WO2009090978A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2009090978A1
WO2009090978A1 PCT/JP2009/050424 JP2009050424W WO2009090978A1 WO 2009090978 A1 WO2009090978 A1 WO 2009090978A1 JP 2009050424 W JP2009050424 W JP 2009050424W WO 2009090978 A1 WO2009090978 A1 WO 2009090978A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control
state information
information
control device
Prior art date
Application number
PCT/JP2009/050424
Other languages
English (en)
French (fr)
Inventor
Naoki Toyofuku
Tomoyasu Ishikawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/741,999 priority Critical patent/US20100250061A1/en
Priority to EP09701857.6A priority patent/EP2230502B1/en
Priority to CN200980100999.4A priority patent/CN102016536B/zh
Priority to JP2009550030A priority patent/JP4835755B2/ja
Publication of WO2009090978A1 publication Critical patent/WO2009090978A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers

Definitions

  • the present invention relates to a vehicle control capable of storing in a predetermined storage medium state information when a vehicle (including an in-vehicle device) has a problem, and later using the stored information for verification of the cause of the problem. Relates to the device.
  • the information on the vehicle state is nonvolatile. Processing to be stored in the storage medium or the like is performed. This information will be used later for verifying the cause of the malfunction at a repair shop or the like. Such failure cause verification is called self-diagnosis.
  • a self-diagnosis is performed in parallel with its original vehicle control function by a control device such as an ECU (Electronic Control Unit) that controls the vehicle.
  • ECU Electronic Control Unit
  • An invention of a vehicle information terminal device that stores information for self-diagnosis in a storage device is disclosed (for example, see Patent Document 1).
  • This device includes one or a plurality of vehicle electronic control devices having a vehicle control program and a diagnosis program for diagnosing each part of the vehicle, a sensor for acquiring a vehicle state, and the like, and includes a self-diagnosis result by the diagnosis program
  • An in-vehicle information terminal device that accumulates vehicle information that can be acquired from a vehicle electronic control device and a sensor in a recording device, and has an internal memory that sequentially stores vehicle information acquired from the vehicle electronic control device and the sensor, If a vehicle failure is detected as a result of the diagnosis, vehicle information in the internal memory a predetermined time before the time when the vehicle failure is detected is copied and stored in the storage device.
  • the vehicle control device determines that there is a possibility that a malfunction has occurred, it suppresses the output of the subsequent in-vehicle device so that the vehicle does not fall into a dangerous state due to the malfunction of the in-vehicle device.
  • What has the function to control is common (henceforth, such control is called fail safe control).
  • the fail-safe control is usually started at a stage before it is determined that a failure has occurred (in other words, the occurrence of the failure is confirmed or detected) from the viewpoint of ensuring safety.
  • the present invention is for solving such a problem, and a main object thereof is to provide a vehicle control device that can be used for self-diagnosis while leaving necessary information.
  • the first aspect of the present invention provides: A control device for controlling in-vehicle devices; Status information acquisition means for acquiring vehicle status information and outputting it to the control means; A vehicle control device comprising: The control means is used for verifying the cause of the malfunction from the state information acquired by the state information acquisition means with reference to a point in time when predetermined failsafe control is started based on the state information input from the state information acquisition means. It is characterized in that information for verifying the cause of failure to be identified is specified and stored in a predetermined storage medium, It is a control device for vehicles.
  • the failure cause verification information is specified and stored in a predetermined storage medium with reference to the time point when the failsafe control is executed. Therefore, before and after the failsafe control is executed.
  • Information suitable for verifying the defect can be stored in a predetermined storage medium.
  • the control means specifies and stores the failure cause verification information in a predetermined storage medium so as to include the state information acquired by the state information acquisition means before the time when the predetermined failsafe control is started. If it is a means, it is suitable.
  • the second aspect of the present invention is: A plurality of control devices for controlling in-vehicle devices; Status information acquisition means for acquiring vehicle status information and outputting it to the control means; A vehicle control device comprising: The plurality of control devices, by the state information acquisition unit, based on a point in time when predetermined fail-safe control is started based on the state information input from the state information acquisition unit or information input from another control device.
  • the failure cause verification information to be used for failure cause verification is specified from the acquired state information or information input from another control device, and stored in a predetermined storage medium, It is a control device for vehicles.
  • the failure cause verification information is specified and stored in a predetermined storage medium on the basis of the time point when the fail safe control is executed, and before and after the fail safe control is executed.
  • Information suitable for verifying the defect can be stored in a predetermined storage medium.
  • the plurality of control means specify the failure cause verification information and store it in a predetermined storage medium so as to include the state information acquired by the state information acquisition means before the time when the predetermined failsafe control is started. It is preferable that it is a means for memorizing.
  • the data stored in the self-diagnosis according to the present invention is compared with the data stored in the conventional self-diagnosis. It is a figure which shows an example of the whole structure of the vehicle control apparatus. It is an example of the timing chart which shows the change of the state information value A which ECU120, 122 grasps
  • the vehicle control device 1 includes, for example, a control device such as an ECU (Electronic Control Unit) that performs various vehicle controls (engine control, brake control, steering control, shift control, etc.). It is configured to perform processing for self-diagnosis in parallel with the original processing. Note that a dedicated device that performs processing for self-diagnosis may be provided separately from the control device.
  • ECU Electronic Control Unit
  • FIG. 1 is a diagram illustrating an example of the overall configuration of the vehicle control device 1.
  • the vehicle control device 1 includes, as main components, a state information acquisition sensor group 10, an ECU 20, and a storage medium 30 for storing information for defect cause verification.
  • the storage medium 30 may be built in the ECU 20.
  • the state information acquisition sensor group 10 and the ECU 20 are connected via, for example, a multiplex communication line 40, and perform information communication using an appropriate communication protocol such as CAN (Controller Area Network), BEAN, AVC-LAN, or FlexRay. Yes.
  • CAN Controller Area Network
  • BEAN Battery ECU
  • AVC-LAN Advanced Comcast
  • FlexRay FlexRay
  • the state information acquisition sensor group 10 includes, for example, a water temperature sensor, various pressure sensors, a vehicle speed sensor, a voltage sensor, a G sensor, a yaw rate sensor, an accelerator opening sensor, a throttle opening sensor, a brake pedaling amount sensor (master pressure sensor), Including shift position switch.
  • the ECU 20 is, for example, a computer unit in which a ROM (Read Only Memory) 24, a RAM (Random Access Memory) 26, and the like are connected to each other via a bus around a CPU (Central Processing Unit) 22, and other internal memory. 28, I / O port, timer, counter, etc.
  • the ROM 24 stores a program 24A for vehicle control executed by the CPU 22, a program 24B for performing the above-described vehicle state monitoring and information storage processing, other programs, and other data.
  • the ECU 20 is connected to an in-vehicle device (an actuator, an engine, a transmission, a brake device, a steering device, and other devices) 50 to be controlled via a multiplex communication line 40.
  • an in-vehicle device an actuator, an engine, a transmission, a brake device, a steering device, and other devices
  • devices such as a throttle motor, an igniter, and an injector correspond to the in-vehicle device 50.
  • a device such as a brake actuator corresponds to the in-vehicle device 50.
  • the storage medium 30 is a storage medium in which failure cause verification information is finally stored.
  • the storage medium 30 is, for example, an EEPROM (Electronically Erasable and Programmable Read Only Memory) or an SRAM (Static Random Access Memory) or an NVRAM (Non Volatile RAM) in which a small battery is built in or arranged externally.
  • a storage medium such as a flash memory, a magnetic disk, a magnetic tape, or paper (printing paper) may be used.
  • ECU20 controls vehicle equipment 50 based on the status information input from sensor group 10 for status information acquisition.
  • the ECU 20 is an engine control ECU.
  • the ECU 20 adjusts the throttle opening by driving the throttle motor based on information such as the accelerator opening, the vehicle speed, and the shift position input from the state information acquisition sensor group 10 as normal engine control. Perform ignition timing control of the igniter.
  • the ECU 20 performs fail-safe control based on the state information input from the state information acquisition sensor group 10.
  • Fail-safe control means that when it is determined that a malfunction may have occurred, the output of the subsequent in-vehicle device is suppressed so that the vehicle does not fall into a dangerous state due to the malfunction of the in-vehicle device.
  • Fail-safe control means that when it is determined that a malfunction may have occurred, the output of the subsequent in-vehicle device is suppressed so that the vehicle does not fall into a dangerous state due to the malfunction of the in-vehicle device.
  • the output value of the accelerator opening sensor exceeds an upper limit value, it is determined that a malfunction has occurred in the sensor or communication path, and the vehicle is in a dangerous state due to an increase in vehicle speed. In order not to fall into the range, control such as keeping the throttle opening low regardless of the input accelerator opening is performed.
  • State information input from the state information acquisition sensor group 10 is stored in the RAM 26, the internal memory 28, or the like with a predetermined period (for example, every 0 comma [sec], etc.).
  • a predetermined period for example, every 0 comma [sec], etc.
  • the ECU 20 may extract (sample) the sensor output value at predetermined intervals, or each sensor may output at a cycle that matches the predetermined cycle.
  • FIG. 2 is a diagram illustrating a part of the state information input from the state information acquisition sensor group 10 and stored in the RAM 26, the internal memory 28, or the like as time-series data.
  • the accelerator opening is indicated by the accelerator sensor no. 1 opening is indicated.
  • the state information represented as data 3 at the time of inputting the state information represented as data 3, fail-safe control for maintaining the throttle opening low regardless of the accelerator opening described above is started.
  • the ECU 20 uses the RAM 26 so as to hold the state information input from before the first predetermined time to after the second predetermined time on the basis of the fail safe control start time. And the internal memory 28 and the like are controlled (the information is not overwritten and stored).
  • status information from data 1 to data 4 in this case, in particular, accelerator opening and throttle opening
  • This state information is information specified as defect cause verification information to be used for defect cause verification. It is preferable that (first predetermined time) ⁇ (second predetermined time). It is preferable to change these predetermined times for each type of defect.
  • the ECU 20 determines whether or not a failure has occurred in the vehicle through predetermined follow-up observations on the state information input from the state information acquisition sensor group 10. Then, when it is determined that a failure has occurred in the vehicle, the state information input between the first predetermined time and the second predetermined time after the failsafe control start time is converted into time-series freeze frame data ( FFD data) is stored in the storage medium 30. Note that the time point at which it is determined that a problem has occurred in the vehicle is usually later than the time point at which failsafe control is started. Further, it is preferable to give a warning by a predetermined HMI (Human Machine Interface) when it is determined that a problem has occurred. As a result, the user notices a problem and repairs are performed at a dealer store or the like. Then, by referring to the failure cause verification information stored in the storage medium 30 at the repair site, the cause of the failure can be quickly identified.
  • HMI Human Machine Interface
  • information before and after determining that a problem has occurred in the vehicle may be stored in the storage medium 30.
  • FIG. 3 is a diagram comparing information stored in a conventional self-diagnosis with information stored in a self-diagnosis according to the present invention.
  • information from a predetermined time before the time point to the time point is uniformly stored in the storage medium with reference to the time point at which the failure is determined to occur.
  • fail-safe control is activated as described above, the output of the vehicle-mounted device is suppressed, and the subsequent sensor output value and control calculation value may no longer be information suitable for verifying the malfunction. . Therefore, there are cases where information useful for defect verification cannot be left in the storage device.
  • the failure cause verification information is specified so as to include information acquired before the time when the failsafe control is started, based on the time when the failsafe control is started. Processing to be stored in the storage medium 30 is performed. Accordingly, information before failsafe control is started (section A information), that is, information before it is determined that a defect has occurred, and defect determination information that has already been changed (section B information). It can be recorded, and diagnostic accuracy can be secured. Therefore, information suitable for verifying the defect can be stored in the storage medium 30.
  • FIG. 4 compares the accumulated data in the self-diagnosis according to the present invention with the data accumulated in the conventional self-diagnosis.
  • the data accumulated in the conventional self-diagnosis may be data in which no change is observed, but in the self-diagnosis according to the present invention, a certain change value and a judgment index at that time are accumulated as a set. Can do. Therefore, diagnostic accuracy can be improved.
  • the vehicle control device 2 includes, for example, a plurality of control devices such as an ECU (Electronic Control Unit) that performs various vehicle controls (engine control, brake control, steering control, shift control, etc.). However, it is configured to perform a process for self-diagnosis in parallel with the original process. Note that a dedicated device that performs processing for self-diagnosis may be provided separately from the control device.
  • ECU Electronic Control Unit
  • FIG. 5 is a diagram illustrating an example of the overall configuration of the vehicle control device 2.
  • the vehicle control device 2 includes, as main components, a state information acquisition sensor group 110 and a plurality of ECUs 120, 122,... (There is no particular limitation on the number; hereinafter, collectively referred to as “each ECU” as necessary) ) And a storage medium 130 for storing information for verifying the cause of failure.
  • the storage medium 130 may be built in each ECU.
  • the state information acquisition sensor group 110 and each ECU are connected via, for example, a multiplex communication line 140 and perform information communication using an appropriate communication protocol such as CAN (Controller Area Network), BEAN, AVC-LAN, or FlexRay. ing. Note that such a configuration is a schematic one for easy representation, and the sensor output value may be input to each ECU via another ECU, a gateway computer, or the like.
  • state information acquisition sensor group 110 is the same as the state information acquisition sensor group 10 according to the first embodiment, the description thereof is omitted.
  • each ECU has the same hardware configuration as that of the ECU 20 according to the first embodiment, description of the configuration is omitted.
  • Each ECU is connected to a vehicle-mounted device (an actuator, an engine, a transmission, a brake device, a steering device, or other devices) 150 to be controlled via a multiplex communication line 140.
  • a vehicle-mounted device an actuator, an engine, a transmission, a brake device, a steering device, or other devices
  • devices such as a throttle motor, an igniter, and an injector correspond to the in-vehicle device 150.
  • a device such as a brake actuator corresponds to the in-vehicle device 150.
  • the storage medium 130 is a storage medium in which failure cause verification information is finally stored, like the storage medium 30 according to the first embodiment.
  • Each ECU controls the in-vehicle device 150 based on the state information input from the state information acquisition sensor group 110.
  • Each ECU performs fail-safe control based on the state information input from the state information acquisition sensor group 110 or the control state information of the other ECU input from another ECU.
  • the description of the fail safe control is as described in the first embodiment.
  • State information input from the state information acquisition sensor group 110 is stored in a RAM or an internal memory of each ECU at a predetermined cycle (for example, every 0 comma [sec], etc.).
  • Each ECU may extract (sample) the sensor output value at predetermined intervals, or each sensor may output at a cycle that matches the predetermined cycle.
  • each ECU performs fail-safe control based on state information input from the state information acquisition sensor group 110 or information input from another ECU.
  • ECU 120 is an ECU that mainly performs engine control
  • ECU 122 is an ECU that mainly performs brake control.
  • ECU 120 determines that a problem has occurred in the engine, for example, from the relationship between the throttle opening and the in-cylinder pressure
  • the ECU 120 performs fail-safe control that suppresses the engine output (the fail-safe control may not be performed). Is output to the other ECUs, and the state information that is the basis for the determination.
  • the own fail-safe control is performed at the timing when the information is acquired from the ECU 120. To start.
  • FIG. 6 is an example of a timing chart showing changes in the state information value A grasped by the ECUs 120 and 122 in such a situation.
  • each ECU receives state information input from the time point before the first predetermined time to the time point after the second predetermined time, or other information on the basis of the fail-safe control start time point.
  • the RAM and the internal memory are controlled so as to hold the information input from the control device.
  • the state information input from the state information acquisition sensor group 10 or the information input from another control device is subjected to predetermined follow-up observations and the like to determine whether or not a problem has occurred in the vehicle.
  • the state information input between the first predetermined time and the second predetermined time after the failsafe control start time is converted into time-series freeze frame data ( FFD data) is stored in the storage medium 130. Further, in preparation for a case where it is required by law, information before and after it is determined that a problem has occurred in the vehicle may be stored in the storage medium 130.
  • each ECU starts fail-safe control at the timing when another ECU grasps the failure of the in-vehicle device 150, and starts a storage process as FFD data.
  • the state information before and after can be collected more widely.
  • the FFD data is stored in the storage medium 130 even when the ECU that has grasped the malfunction of the in-vehicle device 150 does not perform the special failsafe control and only the ECU that has received the information performs the failsafe control.
  • the state information before and after the failure of the in-vehicle device 150 occurs can be collected more widely. Therefore, the accuracy of self-diagnosis can be improved.
  • information input from the sensor group for acquiring state information is temporarily stored in a RAM or an internal memory, and information specified as failure cause verification information is copied to a storage medium.
  • Information input from the information acquisition sensor group may be directly stored in the storage medium, and a process of deleting information other than the information specified as the failure cause verification information may be performed.
  • the present invention can be used in the automobile manufacturing industry, the automobile parts manufacturing industry, and the like.

Abstract

 車載機器の制御を行なう制御装置(20)と、車両の状態情報を取得して前記制御手段に出力する状態情報取得手段(10)と、を備える車両用制御装置(1)であって、前記制御手段は、前記状態情報取得手段から入力された状態情報に基づいて所定のフェールセーフ制御を実行した時点を基準として、前記状態情報取得手段により取得された情報から不具合原因の検証に用いられるべき不具合原因検証用情報を特定して所定の記憶媒体(30)に記憶させることを特徴とする、車両用制御装置。

Description

車両用制御装置
 本発明は、車両(車載機器を含む)が不具合を生じた際の状態情報を所定の記憶媒体に記憶させておき、当該記憶した情報を後に不具合原因の検証に役立てることが可能な車両用制御装置に関する。
 従来、センサー出力値や制御演算値、車両(車載機器を含む;以下略)の状態に関する情報を監視し、当該情報に基づき車両の不具合を検知した際に、上記車両の状態に関する情報を不揮発性の記憶媒体等に記憶しておく処理が行なわれている。この情報は、後に修理工場等において不具合原因の検証に役立てられることとなる。係る不具合原因の検証は、自己診断(ダイアグノーシス)等と称されている。自己診断は、車両を制御するECU(Electronic Control Unit)等の制御装置が、その本来の車両制御機能と並行して行なうのが一般的である。
 自己診断のための情報を記憶装置に記憶させる車両情報端末装置についての発明が開示されている(例えば、特許文献1参照)。この装置は、車両制御プログラムと車両各部の診断を行う診断プログラムとを有した一つまたは複数の車両電子制御装置、及び車両の状態を取得するセンサ等を備え、診断プログラムによる自己診断結果を含む車両電子制御装置及びセンサから取得可能な車両情報を記録装置に蓄積する車載情報端末装置であって、車両電子制御装置及びセンサから取得した車両情報を逐次蓄える内部メモリを有し、診断プログラムによる自己診断の結果、車両の不具合が検知された場合には、車両の不具合が検知された時刻から所定時間前の内部メモリ内の車両情報を記憶装置に複写して蓄積している。
特開2005-43138号公報
 ところで、車両の制御装置は、不具合が発生した可能性があると判断した時点において、以降の車載機器の出力を抑制する等して、車載機器の不具合により車両が危険な状態に陥らないように制御する機能を有するものが一般的である(以下、係る制御をフェールセーフ制御と称する)。そして、フェールセーフ制御は、安全確保の観点から、不具合が発生したと判断される(換言すると、不具合発生が確定する、又は検知される)よりも前段階において開始されるのが通常である。
 上記従来の装置では、「車両の不具合が検知された時刻から所定時間前の内部メモリ内の車両情報を」記憶装置に複写して蓄積しているが、上記の如くフェールセーフ制御が発動すると、車載機器の出力を抑制する結果、それ以降のセンサー出力値及び制御演算値は、もはや不具合を検証するのに適した情報ではなくなってしまう場合がある。従って、不具合の検証に有用な情報を記憶装置に残すことができない場合がある。
 本発明はこのような課題を解決するためのものであり、必要な情報を残して自己診断に役立てることが可能な車両用制御装置を提供することを、主たる目的とする。
 上記目的を達成するための本発明の第1の態様は、
 車載機器の制御を行なう制御装置と、
 車両の状態情報を取得して前記制御手段に出力する状態情報取得手段と、
 を備える車両用制御装置であって、
 前記制御手段は、前記状態情報取得手段から入力された状態情報に基づいて所定のフェールセーフ制御を開始した時点を基準として、前記状態情報取得手段により取得された状態情報から不具合原因の検証に用いられるべき不具合原因検証用情報を特定して所定の記憶媒体に記憶させることを特徴とする、
 車両用制御装置である。
 この本発明の第1の態様によれば、フェールセーフ制御を実行した時点を基準として、不具合原因検証用情報を特定して所定の記憶媒体に記憶させるため、フェールセーフ制御が実行された前後の不具合を検証するのに適した情報を所定の記憶媒体に記憶させることができる。
 本発明の第1の態様において、
 前記制御手段は、前記所定のフェールセーフ制御を開始した時点以前に前記状態情報取得手段により取得された状態情報を含むように、前記不具合原因検証用情報を特定して所定の記憶媒体に記憶させる手段であるものとすると、好適である。
 本発明の第2の態様は、
 車載機器の制御を行なう複数の制御装置と、
 車両の状態情報を取得して前記制御手段に出力する状態情報取得手段と、
 を備える車両用制御装置であって、
 前記複数の制御装置は、前記状態情報取得手段から入力された状態情報又は他の制御装置から入力された情報に基づいて所定のフェールセーフ制御を開始した時点を基準として、前記状態情報取得手段により取得された状態情報又は他の制御装置から入力された情報から不具合原因の検証に用いられるべき不具合原因検証用情報を特定して所定の記憶媒体に記憶させることを特徴とする、
 車両用制御装置である。
 この本発明の第2の態様によれば、フェールセーフ制御を実行した時点を基準として、不具合原因検証用情報を特定して所定の記憶媒体に記憶させるため、フェールセーフ制御が実行された前後の不具合を検証するのに適した情報を所定の記憶媒体に記憶させることができる。
 本発明の第2の態様において、
 前記複数の制御手段は、前記所定のフェールセーフ制御を開始した時点以前に前記状態情報取得手段により取得された状態情報を含むように、前記不具合原因検証用情報を特定して所定の記憶媒体に記憶させる手段であるものとすると、好適である。
 本発明によれば、必要な情報を残して自己診断に役立てることが可能な車両用制御装置を提供することができる。
車両用制御装置1の全体構成の一例を示す図である。 状態情報取得用センサー群10から入力され、時系列データとしてRAM26や内部メモリ28等に格納された状態情報の一部を示す図である。 従来の自己診断において記憶されていた情報と、本発明に係る自己診断において記憶される情報と、を対比する図である。 本発明に係る自己診断における蓄積データと、従来の自己診断において蓄積されるデータを対比したものである。 車両用制御装置2の全体構成の一例を示す図である。 ECU120、122が把握する状態情報値Aの変化を示すタイミングチャートの一例である。
符号の説明
 1、2 車両用制御装置
 10、110 状態情報取得用センサー群
 20、120、122 ECU
 22 CPU
 24 ROM
 24A、24B プログラム
 26 RAM
 28 内部メモリ
 30、130 記憶媒体
 40、140 多重通信線
 50、150 車載機器
 以下、本発明を実施するための最良の形態について、添付図面を参照しながら実施例を挙げて説明する。
 <第1実施例>
 以下、本発明の第1実施例に係る車両用制御装置1について説明する。車両用制御装置1は、例えば、種々の車両制御(エンジン制御、ブレーキ制御、ステアリング制御、変速制御等)を行なうECU(Electronic Control Unit)等の制御装置を含み、当該ECU等の制御装置が、本来の処理と並行して自己診断のための処理を行なうものとして構成される。なお、自己診断のための処理を行なう専用装置が上記制御装置とは別体として併設される構成であっても構わない。
 [構成]
 図1は、車両用制御装置1の全体構成の一例を示す図である。車両用制御装置1は、主要な構成として、状態情報取得用センサー群10と、ECU20と、不具合原因検証用情報記憶用の記憶媒体30と、を備える。記憶媒体30は、ECU20に内蔵されるものであってもよい。状態情報取得用センサー群10とECU20は、例えば多重通信線40を介して接続され、CAN(Controller Area Network)やBEAN、AVC-LAN、FlexRay等の適切な通信プロトコルを用いて情報通信を行なっている。なお、係る構成は簡易に表現するための模式的なものであり、センサー出力値が他のECUやゲートウエイコンピューター等を介してECU20に入力されてもよい。
 状態情報取得用センサー群10は、例えば、水温センサー、各種圧力センサー、車速センサー、電圧センサー、Gセンサー、ヨーレートセンサー、アクセル開度センサー、スロットル開度センサー、ブレーキ踏量センサー(マスター圧センサー)、シフトポジションスイッチ等を含む。
 ECU20は、例えば、CPU(Central Processing Unit)22を中心としてROM(Read Only Memory)24やRAM(Random Access Memory)26等がバスを介して相互に接続されたコンピューターユニットであり、その他、内部メモリ28やI/Oポート、タイマー、カウンター等を備える。ROM24には、CPU22が実行する車両制御のためのプログラム24A、前述した車両状態監視及び情報記憶処理を行なうためのプログラム24B、その他のプログラム、その他のデータが格納されている。
 ECU20には、多重通信線40を介して制御対象となる車載機器(アクチュエータ、エンジン、変速機、ブレーキ装置、ステアリング装置その他の機器をいう)50が接続される。例えばECU20がエンジン制御用のECUである場合は、スロットルモータ、イグナイター、インジェクター等の機器が車載機器50に相当する。また、ECU20がブレーキ制御を本来の機能とするECUである場合は、ブレーキアクチュエータ等の機器が車載機器50に相当する。
 記憶媒体30は、不具合原因検証用情報が最終的に記憶される記憶媒体である。記憶媒体30は、例えばEEPROM(Electronically Erasable and Programmable Read Only Memory)やSRAM(Static Random Access Memory)に小さな電池を内蔵あるいは外部に配置したNVRAM(Non Volatile RAM)が用いられる。なお、フラッシュメモリや磁気ディスク、磁気テープ、紙(プリント用紙)等の記憶媒体が用いられてもよい。
 ECU20は、状態情報取得用センサー群10から入力された状態情報に基づいて、車載機器50の制御を行なう。以下、ECU20がエンジン制御用のECUであるものとして説明する。ECU20は、通常のエンジン制御として、状態情報取得用センサー群10から入力されるアクセル開度や車速、シフト位置等の情報に基づいて、スロットルモータを駆動してスロットル開度を調節し、また、イグナイターの点火時期制御等を行なう。
 また、ECU20は、状態情報取得用センサー群10から入力された状態情報に基づいて、フェールセーフ制御を行なう。フェールセーフ制御とは、不具合が発生した可能性があると判断した時点において、以降の車載機器の出力を抑制する等して、車載機器の不具合により車両が危険な状態に陥らないようにすることをいう。エンジン制御に関する簡易な例では、例えば、アクセル開度センサーの出力値が上限値を超えた場合に、当該センサー或いは通信経路等に不具合が発生したと判断し、車速の増加によって車両が危険な状態に陥らないように、入力されたアクセル開度に拘らずスロットル開度を低く維持する等の制御が行なわれる。
 [特徴的な処理内容]
 以下、ECU20のCPU22がROM24に記憶されたプログラム24Bを実行することにより実現される本発明の特徴的な処理内容について説明する。
 状態情報取得用センサー群10から入力された状態情報は、所定周期(例えば、0コンマ数[sec]毎等)をもってRAM26や内部メモリ28等に記憶される。なお、ECU20がセンサー出力値を所定周期毎に抽出(サンプリング)してもよいし、各センサーが所定周期に合わせた周期で出力を行なってもよい。
 図2は、状態情報取得用センサー群10から入力され、時系列データとしてRAM26や内部メモリ28等に格納された状態情報の一部を示す図である。図中、アクセル開度をアクセルセンサNo.1開度と表記している。本図において、データ3と表記された状態情報の入力時点に、上記説明したアクセル開度に拘らずスロットル開度を低く維持するフェールセーフ制御が開始されている。
 ECU20は、フェールセーフ制御を開始すると、フェールセーフ制御開始時点を基準として、当該時点の第1の所定時間前から第2の所定時間後までの間に入力された状態情報を保持するようにRAM26や内部メモリ28等を制御する(当該情報に上書き記憶しない)。図2の例では、例えばデータ1~データ4までの状態情報(この場合、特にアクセル開度やスロットル開度)を保持する。係る状態情報が、不具合原因の検証に用いられるべき不具合原因検証用情報として特定された情報である。なお、(第1の所定時間)≧(第2の所定時間)であることが好ましい。また、不具合の種類毎にこれらの所定時間を変更すると好適である。
 また、ECU20は、状態情報取得用センサー群10から入力された状態情報について所定の経過観察等を経て、車両に不具合が発生したか否かを判断する。そして、車両に不具合が発生したと判断した時点で、フェールセーフ制御開始時点の第1の所定時間前から第2の所定時間後までの間に入力された状態情報を、時系列フリーズフレームデータ(FFDデータ)として記憶媒体30に記憶させる。なお、車両に不具合が発生したと判断する時点は、通常、フェールセーフ制御開始時点よりも後となる。また、不具合が発生したと判断した時点で、所定のHMI(Human Machine Interface)による警告を行なうと好適である。これによりユーザーが不具合に気付き、ディーラー店等で修理を行なうこととなる。そして、修理の現場において記憶媒体30に記憶された不具合原因検証用情報を参照することにより、不具合の原因を迅速に突き止めることが可能となる。
 また、法規上必要な場合に備え、車両に不具合が発生したと判断した前後の情報も記憶媒体30に記憶させるものとしてもよい。
 係る処理によって、フェールセーフ制御が開始される以前の、不具合を検証するのに適した情報を記憶媒体30に記憶させることができる。従って、必要な情報を残して自己診断に役立てることが可能な車両用制御装置を提供することができる。
 ここで、従来行なわれていた自己診断に係る情報記憶処理との比較について検討する。図3は、従来の自己診断において記憶されていた情報と、本発明に係る自己診断において記憶される情報と、を対比する図である。図示する如く、従来は、不具合が発生したと判断された時点を基準に、当該時点の所定時間前から当該時点までの情報を一律に記憶媒体に記憶していた。しかしながら、上記の如くフェールセーフ制御が発動すると、車載機器の出力を抑制する結果、それ以降のセンサー出力値及び制御演算値は、もはや不具合を検証するのに適した情報ではなくなってしまう場合がある。従って、不具合の検証に有用な情報を記憶装置に残すことができない場合がある。
 これに対し、本発明に係る自己診断においては、フェールセーフ制御を開始した時点を基準として、フェールセーフ制御を開始した時点以前に取得された情報を含むように不具合原因検証用情報を特定して記憶媒体30に記憶させる処理を行なっている。従って、フェールセーフ制御が開始される以前の情報(区間Aの情報)、すなわち不具合が発生したと判断される前の情報と、既に変化が完了している不具合確定情報(区間Bの情報)を記録することができ、診断精度を確保することができる。従って、不具合を検証するのに適した情報を記憶媒体30に記憶させることができる。
 また、図4は、本発明に係る自己診断における蓄積データと、従来の自己診断において蓄積されるデータを対比したものである。従来の自己診断において蓄積されるデータは、変化が見られないデータである可能性があるが、本発明に係る自己診断においては、確実な変化値とそのときの判断指標をセットで蓄積することができる。従って、診断精度を向上させることができる。
 以上説明した本実施例の車両用制御装置1によれば、必要な情報を残して自己診断に役立てることができる。
 <第2実施例>
 以下、本発明の第2実施例に係る車両用制御装置2について説明する。車両用制御装置2は、例えば、種々の車両制御(エンジン制御、ブレーキ制御、ステアリング制御、変速制御等)を行なうECU(Electronic Control Unit)等の複数の制御装置を含み、当該ECU等の制御装置が、本来の処理と並行して自己診断のための処理を行なうものとして構成される。なお、自己診断のための処理を行なう専用装置が上記制御装置とは別体として併設される構成であっても構わない。
 [構成]
 図5は、車両用制御装置2の全体構成の一例を示す図である。車両用制御装置2は、主要な構成として、状態情報取得用センサー群110と、複数のECU120、122、…(個数に特段の限定はない;以下、必要に応じて「各ECU」と総称する)と、不具合原因検証用情報記憶用の記憶媒体130と、を備える。記憶媒体130は、各ECUに内蔵されるものであってもよい。状態情報取得用センサー群110と各ECUは、例えば多重通信線140を介して接続され、CAN(Controller Area Network)やBEAN、AVC-LAN、FlexRay等の適切な通信プロトコルを用いて情報通信を行なっている。なお、係る構成は簡易に表現するための模式的なものであり、センサー出力値が他のECUやゲートウエイコンピューター等を介して各ECUに入力されてもよい。
 状態情報取得用センサー群110は、第1実施例に係る状態情報取得用センサー群10と同様であるため、説明を省略する。
 各ECUは、第1実施例に係るECU20と同様のハードウエア構成を有するため、構成についての説明は省略する。
 各ECUには、多重通信線140を介して制御対象となる車載機器(アクチュエータ、エンジン、変速機、ブレーキ装置、ステアリング装置その他の機器をいう)150が接続される。例えば在るECUがエンジン制御用のECUである場合は、スロットルモータ、イグナイター、インジェクター等の機器が車載機器150に相当する。また、ECUがブレーキ制御を本来の機能とするECUである場合は、ブレーキアクチュエータ等の機器が車載機器150に相当する。
 記憶媒体130は、第1実施例に係る記憶媒体30と同様、不具合原因検証用情報が最終的に記憶される記憶媒体である。
 各ECUは、状態情報取得用センサー群110から入力された状態情報に基づいて、車載機器150の制御を行なう。
 また、各ECUは、状態情報取得用センサー群110から入力された状態情報、又は他のECUから入力された当該他のECUの制御状態情報に基づいて、フェールセーフ制御を行なう。フェールセーフ制御についての説明は第1実施例で述べた通りである。
 [特徴的な処理内容]
 以下、各ECUにより実現される本発明の特徴的な処理内容について説明する。
 状態情報取得用センサー群110から入力された状態情報は、所定周期(例えば、0コンマ数[sec]毎等)をもって各ECUのRAMや内部メモリ等に記憶される。なお、各ECUがセンサー出力値を所定周期毎に抽出(サンプリング)してもよいし、各センサーが所定周期に合わせた周期で出力を行なってもよい。
 前述の如く、各ECUは、状態情報取得用センサー群110から入力された状態情報、又は他のECUから入力された情報に基づいて、フェールセーフ制御を行なう。例えば、ECU120がエンジン制御を主に行なうECUであり、ECU122がブレーキ制御を主に行なうECUであるとする。ECU120は、例えばスロットル開度と筒内圧の関係からエンジンに不具合が生じていると判断すると、エンジンの出力を抑制するフェールセーフ制御を行なうと共に(フェールセーフ制御を行なわない場合もあり得る)、不具合が生じている旨、及びその判断の基となった状態情報等を他のECUに出力する。他のECU(例えばECU122)では、自己が監視している状態情報取得用センサー群110の出力値には異常がない場合であっても、ECU120から係る情報を取得したタイミングで自己のフェールセーフ制御を開始する。
 図6は、係る状況においてECU120、122が把握する状態情報値Aの変化を示すタイミングチャートの一例である。このように情報を共有することにより、フェールセーフ制御の開始タイミングを他のECUが把握した状態情報の変化に同期させることができる。
 そして、各ECUは、第1実施例と同様に、フェールセーフ制御開始時点を基準として、当該時点の第1の所定時間前から第2の所定時間後までの間に入力された状態情報又は他の制御装置から入力された情報を保持するようにRAMや内部メモリ等を制御する。続いて、状態情報取得用センサー群10から入力された状態情報又は他の制御装置から入力された情報について所定の経過観察等を経て、車両に不具合が発生したか否かを判断する。そして、車両に不具合が発生したと判断した時点で、フェールセーフ制御開始時点の第1の所定時間前から第2の所定時間後までの間に入力された状態情報を、時系列フリーズフレームデータ(FFDデータ)として記憶媒体130に記憶させる。また、法規上必要な場合に備え、車両に不具合が発生したと判断した前後の情報も記憶媒体130に記憶させるものとしてもよい。
 係る処理によって、フェールセーフ制御が開始される以前の、不具合を検証するのに適した情報を記憶媒体130に記憶させることができる。従って、必要な情報を残して自己診断に役立てることが可能な車両用制御装置を提供することができる。
 また、本実施例においては、他のECUが車載機器150の不具合を把握したタイミングで各ECUがフェールセーフ制御を開始し、FFDデータとしての保存処理を開始するため、車載機器150の不具合が生じた前後の状態情報を、より幅広く収集することができる。更に、車載機器150の不具合を把握したECUが特段のフェールセーフ制御を行なわず、情報提供を受けたECUのみがフェールセーフ制御を行なった場面においても、FFDデータが記憶媒体130に記憶されるため、車載機器150の不具合が生じた前後の状態情報を、より幅広く収集することができる。従って、自己診断の精度を向上させることができる。
 以上説明した本実施例の車両用制御装置2によれば、必要な情報を、より幅広く残して自己診断に役立てることができる。
 <変形例>
 以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
 例えば、状態情報取得用センサー群から入力される情報がRAMや内部メモリ等に一時記憶され、この中から不具合原因検証用情報として特定された情報が記憶媒体に複写されるものとしたが、状態情報取得用センサー群ら入力される情報が直接記憶媒体に記憶され、この中から不具合原因検証用情報として特定された情報以外の情報を削除する処理を行なってもよい。
 本発明は、自動車製造業や自動車部品製造業等に利用可能である。
 また、本願は2008年1月15日に出願した日本国特許出願2008-005949号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。

Claims (4)

  1.  車載機器の制御を行なう制御装置と、
     車両の状態情報を取得して前記制御手段に出力する状態情報取得手段と、
     を備える車両用制御装置であって、
     前記制御手段は、前記状態情報取得手段から入力された状態情報に基づいて所定のフェールセーフ制御を開始した時点を基準として、前記状態情報取得手段により取得された状態情報から不具合原因の検証に用いられるべき不具合原因検証用情報を特定して所定の記憶媒体に記憶させることを特徴とする、
     車両用制御装置。
  2.  前記制御手段は、前記所定のフェールセーフ制御を開始した時点以前に前記状態情報取得手段により取得された状態情報を含むように、前記不具合原因検証用情報を特定して所定の記憶媒体に記憶させる手段である、
     請求項1に記載の車両用制御装置。
  3.  車載機器の制御を行なう複数の制御装置と、
     車両の状態情報を取得して前記制御手段に出力する状態情報取得手段と、
     を備える車両用制御装置であって、
     前記複数の制御装置は、前記状態情報取得手段から入力された状態情報又は他の制御装置から入力された情報に基づいて所定のフェールセーフ制御を開始した時点を基準として、前記状態情報取得手段により取得された状態情報又は他の制御装置から入力された情報から不具合原因の検証に用いられるべき不具合原因検証用情報を特定して所定の記憶媒体に記憶させることを特徴とする、
     車両用制御装置。
  4.  前記複数の制御手段は、前記所定のフェールセーフ制御を開始した時点以前に前記状態情報取得手段により取得された状態情報を含むように、前記不具合原因検証用情報を特定して所定の記憶媒体に記憶させる手段である、
     請求項3に記載の車両用制御装置。
PCT/JP2009/050424 2008-01-15 2009-01-15 車両用制御装置 WO2009090978A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/741,999 US20100250061A1 (en) 2008-01-15 2009-01-15 Vehicle control device
EP09701857.6A EP2230502B1 (en) 2008-01-15 2009-01-15 Vehicle control system
CN200980100999.4A CN102016536B (zh) 2008-01-15 2009-01-15 车辆用控制装置
JP2009550030A JP4835755B2 (ja) 2008-01-15 2009-01-15 車両用制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008005949 2008-01-15
JP2008-005949 2008-01-15

Publications (1)

Publication Number Publication Date
WO2009090978A1 true WO2009090978A1 (ja) 2009-07-23

Family

ID=40885366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050424 WO2009090978A1 (ja) 2008-01-15 2009-01-15 車両用制御装置

Country Status (5)

Country Link
US (1) US20100250061A1 (ja)
EP (1) EP2230502B1 (ja)
JP (1) JP4835755B2 (ja)
CN (1) CN102016536B (ja)
WO (1) WO2009090978A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162430A1 (ja) * 2019-02-05 2020-08-13 日立オートモティブシステムズ株式会社 電子制御装置及び不揮発性メモリの使用方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892012B2 (ja) * 2012-09-11 2016-03-23 日本精工株式会社 車載電子制御装置
JP6585019B2 (ja) 2016-09-13 2019-10-02 株式会社東芝 ネットワーク監視装置、ネットワークシステムおよびプログラム
JP6438991B2 (ja) * 2017-03-14 2018-12-19 株式会社Subaru 車両用制御装置
SE1751567A1 (sv) * 2017-12-18 2019-06-19 Komatsu Forest Ab Arbetsmaskin samt metod för att övervaka ett styrsystem vid en arbetsmaskin
US10846955B2 (en) 2018-03-16 2020-11-24 Micron Technology, Inc. Black box data recorder for autonomous driving vehicle
US11094148B2 (en) 2018-06-18 2021-08-17 Micron Technology, Inc. Downloading system memory data in response to event detection
US11782605B2 (en) 2018-11-29 2023-10-10 Micron Technology, Inc. Wear leveling for non-volatile memory using data write counters
US11410475B2 (en) 2019-01-31 2022-08-09 Micron Technology, Inc. Autonomous vehicle data recorders
US11373466B2 (en) 2019-01-31 2022-06-28 Micron Technology, Inc. Data recorders of autonomous vehicles
JP7058928B2 (ja) * 2019-03-15 2022-04-25 矢崎総業株式会社 車両用通信システム
CN112685424B (zh) * 2021-01-04 2022-08-23 潍柴动力股份有限公司 发动机故障存储的处理方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190895A (ja) * 1993-12-27 1995-07-28 Mazda Motor Corp 車両の診断装置
JP2005041273A (ja) * 2003-07-23 2005-02-17 Toyota Motor Corp 診断データ収集装置及び方法
JP2005043138A (ja) 2003-07-25 2005-02-17 Hitachi Ltd 車両情報端末装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272960B2 (ja) * 1996-08-19 2002-04-08 株式会社データ・テック ドライビングレコーダ及び車両の運行解析装置
JP2003084998A (ja) * 2001-09-12 2003-03-20 Denso Corp 故障診断システム及び電子制御装置
JP2003140737A (ja) * 2001-10-30 2003-05-16 Fujitsu Ten Ltd サポートシステム
JP2005076553A (ja) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp 電子スロットル制御装置
JP4155198B2 (ja) * 2004-01-19 2008-09-24 トヨタ自動車株式会社 車両の制御システムの異常検知装置
JP2005241599A (ja) * 2004-02-27 2005-09-08 Fuji Heavy Ind Ltd データ記録装置およびデータ記録方法
US7239946B2 (en) * 2004-10-25 2007-07-03 General Motors Corporation Vehicles fault diagnostic systems and methods
JP4613741B2 (ja) * 2005-08-05 2011-01-19 トヨタ自動車株式会社 車両用データ記録装置
JP4813126B2 (ja) * 2005-08-23 2011-11-09 カルソニックカンセイ株式会社 車両用データ記録装置
JP4453764B2 (ja) * 2008-02-22 2010-04-21 トヨタ自動車株式会社 車両診断装置、車両診断システム、診断方法
JP4582192B2 (ja) * 2008-05-20 2010-11-17 トヨタ自動車株式会社 車両故障解析システム、車両故障解析装置、車両故障解析方法
US8095261B2 (en) * 2009-03-05 2012-01-10 GM Global Technology Operations LLC Aggregated information fusion for enhanced diagnostics, prognostics and maintenance practices of vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190895A (ja) * 1993-12-27 1995-07-28 Mazda Motor Corp 車両の診断装置
JP2005041273A (ja) * 2003-07-23 2005-02-17 Toyota Motor Corp 診断データ収集装置及び方法
JP2005043138A (ja) 2003-07-25 2005-02-17 Hitachi Ltd 車両情報端末装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2230502A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162430A1 (ja) * 2019-02-05 2020-08-13 日立オートモティブシステムズ株式会社 電子制御装置及び不揮発性メモリの使用方法
JP2020126452A (ja) * 2019-02-05 2020-08-20 日立オートモティブシステムズ株式会社 電子制御装置及び不揮発性メモリの使用方法
JP7216559B2 (ja) 2019-02-05 2023-02-01 日立Astemo株式会社 電子制御装置及び不揮発性メモリの使用方法
US11836045B2 (en) 2019-02-05 2023-12-05 Hitachi Astemo, Ltd. Electronic control device having a non-volatile memory with a reserved area storing failure data

Also Published As

Publication number Publication date
EP2230502A1 (en) 2010-09-22
CN102016536A (zh) 2011-04-13
JPWO2009090978A1 (ja) 2011-05-26
JP4835755B2 (ja) 2011-12-14
EP2230502A4 (en) 2011-03-30
EP2230502B1 (en) 2013-04-10
CN102016536B (zh) 2016-01-20
US20100250061A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4835755B2 (ja) 車両用制御装置
JP4803168B2 (ja) 車両用情報記憶装置
JP6683683B2 (ja) 自動車用計算機
US20120253586A1 (en) Vehicle behavior data recording control system and recording apparatus
JP5187387B2 (ja) 車両データ記憶装置、コントローラ及び車両データ記録システム
JP3923810B2 (ja) 車両用電子制御装置
US8341343B2 (en) Controller
JPH07172251A (ja) 車両の故障診断装置
JP2015171853A (ja) 自動車用電子制御装置
JP5177079B2 (ja) 車載制御装置
JP5236092B1 (ja) 車両用データ記憶装置
JP2006224892A (ja) 車両用電子制御装置
JP6887277B2 (ja) 自動車用電子制御装置
DE102018207791A1 (de) Verfahren zur Authentifizierung eines von einem Kfz-System eines Fahrzeugs erzeugten Diagnosefehlercodes
JP2019045952A (ja) 車両情報記憶装置
JP2008065514A (ja) 車両の制御装置
JP6975581B2 (ja) 車両情報記憶装置
JP2006348786A (ja) 車両の異常検出方法及び車両用電子制御装置
JP2022182015A (ja) 車両の故障診断装置及び故障診断方法
JP2014092028A (ja) エンジンの故障診断装置
JP3885011B2 (ja) 燃料噴射装置の運転制御方法及び装置
JP2016212807A (ja) 車両用データ記録装置
CN117472034A (zh) 一种车辆诊断方法、装置、设备及介质
DE102011018864A1 (de) Verfahren zum Starten einer Brennkraftmaschine nach einer Betriebspause
JP2010179849A (ja) 故障記録装置、故障記録方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100999.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550030

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12741999

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009701857

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE