
Tu et al. Coherent anti‐Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation
Liu et al. Multiphoton microscopy system with a compact fiber‐based femtosecond‐pulse laser and handheld probe
Yang et al. Multifocus optical-resolution photoacoustic microscope using ultrafast axial scanning of single laser pulse
Liang et al. Fast-scanning photoacoustic microscopy with a side-looking fiber optic ultrasound sensor
Kedarisetti et al. Label-free lipid contrast imaging using non-contact near-infrared photoacoustic remote sensing microscopy
Hirose et al. Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery
Guo et al. Detachable head-mounted photoacoustic microscope in freely moving mice
Lee et al. In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates
Chow et al. Pulsed stimulated Brillouin microscopy
CN208924248U (zh) 多通道相干拉曼散射光学系统和成像系统
CN204228611U (zh) 一种高灵敏度全光纤反斯托克斯拉曼探测系统
Min et al. Fundamental detectability of Raman scattering: A unified diagrammatic approach
US8941087B2 (en) Plural third harmonic generation microscopic system and method
CN104390951A (zh) 一种高灵敏度全光纤反斯托克斯拉曼探测系统
De la Cadena et al. Simultaneous label-free autofluorescence multi-harmonic microscopy driven by the supercontinuum generated from a bulk nonlinear crystal
Eibl et al. Wavelength agile multi-photon microscopy with a fiber amplified diode laser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant