WO2009090768A1 - ハウジング締結方法 - Google Patents

ハウジング締結方法 Download PDF

Info

Publication number
WO2009090768A1
WO2009090768A1 PCT/JP2008/062942 JP2008062942W WO2009090768A1 WO 2009090768 A1 WO2009090768 A1 WO 2009090768A1 JP 2008062942 W JP2008062942 W JP 2008062942W WO 2009090768 A1 WO2009090768 A1 WO 2009090768A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
fastener
turbine
fastening method
flange portion
Prior art date
Application number
PCT/JP2008/062942
Other languages
English (en)
French (fr)
Inventor
Yasutaka Sakai
Original Assignee
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corporation filed Critical Ihi Corporation
Priority to US12/863,463 priority Critical patent/US20100296925A1/en
Priority to EP08791296.0A priority patent/EP2233719A4/en
Priority to CN200880125069XA priority patent/CN101918692B/zh
Publication of WO2009090768A1 publication Critical patent/WO2009090768A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/39Retaining components in desired mutual position by a V-shaped ring to join the flanges of two cylindrical sections, e.g. casing sections of a turbocharger

Definitions

  • the present invention relates to a housing fastening method for fastening a housing by a fastener such as a G coupling and a turbocharger in which a housing is fastened by a fastener such as a G coupling, and in particular, to a reduction in fastening force of the fastener.
  • the present invention relates to a housing fastening method and a supercharger that can be suppressed.
  • a rotary prime mover which supplies fluid to a moving blade and converts kinetic energy of the fluid into rotational motion to obtain power, is generally called a turbine.
  • a type that supplies fluid from the radial direction of the moving blades and discharges it axially is called a radial turbine.
  • One of the devices utilizing such a radial turbine is a vehicle turbocharger.
  • the vehicle turbocharger includes a gas turbine that rotates a turbine blade by supply of exhaust gas, and a compressor that sucks in air by an impeller coaxially connected to the turbine blade. Have. The air taken in by the compressor is compressed and supplied to the engine, mixed with fuel and burned.
  • the exhaust gas after combustion is sent to the gas turbine for work and finally released to the atmosphere.
  • the flow path for supplying the exhaust gas to the turbine moving blade has a scroll portion formed in a spiral shape around the rotation axis of the turbine moving blade to accelerate the exhaust gas, and the radius of the turbine moving blade
  • the exhaust gas is supplied from the direction.
  • Such a vehicle turbocharger has a rotating shaft connecting a turbine blade of a gas turbine and an impeller of a compressor, and the rotating shaft is rotatably supported by a bearing housing. Then, when fastening the turbine housing and the bearing housing, the flange portions formed on the turbine housing and the bearing housing may be fastened to each other by a fastener such as a G coupling (see, for example, FIG. 12 of Patent Document 1) .
  • the present invention has been made in view of the problems described above, and by devising the housing structure, even if the housing is exposed to a high temperature, the reduction in the fastening force of the fastener such as the G coupling is reduced. It is an object of the present invention to provide a housing fastening method and a turbocharger capable of suppressing In order to achieve the above-described object, in the housing fastening method according to the present invention, a convex portion formed in the other housing is inserted into a concave portion formed in one housing, and the convex portion is formed by the step portion formed in the concave portion.
  • the flanges formed on the outer periphery of the recess and the protrusion are opposed to each other, and an annular fastening is formed on the inner periphery with a groove for receiving the opposed flanges.
  • the grooves of the fasteners and the flanges The axial position of the locking surface of the step portion is set so that the gap is equal to or less than a predetermined value, and the shapes of the recess and the protrusion are set.
  • the housing fastening method of the present invention described above is an intensive study of the reduction of the fastening force due to thermal expansion in the housing that the present inventors fastened with a fastener such as a G coupling, and the like. It is an invention invented by finding that there is a relationship between the and the fastening force of the fastener. That is, by adjusting the axial position of the locking surface of the step portion, it is possible to suppress a decrease in the fastening force of the fastener without sequentially clarifying the full thermal expansion of the flange and the fastener.
  • the groove of the fastener and each flange portion are in a thermally expanded state.
  • the inside of the housing is hot (for example, about 1000 ° C.) Even when exposed to the above, it is possible to suppress the decrease in the fastening force of the fastener due to thermal expansion.
  • the above-mentioned housing fastening method sets the axial position of the locking surface of the stepped portion to be included within the axial projection width of the fastener.
  • the axial distance between the contact point to the fastener and the locking surface of the stepped portion in the flange portion of the housing in which the recessed portion is formed is reduced. For this reason, even when the housing in which the recess is formed is exposed to a higher temperature than the housing in which the protrusion is formed and the fastener, the fastening force of the fastener is reduced due to thermal expansion. It can be suppressed.
  • the axial distance between the contact points with the fasteners in each flange portion is the distance between the engagement surface in the flange portion of the housing on the convex portion side and the contact points with the fasteners.
  • the axial distance between contact points with the fastener at each flange portion becomes relatively small, and a gap is generated between the flange and the fastener.
  • the housing fastening method according to the present invention sets the shape of the convex portion in consideration of the thickness of a thin plate held between the locking surface of the stepped portion and the end face of the convex portion. According to this configuration, when a thin plate such as a spacer or a heat shield plate of an adjacent housing is sandwiched between the locking surface of the step portion and the end face of the convex portion, the thermal expansion of the thin plate is also considered. Therefore, it is possible to more effectively suppress the decrease in the fastening force of the fastener due to thermal expansion.
  • the tolerance value k is set by the gap between the clamp and the contact point of the flange portion that can be tolerated at a predetermined temperature.
  • the allowable value k is set to a numerical value within the range of 0 ⁇ k ⁇ 0.0388 / cos ( ⁇ / 2) with respect to the opening degree ⁇ of the grip portion of the fastener. Is preferred.
  • the gap between the fastener and the flange at high temperatures is desired at high temperatures. It can be contained within the range, which can suppress the decrease in the fastening force of the fastener.
  • a supercharger in another aspect, includes: a turbine that rotates blades by supplying a fluid; a compressor that sucks in air by an impeller connected to the blades via a rotation shaft; A convex portion formed on the bearing housing is inserted into a concave portion formed in the turbine housing, and a turbine housing having an outer shape, and a bearing housing rotatably supporting the rotating shaft. The convex portion is inserted into the concave portion.
  • the end face of the convex portion is locked by the formed step portion, and the flange portions formed on the outer periphery of the concave portion and the convex portion are opposed to each other, and a groove for accommodating the opposed flange portions is
  • the front of the housing is fixed by any of the housing fastening methods described above.
  • the the bearing housing and the turbine housing are fastened by the fastener. According to this configuration, it is possible to obtain a turbocharger capable of suppressing a decrease in the fastening force of the fastener due to thermal expansion.
  • FIG. 4B It is a side sectional view showing a turbocharger concerning the present invention. It is a front view of G coupling 4 of Drawing 1A. It is an enlarged view of the II section in FIG. 1A. It is an enlarged view which shows the part corresponding to FIG. 2A in a prior art. It is explanatory drawing which defines the dimension required for description of one Embodiment of the housing fastening method which concerns on this invention. It is a figure which shows the relationship of G coupling 4 and flange part 1e and 3d in normal temperature state. It is a figure which shows the relationship of G coupling 4 and flange part 1e and 3d in a high temperature state. It is explanatory drawing which shows the relationship between clearance gap ⁇ g and ⁇ c in FIG. 4B. It is side surface sectional drawing of the fastening part which shows other embodiment of the housing fastening method which concerns on this invention. It is side surface sectional drawing of the fastening part which shows other embodiment of the housing fastening method which concerns on this
  • FIG. 1A is a side sectional view showing a turbocharger according to the present invention
  • FIG. 1B is a front view of the G coupling of FIG. 1A
  • 2A is an enlarged view of a portion II in FIG. 1A
  • FIG. 2B is an enlarged view showing a portion corresponding to FIG. 2A in the prior art.
  • the supercharger according to the present invention shown in FIG. 1A includes a turbine 1 that rotates a moving blade 1a by supplying a fluid, and a compressor 2 that sucks in air by an impeller 2a connected to the moving blade 1a via a rotating shaft 3a.
  • the assembly of the turbine housing 1a, the bearing housing 3 and the bearing housing 3 is performed as follows. That is, the convex portion 3b formed in the bearing housing 3 is inserted into the concave portion 1c formed in the turbine housing 1b, and the end face 3c of the convex portion 3b is locked by the step 1d formed in the concave portion 1c And after making each flange part 1e and 3d formed in the outer periphery of convex part 3b face each other, the groove which accommodates these opposing flange parts 1e and 3d is annular G coupling 4 formed in the inner circumference The flanges 1e and 3d are fastened to each other.
  • the supercharger shown in FIG. 1A is one in which the scroll portion 1f of the turbine 1 is formed in multiple chambers, the present invention is not limited to such a configuration, and an excess having a single-chamber scroll portion It may be a feeder, or may be a supercharger in which a variable nozzle for adjusting the flow rate is arranged between the scroll portion 1 f and the moving blade 1 a.
  • compressor housing 2b and bearing housing 3 are fastened by a plurality of bolts 2c arranged in the circumferential direction, they may be fastened by other methods.
  • the axial position of the locking surface of the stepped portion 1d corresponds to the axial position of the locking surface of the stepped portion 1d. It is set to be included in the range of the axial projection width Zg.
  • the axial width of the end face of the flange portion 1e of the turbine housing 1b and the engaging surface of the step portion 1d is Za
  • the axial width of the flange portion 1e and the flange portion 3d is approximately equal. It has a relation of ⁇ 0.5 Zg.
  • the axial position of the locking surface of the step 1 d is set outside the range of the axial projection width Zg of the G coupling 4. That is, they have a relationship of Za> 0.5Zg.
  • a high temperature for example, about 1000 ° C.
  • the thermal expansion of each member causes a gap between the G coupling 4 and the flange portion 3d.
  • the fastening force may be reduced, or the flanges 1e and 3d may push the G coupling 4 out and deform it.
  • the inventors of the present invention conducted intensive studies on this problem, and as a result, found that there is a relationship between the axial position of the locking surface of the step 1 d and the fastening force of the G coupling 4. Therefore, in the present invention, the above-mentioned problems are solved by setting the axial position of the locking surface of the step portion 1d closer to the end of the flange portion 1e than in the prior art.
  • the G coupling 4 is a kind of fastener, and as shown in FIG. 1B, a pair of semicircular arc portions 4a, 4a and a flange portion 4b formed on the same side of each semicircular arc portion 4a. , 4b, folded back portions 4c, 4c formed on the opposite end of each semicircular arc portion 4a, fasteners 4d such as bolts and nuts inserted into the flange portion 4b, and folded back portions 4c, 4c And an annular ring 4e. As shown in FIG. 1B, a pair of semicircular arc portions 4a, 4a and a flange portion 4b formed on the same side of each semicircular arc portion 4a. , 4b, folded back portions 4c, 4c formed on the opposite end of each semicircular arc portion 4a, fasteners 4d such as bolts and nuts inserted into the flange portion 4b, and folded back portions 4c, 4c And an annular ring 4e. As shown in FIG.
  • the cross section of the semicircular arc portion 4a has a groove in the inner periphery thereof in which the flange portion 1e of the turbine housing 1b and the flange portion 3d of the bearing housing 3 are accommodated. It has an inclined surface arranged in a V shape. Furthermore, the flange portion 1 e of the turbine housing 1 b and the flange portion 3 d of the bearing housing 3 are tapered so as to be in contact with the inclined surface of the G coupling 4. The inclined surface of the G coupling 4 and the tapered surfaces of the flanges 1e and 3d are in point contact in the cross sectional view shown in FIG. 2A, and are in line contact along the respective semicircular arcs 4a shown in FIG. 1B. ing.
  • the flange 1e of the turbine housing 1b and the flange 3d of the bearing housing 3 are sandwiched between the inclined surfaces of the G coupling 4 to fasten the fastener 4d, thereby fastening the turbine housing 1b and the bearing housing 3 to each other.
  • the G coupling 4 may be referred to as V band coupling.
  • a heat shield plate in which a thin plate is formed in a cylindrical shape between the locking surface of the stepped portion 1d of the turbine housing 1b and the end face 3c of the convex portion 3b of the bearing housing 3 The end of 5 is bitten and held.
  • the heat shield plate 5 is a member for protecting the bearing housing 3 from the high temperature exhaust gas fed by the turbine housing 1 b.
  • Such a configuration itself is not different from the prior art as shown in FIG. 2B, but in the present invention, the axial position of the locking surface of the stepped portion 1d is shifted toward the end of the flange portion 1e.
  • the axial length of the heat shield plate 5 is set longer than that of the prior art.
  • the convexity is taken into consideration It is necessary to design the shape of the part 3b.
  • the heat shield plate 5 is not an essential component, and instead of the heat shield plate 5, a spacer having a thin plate forming a sealing member formed in an annular shape may be held, or the step of the turbine housing 1 b The locking surface of the portion 1 d may be in direct contact with the end surface 3 c of the convex portion 3 b of the bearing housing 3.
  • FIG. 3 is an explanatory view defining dimensions necessary for describing an embodiment of the housing fastening method according to the present invention.
  • 4A shows the relationship between the G coupling 4 and the flanges 1e and 3d in the normal temperature state
  • FIG. 4B shows the relationship between the G coupling 4 and the flanges 1e and 3d in the high temperature state.
  • FIG. 4C shows the relationship between the gaps ⁇ g and ⁇ c in FIG. 4B.
  • Pa Contact point with the G coupling 4 in the turbine housing 1 b.
  • Az The axial length of the engagement surface of the stepped portion 1d of the turbine housing 1b and the contact point Pa.
  • Ar Radial length of contact point Pa in turbine housing 1 b (length from axis Z).
  • Pb Contact point with the G coupling 4 in the bearing housing 3
  • Bz The axial length of the end face 3c of the convex portion 3b in the bearing housing 3 and the contact point Pb.
  • Br Radial length of contact point Pb in bearing housing 3 (length from axis Z).
  • Opening degree of G coupling 4 t: Thickness of heat shield plate 5
  • C axial length between the contacts Pa and Pb.
  • the coefficient of linear expansion at the time of high temperature and the temperature difference from the normal temperature in each part are defined as follows.
  • linear expansion coefficient at high temperature of the turbine housing 1 b.
  • linear expansion coefficient at high temperature of the bearing housing 3
  • linear expansion coefficient of G coupling 4 at high temperature.
  • linear expansion coefficient at high temperature of the heat shield plate 5
  • ⁇ Ta Temperature difference between the turbine housing 1 b and the normal temperature at high temperature.
  • ⁇ Tb Temperature difference between the bearing housing 3 and the normal temperature at high temperature.
  • ⁇ Tg Temperature difference between the G coupling 4 and normal temperature at high temperature.
  • ⁇ Ts temperature difference between the heat shield plate 5 and the normal temperature at high temperature.
  • the flange portion 1e of the turbine housing 1b and the flange portion 3d of the bearing housing 3 are in contact with the G coupling 4 by the contacts Pa and Pb, respectively.
  • there is a slight gap ⁇ p between the flanges 1e and 3d and an exaggerated state is shown here.
  • the flange portion 3d of the bearing housing 3 is It has been confirmed by the present inventor's research that a gap ⁇ g is formed between the G coupling 4 and the G coupling 4.
  • an allowable numerical value of the difference ⁇ C is set as the allowable value k. That is, in order to improve the fastening force even if the exhaust gas temperature supplied to the turbine 1 is slightly smaller than the prior art G coupling 4 when the exhaust gas temperature is 1050 ° C., the allowable value k is 0 ⁇ k ⁇ 0.0388 / It can be defined as a numerical value within the range of cos ( ⁇ / 2) (unit: mm). Further, in the present invention, in order to effectively suppress the decrease in the fastening force of the G coupling 4, the gap ⁇ g is preferably set to about 0.002 mm.
  • the allowable value k can be defined as a numerical value within the range of 0 ⁇ k ⁇ 0.002 / cos ( ⁇ / 2) (unit: mm).
  • the tolerance value k in the case of using the standard G coupling 4 is defined numerically, it can also be defined as 0 ⁇ k ⁇ 0.0016 (the unit is mm).
  • C ⁇ t (1 + ⁇ Ts) + Bz (1 + ⁇ Tb) ⁇ ⁇ Az (1 + ⁇ Ta) (1) It can be written.
  • the axial length Az of the engagement surface of the stepped portion 1 d and the contact point Pa in the turbine housing 1 b is satisfied so as to satisfy the relationship of 0 ⁇ ⁇ C ⁇ k (3)
  • the axial length Bz of the end face 3c of the convex portion 3b of the bearing housing 3 and the contact point Pb can be obtained.
  • the parameter (axial direction length related to the shape of the convex portion 3 b in consideration of the plate thickness t (thin plate thickness) Bz, radial length Br, opening degree ⁇ , etc.) can be determined, and consequently, the shape of the convex portion 3b can be designed in consideration of the plate thickness t.
  • the fastening force of the G coupling 4 is reduced regardless of the type and capacity of the turbocharger. Can be suppressed.
  • the present invention can be applied to products other than the turbocharger (for example, a waste gate valve, an exhaust manifold, a muffler, etc.).
  • FIG. 5A is a side cross-sectional view of a fastening portion showing another embodiment of the housing fastening method according to the present invention
  • FIG. 5B is a side cross-sectional view of the fastening portion showing still another embodiment.
  • the same components as those shown in FIG. 2A are denoted by the same reference numerals and redundant description will be omitted.
  • the outer diameter (radius) of the flange portion 3d of the bearing housing 3 is expanded by ⁇ h more than the outer diameter (radius) of the flange portion 1e of the turbine housing 1b.
  • the turbine housing 1 b is hotter than the bearing housing 3 and is thus easily thermally expanded. That is, in consideration of the radial displacement of the contacts Pa and Pb due to the difference in thermal expansion, the contacts Pa and the contacts pb are substantially parallel to the axial direction in a high temperature state. In this case, it is possible to apply the calculation formula of the axial length C between the contact points Pa and Pb and the axial length Cg between the contact points Pa and Pg as it is. Even if the housing fastening method shown in FIG. 5A is not employed, the axial length between the contacts Pa and Pb can be easily taken into consideration in consideration of the angle between the line connecting the contact Pa and the contact Pb and the axial direction. C can be calculated.
  • the locking surface of the stepped portion 1d in the recess 1c of the turbine housing 1b is in direct contact with the end face 3c in the projection 3b of the bearing housing 3. That is, the heat shield plate 5 shown in FIG. 2A is not necessary. This takes into consideration the case where the heat shield plate 5 is not necessary depending on the type of supercharger. In this case, if the variables (t, ⁇ , ⁇ Ts) relating to the heat shield plate 5 are excluded from the above-described calculation formula of the axial length C between the contacts Pa and Pb and the axial length Cg between the contacts Pa and Pg, Each axial direction length C and Cg can be easily calculated.
  • the axial lengths C and Cg may be calculated using The present invention is not limited to the embodiment described above, and, for example, can be variously modified without departing from the spirit of the present invention, such as being applicable to fasteners other than G couplings. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

 本発明は、ハウジング構造を工夫することにより、ハウジングが高温状態に曝された場合であってもGカップリングの締結力の低下を抑制することができるハウジング締結方法及び過給機を提供することを目的とする。 本発明は、流体の供給により動翼1aを回転させるタービン1と、動翼1aと回転軸3aを介して連結された羽根車2aにより空気を吸入するコンプレッサ2と、タービン1の外形を構成するタービンハウジング1bと、回転軸3aを回転可能に支持するベアリングハウジング3と、を有し、タービンハウジング1bの凹部1cにベアリングハウジング3の凸部3bを挿入し、凹部1cの段差部1dにより凸部3bの端面3cを係止させた後、凹部1c,凸部3bの外周に形成された各フランジ部1e,3dの外周をGカップリング4により互いに締結した過給機において、段差部1dの係止面の軸方向位置を調整して凹部1c,凸部3bの形状を設定した。

Description

ハウジング締結方法
 本発明は、Gカップリング等の締付具によりハウジングを締結するハウジング締結方法及びGカップリング等の締付具によりハウジングを締結した過給機に関し、特に、締付具の締結力の低下を抑制することができるハウジング締結方法及び過給機に関する。
 流体を動翼に供給して、流体の運動エネルギーを回転運動に変換して動力を得る回転式原動機は、一般にタービンと呼ばれている。特に、動翼の半径方向から流体を供給して軸方向に排出するタイプをラジアルタービンという。かかるラジアルタービンを利用した装置の一つに車両用過給機がある。ここで、車両用過給機(ターボチャージャー)は、排気ガスの供給によりタービン動翼を回転させるガスタービンと、前記タービン動翼と同軸に連結された羽根車により空気を吸入するコンプレッサと、を備えている。前記コンプレッサにより吸入された空気は、圧縮されてエンジンに供給され、燃料と混合されて燃焼される。燃焼後の排気ガスは、前記ガスタービンに送られて仕事をした後、最終的に大気中に放出される。前記排気ガスを前記タービン動翼に供給する流路は、排気ガスを加速させるために、前記タービン動翼の回転軸周りに渦巻き形状に形成されたスクロール部を有し、前記タービン動翼の半径方向から前記排気ガスを供給するように構成されている。
 かかる車両用過給機は、ガスタービンのタービン動翼とコンプレッサの羽根車とを連結する回転軸を有しており、該回転軸はベアリングハウジングにより回転可能に支持されている。そして、タービンハウジングとベアリングハウジングの締結に際し、タービンハウジング及びベアリングハウジングにそれぞれ形成されたフランジ部をGカップリング等の締付具により互いに締結する場合がある(例えば、特許文献1の図12参照)。
特開2006-258108号公報、図12
 ところが、特許文献1のように、タービンハウジングとベアリングハウジングをGカップリング等の締付具により締結した場合、各フランジ部と締付具の線膨張係数が相違するため、過給機の使用時における各フランジ部及び締付具の熱膨張により、これらフランジ部と締付具との間に隙間ができてしまい、締付具の締結力が低下してしまう場合があった。また、タービンハウジング内が高温の排気ガスに曝されると、前記フランジ部が熱膨張して前記締付具を変形させてしまい、排気ガスの温度が低温になった場合における締付具の締結力が低下してしまう場合もあった。
 本発明は上述した問題点に鑑み創案されたものであり、ハウジング構造を工夫することにより、ハウジングが高温状態に曝された場合であってもGカップリング等の締付具の締結力の低下を抑制することができるハウジング締結方法及び過給機を提供することを目的とする。
 上述した目的を達成するべく本発明に係るハウジング締結方法は、一方のハウジングに形成された凹部に他方のハウジングに形成された凸部を挿入し、前記凹部に形成された段差部により前記凸部の端面を係止させると共に、前記凹部及び前記凸部の外周に形成された各フランジ部を互いに対峙させた後、これら対峙されたフランジ部を収容する溝が内周に形成された環状の締結具により、前記一方のハウジングと他方のハウジングを互いに締結するハウジング締結方法において、使用状態において前記各ハウジング及び前記締結具に熱膨張が生じても、前記締結具の溝と前記各フランジ部との隙間が所定値以下となるように、前記段差部の係止面の軸方向位置を設定すると共に、前記凹部及び前記凸部の形状を設定する、ことを特徴とする。
 上述した本発明のハウジング締結方法は、本発明者がGカップリング等の締付具により締結したハウジングにおける熱膨張による締結力の低下について鋭意研究した結果、段差部の係止面の軸方向位置と締付具の締結力との間に関係性があることを見出して創案された発明である。すなわち、段差部の係止面の軸方向位置を調整することにより、フランジ部及び締付具の熱膨張の全容を逐次解明せずに締付具の締結力の低下を抑制することができる。したがって、前記段差部の係止面の軸方向位置を設定すると共に、前記凹部及び前記凸部の形状を設定することにより、熱膨張状態であっても前記締結具の溝と各フランジ部との隙間を容易にコントロールできる。例えば、段差部の係止面の軸方向位置を従来設定されている位置よりも端部寄りに設定する(凹部の深さを浅くする)ことにより、ハウジングの内部が高温(例えば、約1000℃)に曝される場合であっても、熱膨張による締付具の締結力の低下を抑制することができる。
 好適な態様として、上述のハウジング締結方法は、前記段差部の係止面の軸方向位置を前記締付具の軸方向投影幅の範囲内に含まれるように設定する。
 この構成によれば、前記凹部が形成されたハウジングのフランジ部における前記締結具に対する接点と前記段差部の係止面との軸方向の距離が小さくなる。このため、特に前記凹部が形成されたハウジングが、前記凸部が形成されたハウジング及び前記締結具に比べて、より高温に曝される場合でも、熱膨張による締付具の締結力の低下を抑制することができる。
 すなわち、各フランジ部における締結具との接点間の軸方向の距離は、前記凸部側のハウジングのフランジ部における前記係止面と前記締結具との接点との距離から、前記凹部側のハウジングのフランジ部における前記係止面と前記締結具との距離を差し引いた値である。したがって、ハウジング及び締結具の熱膨張が同じである場合、理論的には締結具の締結力の低下は生じないが、他方、前記凹部側のハウジングが、前記凸部側のハウジングよりも大きく熱膨張した場合、各フランジ部における締結具との接点間の軸方向の距離が相対的に小さくなり、締結具との間に隙間が生じることになる。
 しかし、この構成においては、前記凹部が形成されたハウジングのフランジ部における前記締結具に対する接点と前記段差部の係止面との軸方向の距離が小さいので、前記凹部が形成されたハウジングに熱膨張が生じても該接点と係止面との軸方向の距離の増大は極めて小さい。したがって、前記凹部が形成されたハウジングが、前記凸部が形成されたハウジング及び前記締結具に比べて、より高温に曝される場合でも、熱膨張によるハウジングと締付具との隙間の増大を抑制することができ、これにより締結具の締結力の低下を抑制することができる。
 別の態様において、本発明のハウジング締結方法は、前記段差部の係止面と前記凸部の端面との間に挟持される薄板の厚さを考慮して前記凸部の形状を設定する。
 この構成によれば、段差部の係止面と凸部の端面との間にスペーサや隣接するハウジングの遮熱板等の薄板が挟持される場合には、その薄板の熱膨張も考慮されるので、より効果的に熱膨張による締付具の締結力の低下を抑制することができる。
 さらに別の態様において、本発明のハウジング締結方法は、熱膨張がし難い側のハウジングにおけるフランジ部の外径を、熱膨張がし易い側のハウジングにおけるフランジ部の外径よりも大きく形成する。
 この構成によれば、締結されるハウジングの熱膨張の度合いが異なるような場合でも、高温状態における両フランジ部の外周縁を略同一外径上に位置させることができ、締結具に同締結具を傾けるような力の作用を大幅に低減することができる。
 また具体的な態様において、本発明のハウジング締結方法は、前記凹部側のフランジ部における前記締付具との接点と前記段差部の係止面との軸方向長さAzと、前記凸部側のフランジ部における前記締付具との接点と前記端面との軸方向長さBzとに基づき、前記フランジ部の接点間の軸方向長さC=t+Bz-Azと規定し、また前記締付具の接点間の軸方向長さCgと規定し、0≦Cg-C≦許容値kを満たすように前記軸方向長さAz,Bzを決定する。さらに、前記許容値kは、所定の温度において許容できる前記締付具と前記フランジ部の接点の隙間により設定される。具体的には、前記許容値kは、前記締付具の把持部の開度θに対して、0≦k<0.0388/cos(θ/2)の範囲内の数値に設定されることが好ましい。
 この構成によれば、上述の条件に従って、凹部側の軸方向長さAzと凸部側の軸方向長さBzを設定することにより、高温時における締付具とフランジ部との隙間を所望の範囲内に収めることができ、これにより締付具の締結力の低下を抑制することができる。
 別の態様において、本発明の過給機は、流体の供給により動翼を回転させるタービンと、前記動翼と回転軸を介して連結された羽根車により空気を吸入するコンプレッサと、前記タービンの外形を構成するタービンハウジングと、前記回転軸を回転可能に支持するベアリングハウジングと、を有し、前記タービンハウジングに形成された凹部に前記ベアリングハウジングに形成された凸部を挿入し、前記凹部に形成された段差部により前記凸部の端面を係止させると共に、前記凹部及び前記凸部の外周に形成された各フランジ部を互いに対峙させた後、これら対峙されたフランジ部を収容する溝が内周に形成された環状の締結具により、これらフランジ部を互いに締結した過給機において、上述したいずれかのハウジング締結方法により、前記ベアリングハウジングと前記タービンハウジングとを前記締結具により締結する。
 この構成によれば、熱膨張による締付具の締結力の低下を抑制することができる過給機を得ることができる。
本発明に係る過給機を示す側面断面図である。 図1AのGカップリング4の正面図である。 図1AにおけるII部の拡大図である。 従来技術における図2Aに対応する部分を示す拡大図である。 本発明に係るハウジング締結方法の一実施形態の説明に必要な寸法を定義する説明図である。 常温状態におけるGカップリング4とフランジ部1e及び3dの関係を示す図である。 高温状態におけるGカップリング4とフランジ部1e及び3dの関係を示す図である。 図4Bにおける隙間ΔgとΔcとの関係を示す説明図である。 本発明に係るハウジング締結方法の他の実施形態を示す締結部の側面断面図である。 本発明に係るハウジング締結方法のさらに他の実施形態を示す締結部の側面断面図である。
 以下、本発明の実施形態について図1A~図5Bを用いて説明する。ここで、図1Aは、本発明に係る過給機を示す側面断面図、図1Bは図1AのGカップリングの正面図である。また、図2Aは、図1AにおけるII部の拡大図であり、図2Bは、従来技術における図2Aに対応する部分を示す拡大図である。
 図1Aに示した本発明の過給機は、流体の供給により動翼1aを回転させるタービン1と、動翼1aと回転軸3aを介して連結された羽根車2aにより空気を吸入するコンプレッサ2と、タービン1の外形を構成するタービンハウジング1bと、回転軸3aを回転可能に支持するベアリングハウジング3と、を有している。タービンハウジング1aとベアリングハウジング3とベアリングハウジング3との組み付けは、次のとおり行われる。すなわち、タービンハウジング1bに形成された凹部1cにベアリングハウジング3に形成された凸部3bを挿入し、凹部1cに形成された段差部1dにより凸部3bの端面3cを係止させると共に、凹部1c及び凸部3bの外周に形成された各フランジ部1e及び3dを互いに対峙させた後、これら対峙されたフランジ部1e,3dを収容する溝が内周に形成された環状のGカップリング4により、各フランジ部1e,3dが互いに締結されている。そして、後述するように、段差部1dの係止面の軸方向位置が設定されると共に、凹部1c及び凸部3bの形状が設定されるものである。なお、図1Aに示した過給機は、タービン1のスクロール部1fを多室に形成したものであるが、本発明は係る構成に限定されるものではなく、単室のスクロール部を有する過給機であってもよいし、スクロール部1fと動翼1aとの間に流量を調整する可変ノズルが配置された過給機であってもよい。また、コンプレッサハウジング2bとベアリングハウジング3とは、周方向に配置された複数のボルト2cにより締結されているが、他の方法で締結してもよい。
 図1Aに示した過給機において、段差部1dの係止面の軸方向位置は、例えば、図2Aに示したように、段差部1dの係止面の軸方向位置をGカップリング4の軸方向投影幅Zgの範囲内に含まれるように設定される。ここで、タービンハウジング1bのフランジ部1eの端面と段差部1dの係止面における軸方向幅をZaとすれば、フランジ部1eとフランジ部3dの軸方向幅が略等しいことを前提に、Za≦0.5Zgの関係を有している。一方、図2Bに示した従来技術の場合には、段差部1dの係止面の軸方向位置は、Gカップリング4の軸方向投影幅Zgの範囲外に設定されている。すなわち、Za>0.5Zgの関係を有している。この図2Bに示した形状では、タービンハウジング1bの内部が高温(例えば、約1000℃)に曝された場合、各部材の熱膨張によって、Gカップリング4とフランジ部3dとの間に隙間ができて締結力が低下したり、フランジ部1e,3dがGカップリング4を押し広げて変形させてしまったりしてしまう。かかる問題点について、本発明者が鋭意研究した結果、段差部1dの係止面の軸方向位置とGカップリング4の締結力との間に関係性があることを見出した。そこで、本発明では、段差部1dの係止面の軸方向位置を、従来技術よりもフランジ部1eの端部寄りに設定することにより、上述した問題点の解決を図っている。言い換えれば、本発明の過給機は、凹部1cの深さ(=Za)を従来技術よりも浅く設定したものである。
 この構成によれば、タービンハウジング1bのフランジ部1eにおけるGカップリング4に対する接点と段差部1dの係止面との軸方向の距離が小さくなる。このため、特にタービンハウジング1bが、ベアリングハウジング3及びGカップリング4に比べて、より高温に曝される場合でも、熱膨張によるGカップリング4の締結力の低下を抑制することができる。
 すなわち、タービンハウジング1bのフランジ部1eにおけるGカップリング4に対する接点と段差部1dの係止面との軸方向の距離が小さいので、タービンハウジング1bに熱膨張が生じても該接点と係止面との軸方向の距離の増大は極めて小さい。したがって、タービンハウジング1bが、ベアリングハウジング3及びGカップリング4に比べて、より高温に曝される場合でも、熱膨張によるハウジングと締付具との隙間の増大を極力小さくすることができ、これによりGカップリング4の締結力の低下を抑制することができる。
 前記Gカップリング4は締付具の一種であり、図1Bに示したように、一対の半円弧部4a,4aと、各半円弧部4aの同じ側の端部に形成されたフランジ部4b,4bと、各半円弧部4aの反対側の端部に形成された折返部4c,4cと、フランジ部4bに挿通されるボルト・ナット等の締結具4dと、折返部4c,4cを拘束する環状リング4eと、により構成されている。半円弧部4aの断面は、図2Aに示すように、その内周に、タービンハウジング1bのフランジ部1e及びベアリングハウジング3のフランジ部3dが収容される溝を有しており、同溝は、ハ字状に配置された傾斜面を有している。さらに、タービンハウジング1bのフランジ部1e及びベアリングハウジング3のフランジ部3dは、Gカップリング4の傾斜面と接触するようにテーパ状に形成されている。このGカップリング4の傾斜面とフランジ部1e,3dのテーパ面とは、図2Aに示した断面図では点接触しており、図1Bに示した各半円弧部4aに沿って線接触している。そして、Gカップリング4の傾斜面の間にタービンハウジング1bのフランジ部1e及びベアリングハウジング3のフランジ部3dを挟み込んで締結具4dを締め付けることによって、タービンハウジング1bとベアリングハウジング3を締結している。なお、Gカップリング4は、Vバンドカップリングと称されることもある。
 また、図1A及び図2Aに示すように、タービンハウジング1bの段差部1dの係止面とベアリングハウジング3の凸部3bの端面3cとの間には、薄板を筒状に形成した遮熱板5の端部を噛み込ませて挟持するようにしている。かかる遮熱板5は、ベアリングハウジング3をタービンハウジング1bにより送流される高温の排気ガスから保護する部材である。かかる構成そのものは、図2Bに示したように、従来技術と変わるものではないが、本発明では段差部1dの係止面の軸方向位置をフランジ部1eの端部寄りにずらしたことにより、遮熱板5の軸方向長さが従来技術のものより長く設定されている。このようにタービンハウジング1bの段差部1dの係止面とベアリングハウジング3の凸部3bの端面3cとにより、遮熱板5を挟持するようにする場合には、この板厚を考慮して凸部3bの形状を設計する必要がある。なお、かかる遮熱板5は必須の構成要素ではなく、かかる遮熱板5の替わりにシール部材を構成する薄板を環状に形成したスペーサを挟持するようにしてもよいし、タービンハウジング1bの段差部1dの係止面とベアリングハウジング3の凸部3bの端面3cとを直に接触させてもよい。
 次に、本発明に係るハウジング締結方法の一実施形態について詳細に説明する。ここで、図3は、本発明に係るハウジング締結方法の一実施形態の説明に必要な寸法を定義する説明図である。また、図4Aは、常温状態におけるGカップリング4とフランジ部1e及び3dの関係を示し、図4Bは、高温状態におけるGカップリング4とフランジ部1e及び3dの関係を示している。図4Cは、図4Bにおける隙間ΔgとΔcとの関係を示している。
 図3に示すように、各部品の寸法を定義する。
Pa:タービンハウジング1bにおけるGカップリング4との接点。
Az:タービンハウジング1bにおける段差部1dの係止面と接点Paとの軸方向長さ。
Ar:タービンハウジング1bにおける接点Paの径方向長さ(軸Zからの長さ)。
Pb:ベアリングハウジング3におけるGカップリング4との接点。
Bz:ベアリングハウジング3における凸部3bの端面3cと接点Pbとの軸方向長さ。
Br:ベアリングハウジング3における接点Pbの径方向長さ(軸Zからの長さ)。
θ:Gカップリング4の開度。
t:遮熱板5の板厚。
C:接点Pa,Pb間の軸方向長さ。
 また、各部品における高温時の線膨張係数及び常温との温度差を次のように定義する。α:タービンハウジング1bの高温時における線膨張係数。
β:ベアリングハウジング3の高温時における線膨張係数。
γ:Gカップリング4の高温時における線膨張係数。
ε:遮熱板5の高温時における線膨張係数。
ΔTa:タービンハウジング1bの高温時における常温との温度差。
ΔTb:ベアリングハウジング3の高温時における常温との温度差。
ΔTg:Gカップリング4の高温時における常温との温度差。
ΔTs:遮熱板5の高温時における常温との温度差。
 また、図4Aに示すように、常温状態では、タービンハウジング1bのフランジ部1eとベアリングハウジング3のフランジ部3dとは、それぞれ接点Pa,PbによりGカップリング4と接触している。一般に、フランジ部1e,3d間は、若干の隙間Δpが空いており、ここでは誇張した状態を図示している。この隙間Δpが存在することにより、タービンハウジング1bの内部が高温(例えば、約1000℃)に曝された場合、図4Bに示すように、各部品の熱膨張によりベアリングハウジング3のフランジ部3dとGカップリング4との間に隙間Δgが形成されてしまうことが本発明者の研究により確認されている。例えば、図2Bに示した従来技術において、タービン1に供給される排気ガス温度が1050℃の場合には、0.0388mmの隙間Δgが形成される。この程度の隙間であっても、Gカップリング4の締結力の低下を招くことになる。したがって、本発明では、タービン1に供給される排気ガス温度が1050℃の場合に、少なくともこの従来技術の隙間Δg(=0.0388mm)よりも小さくする必要がある。
 ここで、常温状態において接点Pbに対応していたGカップリング4側の接点をPgとすれば、高温状態におけるGカップリング4の接点Pa,Pg間の軸方向長さCgは、フランジ部1e,3d側の接点Pa,Pb間の軸方向長さCよりも長くなる。この差分(Cg-C)をΔCとする。ここで、図4Cに示した図から、ΔCとΔgの関係を求めれば、ΔC=Δg/cos(θ/2)となる。上述したようにΔgは、少なくともΔg<0.0388mmであることが必要であるため、差分ΔCは、ΔC<0.0388/cos(θ/2)mmであることが必要である。この差分ΔCの許容できる数値が許容値kとして設定される。すなわち、タービン1に供給される排気ガス温度が1050℃の場合における従来技術のGカップリング4よりも僅かでも締結力を向上させるためには、許容値kは、0≦k<0.0388/cos(θ/2)(単位はmm)の範囲内の数値として定義することができる。また、本発明においてGカップリング4の締結力の低下を効果的に抑制する場合には、隙間Δgは0.002mm程度にすることが好ましい。この場合、許容値kは、0≦k≦0.002/cos(θ/2)(単位はmm)の範囲内の数値として定義することができる。また、標準的なGカップリング4を用いた場合の許容値kを数値で定義すれば、0≦k≦0.0016(単位はmm)と定義することもできる。
 また、上述した定義から、高温状態における接点Pa,Pb間の軸方向長さCを算出すれば、C={t(1+εΔTs)+Bz(1+βΔTb)}-Az(1+αΔTa)・・・(1)と表記することができる。また、高温状態における接点Pa,Pg間の軸方向長さCgは、Cg=(t+Bz-Az)(1+γΔTg)-{Ar(1+αΔTa)-(Ar+Br)(1+γΔTg)+Br(1+βΔTb)}tan(θ/2)・・・(2)と表記される。したがって、許容値kが設定されれば、0≦ΔC≦k・・・(3)の関係を満たすように、タービンハウジング1bにおける段差部1dの係止面と接点Paとの軸方向長さAzと、ベアリングハウジング3における凸部3bの端面3cと接点Pbとの軸方向長さBzを求めることができる。すなわち、本実施形態においては、上式(1)(2)(3)を用いることで、板厚t(薄板の厚さ)を考慮して、凸部3bの形状に関するパラメータ(軸方向長さBz、径方向長さBr、開度θ等)を決めることができ、ひいては、板厚tを考慮した凸部3bの形状の設計を行うことができる。
 上述したハウジング締結方法により凹部側の軸方向長さAz及び凸部側の軸方向長さBzを設定することにより、過給機の型式や容量に関係なく、Gカップリング4の締結力の低下を抑制することができる。また、Gカップリング4を用いてハウジングを締結するものであれば、過給機以外の製品(例えば、ウエストゲート弁、エキゾーストマニホールド、マフラー等)にも適用することができる。
 続いて、本発明に係るハウジング締結方法の他の実施形態について、図5A及び図5Bを参照しつつ説明する。ここで、図5Aは、本発明に係るハウジング締結方法の他の実施形態を示す締結部の側面断面図であり、図5Bはさらに他の実施形態を示す締結部の側面断面図である。なお、図2Aに示した構成部品と同じ部分には同じ符号を付して重複した説明を省略する。
 図5Aに示した実施形態では、ベアリングハウジング3のフランジ部3dの外径(半径)をタービンハウジング1bのフランジ部1eの外径(半径)よりもΔhだけ拡径している。これは、ベアリングハウジング3よりもタービンハウジング1bの方が高温状態となるため熱膨張し易いことを考慮したものである。すなわち、熱膨張の差により接点Paと接点Pbとが径方向にずれが生じることを考慮して、高温状態において接点Paと接点pbとが軸方向と略平行になるようにしたものである。この場合には、上述した接点Pa,Pb間の軸方向長さC及び接点Pa,Pg間の軸方向長さCgの計算式をそのまま適用することができる。仮に、図5Aに示したハウジング締結方法を採用しない場合であっても、接点Paと接点Pbを結ぶ線分と軸方向とのなす角度を考慮して容易に接点Pa,Pb間の軸方向長さCを算出することができる。
 図5Bに示した実施形態では、タービンハウジング1bの凹部1cにおける段差部1dの係止面と、ベアリングハウジング3の凸部3bにおける端面3cとを直に接触させている。すなわち、図2Aに示した遮熱板5が必要ない場合である。これは、過給機の型式によっては遮熱板5が必要ない場合を考慮したものである。この場合、上述した接点Pa,Pb間の軸方向長さC及び接点Pa,Pg間の軸方向長さCgの計算式から遮熱板5に関する変数(t,ε,ΔTs)を除外すれば、各軸方向長さC,Cgを容易に算出することができる。なお、段差部1dの係止面と凸部3bの端面3cとの間に、遮熱板5に替えてスペーサやシール部材を挟持させる場合には、かかる挟持部材の板厚や線膨張係数等を用いて各軸方向長さC,Cgを算出すればよい。
 本発明は上述した実施形態に限定されず、例えば、Gカップリング以外の締付具にも適用することができる等、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。

Claims (8)

  1.  一方のハウジングに形成された凹部に他方のハウジングに形成された凸部を挿入し、前記凹部に形成された段差部により前記凸部の端面を係止させると共に、前記凹部及び前記凸部の外周に形成された各フランジ部を互いに対峙させた後、これら対峙されたフランジ部を収容する溝が内周に形成された環状の締結具により、これらフランジ部を互いに締結するハウジング締結方法において、
     使用状態において前記各ハウジング及び前記締結具に熱膨張が生じても、前記締結具の溝と前記各フランジ部との隙間が所定値以下となるように、前記段差部の係止面の軸方向位置を設定すると共に、前記凹部及び前記凸部の形状を設定する、ことを特徴とするハウジング締結方法。
  2.  前記段差部の係止面の軸方向位置を前記締付具の軸方向投影幅の範囲内に含まれるように設定した、ことを特徴とする請求項1に記載のハウジング締結方法。
  3.  前記段差部の係止面と前記凸部の端面との間に挟持される薄板の厚さを考慮して前記凸部の形状を設定する、ことを特徴とする請求項1に記載のハウジング締結方法。
  4.  使用状態における熱膨張が前記一方のハウジングと他方のハウジングが異なるものにおいて、
     熱膨張がし難い側のハウジングにおけるフランジ部の外径を、熱膨張がし易い側のハウジングにおけるフランジ部の外径よりも大きく形成する、ことを特徴とする請求項1に記載のハウジング締結方法。
  5.  前記凹部側のフランジ部における前記締付具との接点と前記段差部の係止面との軸方向長さAzと、前記凸部側のフランジ部における前記締付具との接点と前記端面との軸方向長さBzとに基づき、前記フランジ部の接点間の軸方向長さC=t+Bz-Azと規定し、また前記締付具の接点間の軸方向長さCgと規定し、0≦Cg-C≦許容値kを満たすように前記軸方向長さAz,Bzを決定する、ことを特徴とする請求項1に記載のハウジング締結方法。
  6.  前記許容値kは、所定の温度において許容できる前記締付具と前記フランジ部の接点の隙間により設定される、ことを特徴とする請求項5に記載のハウジング締結方法。
  7.  前記許容値kは、前記締付具の把持部の開度θに対して、0≦k<0.0388/cos(θ/2)の範囲内の数値である、ことを特徴とする請求項5に記載のハウジング締結方法。
  8.  流体の供給により動翼を回転させるタービンと、前記動翼と回転軸を介して連結された羽根車により空気を吸入するコンプレッサと、前記タービンの外形を構成するタービンハウジングと、前記回転軸を回転可能に支持するベアリングハウジングと、を有し、前記タービンハウジングに形成された凹部に前記ベアリングハウジングに形成された凸部を挿入し、前記凹部に形成された段差部により前記凸部の端面を係止させると共に、前記凹部及び前記凸部の外周に形成された各フランジ部を互いに対峙させた後、これら対峙されたフランジ部を収容する溝が内周に形成された環状の締結具により、これらフランジ部を互いに締結した過給機において、
     請求項1~請求項7のいずれかに記載のハウジング締結方法により、前記ベアリングハウジングと前記タービンハウジングとを前記締結具により締結する、ことを特徴とする過給機。
PCT/JP2008/062942 2008-01-18 2008-07-17 ハウジング締結方法 WO2009090768A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/863,463 US20100296925A1 (en) 2008-01-18 2008-07-17 Housing Fastening Method
EP08791296.0A EP2233719A4 (en) 2008-01-18 2008-07-17 Housing fastening method
CN200880125069XA CN101918692B (zh) 2008-01-18 2008-07-17 外壳联接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008009156A JP2009167971A (ja) 2008-01-18 2008-01-18 ハウジング締結方法及び過給機
JP2008-009156 2008-01-18

Publications (1)

Publication Number Publication Date
WO2009090768A1 true WO2009090768A1 (ja) 2009-07-23

Family

ID=40885175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062942 WO2009090768A1 (ja) 2008-01-18 2008-07-17 ハウジング締結方法

Country Status (6)

Country Link
US (1) US20100296925A1 (ja)
EP (1) EP2233719A4 (ja)
JP (1) JP2009167971A (ja)
KR (1) KR20100091259A (ja)
CN (1) CN101918692B (ja)
WO (1) WO2009090768A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931195B1 (fr) * 2008-05-16 2014-05-30 Snecma Organe dissymetrique de verrouillage de secteurs d'anneau sur un carter de turbomachine
DE102011101506B4 (de) * 2010-05-17 2015-06-18 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motoranordnung und Verfahren zur Herstellung
US20140182308A1 (en) * 2012-12-28 2014-07-03 United Technologies Corporation Gas turbine engine with v-band clamp connection for collector box
JP5974370B2 (ja) * 2013-03-18 2016-08-23 株式会社Ihi 回転機械支持装置
JP6127681B2 (ja) * 2013-04-17 2017-05-17 株式会社Ihi 過給機
EP3055538B1 (en) 2013-10-09 2024-02-28 RTX Corporation Spacer for power turbine inlet heat shield
DE102013111562A1 (de) * 2013-10-21 2015-04-23 Ihi Charging Systems International Gmbh Abgasturbolader
DE102013111561A1 (de) * 2013-10-21 2015-04-23 Ihi Charging Systems International Gmbh Abgasturbolader
US9863275B2 (en) * 2013-12-17 2018-01-09 Honeywell International, Inc. Turbine shroud contour exducer relief
DE102015009900B4 (de) * 2015-07-29 2022-03-24 Audi Ag Verfahren zum Prüfen eines Abgasturboladers sowie Verfahren zum Prüfen einer Brennkraftmaschine
US11725756B2 (en) 2015-12-28 2023-08-15 Victaulic Company Adapter coupling
US10859190B2 (en) 2016-05-16 2020-12-08 Victaulic Company Sprung coupling
EP3444462B1 (en) 2016-05-18 2022-03-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger
CN109072774A (zh) 2016-05-27 2018-12-21 株式会社Ihi 增压器
JP2018035713A (ja) * 2016-08-30 2018-03-08 株式会社アキタファインブランキング カップリング 並びにこれを構成するカップリング要素の製造方法
DE102017208107A1 (de) * 2017-05-15 2018-11-15 Man Diesel & Turbo Se Turbolader
US11300009B2 (en) 2017-07-14 2022-04-12 Ihi Charging Systems International Gmbh Connection device for a turbocharger, and turbocharger
WO2019011463A1 (de) 2017-07-14 2019-01-17 Ihi Charging Systems International Gmbh Verbindungsvorrichtung für einen abgasturbolader und abgasturbolader
JP6651564B2 (ja) * 2018-03-15 2020-02-19 本田技研工業株式会社 フランジの締結構造
JP7135788B2 (ja) * 2018-11-29 2022-09-13 トヨタ自動車株式会社 ターボチャージャ
US11136997B2 (en) * 2019-07-23 2021-10-05 Ford Global Technologies, Llc Methods and systems for a compressor housing
US11781683B2 (en) 2019-11-15 2023-10-10 Victaulic Company Shrouded coupling
CN113107683B (zh) * 2021-05-25 2022-02-01 浙江燃创透平机械股份有限公司 一种燃气轮机转子的轮盘止口定位结构
JP2023003808A (ja) * 2021-06-24 2023-01-17 三菱重工エンジン&ターボチャージャ株式会社 回転機械のケーシング、回転機械および回転機械のケーシングの製造方法
CN118088491B (zh) * 2024-04-29 2024-08-02 中国航发四川燃气涡轮研究院 一种实现压气机径向间隙均匀的机匣结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161432U (ja) * 1987-10-13 1989-04-19
JPH0290301U (ja) * 1988-12-29 1990-07-18
JPH03292489A (ja) * 1990-04-05 1991-12-24 Nissan Motor Co Ltd Vバンドシール構造
JP2006258108A (ja) 2006-07-04 2006-09-28 Mitsubishi Heavy Ind Ltd 可変容量タービン及びこれを備えた可変容量ターボチャージャ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3077296A (en) * 1961-04-26 1963-02-12 Schwitzer Corp Turbocharger oil seal
US3263424A (en) * 1965-03-25 1966-08-02 Birmann Rudolph Turbine-compressor unit
US4414725A (en) * 1979-04-09 1983-11-15 Steve Breitweiser Method for turbocharger repair
US4480440A (en) * 1982-04-21 1984-11-06 Wallace Murray Corporation Turbocharger compressor end ventilation system
JPS5939930A (ja) * 1982-08-27 1984-03-05 Nissan Motor Co Ltd タ−ボチヤ−ジヤ
JPS5967538U (ja) * 1982-10-28 1984-05-08 三菱重工業株式会社 過給機用クランプ
JPS6461432A (en) * 1987-09-01 1989-03-08 Fuji Photo Film Co Ltd Method for estimating and treating partition coefficient of chemical substance
US5063661A (en) * 1990-07-05 1991-11-12 The United States Of America As Represented By The Secretary Of The Air Force Method of fabricating a split compressor case
US5549449A (en) * 1993-07-02 1996-08-27 Wrr Industries, Inc. Turbomachinery incorporating heat transfer reduction features
EP0979347B1 (de) * 1997-04-28 2002-06-26 Siemens Aktiengesellschaft Vorrichtung zur wärmeisolierung für eine dampfturbine
JPH11132051A (ja) * 1997-10-28 1999-05-18 Hitachi Ltd ターボチャージャ
US6464268B1 (en) * 2000-07-14 2002-10-15 Cummins Inc. High strength radial flange coupling
JP2002129970A (ja) * 2000-10-20 2002-05-09 Mitsubishi Heavy Ind Ltd 可変容量タービン
US6739845B2 (en) * 2002-05-30 2004-05-25 William E. Woollenweber Compact turbocharger
EP1426563A1 (de) * 2002-12-03 2004-06-09 BorgWarner Inc. Turbolader mit keramischer oder metallischer Hitzeisolierung zwischen Turbinen- und Lagergehäuse
JP2005076463A (ja) * 2003-08-28 2005-03-24 Shimizu Turbo Technology:Kk ターボチャージャの軸受装置
DE102004039477B4 (de) * 2004-08-14 2015-01-08 Ihi Charging Systems International Gmbh Turbinengehäuse für einen Abgasturbolader
JP4605380B2 (ja) * 2005-08-08 2011-01-05 株式会社Ihi 電動過給機
JP4468286B2 (ja) * 2005-10-21 2010-05-26 三菱重工業株式会社 排気ターボ式過給機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161432U (ja) * 1987-10-13 1989-04-19
JPH0290301U (ja) * 1988-12-29 1990-07-18
JPH03292489A (ja) * 1990-04-05 1991-12-24 Nissan Motor Co Ltd Vバンドシール構造
JP2006258108A (ja) 2006-07-04 2006-09-28 Mitsubishi Heavy Ind Ltd 可変容量タービン及びこれを備えた可変容量ターボチャージャ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233719A4 *

Also Published As

Publication number Publication date
JP2009167971A (ja) 2009-07-30
EP2233719A4 (en) 2017-07-26
US20100296925A1 (en) 2010-11-25
CN101918692B (zh) 2013-01-16
CN101918692A (zh) 2010-12-15
KR20100091259A (ko) 2010-08-18
EP2233719A1 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
WO2009090768A1 (ja) ハウジング締結方法
US7364165B2 (en) Shaft seal mechanism
KR101240109B1 (ko) 배기가스터빈 케이싱
EP2620613B1 (en) Sealing structure for turbocharger housing
JP4755071B2 (ja) 排気ターボ過給機
JP4564271B2 (ja) 排気タービンケーシング
CN1991143B (zh) 一种用于燃气轮机点火引线的冷却设备
JP2004183648A (ja) ターボ過給機用のハウジングユニットと、それを組み立てるための方法
WO2005078298A1 (ja) 過給機用転がり軸受
JPH01159499A (ja) 分割シュラウド型コンプレッサー
EP3112633B1 (en) Sheet metal turbine housing
JP2010265896A (ja) 回転部品用の継手
JP2010053792A (ja) 可変容量排気ガスタービンの製造方法
US10954816B2 (en) Turbocharger
JP2011144689A (ja) ガスタービンエンジンのシール構造
US20060033287A1 (en) Controlled gap carbon seal
KR101531473B1 (ko) 회전 기계의 시일 구조 및 이를 구비한 가스 터빈
US9657596B2 (en) Turbine housing assembly for a turbocharger
JP2013130136A (ja) ターボチャージャーの締結部構造
JP6782840B2 (ja) ノズルリングとタービンハウジングとの間にシーリング面を備えるターボチャージャ
US11713709B2 (en) Nozzle device and exhaust turbocharger
JP7037634B2 (ja) ターボ過給機及び内燃機関
CA2031476A1 (en) Pressure wave machine
JP2004316509A (ja) タービン車室のシール構造
JP2007046540A (ja) タービンのシール構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125069.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4336/DELNP/2010

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2008791296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008791296

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107015645

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12863463

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE