WO2009090934A1 - ポンプの性能特性設定方法およびディフューザベーンの製造方法 - Google Patents

ポンプの性能特性設定方法およびディフューザベーンの製造方法 Download PDF

Info

Publication number
WO2009090934A1
WO2009090934A1 PCT/JP2009/050301 JP2009050301W WO2009090934A1 WO 2009090934 A1 WO2009090934 A1 WO 2009090934A1 JP 2009050301 W JP2009050301 W JP 2009050301W WO 2009090934 A1 WO2009090934 A1 WO 2009090934A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
pump
diffuser vane
hub
setting
Prior art date
Application number
PCT/JP2009/050301
Other languages
English (en)
French (fr)
Inventor
Kazuta Kobayashi
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CN2009801008811A priority Critical patent/CN101861464B/zh
Priority to US12/739,447 priority patent/US8720054B2/en
Publication of WO2009090934A1 publication Critical patent/WO2009090934A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/548Specially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49243Centrifugal type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49245Vane type or other rotary, e.g., fan

Definitions

  • the present invention relates to a pump performance characteristic setting method for setting performance characteristics of a pump including a diffuser and a diffuser vane manufacturing method.
  • a mixed flow pump and an axial flow pump are known, and the mixed flow pump and the axial flow pump include an impeller that sends out fluid in the rotation axis direction, a diffuser provided on the downstream side of the impeller, (For example, refer to Patent Document 1).
  • a mixed flow pump having an appropriate performance characteristic according to the installation environment is used so that the operation can be efficiently performed according to the installation place and the application.
  • the performance characteristics of the mixed flow pump can be set to the desired performance characteristics.
  • the performance characteristics of the mixed flow pump can be set by changing the bending curvature of each diffuser vane and setting the inlet angle of each diffuser vane.
  • the bending curvature of each diffuser vane is greatly changed, the optimum shape of the diffuser vane is changed, and the performance of the mixed flow pump may be deteriorated.
  • each diffuser vane in order to suppress the deterioration of the performance of the mixed flow pump, the shape of each diffuser vane must be newly designed in accordance with the set inlet angle of each diffuser vane. That is, when setting the desired performance characteristics of the mixed flow pump, each diffuser vane needs to be newly designed.
  • the diffuser vane is newly designed in accordance with the desired performance characteristics of the mixed flow pump, the diffuser vane must be designed from the beginning, and a great burden is required. Thereby, for example, it may be difficult to shorten the manufacturing period of the mixed flow pump.
  • an object of the present invention is to provide a pump performance characteristic setting method and a diffuser vane manufacturing method capable of setting a pump performance characteristic by a simple method while suppressing deterioration of the pump performance.
  • a performance characteristic setting method for a pump includes an impeller that takes in a fluid from a suction port and sends the fluid toward the discharge port, and a diffuser interposed in a flow path between the impeller and the discharge port.
  • the diffuser includes a hub disposed in the center of the flow path, a shroud disposed around the hub, and an inner surface of the shroud from the outer peripheral surface of the hub.
  • An attachment position setting step for setting according to the performance characteristics is provided.
  • each diffuser vane is attached to the hub at the basic basic installation position, and in the installation position setting process, an offset set according to the performance characteristics of the pump from the basic installation position. It is preferable that the attachment position is set by changing the position of the diffuser vane by the amount.
  • the diffuser vane manufacturing method of the present invention includes a die cutting step for die cutting a sheet metal member, which is a material for the diffuser vane, from a metal plate based on the mounting position set in the performance characteristic setting method for the pump. And a bending step of bending the punched sheet metal member into a diffuser vane.
  • the performance characteristics of the pump can be easily set by setting the installation position of the diffuser vane to an arbitrary installation position according to the performance of the pump in the orthogonal direction. Can be set. Specifically, when the installation position of the diffuser vane in the orthogonal direction is set, the inlet angle of the diffuser vane is set according to this setting. Once the diffuser vane inlet angle is set, the performance characteristics of the pump are set. At this time, since the diffuser vane does not change its bending curvature, it is possible to suppress a decrease in pump performance accompanying a change in the shape of the diffuser vane. This eliminates the need for a new design for the diffuser vane to match the pump performance characteristics, so the pump performance characteristics can be set in a simple manner by setting the diffuser vane mounting position in the orthogonal direction. can do.
  • the diffuser vane mounting position may be changed by the offset amount set according to the pump performance characteristics with reference to the basic mounting position as an index. It is possible to easily change the mounting position.
  • the sheet metal member can be die-cut according to the diffuser vane attached to the set attachment position.
  • the diffuser vane suitable for the attachment position can be manufactured by bending the die-cut sheet metal member.
  • the diffuser vane can be generalized, so that the cost of the manufactured pump can be reduced.
  • FIG. 1 is a cross-sectional structure diagram of a mixed flow pump according to the present embodiment.
  • FIG. 2 is a QH characteristic diagram of the mixed flow pump.
  • FIG. 3 is a graph relating to the change rate of the offset amount that changes according to the set average entrance angle.
  • FIG. 4 is an explanatory diagram regarding the installation position of the diffuser vane.
  • FIG. 5 is a plan view of the diffuser vane.
  • FIG. 6 is an explanatory diagram of a sheet metal member that is bent in the bending step.
  • the pump according to the present embodiment is a so-called vertical shaft type diffuser mixed flow pump (hereinafter referred to as a mixed flow pump), and this mixed flow pump rotates the impeller to rotate the fluid sucked from the suction port (for example, irrigation water or the like is sent out toward the discharge port.
  • a mixed flow pump rotates the impeller to rotate the fluid sucked from the suction port ( For example, irrigation water or the like is sent out toward the discharge port.
  • FIG. 1 is a cross-sectional structure diagram of the mixed flow pump according to the present embodiment
  • FIG. 2 is a QH characteristic diagram of the mixed flow pump
  • FIG. 3 is a graph relating to the change rate of the offset amount that changes in accordance with the set average inlet angle
  • FIG. 4 is an explanatory diagram relating to the installation position of the diffuser vane.
  • FIG. 5 is a plan view of the diffuser vane
  • FIG. 6 is an explanatory view of a sheet metal member that is bent in the bending process.
  • the mixed flow pump 1 includes an outer cylinder casing 4 constituting an outer shell thereof, and an inner cylinder hub 5 provided inside the center of the outer cylinder casing 4. Are connected and fixed to the outer cylinder casing 4 by a stay (not shown), and a flow path 8 through which a fluid flows is formed between the outer cylinder casing 4 and the inner cylinder hub 5. At this time, the fluid flows from the most upstream side in the lower part of the figure toward the most downstream side in the upper part of the figure.
  • the outer casing 4 includes, in order from the lower end side, a suction bell mouth 10, an impeller casing 11 connected above the suction bell mouth 10, a shroud 12 connected above the impeller casing 11, and a shroud 12.
  • the pumping pipe 13 is connected to the upper side, and the bent pipe 14 is connected to the upper side of the pumping pipe 13.
  • the suction bell mouth 10 is configured in a bell mouth shape, and a suction port 17 is formed at the lower end surface of the suction bell mouth 10, and the upper end portion of the suction bell mouth 10 is connected to the impeller casing 11.
  • the flange is formed.
  • the impeller casing 11 is formed in an inverted frustoconical cylindrical shape, and a flange for connecting to the suction bell mouth 10 is formed at the lower end portion of the impeller casing 11, and at the upper end portion of the impeller casing 11. Is formed with a flange for connection to the shroud 12.
  • the shroud 12 is formed in a substantially cylindrical shape, and a flange for connecting to the impeller casing 11 is formed at the lower end portion of the shroud 12, and for connecting to the pumping pipe 13 at the upper end portion of the shroud 12.
  • the flange is formed.
  • the pumping pipe 13 is configured in a substantially cylindrical shape, and a flange for connecting to the shroud 12 is formed at the lower end of the pumping pipe 13, and connected to the bent pipe 14 at the upper end of the pumping pipe 13.
  • the flange for forming is formed.
  • the bent tube 14 is formed in a cylindrical shape bent in an arc shape so as to guide the fluid pumped in the vertical direction in the horizontal direction, and a discharge port 18 is formed on a side end surface of the bent tube 14.
  • a flange for connecting to the pumping pipe 13 is formed at the lower end of 14.
  • the outer casing 4 is configured by bolting the suction bell mouth 10, the impeller casing 11, the shroud 12, the pumping pipe 13 and the bent pipe 14 through respective flanges.
  • the inner cylinder hub 5 includes, in order from the lower side, an impeller side hub 20, a diffuser side hub 21 disposed above the impeller side hub 20, and a pumping pipe side disposed above the diffuser side hub 21. It is composed of a hub 22.
  • the impeller side hub 20 is disposed inside the center of the impeller casing 11 and is formed in a cone shape that tapers toward the suction bell mouth 10 side.
  • the impeller side hub 20 constitutes a part of the impeller 25. That is, the impeller 25 includes the above-described impeller-side hub 20 and a plurality of impeller vanes 26 attached to the outer periphery of the impeller-side hub 20, and the impeller 25 includes the impeller casing 11. Is housed in.
  • the plurality of impeller vanes 26 are arranged at equal intervals in the circumferential direction with respect to the impeller-side hub 20, and the impeller-side hub 20 is fixed to a tip end of a main shaft 36 described later. Accordingly, the impeller 25 is configured to be rotatable with the rotation of the main shaft 36.
  • the diffuser-side hub 21 is disposed inside the center of the shroud 12 and is formed in a cylindrical shape.
  • the diffuser-side hub 21 constitutes a part of the diffuser 30. That is, the diffuser 30 includes the shroud 12 that forms part of the flow path 8, the diffuser-side hub 21 that is disposed in the center of the shroud 12, and the outer surface of the diffuser-side hub 21.
  • a plurality of diffuser vanes 31 arranged radially toward the inner peripheral surface, and converts the dynamic pressure of the fluid sent out from the impeller 25 into a static pressure.
  • the plurality of diffuser vanes 31 have base ends attached to the diffuser-side hub 21 and tip ends attached to the shroud 12 and are arranged at equal intervals in the circumferential direction.
  • the diffuser side hub 21 is being fixed to the shroud 12 via the several diffuser vane 31, the lower end part (impeller side hub side) of the diffuser side hub 21 permits the rotation by the impeller 25. It has a configuration. Although the details will be described later, the attachment positions of the diffuser vanes 31 attached to the diffuser-side hub 21 are appropriately changed according to the performance characteristics of the mixed flow pump 1.
  • the pumping pipe side hub 22 is disposed inside the center of the lower side of the pumping pipe 13 and is formed in a tapered shape that tapers toward the bent pipe 14 side.
  • the lower end portion of the pumping pipe side hub 22 is connected and fixed to the upper end portion of the diffuser side hub 21.
  • the mixed flow pump 1 includes a drive source 35 disposed above the bent tube 14 and a main shaft 36 disposed between the drive source 35 and the impeller 25.
  • the drive source 35 for example, a motor or the like is used, and the impeller 25 is rotated via the main shaft 36.
  • the main shaft 36 is disposed inside the center of the outer casing 4, and has a base end portion that passes through the bent pipe 14 and is connected to the drive source 35, and a tip end portion that passes through the pumping pipe side hub 22. It passes through the inside of the diffuser-side hub 21 and is connected to the impeller-side hub 20 (impeller 25).
  • the mixed flow pump 1 it is necessary to appropriately set the performance characteristics of the mixed flow pump 1 so that the pump operation can be efficiently performed according to the installation location and the application. That is, by appropriately setting the performance characteristics of the mixed flow pump 1, pump operation by the mixed flow pump 1 can be efficiently performed in accordance with the installation location and the application.
  • the performance characteristic of the mixed flow pump 1 is the efficiency ⁇ of the mixed flow pump 1, and the performance characteristic of the mixed flow pump 1 is set by setting the efficiency ⁇ .
  • the efficiency ⁇ of the mixed flow pump 1 is set based on the inlet angle of each diffuser vane 31 of the diffuser 30.
  • the inlet angle of each diffuser vane 31 will be described.
  • the inlet angle of each diffuser vane is such that, on the impeller 25 side (inlet side) of the diffuser 30, the hub-side inlet angle ⁇ 1 formed by the outer periphery of the diffuser-side hub 21 and the base end portion of the diffuser vane 31, the inner periphery of the shroud 12, An average inlet angle ⁇ obtained by averaging the shroud side inlet angle ⁇ 2 formed by the tip of the diffuser vane 31 (see FIG. 3).
  • the performance characteristics of the mixed flow pump 1 can be set by setting the average inlet angle ⁇ .
  • the performance characteristics of the mixed flow pump 1 can be set, but the bending curvature of the diffuser vane 31 can be set. Since it changes greatly, there exists a possibility that the performance of mixed flow pump 1 itself may fall. For this reason, in this embodiment, by setting the attachment position of the diffuser vane 31 to a desired attachment position, the average inlet angle ⁇ of the diffuser vane 31 is set without greatly changing the bending curvature of the diffuser vane 31. Thereby, desired performance characteristics of the mixed flow pump 1 are set.
  • a performance characteristic setting method for changing the performance characteristics of the mixed flow pump 1 will be described in detail with reference to FIGS.
  • the performance characteristic setting method of the mixed flow pump 1 includes an efficiency setting step of setting a desired efficiency ⁇ of the mixed flow pump 1 and an inlet angle setting step of setting an average inlet angle ⁇ of the diffuser vane 31 corresponding to the set efficiency ⁇ . And an attachment position setting step for setting the attachment position of the diffuser vane 31 corresponding to the set average inlet angle ⁇ .
  • the maximum efficiency point ⁇ max is set based on the design discharge water amount Q1 set according to the installation location of the mixed flow pump 1 and its application.
  • the efficiency ⁇ of the mixed flow pump 1 is set.
  • an average inlet angle ⁇ corresponding to the set efficiency ⁇ of the mixed flow pump 1 is derived from a graph (not shown) of the average inlet angle ⁇ corresponding to the efficiency ⁇ determined in advance through experiments or the like. .
  • each diffuser vane 31 mounted on the diffuser-side hub 21 is mounted in the orthogonal direction (X-direction) orthogonal to the radial direction (Y-direction) of the diffuser-side hub 21 and parallel to the tangential direction of the outer periphery of the hub.
  • the position is set based on the derived average entrance angle ⁇ (see FIG. 4).
  • the direction of the Y direction is determined with reference to the circumferential intermediate portion 50 of the diffuser vane 31 attached to the basic attachment position.
  • the radial direction passing through the intersection N between the proximal end portion of the circumferential intermediate portion 50 of the diffuser vane 31 and the outer periphery of the diffuser-side hub 21 is defined as the Y direction.
  • the tangential direction of the outer periphery of the diffuser-side hub 21 at the intersection N is the X direction and is orthogonal to the Y direction. That is, the orthogonal direction and the tangential direction are parallel to each other.
  • the basic attachment position ((1) in the drawing) is an attachment position that serves as an attachment reference for the diffuser vane 31 attached to the diffuser-side hub 21 in the basic design of the mixed flow pump 1.
  • the average inlet angle ⁇ is derived in the inlet angle setting step.
  • an offset amount with respect to a preset basic attachment position is set from the graph of the offset amount corresponding to the average entrance angle ⁇ shown in FIG. In order to decrease the average entrance angle ⁇ , the offset amount is increased. To increase the average entrance angle ⁇ , the offset amount is decreased.
  • the diffuser vane 31 maintains the posture in the X direction by the offset amount set from the basic mounting position.
  • the mounting position is set by shifting.
  • the diffuser vane 31 when the offset amount is zero, that is, in the basic attachment position, the diffuser vane 31 is attached to the diffuser-side hub 21 at the position shown in FIG.
  • the offset amount 100
  • the diffuser vane 31 is attached to the diffuser-side hub 21 at the position shown in FIG.
  • the offset amount is 200
  • the diffuser vane 31 is attached to the diffuser-side hub 21 at the position shown in FIG.
  • the offset amount is 250
  • the diffuser vane 31 is attached to the diffuser-side hub 21 at the position shown in FIG.
  • the offset amount when the offset amount is 300, the diffuser vane 31 is attached to the diffuser-side hub 21 at the position shown in FIG.
  • the average inlet angle ⁇ can be set by changing the mounting position without changing the bending curvature of the diffuser vane 31.
  • each diffuser vane 31 by attaching each diffuser vane 31 to the installation position after the offset, the performance characteristics of the mixed flow pump 1 can be set to a desired efficiency ⁇ .
  • the manufacturing method of the diffuser vane 31 manufactured based on the set attachment position is demonstrated.
  • the manufacturing method of the diffuser vane 31 includes a die-cutting process in which the sheet metal member 40 that is the material of the diffuser vane 31 is die-cut from the metal plate 41 based on the set offset amount, and the die-cut sheet metal member 40 is bent. And a bending process for forming the diffuser vane 31.
  • a plan development view 42 of the diffuser vane 31 is created from the dimensions of each part of the diffuser vane 31 manufactured based on the set offset amount. Then, based on the developed plan view 42 of the diffuser vane 31, a plate drawing as shown in FIG. 5 is created, and the sheet metal member 40 is punched from the metal plate 41 based on the created plate drawing. .
  • the diffuser vane 31 is created by bending the die-cut sheet metal member 40 by bending.
  • the diffuser vane 31 may be formed by two-dimensional bending in which the sheet metal member 40 is bent along two parallel folding lines L1, L1, or two non-parallel ones.
  • the diffuser vane 31 may be formed by three-dimensional bending in which the sheet metal member 40 is bent along the folding lines L2, L2.
  • the performance characteristics of the mixed flow pump 1 can be simply set by appropriately setting the mounting position of the diffuser vane 31 mounted on the diffuser-side hub 21 according to the efficiency ⁇ of the mixed flow pump 1 in the X direction. Can be set. At this time, the diffuser vane 31 is only changed in its mounting position, and the bending curvature of the diffuser vane 31 is not greatly changed. Therefore, it is possible to suppress a decrease in pump performance accompanying a change in the shape of the diffuser vane 31. it can. Thereby, the performance characteristic of the mixed flow pump 1 can be set by a simple method of setting the installation position of the diffuser vane 31.
  • the attachment position of the diffuser vane 31 since the attachment position of the diffuser vane 31 has only to be changed by the offset amount set according to the performance characteristics of the mixed flow pump 1 using the basic attachment position as an index as a reference, the attachment position can be easily changed. Can be done.
  • the diffuser vane 31 suitable for the mounting position after the offset is manufactured by punching the sheet metal member 40 from the metal plate 41 based on the above-described plate drawing and bending the die-cut sheet metal member 40. be able to. Moreover, according to the manufacturing method of said diffuser vane 31, since the diffuser vane 31 can be general-purpose, the cost of the manufactured mixed flow pump 1 can be reduced.
  • the mixed flow pump 1 has been described as an example.
  • the pump having the diffuser 30 is not limited to the mixed flow pump 1 and can be applied to various pumps such as an axial flow pump and a centrifugal pump. Also good.

Abstract

 吸込口から流体を取り込むと共に吐出口へ向けて流体を送り出す羽根車と、羽根車と吐出口との間の流路に介設されたディフューザ30とを備えたポンプの性能特性を変更するポンプの性能特性設定方法において、ディフューザ30は、流路の中央に配設されたハブ21と、ハブ21の周囲に配設されたシュラウド12と、ハブ21の外周面からシュラウド12の内周面へ向けて放射状に配設された複数のディフューザベーン31と、を有しており、ハブ21からシュラウド12へ向かう径方向に直交する直交方向において、ハブ21に取り付けられる各ディフューザベーン31の取付位置を、ポンプの性能特性に応じて設定する取付位置設定工程を備えた。

Description

ポンプの性能特性設定方法およびディフューザベーンの製造方法
 本発明は、ディフューザを備えたポンプの性能特性を設定するポンプの性能特性設定方法およびディフューザベーンの製造方法に関するものである。
 従来のポンプとして、斜流ポンプおよび軸流ポンプが知られており、斜流ポンプおよび軸流ポンプは、回転軸方向に流体を送り出す羽根車と、羽根車の下流側に設けられたディフューザと、を備えている(例えば、特許文献1参照)。
 ところで、斜流ポンプは、設置する場所やその用途に応じて、効率良く運転を行うことが可能なように、設置環境に応じた適切な性能特性のものが用いられる。この場合、ディフューザに設けられた各ディフューザベーンの入口角度を、所望の入口角度に設定することにより、斜流ポンプの性能特性を所望の性能特性に設定することができる。このとき、各ディフューザベーンの曲げ曲率を変えて、各ディフューザベーンの入口角度を設定することにより、斜流ポンプの性能特性を設定することができる。しかしながら、各ディフューザベーンの曲げ曲率を大きく変化させてしまうため、最適なディフューザベーンの形状が変化してしまい、斜流ポンプの性能が低下する虞がある。このため、斜流ポンプの性能低下を抑制するには、設定された各ディフューザベーンの入口角度に合わせて、各ディフューザベーンの形状を新たに設計しなおさなければならない。つまり、斜流ポンプの所望の性能特性の設定する場合、各ディフューザベーンを新設計とする必要がある。
特開2001-355592号公報
 しかしながら、斜流ポンプの所望の性能特性に合わせて、ディフューザベーンを新設計としてしまうと、ディフューザベーンの設計を一から行わなければならず、多大な負担を要してしまう。これにより、例えば、斜流ポンプの製造期間の短縮を図ることが困難となってしまう虞がある。
 そこで、本発明は、ポンプの性能低下を抑制しつつ、簡易な方法でポンプの性能特性を設定することができるポンプの性能特性設定方法およびディフューザベーンの製造方法を提供することを課題とする。
 本発明のポンプの性能特性設定方法は、吸込口から流体を取り込むと共に吐出口へ向けて流体を送り出す羽根車と、羽根車と吐出口との間の流路に介設されたディフューザとを備えたポンプの性能特性を設定するポンプの性能特性設定方法において、ディフューザは、流路の中央に配設されたハブと、ハブの周囲に配設されたシュラウドと、ハブの外周面からシュラウドの内周面へ向けて放射状に配設された複数のディフューザベーンと、を有しており、ハブからシュラウドへ向かう径方向に直交する直交方向において、ハブに取り付けられる各ディフューザベーンの取付位置を、ポンプの性能特性に応じて設定する取付位置設定工程を備えたことを特徴とする。
 この場合、ポンプの基本設計において、各ディフューザベーンは、基準となる基本取付位置においてハブに取り付けられており、取付位置設定工程では、基本取付位置から、ポンプの性能特性に応じて設定されたオフセット量の分、ディフューザベーンの位置を変更することにより、取付位置が設定されることが、好ましい。
 本発明のディフューザベーンの製造方法は、上記のポンプの性能特性設定方法において設定された取付位置に基づいて、ディフューザベーンの材料となる板金部材を、金属板から型抜きする型抜き工程と、型抜きされた板金部材を折り曲げて、ディフューザベーンとする曲げ加工工程とを備えたことを特徴とする。
 請求項1のポンプの性能特性設定方法によれば、上記の直交方向において、ディフューザベーンの取付位置を、ポンプの性能に応じて、任意の取付位置に設定することにより、簡単にポンプの性能特性を設定することができる。具体的には、上記の直交方向におけるディフューザベーンの取付位置を設定すると、この設定に応じて、ディフューザベーンの入口角度が設定される。ディフューザベーンの入口角度が設定されれば、ポンプの性能特性が設定される。このとき、ディフューザベーンは、その曲げ曲率を変えることがないため、ディフューザベーンの形状変化に伴うポンプ性能の低下を抑制することができる。これにより、ポンプの性能特性の設定に合わせて、ディフューザベーンを新設計とする必要が無いため、ディフューザベーンの取付位置を上記の直交方向において設定するという簡易な方法で、ポンプの性能特性を設定することができる。
 請求項2のポンプの性能特性設定方法によれば、指標となる基本取付位置を基準とし、ポンプの性能特性に応じて設定されたオフセット量の分、ディフューザベーンの取付位置を変更すればよいため、取付位置の変更を容易に行うことが可能となる。
 請求項3のディフューザベーンの製造方法によれば、設定された取付位置に取り付けられるディフューザベーンに合わせて、板金部材を型抜きすることができる。このため、型抜きした板金部材を曲げ加工することにより、取付位置に適したディフューザベーンを製造することができる。また、このディフューザベーンの製造方法によれば、ディフューザベーンの汎用化を図ることができるため、製造されるポンプの低コスト化を図ることができる。
図1は、本実施例にかかる斜流ポンプの断面構造図である。 図2は、斜流ポンプのQ-H特性線図である。 図3は、設定される平均入口角度に応じて変化するオフセット量の変化割合に関するグラフである。 図4は、ディフューザベーンの取付位置に関する説明図である。 図5は、ディフューザベーンの板取り図である。 図6は、曲げ加工工程において曲げ加工される板金部材の説明図である。
符号の説明
 1  斜流ポンプ
 4  外筒ケーシング
 5  内筒ハブ
 8  流路
 10 吸込ベルマウス
 11 羽根車ケーシング
 12 シュラウド
 13 揚水管
 14 屈曲管
 17 吸込口
 18 吐出口
 20 羽根車側ハブ
 21 ディフューザ側ハブ
 22 揚水管側ハブ
 25 羽根車
 26 複数の羽根車ベーン
 30 ディフューザ
 31 複数のディフューザベーン
 35 駆動源
 36 主軸
 40 板金部材
 41 金属板
 42 平面展開図
 β  平均入口角度
 以下、添付した図面を参照して、本発明にかかるポンプの性能特性設定方法を用いて製造されるポンプについて説明する。なお、以下の実施例によりこの発明が限定されるものではない。
 本実施例にかかるポンプは、いわゆる、立軸型のディフューザ斜流ポンプ(以下、斜流ポンプと言う)であり、この斜流ポンプは、羽根車を回転させることにより、吸込口から吸い込んだ流体(例えば、用水等)を、吐出口へ向けて送り出すものである。
 ここで、図1は、本実施例にかかる斜流ポンプの断面構造図であり、図2は、斜流ポンプのQ-H特性線図である。また、図3は、設定される平均入口角度に応じて変化するオフセット量の変化割合に関するグラフであり、図4は、ディフューザベーンの取付位置に関する説明図である。さらに、図5は、ディフューザベーンの板取り図であり、図6は、曲げ加工工程において曲げ加工される板金部材の説明図である。以下、図1を参照して、斜流ポンプの構成について説明する。
 図1に示すように、斜流ポンプ1は、その外殻を構成する外筒ケーシング4と、外筒ケーシング4の中央内部に設けられた内筒ハブ5とを備えており、内筒ハブ5は、図示しないステイにより外筒ケーシング4に連結されて固定され、この外筒ケーシング4と内筒ハブ5との間に、流体が流れる流路8が形成されている。このとき、流体は、図示下方の最上流側から図示上方の最下流側へ向かって流れる。
 外筒ケーシング4は、下端側から順に、吸込ベルマウス10と、吸込ベルマウス10の上方に連結された羽根車ケーシング11と、羽根車ケーシング11の上方に連結されたシュラウド12と、シュラウド12の上方に連結された揚水管13と、揚水管13の上方に連結された屈曲管14とで構成されている。
 吸込ベルマウス10は、ベルマウス形状に構成されており、吸込ベルマウス10の下端面には、吸込口17が形成され、吸込ベルマウス10の上端部には、羽根車ケーシング11に連結するためのフランジが形成されている。
 羽根車ケーシング11は、逆円錐台形の筒状に構成されており、羽根車ケーシング11の下端部には、吸込ベルマウス10に連結するためのフランジが形成され、羽根車ケーシング11の上端部には、シュラウド12に連結するためのフランジが形成されている。
 シュラウド12は、略円筒形状に構成されており、シュラウド12の下端部には、羽根車ケーシング11に連結するためのフランジが形成され、シュラウド12の上端部には、揚水管13に連結するためのフランジが形成されている。なお、詳細は後述するが、シュラウド12は、ディフューザ30の一部を構成している。
 揚水管13は、略円筒形状に構成されており、揚水管13の下端部には、シュラウド12に連結するためのフランジが形成され、揚水管13の上端部には、屈曲管14に連結するためのフランジが形成されている。
 屈曲管14は、垂直方向に揚水された流体を水平方向に導くように円弧状に屈曲した円筒形状に構成されており、屈曲管14の側端面には、吐出口18が形成され、屈曲管14の下端部には、揚水管13に連結するためのフランジが形成されている。
 そして、吸込ベルマウス10、羽根車ケーシング11、シュラウド12、揚水管13および屈曲管14を、それぞれのフランジを介してボルト締めをすることにより、外筒ケーシング4が構成される。
 内筒ハブ5は、下方側から順に、羽根車側ハブ20と、羽根車側ハブ20の上方に配設されたディフューザ側ハブ21と、ディフューザ側ハブ21の上方に配設された揚水管側ハブ22とで構成されている。
 羽根車側ハブ20は、羽根車ケーシング11の中央内部に配設されており、吸込ベルマウス10側に向かって先細りとなるコーン形状に形成されている。ここで、羽根車側ハブ20は、羽根車25の一部を構成している。すなわち、羽根車25は、上記の羽根車側ハブ20と、羽根車側ハブ20の外周に取り付けられた複数の羽根車ベーン26と、を有しており、羽根車25は、羽根車ケーシング11に収容されている。複数の羽根車ベーン26は、羽根車側ハブ20に対し、周方向に等間隔に配設され、羽根車側ハブ20は、後述する主軸36の先端に固定されている。これにより、羽根車25は、主軸36の回転に伴って回転可能に構成されている。
 ディフューザ側ハブ21は、シュラウド12の中央内部に配設されており、円筒状に形成されている。ここで、ディフューザ側ハブ21は、ディフューザ30の一部を構成している。すなわち、ディフューザ30は、流路8の一部を構成する上記のシュラウド12と、シュラウド12の中央内部に配設された上記のディフューザ側ハブ21と、ディフューザ側ハブ21の外周面からシュラウド12の内周面へ向けて放射状に配設された複数のディフューザベーン31と、を有しており、羽根車25から送り出される流体の動圧を静圧に変換している。複数のディフューザベーン31は、その基端部がディフューザ側ハブ21に取り付けられると共に、先端部がシュラウド12に取り付けられており、周方向に等間隔に配設されている。これにより、ディフューザ側ハブ21は、複数のディフューザベーン31を介してシュラウド12に固定されているため、ディフューザ側ハブ21の下端部(羽根車側ハブ側)は、羽根車25による回転を許容する構成となっている。なお、詳細は後述するが、ディフューザ側ハブ21に取り付けられる各ディフューザベーン31は、斜流ポンプ1の性能特性に応じて、その取付位置が適宜変更される。
 揚水管側ハブ22は、揚水管13の下方側の中央内部に配設されており、屈曲管14側へ向かって先細りとなるテーパー形状に形成されている。揚水管側ハブ22の下端部は、ディフューザ側ハブ21の上端部に連結して固定されている。
 また、斜流ポンプ1は、屈曲管14の上方に配設された駆動源35と、駆動源35と羽根車25との間に配設された主軸36とを備えている。駆動源35は、例えば、モータ等が用いられており、主軸36を介して羽根車25を回転させている。主軸36は、外筒ケーシング4の中央内部に配設されており、その基端部は屈曲管14を貫通して駆動源35に接続され、その先端部は揚水管側ハブ22を貫通すると共にディフューザ側ハブ21の内側を通過して羽根車側ハブ20(羽根車25)に接続されている。
 ここで、斜流ポンプ1による一連のポンプ動作について説明する。斜流ポンプ1の吸込口17および羽根車25を水没させた状態において、駆動源35を駆動させて羽根車25を回転させると、回転した羽根車25は、吸込口17から流体を吸い込むと共に、吸い込んだ流体を吐出口18へ向けて垂直方向に送り出す。羽根車25から送り出された動圧の流体は、ディフューザ30を通過することにより静圧となる。静圧となった流体は、揚水管13および屈曲管14を通過して、吐出口18から水平方向に吐き出される。
 ところで、上記の斜流ポンプ1では、設置する場所やその用途に応じて、効率良くポンプ動作を行うことが可能なように、斜流ポンプ1の性能特性を適宜設定する必要がある。つまり、斜流ポンプ1の性能特性を適切に設定することにより、設置する場所やその用途に合わせて、斜流ポンプ1によるポンプ動作を効率良く行うことができる。なお、斜流ポンプ1の性能特性とは、斜流ポンプ1の効率ηであり、この効率ηを設定することで、斜流ポンプ1の性能特性が設定される。
 このとき、斜流ポンプ1の効率ηは、ディフューザ30の各ディフューザベーン31の入口角度に基づいて設定される。ここで、各ディフューザベーン31の入口角度について説明する。各ディフューザベーンの入口角度は、ディフューザ30の羽根車25側(入口側)において、ディフューザ側ハブ21の外周およびディフューザベーン31の基端部が為すハブ側入口角度β1と、シュラウド12の内周およびディフューザベーン31の先端部が為すシュラウド側入口角度β2と、を平均した平均入口角度βである(図3参照)。そして、この平均入口角度βを設定することにより、斜流ポンプ1の性能特性を設定することが可能となる。
 しかしながら、ディフューザベーン31の平均入口角度βを設定すべく、ディフューザベーン31の曲げ曲率を変化させてしまうと、斜流ポンプ1の性能特性を設定することはできるが、ディフューザベーン31の曲げ曲率を大きく変化させてしまうため、斜流ポンプ1自体の性能が低下する虞がある。このため、本実施例では、ディフューザベーン31の取付位置を所望の取付位置に設定することにより、ディフューザベーン31の曲げ曲率を大きく変化させること無く、ディフューザベーン31の平均入口角度βを設定し、これにより、斜流ポンプ1の所望の性能特性を設定している。以下、図2ないし図4を参照して、斜流ポンプ1の性能特性を変更する性能特性設定方法について具体的に説明する。
 斜流ポンプ1の性能特性設定方法は、所望の斜流ポンプ1の効率ηを設定する効率設定工程と、設定した効率ηに対応するディフューザベーン31の平均入口角度βを設定する入口角度設定工程と、設定した平均入口角度βに対応するディフューザベーン31の取付位置を設定する取付位置設定工程とを備えている。
 効率設定工程は、図2に示すQ-H特性線図から、斜流ポンプ1の設置場所やその用途に応じて設定される設計吐出水量Q1に基づいて、最高効率点ηmaxとなるように、斜流ポンプ1の効率ηを設定する。
 入口角度設定工程は、設定した斜流ポンプ1の効率ηに応じた平均入口角度βを、予め実験等により求められた効率ηに対応する平均入口角度βのグラフ(図示省略)から、導出する。
 取付位置設定工程は、ディフューザ側ハブ21の径方向(Y方向)に直交すると共にハブ外周の接線方向に平行な直交方向(X方向)において、ディフューザ側ハブ21に取り付けられる各ディフューザベーン31の取付位置を、導出した平均入口角度βに基づいて設定している(図4参照)。
 図4に示すように、Y方向は、基本取付位置に取り付けられるディフューザベーン31の周方向中間部50を基準として方向が定められる。つまり、ディフューザベーン31の周方向中間部50における基端部とディフューザ側ハブ21の外周との交点Nを通る径方向が、Y方向として定められている。また、X方向は、上記交点Nにおけるディフューザ側ハブ21外周の接線方向がX方向となり、Y方向に直交している。つまり、直交方向と接線方向とは平行となっている。なお、基本取付位置(図示(1))は、斜流ポンプ1の基本設計において、ディフューザ側ハブ21に取り付けられるディフューザベーン31の取付基準となる取付位置である。
 ここで、図3および図4を参照して、例えば、1のディフューザベーン31をディフューザ側ハブ21に取り付ける場合について、具体的に説明する。先ず、効率設定工程により設定された効率ηに基づいて、入口角度設定工程において平均入口角度βを導出する。次に、導出された平均入口角度βに基づいて、図3に示す平均入口角度βに対応するオフセット量のグラフから、予め設定された基本取付位置に対するオフセット量を設定する。なお、平均入口角度βを小さくさせるためには、オフセット量を増加させ、平均入口角度βを大きくさせるためには、オフセット量を減少させる。
 そして、図4に示すように、取付位置設定工程によりオフセット量が設定されると、ディフューザベーン31は、その姿勢を維持した状態で、基本取付位置から設定されたオフセット量の分、X方向にずらして取付位置が設定される。
 例えば、オフセット量がゼロの場合、すなわち基本取付位置の場合、図4の(1)に示す位置において、ディフューザベーン31がディフューザ側ハブ21に取り付けられる。オフセット量が100の場合、図4の(2)に示す位置において、ディフューザベーン31がディフューザ側ハブ21に取り付けられる。オフセット量が200の場合、図4の(3)に示す位置において、ディフューザベーン31がディフューザ側ハブ21に取り付けられる。オフセット量が250の場合、図4の(4)に示す位置において、ディフューザベーン31がディフューザ側ハブ21に取り付けられる。オフセット量が300の場合、図4の(5)に示す位置において、ディフューザベーン31がディフューザ側ハブ21に取り付けられる。これによれば、ディフューザベーン31の曲げ曲率を変更することなく、取付位置を変更することにより、平均入口角度βを設定することができる。
 これにより、オフセット後の取付位置に、各ディフューザベーン31を取り付けることにより、斜流ポンプ1の性能特性を、所望の効率ηにすることが可能となる。次に、図5を参照して、設定した取付位置に基づいて、製造されるディフューザベーン31の製造方法について説明する。
 ディフューザベーン31の製造方法は、設定されたオフセット量に基づいてディフューザベーン31の材料となる板金部材40を金属板41から型抜きする型抜き工程と、型抜きした板金部材40を曲げ加工してディフューザベーン31を成形する曲げ加工工程とを備えている。
 型抜き工程は、設定されたオフセット量に基づいて製造されるディフューザベーン31の各部の寸法から、ディフューザベーン31の平面展開図42を作成する。そして、作成したディフューザベーン31の平面展開図42に基づいて、図5に示すような、板取り図を作成し、作成した板取り図に基づいて、金属板41から板金部材40を型抜きする。
 曲げ加工工程は、型抜きした板金部材40を、曲げ加工により折り曲げてディフューザベーン31を作成する。このとき、図6に示すように、平行な2本の折り曲げ線L1,L1に沿って板金部材40を折り曲げる二次元曲げによりディフューザベーン31を成形しても良いし、あるいは、平行でない2本の折り曲げ線L2,L2に沿って板金部材40を折り曲げる三次元曲げによりディフューザベーン31を成形しても良い。
 以上の構成によれば、X方向において、ディフューザ側ハブ21に取り付けるディフューザベーン31の取付位置を、斜流ポンプ1の効率ηに応じて適宜設定することにより、簡単に斜流ポンプ1の性能特性を設定することができる。このとき、ディフューザベーン31は、その取付位置が変更されるだけであり、ディフューザベーン31の曲げ曲率が大きく変わることは無いため、ディフューザベーン31の形状変化に伴うポンプ性能の低下を抑制することができる。これにより、ディフューザベーン31の取付位置を設定するという簡易な方法で、斜流ポンプ1の性能特性を設定することができる。
 また、指標となる基本取付位置を基準とし、斜流ポンプ1の性能特性に応じて設定されたオフセット量の分、ディフューザベーン31の取付位置を変更すればよいため、取付位置の変更を容易に行うことが可能となる。
 さらに、上記の板取り図に基づいて金属板41から板金部材40を型抜きすると共に、型抜きした板金部材40を曲げ加工することにより、オフセット後の取付位置に適したディフューザベーン31を製造することができる。また、上記のディフューザベーン31の製造方法によれば、ディフューザベーン31の汎用化を図ることができるため、製造される斜流ポンプ1の低コスト化を図ることができる。
 なお、本実施例では、斜流ポンプ1を例にして説明したが、ディフューザ30を持つポンプであれば、斜流ポンプ1に限らず、軸流ポンプや渦巻きポンプ等の各種ポンプに適用しても良い。

Claims (3)

  1.  吸込口から流体を取り込むと共に吐出口へ向けて前記流体を送り出す羽根車と、前記羽根車と前記吐出口との間の流路に介設されたディフューザとを備えたポンプの性能特性を設定するポンプの性能特性設定方法において、
     前記ディフューザは、前記流路の中央に配設されたハブと、前記ハブの周囲に配設されたシュラウドと、前記ハブの外周面から前記シュラウドの内周面へ向けて放射状に配設された複数のディフューザベーンと、を有しており、
     前記ハブから前記シュラウドへ向かう径方向に直交する直交方向において、前記ハブに取り付けられる前記各ディフューザベーンの取付位置を、前記ポンプの性能特性に応じて設定する取付位置設定工程を備えたことを特徴とするポンプの性能特性設定方法。
  2.  前記ポンプの基本設計において、前記各ディフューザベーンは、基準となる基本取付位置において前記ハブに取り付けられており、
     前記取付位置設定工程では、前記基本取付位置から、前記ポンプの性能特性に応じて設定されたオフセット量の分、前記ディフューザベーンの位置を変更することにより、前記取付位置が設定されることを特徴とする請求項1に記載のポンプの性能特性設定方法。
  3.  請求項1または2に記載のポンプの性能特性設定方法において設定された前記取付位置に基づいて、前記ディフューザベーンの材料となる板金部材を、金属板から型抜きする型抜き工程と、
     型抜きされた前記板金部材を折り曲げて、前記ディフューザベーンとする曲げ加工工程とを備えたことを特徴とするディフューザベーンの製造方法。
PCT/JP2009/050301 2008-01-18 2009-01-13 ポンプの性能特性設定方法およびディフューザベーンの製造方法 WO2009090934A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801008811A CN101861464B (zh) 2008-01-18 2009-01-13 泵的性能特性设定方法和扩散器叶片的制造方法
US12/739,447 US8720054B2 (en) 2008-01-18 2009-01-13 Method of setting performance characteristic of pump and method of manufacturing diffuser vane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-009062 2008-01-18
JP2008009062A JP5297047B2 (ja) 2008-01-18 2008-01-18 ポンプの性能特性設定方法およびディフューザベーンの製造方法

Publications (1)

Publication Number Publication Date
WO2009090934A1 true WO2009090934A1 (ja) 2009-07-23

Family

ID=40885323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050301 WO2009090934A1 (ja) 2008-01-18 2009-01-13 ポンプの性能特性設定方法およびディフューザベーンの製造方法

Country Status (5)

Country Link
US (1) US8720054B2 (ja)
JP (1) JP5297047B2 (ja)
KR (1) KR101261102B1 (ja)
CN (1) CN101861464B (ja)
WO (1) WO2009090934A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2770215A1 (de) * 2013-02-22 2014-08-27 Sulzer Pumpen AG Pumpvorrichtung, sowie Diffusor für eine Pumpvorrichtung
CN108223396B (zh) * 2017-12-11 2024-04-26 中国水利水电科学研究院 一种高精度的水泵模型实验装置
US11629718B2 (en) * 2020-05-15 2023-04-18 Rick D. Spargo Pumping units, pump assemblies and pumping methods
US11536289B1 (en) 2022-06-17 2022-12-27 Rick Spargo Water pumping and distribution systems and louie pump assemblies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213189A (ja) * 1993-01-14 1994-08-02 Mitsubishi Heavy Ind Ltd 斜流型流体機械
JPH09228976A (ja) * 1996-02-20 1997-09-02 Kawamoto Seisakusho:Kk 多段ポンプ
JPH1182390A (ja) * 1997-09-02 1999-03-26 Mitsubishi Heavy Ind Ltd 案内羽根
JP2001107897A (ja) * 1999-10-06 2001-04-17 Dmw Corp ポンプ
JP2003343493A (ja) * 2002-05-23 2003-12-03 Mitsubishi Heavy Ind Ltd ポンプのディフューザ及びポンプ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959116A (en) * 1958-07-08 1960-11-08 Air Devices Inc Air diffuser
US3101690A (en) * 1959-12-15 1963-08-27 Cortland N O'day Air diffusers and methods of making the same
US3217628A (en) * 1963-03-06 1965-11-16 Air Devices Inc Diffuser construction
US3243159A (en) * 1964-04-27 1966-03-29 Ingersoll Rand Co Guide vane mechanism for centrifugal fluid-flow machines
JPS55123394A (en) * 1979-03-12 1980-09-22 Hitachi Ltd Capacity control of centrifugal compressor
JP3482668B2 (ja) * 1993-10-18 2003-12-22 株式会社日立製作所 遠心形流体機械
CA2149576A1 (en) * 1994-05-19 1995-11-20 Hideomi Harada Surge detection device and turbomachinery therewith
FR2724127B1 (fr) * 1994-09-07 1996-12-20 Snecma Procede de fabrication d'une aube creuse de turbomachine
KR0129269B1 (ko) 1995-06-23 1998-04-08 구자홍 웨스코형 펌프의 유로구조
US5947680A (en) * 1995-09-08 1999-09-07 Ebara Corporation Turbomachinery with variable-angle fluid guiding vanes
DE19801041C1 (de) * 1998-01-14 1999-08-05 Atlas Copco Energas Verfahren zum Betrieb eines Radialverdichters mit verstellbaren Vorleit- und Nachleitapparaten bei Änderungen des Arbeitspunktes im Verdichterkennfeld
CN1114045C (zh) 1998-04-24 2003-07-09 株式会社荏原制作所 混流泵
JP3935278B2 (ja) 1998-11-12 2007-06-20 株式会社東芝 流体機械の羽根の製造方法
US6463748B1 (en) * 1999-12-06 2002-10-15 Mainstream Engineering Corporation Apparatus and method for controlling a magnetic bearing centrifugal chiller
JP2001355592A (ja) 2000-06-12 2001-12-26 Mitsubishi Heavy Ind Ltd 高比速度の斜流ポンプ
EP1441129A4 (en) 2001-11-01 2010-04-14 Ishigaki Mech Ind TURBOPUMP
US6726449B2 (en) * 2002-03-18 2004-04-27 Baker Hughes Incorporated Pump diffuser anti-spin device
US6702555B2 (en) * 2002-07-17 2004-03-09 Engineered Machined Products, Inc. Fluid pump having an isolated stator assembly
DE10307498A1 (de) * 2003-02-21 2004-09-02 Ksb Aktiengesellschaft Schwingungsoptimierte Rohrgehäusepumpe
GB0313143D0 (en) * 2003-06-07 2003-07-09 Boc Group Plc Sewage aeration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213189A (ja) * 1993-01-14 1994-08-02 Mitsubishi Heavy Ind Ltd 斜流型流体機械
JPH09228976A (ja) * 1996-02-20 1997-09-02 Kawamoto Seisakusho:Kk 多段ポンプ
JPH1182390A (ja) * 1997-09-02 1999-03-26 Mitsubishi Heavy Ind Ltd 案内羽根
JP2001107897A (ja) * 1999-10-06 2001-04-17 Dmw Corp ポンプ
JP2003343493A (ja) * 2002-05-23 2003-12-03 Mitsubishi Heavy Ind Ltd ポンプのディフューザ及びポンプ

Also Published As

Publication number Publication date
CN101861464B (zh) 2012-02-29
US8720054B2 (en) 2014-05-13
KR20100075584A (ko) 2010-07-02
US20110209346A1 (en) 2011-09-01
JP2009167969A (ja) 2009-07-30
CN101861464A (zh) 2010-10-13
KR101261102B1 (ko) 2013-05-06
JP5297047B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
US9874219B2 (en) Impeller and fluid machine
JP5316365B2 (ja) ターボ型流体機械
CN108474391B (zh) 离心压缩机
JP5351941B2 (ja) 遠心圧縮機とその羽根車およびその運転方法、羽根車の設計方法
KR20100032362A (ko) 방사형 블레이드 휠
JP5297047B2 (ja) ポンプの性能特性設定方法およびディフューザベーンの製造方法
JP2016031064A (ja) 多段ポンプ
EP2739861B1 (en) Axial blower
JP5882804B2 (ja) インペラ及び流体機械
JP6065509B2 (ja) 遠心圧縮機
JP2016017500A (ja) 遠心送風機
JP2008031877A (ja) 遠心圧縮機
JP2018514690A (ja) 遠心ポンプ用羽根車組立体
JP6168705B2 (ja) 遠心式圧縮機のインペラ
JP4146371B2 (ja) 遠心圧縮機
JP6655426B2 (ja) 吸込ベルマウス及び立軸ポンプ、吸込ベルマウスの製造方法
JP2015187449A (ja) インペラ及び流体機械
JP6200531B2 (ja) インペラ及び流体機械
JP2014202102A (ja) 遠心圧縮機
CN205089696U (zh) 抗汽蚀离心泵
WO2017073113A1 (ja) インレットガイドベーン、圧縮機、インレットガイドベーンの取り付け方法、及び遠心圧縮機の製造方法
JP2010112277A (ja) 遠心圧縮機
JP6647914B2 (ja) ポンプのケーシング構造
CN110966205A (zh) 立轴式泵
JP2004197738A (ja) 遠心圧縮機用改良型ディフューザ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100881.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12739447

Country of ref document: US

Ref document number: 2384/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107009532

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09702661

Country of ref document: EP

Kind code of ref document: A1