WO2009090773A1 - 温度調節機構 - Google Patents

温度調節機構 Download PDF

Info

Publication number
WO2009090773A1
WO2009090773A1 PCT/JP2008/065562 JP2008065562W WO2009090773A1 WO 2009090773 A1 WO2009090773 A1 WO 2009090773A1 JP 2008065562 W JP2008065562 W JP 2008065562W WO 2009090773 A1 WO2009090773 A1 WO 2009090773A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
heat exchange
exchange medium
guide member
temperature
Prior art date
Application number
PCT/JP2008/065562
Other languages
English (en)
French (fr)
Inventor
Masaru Takagi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP08870594.2A priority Critical patent/EP2246929A4/en
Priority to US12/811,869 priority patent/US20100276120A1/en
Publication of WO2009090773A1 publication Critical patent/WO2009090773A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5038Heating or cooling of cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a temperature adjustment mechanism used for adjusting the temperature of a power supply element.
  • a cooling pipe for circulating a coolant is arranged inside a container that houses a plurality of batteries, and the plurality of batteries are cooled via the cooling pipe. I have to. Further, in the configurations described in Patent Documents 2 and 3, the battery is cooled by supplying air to the battery.
  • Japanese Patent Laid-Open No. 11-307139 FIG. 1
  • Japanese Patent Laid-Open No. 2004-14421 FIGGS. 1 and 3) Japanese Patent Laying-Open No. 2003-188772 (FIG. 1)
  • an object of the present invention is to provide a temperature adjustment mechanism capable of efficiently adjusting the temperature of the power supply element.
  • a first invention of the present application is a temperature adjustment mechanism for adjusting the temperature of a power supply element, and contains the power supply element and a liquid first heat exchange medium for performing heat exchange between the power supply elements. And a guide member connected to the case member and forming at least a part of a flow path for allowing the second heat exchange medium to flow.
  • the guide member is formed of a material having a higher thermal conductivity than the outside air in contact with the case member.
  • the channel is a channel partitioned from the outside.
  • the flow path can be formed by the case member and the guide member.
  • the second heat exchange medium can be brought into contact with the case member and the guide member.
  • one of the case member and the guide member can be provided with a protrusion that contacts the other member in the flow path.
  • the contact area between the case member and the guide member can be increased, and heat transfer between the case member and the guide member can be improved.
  • the protrusion is formed so as to extend in the direction in which the second heat exchange medium flows, the flow of the second heat exchange medium can be adjusted.
  • the thickness of the portion of the guide member that contacts the case member can be made thicker than the thickness of the other portions.
  • a contact part with a case member among guide members can be made into a field larger than the thickness of a guide member. Thereby, more heat can be received from a case member in a contact part with a case member.
  • the case member is provided with a flange portion
  • the guide member is provided with a flange portion that is in contact with the flange portion of the case member so as to transfer more heat between the case member and the guide member. Can be made.
  • a duct member for causing the second heat exchange medium to flow can be connected to the guide member. Further, as the second heat exchange medium, a gas used for cooling or heating the guide member can be used. Furthermore, the case member and the guide member can be formed of metal.
  • the second invention of the present application is a temperature adjustment mechanism for adjusting the temperature of the power supply device, and the power supply device is a liquid first heat exchange for exchanging heat between the power supply element and the power supply element.
  • a medium and a case member that houses the power supply element and the first heat exchange medium, and the temperature adjustment mechanism is connected to the case member and is at least part of a flow path for flowing the second heat exchange medium
  • a guide member is formed.
  • the guide member is formed of a material having a higher thermal conductivity than the outside air in contact with the case member.
  • the guide member connected to the case member is formed of a material having a higher thermal conductivity than the outside air in contact with the case member. Heat transfer can be performed efficiently.
  • the power supply element can be efficiently cooled. And since the 2nd heat exchange medium is made to flow through a guide member, heat dissipation of a guide member can be performed using the 2nd heat exchange medium. On the other hand, if the guide member and the case member are warmed using the second heat exchange medium, the power supply element can be warmed via the first heat exchange medium. As a result, the temperature of the power supply element can be adjusted.
  • FIG. 3 is a schematic diagram showing an internal structure of a battery pack in Example 1.
  • 3 is a top view showing a temperature adjustment mechanism connected to the battery pack of Example 1.
  • FIG. 6 is a schematic diagram illustrating a modification of the first embodiment. It is sectional drawing which shows the structure of the battery pack provided with the temperature control mechanism which is Example 2 of this invention. In Example 2, it is a front view which shows the structure of a cover member. In the modification of Example 2, it is a front view which shows the structure of a cover member.
  • FIG. 1 is an external perspective view showing a part of the cooling mechanism of the battery pack.
  • FIG. 2 is a schematic diagram showing the internal configuration of the battery pack cooling mechanism.
  • FIG. 3 is a top view of the cooling mechanism of the battery pack.
  • the Z-axis indicates the direction of gravity
  • the X-axis and the Y-axis indicate directions orthogonal to the Z-axis and orthogonal to each other.
  • the battery pack 1 of this embodiment is mounted on a vehicle (so-called hybrid vehicle). And the vehicle can be run using the output of the battery pack 1, or the battery pack 1 can be charged with the kinetic energy of the vehicle as regenerative energy.
  • the battery pack 1 can be mounted other than the vehicle.
  • the battery pack 1 has a case 2 and a battery unit 3 accommodated in the case 2.
  • the case 2 includes a housing member 21 having a space for housing the battery unit 3, and a lid member 22 that closes the opening of the housing member 21.
  • the housing member 21 and the lid member 22 are formed of a metal such as aluminum or iron.
  • the lid member 22 is fixed to the housing member 21 by a fastening member such as a screw or is fixed by welding. Thereby, the inside of case 2 will be in a sealed state.
  • the method of fixing the lid member 22 to the housing member 21 is not limited to this, and any method may be used as long as the lid member 22 can be fixed to the housing member 21.
  • a liquid heat exchange medium (first heat exchange medium) 4 for performing heat exchange with the battery unit 3 is accommodated inside the case 2. (See FIG. 2).
  • the heat exchange medium 4 is in contact with the surface of the battery unit 3 and is in contact with all the inner wall surfaces of the case 2. As will be described later, the heat exchange medium 4 is used to suppress the temperature increase of the battery unit 3 or to suppress the temperature decrease.
  • the heat exchange medium 4 is a liquid having an insulating property, and a function of suppressing the temperature increase of the unit cell 31 by transmitting heat generated in the unit cell 31 to the case 2 or a unit cell that receives heat from the outside. It has the function of suppressing the temperature drop of the unit cell 31 by warming 31.
  • insulating oil or fluorine-based inert liquid can be used as the heat exchange medium 4.
  • fluorine-based inert liquid for example, Fluorinert, Novec HFE (hydrofluoroether), Novec1230 (manufactured by 3M) can be used.
  • the surface of the battery unit 3 is insulated, it is not necessary to use an insulating liquid as the heat exchange medium 4.
  • an insulating liquid for example, a film having an insulating property can be formed on the surface of the battery unit 3, and in this case, a heat exchange medium 4 having no insulating property such as water can be used.
  • the battery unit 3 is a unit in which a plurality of single cells (power supply elements) 31 are electrically connected.
  • the plurality of single cells 31 are arranged in parallel inside the case 2.
  • the single battery 31 has a cylindrical shape, and a secondary battery such as a nickel metal hydride battery or a lithium ion battery is used as the single battery 31.
  • An electric double layer capacitor (capacitor) or a fuel cell can be used instead of the secondary battery.
  • the shape of the unit cell 31 is not limited to the cylindrical shape, and may be another shape such as a square shape.
  • Each cell 31 is supported by a pair of plate-like support members 32 at both ends as shown in FIG.
  • These support members 32 are fixed to the case 2 by fastening members (not shown) such as screws.
  • fastening members such as screws.
  • two support members 32 are used, but these support members 32 may be configured as a single unit.
  • a positive electrode terminal 31 a and a negative electrode terminal 31 b are provided at both ends of each unit cell 31. These terminals 31 a and 31 b are connected to a power generation element housed inside the unit cell 31.
  • This power generation element includes a positive electrode plate, a negative electrode plate, and a separator, and is an element for charging and discharging.
  • terminals 31 a and 31 b in each unit cell 31 are connected to terminals 31 a and 31 b of other unit cells 31 arranged adjacent to each other through a bus bar 33. That is, a desired high output (for example, 200 [V]) can be obtained as the battery pack 1 by electrically connecting a plurality of single cells 31 in series via the bus bar 33.
  • a cover member (guide member) 5 is fixed to the upper surface of the case 2 (lid member 22).
  • the cover member 5 is formed of a material having a thermal conductivity higher than that of air.
  • the cover member 5 can be formed of a metal such as aluminum or iron.
  • the cover member 5 has the upper surface part 5a arrange
  • the front end of the side surface portion 5b is fixed to the lid member 22 by a fastening member such as a bolt or welding.
  • a fastening member such as a bolt or welding.
  • Openings Sa formed by the cover member 5 and the lid member 22 are located at both ends in the Y-axis direction of the space S, in other words, at both ends in the Y-axis direction of the cover member 5.
  • a first duct 61 and a second duct 62 are connected to the two openings Sa. That is, the first duct 61 and the second duct 62 are connected to the cover member 5 and the lid member 22.
  • the 1st duct 61 and the 2nd duct 62 can also be formed with a metal similarly to the cover member 5, and can also be formed with resin.
  • the width of the first duct 61 and the second duct 62 is the largest at the connection portion with the opening Sa, and as the distance from the connection portion increases, It ’s getting smaller.
  • the first duct 61 is provided with a fan 63.
  • the fan 63 is driven by a drive mechanism such as a motor (not shown), and the drive of this drive mechanism is controlled by a controller.
  • the position where the fan 63 is provided is not limited to the position shown in FIG. That is, as will be described later, as long as an air flow in a predetermined direction can be generated inside the space S, it may be provided at any position.
  • An opening is formed at the end of the first duct 61 opposite to the end connected to the opening Sa, and this opening is formed in the vehicle interior. Facing.
  • the interior of the vehicle means a space in which a vehicle occupant gets in or a space for storing luggage (so-called luggage compartment).
  • an opening is formed at the end of the second duct 62 opposite to the end connected to the opening Sa, and this opening is formed outside the vehicle. Facing.
  • FIG. 2 and FIG. 3 schematically indicate the moving path through which the air flows.
  • the unit cell 31 may generate heat due to charging / discharging or the like.
  • the heat exchange medium 4 in contact with the unit cell 31 takes away the heat generated in the unit cell 31 by heat exchange with the unit cell 31.
  • the heat exchange medium 4 with heat flows inside the case 2 and reaches the inner wall surface of the case 2 to transfer heat to the case 2. Since the case 2 is made of metal as described above, it is easy to receive heat from the heat exchange medium 4. Further, since the heat exchange medium 4 as a liquid is used, the heat from the unit cell 31 can be efficiently transmitted to the case 2 as compared with the case where a gas such as air is used.
  • the heat transferred to case 2 is released into the atmosphere (in the air).
  • the cover member 5 since the cover member 5 is connected to the lid member 22 of the case 2, the heat transmitted to the case 2 is mainly transmitted to the cover member 5. That is, since the thermal conductivity of the cover member 5 is higher than that of air, the heat transferred from the heat exchange medium 4 to the case 2 is more easily transferred to the cover member 5 than to be released into the atmosphere. It has become.
  • the heat dissipation in the case 2 can be improved.
  • the heat dissipation of the battery pack 1 can be improved.
  • the cover member 5 and the lid member 22 are cooled by the air passing through the space S. .
  • the air that has flowed into the space S takes heat transferred to the cover member 5 and the lid member 22 through heat exchange with the cover member 5 and the lid member 22. Then, the heated air is released to the outside of the vehicle through the second duct 62.
  • the cooling efficiency of the battery pack 1 (more specifically, the single battery 31) can be improved by the heat flow described above.
  • the outer surface of the case 2 is formed as a flat surface.
  • a plurality of fins having a protruding shape are formed on the outer surface of the case 2. can do.
  • fins can be formed on the side surface and the bottom surface of the case 2.
  • a protrusion can be formed on the cover member 5 or the lid member 22.
  • a protrusion that collides with the main air flow can be formed on a part of the surface of the cover member 5 and the lid member 22 that forms the space S. If such a protrusion is formed, air can be retained in the space S, and the cooling efficiency by air can be improved.
  • the present invention is not limited to this. That is, the battery pack 1 can be warmed using the cover member 5, the first duct 61, and the second duct 62. This case will be specifically described.
  • a heater (not shown) may be disposed in the first duct 61 to warm the air guided to the space S. If the temperature in the vehicle interior is higher than the temperature of the battery pack 1, the air in the room can be directly introduced into the space S without heating the air with a heater.
  • Case 2 (in particular, the cover member 22) is heated by the air (warmed air) guided to the space S.
  • the warmed air reaches the lid member 22 without leaking to the outside by the first duct 61 or the cover member 5, the case 2 (lid member 22) can be efficiently warmed.
  • the case 2 is warmed, the heat exchange medium 4 accommodated in the case 2 is warmed, and the unit cell 31 is warmed via the heat exchange medium 4. Thereby, the temperature fall of the cell 31 can be suppressed.
  • the cell 31 as a secondary battery can obtain a desired output in a predetermined temperature range. That is, when the temperature of the unit cell 31 exceeds the upper limit value of the temperature range or falls below the lower limit value, the output characteristics of the unit cell 31 are deteriorated. Therefore, in order to suppress the output characteristics of the cell 31 from being degraded, it is necessary to maintain the temperature of the cell 31 within the above temperature range.
  • the temperature adjustment of the battery pack 1 can be performed efficiently by using the cover member 5 as in this embodiment.
  • the cooling pipes must be arranged along a plurality of batteries inside the container for storing the batteries, so that the structure becomes complicated.
  • the cost increases.
  • the cover member 5 is only provided on the case 2 housing the heat exchange medium 4, the temperature of the unit cell 31 can be adjusted with a simple configuration.
  • the cover member 5 is composed of the upper surface portion 5a and the two side surface portions 5b, but is not limited thereto. That is, in addition to the upper surface portion 5a and the side surface portion 5b, a configuration (guide member) provided with a bottom surface portion that contacts the lid member 22 may be used. In this case, the above-described space S is formed by the cover member 5. Even if it is such a structure, the effect similar to the Example mentioned above can be acquired.
  • air is allowed to flow through the space S, but the present invention is not limited to this.
  • a liquid second heat exchange medium
  • the duct that circulates the liquid corresponds to the cover member 5, the first duct 61, and the second duct 62 described in the present embodiment, but the first duct 61 and the second duct 62 are mutually connected. It is connected.
  • the liquid can be cooled using a radiator or the like.
  • the liquid can be warmed using a heater or the like.
  • a flange portion 21 a is formed on the outer edge of the housing member 21, and a flange portion 22 a is formed on the outer edge of the lid member 22. Further, flange portions 5 c are formed at both ends of the cover member 5. As shown in FIG. 4, these flange portions 21a, 22a, and 5c are in contact with each other while being overlapped with each other, and are fixed by welding.
  • the method of fixing the three flange portions 21a, 22a, and 5c to each other is not limited to welding. That is, any method may be used as long as the three flange portions 21a, 22a, and 5c can be fixed to each other.
  • holes that allow bolts to pass through are formed in the three flange portions 21a, 22a, and 5c, and the three flange portions 21a, 22a, and 5c can be fixed using bolts and nuts. .
  • the mechanism which clamps three flange parts 21a, 22a, and 5c from the both ends in this lamination direction can also be used. Further, in a state where the three flange portions 21a, 22a, and 5c are overlapped with each other, the flange portions 21a, 22a, and 5c can be formed to be bent.
  • the housing member 21, the lid member 22, and the cover member 5 can be easily fixed. Moreover, compared with the structure demonstrated in Example 1, the contact area of the cover member 22 and the cover member 5 can be increased by the part which provided the flange parts 22a and 5c. Thereby, the heat transmitted to the lid member 22 can be efficiently transmitted to the cover member 5, and the heat-cover member 5 can be cooled by the air flowing through the space S. And the heat dissipation of case 2 (battery pack 1) can be improved.
  • a configuration in which the flange portion 5c of the cover member 5 is brought into contact with the surface of the lid member 22 without providing the flange portion 22a on the lid member 22 may be employed. Even in this configuration, the contact area between the lid member 22 and the cover member 5 can be increased.
  • the heat transmitted to the cover member 5 is easily transmitted to the case 2 (lid member 22).
  • the case 2 can be easily warmed, and the heat exchange medium 4 and the unit cell 31 accommodated in the case 2 can be efficiently warmed.
  • the thickness D2 of the side surface portion 5b of the cover member 5 can be made larger than the thickness D1 of the upper surface portion 5a of the cover member 5. If comprised in this way, the heat transmitted to case 2 (lid member 22) can be efficiently transmitted to cover member 5. That is, since the side surface portion 5b of the cover member 5 is in direct contact with the lid member 22, the heat capacity at the side surface portion 5b is increased by making the thickness D2 of the side surface portion 5b thicker than the other portions. Can be increased. Thereby, a lot of heat can be transmitted from the lid member 22 to the side surface portion 5 b of the cover member 5.
  • the thickness D2 of the side surface portion 5b can be made larger than the thickness D1 of the upper surface portion 5a.
  • the amount of heat transferred from the lid member 22 to the cover member 5 can be further increased.
  • the cooling efficiency of the case 2 can be improved.
  • the thickness D2 of the side surface portion 5b and the thickness D3 of the flange portion 5c may be the same thickness or different thicknesses. However, if the thickness D2 and the thickness D3 are the same, the cover member 5 can be easily manufactured.
  • the thickness of the cover member 5 is not limited to the above-described configuration. That is, the thickness of the portion of the cover member 5 that contacts the lid member 22 may be made thicker than the thickness of the other portion (portion that does not contact the lid member 22). With this configuration, more heat can be transmitted between the cover member 5 and the lid member 22.
  • FIG. 5 is a schematic view showing a cross section of the temperature adjusting mechanism in the present embodiment.
  • the member which has the same function as the member demonstrated in Example 1 detailed description is abbreviate
  • the first embodiment differences from the first embodiment will be described.
  • the cover member 5 fixed to the case 2 has a plurality of protrusions 5d.
  • the plurality of protrusions 5d extend linearly in the Y direction, as shown in FIG.
  • FIG. 6 is a view when the cover member 5 is viewed from the lid member 22 side.
  • the side surface part 5b is located on both sides of the cover member 5, and a plurality of protrusions 5d are located between the two side surface parts 5b.
  • the plurality of protrusions 5d are arranged at equal intervals in a direction orthogonal to the direction in which the air travels (Y direction).
  • interval of adjacent protrusion part 5d does not need to be made into equal intervals, and is good also as a mutually different space
  • the number of the protrusion parts 5d can be set suitably.
  • each projection 5d is in contact with the upper surface of the lid member 22.
  • air can be efficiently moved in the space formed by the cover member 5 and the lid member 22 (corresponding to the space S of the first embodiment). That is, air can be efficiently moved from the first duct 61 side toward the second duct 62 side in the space.
  • each protrusion part 5d is contacting the cover member 22, the heat transmitted to the cover member 22 can be transmitted also to the protrusion part 5d, and the heat dissipation of the cover member 22 (case 2) is made. Can be improved.
  • all the protrusions 5 d formed on the cover member 5 may not be in contact with the lid member 22, and at least one protrusion 5 d may be in contact with the lid member 22. Also in this case, heat can be easily transmitted from the cover member 22 to the cover member 5. Even if the tip of the protrusion 5d is separated from the lid member 22, the flow of air from the first duct 61 can be adjusted.
  • the protrusion 5 d is formed on the cover member 5, but may be formed on the lid member 22.
  • the cover member 5 having the shape described in the first embodiment is used.
  • the protrusion 5d may be configured as a separate body from the cover member 5.
  • the protrusion 5d may be formed of the same material as that of the cover member 5, or may be formed of a different material.
  • the material of the projection part 5d has a thermal conductivity higher than the thermal conductivity in the atmosphere. It is preferable to use the material which has.
  • the protrusion 5d is formed as shown in FIG. 6, but the present invention is not limited to this. That is, any shape may be used as long as air is moved from the opening Sa located at one end of the cover member 5 to the opening Sa located at the other end.
  • the protrusion 5d can be formed. In the configuration shown in FIG. 7, each protrusion 5 d extends in the Y direction, and the side surface is formed in a wave shape having a curvature.
  • the cover member 5 and the first and second ducts 61 and 62 are configured separately, but the present invention is not limited to this.
  • the cover member 5 and at least one of the first and second ducts 61 and 62 can be integrally formed.
  • the cover member 5 is fixed to the lid member 22, but the cover member 5 may be fixed to the housing member 21. That is, in the embodiment described above, the cover member 5 is disposed on the upper portion of the case 2, but the cover member 5 may be disposed on the side surface or the bottom surface of the case 2.
  • the temperature of the battery pack 1 is adjusted using the cover member 5 and the first and second ducts 61 and 62, but is not limited thereto.
  • the electronic device can be cooled by guiding air to the junction box.
  • Examples of the electronic device described above include a controller for monitoring the temperature of the battery pack 1 (unit cell 31) and a converter for converting the voltage value of the battery unit 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 電源素子の温度調節を効率良く行うことのできる温度調節機構を提供する。 【解決手段】 電源素子(31)の温度を調節するための温度調節機構であって、電源素子と、電源素子との間で熱交換を行うための液状の第1の熱交換媒体(4)とを収容するケース部材(2)と、ケース部材に接続され、第2の熱交換媒体を流動させるための流路(S)の少なくとも一部を形成するガイド部材(5)とを有する。ガイド部材は、ケース部材と接触する外気よりも熱伝導率の高い材料で形成されている。

Description

温度調節機構
 本発明は、電源素子の温度を調節するために用いられる温度調節機構に関するものである。
 従来、複数の単電池(二次電池)からなる組電池において、組電池の温度上昇を抑制するための構造が提案されている(例えば、特許文献1~3参照)。
 ここで、特許文献1に記載の電池冷却装置では、複数の電池を収容する容器の内部に、冷却液を循環させるための冷却管を配置し、冷却管を介して複数の電池を冷却するようにしている。また、特許文献2,3に記載の構成では、電池に対して空気を供給することにより、電池を冷却するようにしている。
特開平11-307139号公報(図1) 特開2004-14421号公報(図1,3) 特開2003-187772号公報(図1)
 しかしながら、特許文献1~3に記載の構成では、電池の冷却効率が不十分となるおそれがある。
 そこで、本発明の目的は、電源素子の温度調節を効率良く行うことのできる温度調節機構を提供することにある。
 本願第1の発明は、電源素子の温度を調節するための温度調節機構であって、電源素子と、電源素子との間で熱交換を行うための液状の第1の熱交換媒体とを収容するケース部材と、ケース部材に接続され、第2の熱交換媒体を流動させるための流路の少なくとも一部を形成するガイド部材とを有する。そして、ガイド部材は、ケース部材と接触する外気よりも熱伝導率の高い材料で形成されている。ここで、上記流路は、外部と仕切られた流路である。
 ここで、ケース部材及びガイド部材によって、流路を形成することができる。これにより、ケース部材及びガイド部材に対して、第2の熱交換媒体を接触させることができる。
 また、ケース部材及びガイド部材のうち一方の部材に、流路内において、他方の部材と接触する突起部を設けることができる。この突起部により、ケース部材及びガイド部材の接触面積を増やすことができ、ケース部材及びガイド部材の間における熱伝達を向上させることができる。ここで、突起部を、第2の熱交換媒体が流動する方向に延びるように形成すれば、第2の熱交換媒体の流れを整えることができる。
 さらに、ガイド部材のうち、ケース部材と接触する部分の厚さを、他の部分の厚さよりも厚くすることができる。一方、ガイド部材のうちケース部材との接触部分を、ガイド部材の厚さよりも大きい領域とすることができる。これにより、ケース部材との接触部分において、ケース部材から、より多くの熱を受け取ることができる。例えば、ケース部材に、フランジ部を設けるとともに、ガイド部材に、ケース部材のフランジ部と重なり合った状態で接触するフランジ部を設けることにより、ケース部材及びガイド部材の間において、より多くの熱を伝達させることができる。
 一方、ガイド部材には、第2の熱交換媒体を流動させるためのダクト部材を接続することができる。また、第2の熱交換媒体として、ガイド部材の冷却又は加温に用いられる気体を用いることができる。さらに、ケース部材及びガイド部材を、金属で形成することができる。
 本願第2の発明は、電源装置の温度を調節するための温度調節機構であって、電源装置は、電源素子と、電源素子との間で熱交換を行うための液状の第1の熱交換媒体と、電源素子及び第1の熱交換媒体を収容するケース部材とを有し、温度調節機構は、ケース部材に接続され、第2の熱交換媒体を流動させるための流路の少なくとも一部を形成するガイド部材を有している。そして、ガイド部材は、ケース部材と接触する外気よりも熱伝導率の高い材料で形成されている。
 本願第1及び第2の発明によれば、ケース部材に接続されたガイド部材を、ケース部材と接触する外気よりも熱伝導率の高い材料で形成しているため、ケース部材及びガイド部材の間における熱伝達を効率良く行うことができる。
 例えば、電源素子で発生した熱を、第1の熱交換媒体及びケース部材を介してガイド部材に伝達させることにより、電源素子の冷却を効率良く行うことができる。そして、ガイド部材には、第2の熱交換媒体を流動させているため、第2の熱交換媒体を用いてガイド部材の放熱を行うことができる。一方、第2の熱交換媒体を用いてガイド部材やケース部材を温めれば、第1の熱交換媒体を介して電源素子を温めることができる。これにより、電源素子の温度調節を行うことができる。
本発明の実施例1である温度調節機構を備えた電池パックの構成を示す外観斜視図である。 実施例1における電池パックの内部構造を示す概略図である。 実施例1の電池パックに接続される温度調節機構を示す上面図である。 実施例1の変形例を示す概略図である。 本発明の実施例2である温度調節機構を備えた電池パックの構成を示す断面図である。 実施例2において、カバー部材の構成を示す正面図である。 実施例2の変形例において、カバー部材の構成を示す正面図である。
 以下、本発明の実施例について説明する。
 本発明の実施例1である電池パックの冷却機構(温度調節機構)について、図1から図3を用いて説明する。図1は、電池パックの冷却機構の一部を示す外観斜視図である。また、図2は、電池パックの冷却機構の内部構成を示す概略図である。図3は、電池パックの冷却機構の上面図である。図1等において、Z軸は、重力方向を示し、X軸及びY軸は、Z軸に対して直交し、かつ互いに直交する方向を示している。
 本実施例の電池パック1は、車両(いわゆるハイブリッド自動車)に搭載されている。そして、電池パック1の出力を用いて車両を走行させたり、車両の運動エネルギを回生エネルギとして電池パック1に充電させたりすることができる。なお、電池パック1は、車両以外にも搭載することができる。
 図1において、電池パック1は、ケース2と、ケース2の内部に収容される電池ユニット3とを有している。ケース2は、電池ユニット3を収容するための空間を有する収容部材21と、収容部材21の開口部を塞ぐ蓋部材22とを有している。収容部材21及び蓋部材22は、アルミニウムや鉄等といった金属で形成されている。蓋部材22は、収容部材21にネジ等の締結部材によって固定されたり、溶接によって固定されたりする。これにより、ケース2の内部は、密閉状態となる。なお、蓋部材22を収容部材21に固定する方法は、これに限るものではなく、蓋部材22を収容部材21に固定できる方法であれば、いかなる方法であってもよい。
 ここで、ケース2の内部には、電池ユニット3の他にも、電池ユニット3との間で熱交換を行うための液状の熱交換媒体(第1の熱交換媒体)4が収容されている(図2参照)。熱交換媒体4は、電池ユニット3の表面に接触しているとともに、ケース2のすべての内壁面に接触している。熱交換媒体4は、後述するように、電池ユニット3の温度上昇を抑制したり、温度低下を抑制したりするために用いられる。
 熱交換媒体4は、絶縁性を有する液体であり、単電池31で発生した熱をケース2に伝達させることにより単電池31の温度上昇を抑制させる機能や、外部からの熱を受けて単電池31を温めることにより単電池31の温度低下を抑制させる機能を有している。熱交換媒体4としては、例えば、絶縁性の油や、フッ素系不活性液体を用いることができる。フッ素系不活性液体としては、例えば、フロリナート、Novec HFE (hydrofluoroether)、Novec1230(スリーエム社製)を用いることができる。
 なお、電池ユニット3の表面に絶縁処理を施しておけば、熱交換媒体4として、絶縁性を有する液体を用いなくてもよい。例えば、電池ユニット3の表面に、絶縁性を有する膜を形成しておくことができ、この場合には、水といった、絶縁性を持たない熱交換媒体4を用いることができる。
 電池ユニット3は、複数の単電池(電源素子)31が電気的に接続されたものである。複数の単電池31は、ケース2の内部において、並列に配置されている。単電池31は、円筒型を有しており、単電池31として、ニッケル水素電池や、リチウムイオン電池といった二次電池が用いられている。なお、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)や燃料電池を用いることもできる。また、単電池31の形状は、円筒型に限るものではなく、角型といった、他の形状であってもよい。
 各単電池31は、図2に示すように、両端側において、一対の板状の支持部材32によって支持されている。これらの支持部材32は、ネジ等の締結部材(不図示)によって、ケース2に固定されている。なお、本実施例では、2つの支持部材32を用いているが、これらの支持部材32を一体として構成することもできる。
 また、各単電池31の両端には、正極用の端子31a及び負極用の端子31bが設けられている。これらの端子31a,31bは、単電池31の内部に収容された発電要素に接続されている。この発電要素は、正極板、負極板およびセパレータを含むものであり、充放電を行うための要素である。一方、各単電池31における端子31a,31bは、隣り合って配置された他の単電池31の端子31a,31bとバスバー33を介して接続されている。すなわち、複数の単電池31を、バスバー33を介して電気的に直列に接続することにより、電池パック1として所望の高出力(例えば、200[V])を得ることができる。
 一方、ケース2(蓋部材22)の上面には、カバー部材(ガイド部材)5が固定されている。カバー部材5は、空気の熱伝導率よりも高い熱伝導率を有する材料によって形成されている。具体的には、カバー部材5は、アルミニウムや鉄等といった金属で形成することができる。そして、カバー部材5は、蓋部材22と略平行に配置される上面部5aと、上面部5aと略直交する方向に延びる側面部5bとを有している。
 側面部5bの先端は、蓋部材22に対して、ボルト等の締結部材や溶接によって固定されている。カバー部材5をケース2に固定することにより、カバー部材5の上面部5a及び側面部5bと、蓋部材22の上面とによって、所定の空間Sが形成される。この空間Sは、後述するように、空気(第2の熱交換媒体)が移動するための空間(流路)となる。
 空間SのY軸方向における両端、言い換えれば、カバー部材5のY軸方向における両端には、カバー部材5及び蓋部材22によって形成される開口部Saが位置している。そして、2つの開口部Saには、図3に示すように、第1のダクト61及び第2のダクト62が接続されている。すなわち、第1のダクト61及び第2のダクト62は、カバー部材5及び蓋部材22に接続されている。第1のダクト61及び第2のダクト62は、カバー部材5と同様に金属で形成することもできるし、樹脂で形成することもできる。
 第1のダクト61及び第2のダクト62の幅(X方向の長さ)は、図3に示すように、開口部Saとの接続部分が最も大きくなっており、この接続部分から離れるにしたがって、小さくなっている。また、第1のダクト61には、ファン63が設けられている。ファン63は、モータ(不図示)等の駆動機構によって駆動され、この駆動機構の駆動は、コントローラによって制御される。なお、ファン63を設ける位置は、図3に示す位置に限るものではない。すなわち、後述するように、空間Sの内部に所定方向の空気の流れを発生させることができれば、いかなる位置に設けてもよい。
 また、第1のダクト61のうち、開口部Saと接続される端部とは反対側の端部には、開口部(不図示)が形成されており、この開口部は、車両の室内に面している。ここで、車両の室内とは、車両の乗車者が乗車する空間や、荷物等を収容するための空間(いわゆる、ラゲージコンパートメント)を意味する。一方、第2のダクト62のうち、開口部Saと接続される端部とは反対側の端部には、開口部(不図示)が形成されており、この開口部は、車両の外部に面している。
 上述した構成において、ファン63を駆動すると、車両の室内に位置している空気が、第1のダクト61を介して、空間Sに移動することになる。そして、空間Sを通過した空気は、第2のダクト62を介して車両の外部に放出されることになる。
 図2及び図3の一点鎖線で示す矢印は、上述した空気の流れる移動経路を大まかに示したものである。
 本実施例の電池パック1において、単電池31は充放電等によって発熱することがある。この場合において、単電池31に接触している熱交換媒体4は、単電池31との間の熱交換によって、単電池31で発生した熱を奪うことになる。熱を持った熱交換媒体4は、ケース2の内部で流動して、ケース2の内壁面に到達することにより、ケース2に熱を伝達する。ケース2は、上述したように、金属で形成されているため、熱交換媒体4からの熱を受けやすくなっている。また、液体としての熱交換媒体4を用いているため、空気等の気体を用いる場合に比べて、単電池31からの熱をケース2に効率良く伝達させることができる。
 ケース2に伝達された熱は、大気中(空気中)に放出されることになる。ここで、ケース2の蓋部材22には、カバー部材5が接続されているため、ケース2に伝達された熱は、主にカバー部材5に伝達されることになる。すなわち、カバー部材5の熱伝導率は、空気よりも高くなっているため、熱交換媒体4からケース2に伝達された熱は、大気中に放出されるよりも、カバー部材5に伝達されやすくなっている。
 本実施例のように、ケース2の熱をカバー部材5に伝達させることで、ケース2における放熱性を向上させることができる。言い換えれば、電池パック1の放熱性を向上させることができる。また、カバー部材5及びケース2(蓋部材22)によって形成された空間Sには、空気を流しているため、空間Sを通過する空気によってカバー部材5や蓋部材22が冷却されることになる。
 すなわち、空間Sに流入した空気は、カバー部材5や蓋部材22との間での熱交換によって、カバー部材5や蓋部材22に伝達された熱を奪うことになる。そして、熱を持った空気は、第2のダクト62を介して車両の外部に放出されることになる。上述した熱の流れによって、電池パック1(より具体的には、単電池31)の冷却効率を向上させることができる。
 ここで、本実施例では、ケース2の外表面を平坦な面で形成しているが、ケース2の放熱性を向上させるために、ケース2の外表面に、複数の突形状のフィンを形成することができる。具体的には、ケース2の側面や底面に、フィンを形成することができる。
 また、空間Sの内部に空気の乱流を発生させるために、カバー部材5や蓋部材22に突起部を形成することができる。具体的には、カバー部材5及び蓋部材22における空間Sを形成する面の一部に、主な流れの空気と衝突する突起部を形成することができる。このような突起部を形成すれば、空間Sの内部において空気を滞留させることができ、空気による冷却効率を向上させることができる。
 一方、上述した説明では、単電池31で発生した熱を電池パック1の外部に放出させる場合について説明したが、これに限るものではない。すなわち、カバー部材5、第1のダクト61及び第2のダクト62を用いて、電池パック1を温めることもできる。この場合について、具体的に説明する。
 例えば、第1のダクト61にヒータ(不図示)を配置し、空間Sに導かれる空気を温めることができる。なお、車両の室内における温度が、電池パック1の温度よりも高ければ、ヒータによって空気を温めなくても、室内における空気をそのまま空間Sに導くこともできる。
 ケース2(特に、蓋部材22)は、空間Sに導かれた空気(温められた空気)によって温められることになる。ここで、温められた空気は、第1のダクト61やカバー部材5によって外部に漏れることなく蓋部材22に到達することになるため、ケース2(蓋部材22)を効率良く温めることができる。そして、ケース2が温められることにより、ケース2の内部に収容された熱交換媒体4が温められ、熱交換媒体4を介して単電池31が温められることになる。これにより、単電池31の温度低下を抑制することができる。
 ここで、二次電池としての単電池31は、所定の温度範囲において、所望の出力を得ることができる。すなわち、単電池31の温度が、上記温度範囲の上限値を超えたり、下限値を下回ったりした場合には、単電池31の出力特性が低下してしまう。したがって、単電池31の出力特性が低下するのを抑制するためには、単電池31の温度を上記温度範囲内に維持する必要がある。
 そこで、本実施例のように、カバー部材5を用いることにより、電池パック1の温度調節を効率良く行うことができる。
 ここで、特許文献1に記載の構成では、電池を収容する容器の内部において、冷却管を複数の電池に沿って配置しなければならないため、構造が複雑となってしまう。しかも、複数の冷却管が必要となるため、コストアップとなってしまう。一方、本実施例では、熱交換媒体4を収容したケース2に、カバー部材5を設けるだけであるため、簡単な構成において、単電池31の温度調節を行うことができる。
 また、特許文献2,3のように、空気を用いて電池を冷却するタイプでは、電池を効率良く冷却させることが難しい。すなわち、電池を効率良く冷却させるためには、電池に対してより多くの量の空気を供給しなければならない。この場合には、電池に空気を導くためのファンの駆動量が増加することになるため、ファンの消費電力が増加してしまう。一方、本実施例では、ケース2に電池ユニット3及び熱交換媒体4を収容しているため、単電池31で発生した熱を、熱交換媒体4を介して効率良くケース2に伝達させることができる。これにより、単電池31の放熱性を向上させることができる。しかも、カバー部材5を用いて、ケース2の熱を奪うようにしているため、特許文献2,3のように空気の供給量を増加させなくても、ケース2の放熱性を向上させることができる。
 なお、本実施例では、カバー部材5を、上面部5aと、2つの側面部5bとで構成したが、これに限るものではない。すなわち、上面部5a及び側面部5bに加えて、蓋部材22に接触する底面部を備えた構成(ガイド部材)であってもよい。この場合には、カバー部材5によって、上述した空間Sが形成されることになる。このような構成であっても、上述した実施例と同様の効果を得ることができる。
 また、本実施例では、空間Sに対して空気を流すようにしているが、これに限るものではない。例えば、空気の代わりに、液体(第2の熱交換媒体)を流すこともできる。この場合には、液体を循環させるダクトと、液体を流動させるためのポンプとを用いる必要がある。液体を循環させるダクトとは、本実施例で説明したカバー部材5、第1のダクト61及び第2のダクト62に相当するものであるが、第1のダクト61及び第2のダクト62が互いに接続されたものである。
 ここで、電池パック1を冷却する場合には、液体の循環経路において、空間Sに導かれる液体を予め冷却させておく必要がある。この場合には、ラジエータ等を用いて液体を冷却することができる。一方、電池パック1を温める場合には、液体の循環経路において、空間Sに導かれる液体を予め温めておく必要がある。この場合には、ヒータ等を用いて液体を温めることができる。
 次に、本実施例の変形例について、図4を用いて説明する。この変形例は、上述した実施例1の構成において、収容部材21、蓋部材22及びカバー部材5の接続構造を変更したものである。なお、上述した部材と同じ機能を有する部材については、同一符号を用い、詳細な説明は省略する。以下、実施例1と異なる点について説明する。
 図4において、収容部材21の外縁には、フランジ部21aが形成されており、蓋部材22の外縁には、フランジ部22aが形成されている。また、カバー部材5の両端には、フランジ部5cが形成されている。これらのフランジ部21a,22a,5cは、図4に示すように、互いに重なった状態で接触しており、溶接によって固定されている。
 ここで、3つのフランジ部21a,22a,5cを互いに固定する方法は、溶接に限るものではない。すなわち、3つのフランジ部21a,22a,5cを互いに固定できる方法であれば、いかなる方法であってもよい。
 具体的には、3つのフランジ部21a,22a,5cに、ボルトを貫通させる穴部を形成しておき、ボルト及びナットを用いて、3つのフランジ部21a,22a,5cを固定することができる。また、3つのフランジ部21a,22a,5cを、この積層方向における両端側から狭持する機構を用いることもできる。さらに、3つのフランジ部21a,22a,5cを互いに重ねた状態で、これらのフランジ部21a,22a,5cを折り曲げるように成形することもできる。
 3つのフランジ部21a,22a,5cを設けることにより、収容部材21、蓋部材22及びカバー部材5を容易に固定することができる。また、実施例1で説明した構成に比べて、フランジ部22a,5cを設けた分だけ、蓋部材22及びカバー部材5の接触面積を増加させることができる。これにより、蓋部材22に伝達された熱を、カバー部材5に効率良く伝達させることができ、熱を持ったカバー部材5を、空間Sを流れる空気によって冷却することができる。そして、ケース2(電池パック1)の放熱性を向上させることができる。
 ここで、蓋部材22にフランジ部22aを設けずに、カバー部材5のフランジ部5cを蓋部材22の表面に接触させる構成であってもよい。この構成でも、蓋部材22及びカバー部材5の接触面積を増加させることができる。
 なお、空間Sに温められた空気を流すことによって、電池パック1を温める場合には、カバー部材5に伝達された熱が、ケース2(蓋部材22)に伝達されやすくなる。これにより、ケース2が温められやすくなり、ケース2の内部に収容された熱交換媒体4や単電池31を効率良く温めることができる。
 一方、カバー部材5の側面部5bの厚さD2を、カバー部材5の上面部5aの厚さD1よりも厚くすることができる。このように構成すれば、ケース2(蓋部材22)に伝達された熱を、カバー部材5に効率良く伝達させることができる。すなわち、カバー部材5の側面部5bは、蓋部材22と直接、接触するようになっているため、側面部5bの厚さD2を他の部分よりも厚くすることにより、側面部5bでの熱容量を増加させることができる。これにより、蓋部材22からカバー部材5の側面部5bに対して多くの熱を伝達させることができる。
 ここで、側面部5bの厚さD2だけでなく、フランジ部5cの厚さD3も、上面部5aの厚さD1よりも厚くすることができる。これにより、蓋部材22からカバー部材5への熱の伝達量を更に増加させることができる。言い換えれば、ケース2の冷却効率を向上させることができる。なお、側面部5bの厚さD2と、フランジ部5cの厚さD3とは、同じ厚さであってもよいし、互いに異なる厚さであってもよい。ただし、厚さD2及び厚さD3を同じ厚さにすれば、カバー部材5を容易に製造することができる。
 また、カバー部材5における厚さは、上述した構成に限るものではない。すなわち、カバー部材5のうち、蓋部材22と接触する部分の厚さを、他の部分(蓋部材22と接触しない部分)の厚さよりも厚くすればよい。このように構成しておけば、カバー部材5及び蓋部材22の間において、より多くの熱を伝達させることができる。
 次に、本発明の実施例2における温度調節機構について、図5を用いて説明する。ここで、図5は、本実施例における温度調節機構の断面を示す概略図である。なお、実施例1で説明した部材と同じ機能を有する部材については、同一符号を用い、詳細な説明は省略する。以下、実施例1と異なる点について説明する。
 本実施例において、ケース2(蓋部材22)に固定されるカバー部材5は、複数の突起部5dを有している。複数の突起部5dは、図6に示すように、Y方向において直線状に延びている。ここで、図6は、カバー部材5を、蓋部材22の側から見たときの図である。図6において、カバー部材5の両側には、側面部5bが位置しており、2つの側面部5bの間には、複数の突起部5dが位置している。
 また、複数の突起部5dは、空気の進む方向(Y方向)とは直交する方向において、等間隔に配置されている。なお、隣り合う突起部5dの間隔は、等間隔としてなくてもよく、互いに異なる間隔としてもよい。また、突起部5dの数は、適宜設定することができる。
 一方、各突起部5dの先端は、蓋部材22の上面に接触している。このように、突起部5dを設けることにより、カバー部材5及び蓋部材22によって形成される空間(実施例1の空間Sに相当する)の内部において、空気を効率良く移動させることができる。すなわち、空間の内部において、第1のダクト61の側から第2のダクト62の側に向けて、空気を効率良く移動させることができる。
 また、各突起部5dは、蓋部材22に接触しているため、蓋部材22に伝達された熱を、突起部5dにも伝達させることができ、蓋部材22(ケース2)の放熱性を向上させることができる。
 ここで、カバー部材5に形成されたすべての突起部5dが、蓋部材22に当接していなくてもよく、少なくとも1つの突起部5dが蓋部材22に接触していてもよい。この場合にも、蓋部材22からカバー部材5に熱を伝達させやすくすることができる。また、突起部5dの先端を、蓋部材22から離しても、第1のダクト61からの空気の流れを整えることができる。
 なお、本実施例では、突起部5dをカバー部材5に形成したが、蓋部材22に形成してもよい。この場合には、実施例1で説明した形状のカバー部材5を用いることになる。
 また、突起部5dは、カバー部材5と別体として構成されていてもよい。この場合において、突起部5dは、カバー部材5と同じ材料で形成されていてもよいし、異なる材料で形成されていてもよい。ただし、突起部5dを蓋部材22に接触させて、蓋部材22からの熱を伝達させやすくするためには、突起部5dの材料としては、大気中の熱伝導率よりも高い熱伝導率を有する材料を用いることが好ましい。
 本実施例では、突起部5dを、図6に示すように形成しているが、これに限るものではない。すなわち、カバー部材5の一端に位置する開口部Saから、他端に位置する開口部Saに対して、空気を移動させるものであれば、いかなる形状であってもよい。具体的には、図7に示すように、突起部5dを形成することができる。図7に示す構成では、各突起部5dが、Y方向に延びているとともに、側面が曲率を有する波形状に形成されている。
 なお、上述した実施例では、カバー部材5と、第1及び第2のダクト61,62とをそれぞれ、別体として構成したが、これに限るものではない。例えば、カバー部材5と、第1及び第2のダクト61,62のうち少なくとも一方のダクトとを一体的に構成することができる。
 また、上述した実施例では、蓋部材22に対してカバー部材5を固定する構成であるが、収容部材21に対してカバー部材5を固定する構成であってもよい。すなわち、上述した実施例では、ケース2の上部にカバー部材5を配置しているが、ケース2の側面や底面に対してカバー部材5を配置することもできる。
 また、上述した実施例では、カバー部材5や第1及び第2のダクト61,62を用いて、電池パック1の温度を調節するようにしているが、これに限るものではない。例えば、電子機器を収容したジャンクションボックスが、電池パック1と隣り合って配置されている場合には、ジャンクションボックスにも空気を導くようにして、電子機器を冷却することができる。上述した電子機器としては、電池パック1(単電池31)の温度を監視するためのコントローラや、電池ユニット3の電圧値を変換するためのコンバータといったものが挙げられる。
 

Claims (11)

  1.  電源素子の温度を調節するための温度調節機構であって、
     前記電源素子と、前記電源素子との間で熱交換を行うための液状の第1の熱交換媒体と収容するケース部材と、
     前記ケース部材に接続され、第2の熱交換媒体を流動させるための流路の少なくとも一部を形成するガイド部材とを有し、
     前記ガイド部材は、前記ケース部材と接触する外気よりも熱伝導率の高い材料で形成されていることを特徴とする温度調節機構。
  2.  前記ケース部材及び前記ガイド部材によって、前記流路が形成されていることを特徴とする請求項1に記載の温度調節機構。
  3.  前記ケース部材及び前記ガイド部材のうち一方の部材は、前記流路内において、他方の部材と接触する突起部を有することを特徴とする請求項2に記載の温度調節機構。
  4.  前記突起部は、前記第2の熱交換媒体が流動する方向に延びていることを特徴とする請求項3に記載の温度調節機構。
  5.  前記ガイド部材のうち、前記ケース部材と接触する部分の厚さが、他の部分の厚さよりも厚いことを特徴とする請求項1から4のいずれか1つに記載の温度調節機構。
  6.  前記ガイド部材のうち前記ケース部材との接触部分は、前記ガイド部材の厚さよりも大きい領域を有していることを特徴とする請求項1から5のいずれか1つに記載の温度調節機構。
  7.  前記ケース部材は、フランジ部を有しており、
     前記ガイド部材は、前記ケース部材のフランジ部と重なり合った状態で接触するフランジ部を有することを特徴とする請求項1から6のいずれか1つに記載の温度調節機構。
  8.  前記ガイド部材に接続され、前記第2の熱交換媒体を流動させるためのダクト部材を有することを特徴とする請求項1から7のいずれか1つに記載の温度調節機構。
  9.  前記第2の熱交換媒体が、前記ガイド部材の冷却又は加温に用いられる気体であることを特徴とする請求項1から8のいずれか1つに記載の温度調節機構。
  10.  前記ケース部材及び前記ガイド部材が、金属で形成されていることを特徴とする請求項1から9のいずれか1つに記載の温度調節機構。
  11.  電源装置の温度を調節するための温度調節機構であって、
     前記電源装置は、電源素子と、前記電源素子との間で熱交換を行うための液状の第1の熱交換媒体と、前記電源素子及び前記第1の熱交換媒体を収容するケース部材とを有し、
     前記温度調節機構は、前記ケース部材に接続され、第2の熱交換媒体を流動させるための流路の少なくとも一部を形成するガイド部材を有しており、
     前記ガイド部材は、前記ケース部材と接触する外気よりも熱伝導率の高い材料で形成されていることを特徴とする温度調節機構。
     
PCT/JP2008/065562 2008-01-18 2008-08-29 温度調節機構 WO2009090773A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08870594.2A EP2246929A4 (en) 2008-01-18 2008-08-29 TEMPERATURE CONTROL MECHANISM
US12/811,869 US20100276120A1 (en) 2008-01-18 2008-08-29 Temperature adjusting mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008009889A JP4325721B2 (ja) 2008-01-18 2008-01-18 温度調節機構
JP2008-009889 2008-01-18

Publications (1)

Publication Number Publication Date
WO2009090773A1 true WO2009090773A1 (ja) 2009-07-23

Family

ID=40885180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065562 WO2009090773A1 (ja) 2008-01-18 2008-08-29 温度調節機構

Country Status (4)

Country Link
US (1) US20100276120A1 (ja)
EP (1) EP2246929A4 (ja)
JP (1) JP4325721B2 (ja)
WO (1) WO2009090773A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623537B2 (en) * 2009-08-18 2014-01-07 Samsung Sdi Co., Ltd. Rechargeable battery and battery module
CH703973A1 (de) * 2010-10-29 2012-04-30 Obrist Engineering Gmbh Temperaturgesteuerte Batterie.
JP2012195208A (ja) * 2011-03-17 2012-10-11 Toyota Industries Corp 電池温調装置
US8999547B2 (en) * 2011-12-22 2015-04-07 Samsung Sdi Co., Ltd. Battery module
KR102021150B1 (ko) * 2012-12-26 2019-09-11 현대모비스 주식회사 차량용 전지셀 모듈 어셈블리
FR3003938A1 (fr) * 2013-03-29 2014-10-03 Valeo Systemes Thermiques Plaque d'echange thermique pour gestion thermique de batterie et procede de fabrication associe.
JP5653477B2 (ja) * 2013-05-15 2015-01-14 三菱電機株式会社 車両用駆動電源装置
CN103346275A (zh) * 2013-06-13 2013-10-09 高平唐一新能源科技有限公司 一种锂电池模块箱
DE102013214138A1 (de) * 2013-07-18 2015-01-22 Siemens Aktiengesellschaft Systemanordnung mit Hochtemperaturbatterie mit getrennten Fluidkreisläufen
EP3319146B1 (en) 2016-11-04 2018-10-17 Samsung SDI Co., Ltd. Battery system
DE102017223780A1 (de) * 2017-12-22 2019-06-27 Thyssenkrupp Ag Deckel oder Boden zur Behältertemperierung durch thermisches Verpressen von Hybrid-Halbzeugen
KR102407165B1 (ko) * 2019-01-03 2022-06-10 주식회사 엘지에너지솔루션 배터리 팩 및 배터리 팩 조립 장치
KR102520590B1 (ko) * 2019-10-24 2023-04-10 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167631A (ja) * 1995-12-18 1997-06-24 Ngk Insulators Ltd ナトリウム−硫黄電池
JPH1140211A (ja) * 1997-07-17 1999-02-12 Denso Corp 電池冷却装置
JPH11135160A (ja) * 1997-10-31 1999-05-21 Nissan Motor Co Ltd 電気自動車のバッテリ冷却構造および冷却方法
JPH11307139A (ja) 1998-04-23 1999-11-05 Nippon Soken Inc 電池冷却装置
JP2001060466A (ja) * 1999-08-23 2001-03-06 Japan Storage Battery Co Ltd 組電池
JP2003187772A (ja) 2001-12-14 2003-07-04 Toyota Motor Corp 集合電池および電池システム
JP2004014421A (ja) 2002-06-11 2004-01-15 Matsushita Electric Ind Co Ltd 組電池
JP2006331956A (ja) * 2005-05-27 2006-12-07 Sanyo Electric Co Ltd 車両用の電源装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740824A (en) * 1952-08-05 1956-04-03 Accumulateurs Fixes Storage batteries
US3216496A (en) * 1961-02-01 1965-11-09 Astro Dynamics Inc Heat sink for electronic devices
GB1035905A (en) * 1961-12-06 1966-07-13 Plessey Co Ltd Improvements in cooling systems
GB1137001A (en) * 1965-04-09 1968-12-18 Plessey Co Ltd Improvements in or relating to housing arrangements for cooling electrical equipment
DE1763597A1 (de) * 1968-06-28 1971-11-11 Licentia Gmbh Einrichtung zur Waermeabfuhr von elektrischen Bauelementen,welche in rotierenden,fluessigkeitsgekuehlten Kammern angeordnet sind
US4233645A (en) * 1978-10-02 1980-11-11 International Business Machines Corporation Semiconductor package with improved conduction cooling structure
DE3044741C1 (de) * 1980-11-27 1982-06-16 Daimler-Benz Ag, 7000 Stuttgart Kuehleinrichtung fuer einen fluessigkeitsgefuellten elektrischen Akkumulator
US4449580A (en) * 1981-06-30 1984-05-22 International Business Machines Corporation Vertical wall elevated pressure heat dissipation system
US4561011A (en) * 1982-10-05 1985-12-24 Mitsubishi Denki Kabushiki Kaisha Dimensionally stable semiconductor device
US5323292A (en) * 1992-10-06 1994-06-21 Hewlett-Packard Company Integrated multi-chip module having a conformal chip/heat exchanger interface
US5305184A (en) * 1992-12-16 1994-04-19 Ibm Corporation Method and apparatus for immersion cooling or an electronic board
US6305463B1 (en) * 1996-02-22 2001-10-23 Silicon Graphics, Inc. Air or liquid cooled computer module cold plate
DE29920163U1 (de) * 1999-11-18 2000-01-05 Vb Autobatterie Gmbh Temperiervorrichtung für eine Kraftfahrzeugbatterie
SE518142C2 (sv) * 2000-02-15 2002-09-03 Ericsson Telefon Ab L M Förfarande och anordning för reglering av batteritemperatur
US6940716B1 (en) * 2000-07-13 2005-09-06 Intel Corporation Method and apparatus for dissipating heat from an electronic device
US20040042178A1 (en) * 2002-09-03 2004-03-04 Vadim Gektin Heat spreader with surface cavity
US7334418B2 (en) * 2004-02-12 2008-02-26 Via Technologies, Inc. Method and apparatus for microprocessor temperature control
US6992888B1 (en) * 2004-03-08 2006-01-31 Lockheed Martin Corporation Parallel cooling of heat source mounted on a heat sink by means of liquid coolant
KR20060027578A (ko) * 2004-09-23 2006-03-28 삼성에스디아이 주식회사 이차 전지 모듈 온도 제어 시스템
FR2883670B1 (fr) * 2005-03-25 2010-10-15 Valeo Equip Electr Moteur Dispositif compact d'alimentation electrique pour un vehicule automobile
FR2883665B1 (fr) * 2005-03-25 2007-06-15 Valeo Equip Electr Moteur Dispositif d'alimentation electrique pour vehicule automobile
US8109324B2 (en) * 2005-04-14 2012-02-07 Illinois Institute Of Technology Microchannel heat exchanger with micro-encapsulated phase change material for high flux cooling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167631A (ja) * 1995-12-18 1997-06-24 Ngk Insulators Ltd ナトリウム−硫黄電池
JPH1140211A (ja) * 1997-07-17 1999-02-12 Denso Corp 電池冷却装置
JPH11135160A (ja) * 1997-10-31 1999-05-21 Nissan Motor Co Ltd 電気自動車のバッテリ冷却構造および冷却方法
JPH11307139A (ja) 1998-04-23 1999-11-05 Nippon Soken Inc 電池冷却装置
JP2001060466A (ja) * 1999-08-23 2001-03-06 Japan Storage Battery Co Ltd 組電池
JP2003187772A (ja) 2001-12-14 2003-07-04 Toyota Motor Corp 集合電池および電池システム
JP2004014421A (ja) 2002-06-11 2004-01-15 Matsushita Electric Ind Co Ltd 組電池
JP2006331956A (ja) * 2005-05-27 2006-12-07 Sanyo Electric Co Ltd 車両用の電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246929A4

Also Published As

Publication number Publication date
EP2246929A1 (en) 2010-11-03
JP2009170369A (ja) 2009-07-30
EP2246929A4 (en) 2014-01-01
JP4325721B2 (ja) 2009-09-02
US20100276120A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4325721B2 (ja) 温度調節機構
EP2697860B1 (en) Battery system having an external thermal management system
JP5330810B2 (ja) 電池モジュールを収容する電池箱及びそれを備える鉄道車両
JP5209036B2 (ja) 電池組立体、電気自動車、及び電池ハウジング
US8343649B2 (en) Electricity storage device with enhanced heat dissipation
JP5621882B2 (ja) 電源装置
CN108886189B (zh) 电池组温度控制、供电系统
JP2010015955A (ja) 蓄電装置
JP2009170370A (ja) 温度調節機構
KR102058688B1 (ko) 간접 냉각 방식의 배터리 모듈
KR20140143854A (ko) 액상 냉매 유출에 대한 안전성이 향상된 전지팩
JP2009009889A (ja) 車両用の電源装置
KR20120075431A (ko) 배터리 모듈 수납장치, 배터리 모듈 온도조절 장치 및 이들을 포함하는 전력 저장 시스템
KR20130086018A (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
JP2010536127A (ja) 特にハイブリッド駆動のためのバッテリー
CN102544619A (zh) 用于电动车辆的电池单元的散热器以及使用该散热器的电池单元模块
JP2010173536A (ja) 蓄電装置
KR20210065268A (ko) 버스바 프레임 조립체 및 이를 포함하는 배터리 모듈
JP5297863B2 (ja) 蓄電装置
JP2010146883A (ja) 蓄電装置
JP2009289610A (ja) 温度調節機構
JP6587670B2 (ja) バッテリモジュール及び電動車両
KR102258175B1 (ko) 발열 부품 냉각 수단을 구비한 배터리 팩
JP2020017486A (ja) 車両用蓄電装置
JP2016091604A (ja) 車両用バッテリパック

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12811869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008870594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008870594

Country of ref document: EP