WO2009090228A1 - Composants en acier moulé solide et ductile, à forte teneur en manganèse, procédé de production et utilisation de ceux-ci - Google Patents

Composants en acier moulé solide et ductile, à forte teneur en manganèse, procédé de production et utilisation de ceux-ci Download PDF

Info

Publication number
WO2009090228A1
WO2009090228A1 PCT/EP2009/050447 EP2009050447W WO2009090228A1 WO 2009090228 A1 WO2009090228 A1 WO 2009090228A1 EP 2009050447 W EP2009050447 W EP 2009050447W WO 2009090228 A1 WO2009090228 A1 WO 2009090228A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
component
cast
cast steel
trip
Prior art date
Application number
PCT/EP2009/050447
Other languages
German (de)
English (en)
Inventor
Andreas Weiss
Piotr Scheller
Original Assignee
Technische Universität Bergakademie Freiberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Bergakademie Freiberg filed Critical Technische Universität Bergakademie Freiberg
Publication of WO2009090228A1 publication Critical patent/WO2009090228A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the invention relates to components made of high manganese, solid and tough cast steel, to processes for their production and their use as a cast component in plant and refrigeration technology, for equipment and components for transport, extraction and liquefaction and fractionation of gases and as cast components in the vehicle and aircraft construction, especially for crash-stressed components.
  • Wrought alloys are characterized by the fact that they can be formed well at elevated temperatures and at room temperature with various methods usually well. Through a casting in special casting plants, which usually takes place continuously for several melting units (each of which can be up to several hundred tons), s. G. Slabs, billets and blooms and cast strip, as described in the patent applications DE 102 59 230 Al, DE 10 2004 061 284 Al, which are then hot and then cold formed. The cast material is due to the structure (cast structure) and the resulting material properties as well as the geometric dimensions not suitable for the production of finished parts.
  • castings are produced in the form of castings, which are used as finished parts without any forming processes in the cast state.
  • An example are housings of gearboxes or pumps. Heat treatment and machining of the mating surfaces may be performed on such molded castings if necessary.
  • the structure Such finished molded castings is a cast / solidification structure, which, even with the same chemical composition, generally has worse mechanical properties than a structure set by forming processes.
  • the research and education in this industry are covered by engineering education in the field of foundry technology and the engineers are organized in the specialist association of foundry professionals. Due to the highly specialized training, there is almost no staff exchange between these industries. Both engineering and scientific reports are published in various, subject-specific journals and presented at specialist conferences, so that the specialist engineer from one industry is generally unfamiliar with developments in the other sector.
  • High-manganese steels with manganese are known as the main alloying element, undergoing transformation in the manufacturing process and having metastable austenite and hence special mechanical properties in the structure formed thereby. These properties are significantly influenced by a TRIP or TWIP effect.
  • TRIP transformation induced plasticity
  • TWIP transformation induced plasticity
  • TWIP twinning induced plasticity
  • both effects cause a simultaneous increase in tensile strength and elongation at break, but also in impact energy.
  • the cold working and energy absorbing capabilities of the steels are improved.
  • the triggering of a TRIP or a TWIP effect requires an austenite with a corresponding austenite stability as well as a specific defect structure.
  • the austenite stability is determined by the chemical composition of the austenite.
  • the defect structure of austenite is also influenced by hot and cold forming.
  • the defect structure has a significant influence on the nucleation conditions for the martensitic phases, which are preferably caused by stacking faults. Austenite stacking energy determines which deformation processes occur in austenite during external stress (shear band, twin, martensite formation). It decides whether a TRIP or a TWIP effect is triggered in wrought alloys. In addition, a cold forming must be done, which causes the triggering of the two effects. For this reason, the TRIP and the TWIP effect have so far been proven exclusively in wrought alloys or on formed material and used technically.
  • Hot or cold rolled semi-finished products serve as starting material for cold-formed parts.
  • the TRIP and TWIP effect in austenitic non-ferrous alloys is controlled by the chemical composition of the austenite and the forming conditions. The higher the amount of strain-induced martensite or the number of strain twins, the higher the increase in tensile strength, elongation at break, and impact energy.
  • the TRIP or TWIP effect in austenitic steels containing high manganese can be described and influenced by the austenite stability and especially by the amount of austenite stacking energy.
  • the austenite stability and austenite stacking energy are dependent on austenite chemical composition and temperature. If the stacking energy of austenite is relatively high, the TWIP effect dominates. Such steels tend to form ⁇ '-martensite. At low stacking fault energy levels, on the other hand, the TRIP effect is favored. These steels are prone to preferential ⁇ -martensite formation.
  • the deformation-induced martensite content and thus the TRIP effect are deliberately adjusted by the variation of the cold forming conditions in order to obtain a specific cold workability or a corresponding property profile.
  • Such a procedure is technically not given for austenitic cast steel.
  • a disadvantage of the prior art is the non-use of known from high-alloy austenitic Rnetlegtechniken TRIP or TWIP effect for steel casting and the non-use of the variety of strength-enhancing options that affect the TRIP or the TWIP effect and what to improve the properties of cast steel components.
  • the object is achieved by components of high manganese solid and ductile cast steel with a composition in mass percent
  • Niobium content from 0 to 2%
  • Tantalum content from 0 to 1%
  • Titanium content from 0 to 3%
  • Steel cast components must withstand external stresses under conditions of use. They must not break, if they z. B. exposed to a shock or crash stress become. The triggering of a TRIP or a TWIP effect under conditions of use prevents or impedes the formation of cracks.
  • the casting material according to the invention or the cast components according to the invention can absorb higher stresses without breaking or thinner cross-sections can be used for given stresses. Thus, the condition for the production of thin-walled, low-cost, weight-saving cast components is created.
  • the component according to the invention comprises a cast steel with a composition
  • Niobium content from 0 to 2%
  • Tantalum content from 0 to 1%
  • Titanium content from 0 to 3%
  • Vanadium content from 0 to 1%
  • Niobium content from 0 to 2%
  • Tantalum content from 0 to 1%
  • Titanium content from 0 to 3%
  • Vanadium content from 0 to 1%
  • thin-walled components with a wall thickness ⁇ 2 mm can be produced and achieve a weight reduction compared to conventional cast components.
  • Melting accompanying elements are z. B. S, P, O and Cr but also impurities. These are due to the process and are not specifically added to the cast steel according to the invention.
  • the components according to the invention can be produced by melting the alloy, casting it into a finished casting mold and removing it from the mold.
  • a separate aftertreatment except for a usual surface treatment or deburring is basically not required.
  • a heat treatment for.
  • the resulting lightweight construction saves energy and material costs.
  • tensile strengths of more than 550 MPa, elongations at break of more than 30% and notched impact work of more than 125 J are achieved.
  • cast parts can be equipped with a type of crash reserve from the cast steel casting according to the invention. This means that the cast steel mold is cast and integrated into an application without being subjected to a tensile load.
  • the TRIP -°. TWIP effect show high tensile and elongation at break and behave tough.
  • the casting material according to the invention or the components according to the invention have a decisive advantage. Their embrittlement is degraded.
  • an austenitic or austenitic-martensitic finely dispersed microstructure is present at room temperature. Due to the TRIP or TWIP effect induced in the tensile test, tensile strengths of more than 550 MPa, elongations at break of more than 30% and an impact energy of more than 125 J are achieved.
  • the cast steel material according to the invention or the components according to the invention behave tough despite increased strength values.
  • the cast steel of the invention or the components according to the invention have an energy absorption capacity at room temperature greater than about 0.37 J / mm 3 .
  • the high manganese steel casting according to the invention or the components according to the invention exhibit a TRIP or a TWIP effect under load. Due to the TRIP and TWIP effect, which is triggered during the tensile stress in the cast steel of the invention or the components according to the invention at room temperature and low temperatures, the mechanical properties improve. Thus, the tensile strength reaches values of more than 550 MPa, the elongation at break of more than 30% and the impact energy of more than 125 J. At room temperature and low temperatures, the steel casting material behaves particularly tough despite increased strength values.
  • the cast steel of the invention or the components according to the invention have a high energy absorption capacity at room temperature and low temperatures.
  • the energy absorption capacity at room temperature for these alloys is between about 0.30-0.40 J / mm 3 . This means that at a sudden stress, such. As in the event of a crash, the steel casting is solidified and deformed at the same time, without breaking. Therefore, the cast steel components according to the invention are particularly suitable for thin-walled and crash-stressed components in the automotive industry. It is surprising that the strength and toughness properties of the cast components according to the invention correspond to comparable wrought alloys with TRIP / TWIP effect. The strength and toughness properties of the cast components are only about 10% lower than the strength and toughness properties of comparable formed semi-finished products.
  • a metastable Austenitschreib is set in the structure of the invention in the cast steel casting.
  • the austenite has a tendency to form deformation-induced martensite at room temperature and at low temperatures.
  • Manganese is added to the cast steel according to the invention in order to form austenite at high temperatures, which remains completely or partially preserved after cooling to room temperature. Under load, this metastable austenite converts into ⁇ - or ⁇ '-martensite, and / or deformation twins are formed in the austenite. Manganese influences the plastic deformation processes in a pressure or tensile load via the austenite stacking energy.
  • Carbon and nitrogen are also used for austenite formation. With increasing content of carbon and nitrogen dissolved in austenite, the austenite stability increases against the formation of martensitic phases, and the austenite becomes more solid due to solid solution strengthening.
  • Carbon and nitrogen are also used to form carbides, nitrides and carbonitrides.
  • alloying elements having a high affinity to carbon and nitrogen such as Ti, Nb, Ta, V and Al are added to the steel.
  • the forming carbides and nitrides inhibit the formation of coarse austenite since carbides and nitrides inhibit the movement of interfaces. They have a positive effect on the strength and toughness properties of the cast steel.
  • the cast steel alloy according to the present invention has a content by mass percentage of Nb 0.05-2%, Ta 0.01-1%, Ti 0.01-3% and V 0.01-1%.
  • a content in percent by weight of Nb is preferably between 0.1 and 1%, on Ta between 0.05 and 0.5%, on Ti between 0.1 and 1% and on V between 0.05 and 0.5%.
  • Particularly preferred is a content of Nb and Ti of 0.1 to 0.5%.
  • Such carbide- and nitride-forming alloying elements according to the invention can be used to target the TRIP or TWIP effect via the solution or precipitation state to be influenced.
  • both grain refining and solidification of the austenite is achieved.
  • finely dispersed precipitates in fine-grained austenite the profile of the steel mold casting with respect to its strength and toughness properties is further improved.
  • Silicon and aluminum are cost-effective alloying elements with which the stacking fault energy of austenite is specifically influenced according to the invention. By means of these elements it is possible to favor the TRIP and the TWIP effect in high manganese steel castings.
  • the cast steel alloy according to the invention preferably has a content in mass percentage of Si of 0.1-2.0%.
  • a content of Si is preferably between 0.5 to 1.7%, more preferably a content between 1.0 and 1.5%.
  • Falling proportions of alloying elements are used according to the invention in order to produce not only austenitic cast steel alloys but also cast steel alloys with an austenitic-martensitic starting structure.
  • the invention also includes components in which the cast steel according to the invention consists of cast steel foam and which can be produced in a known manner.
  • Niobium content from 0 to 2%
  • Titanium content from 0 to 3% and one Vanadium content from 0 to 1% and
  • non-cutting or non-cutting forming processes are all forming processes which change the geometry of the cast steel part and which would trigger a TRIP process in the cast steel due to the mechanical action.
  • These forming processes such as rolling, forging, pressing, etc. are not carried out, so that the steel casting after use in the application still has the potential to develop the TRIP effect and thus in the case of a load situation, a reserve in terms of tensile strength and Has elongation at break.
  • machining of the steel mold casting which do not trigger a TRIP effect, can be performed.
  • the cast components can be subjected to a heat treatment with the aim of improving the strength and toughness in a further step, according to an advantageous embodiment of the method according to the invention.
  • An advantageous heat treatment process is solution heat treatment.
  • the steel casting before or / and after the manufacture of the components of about 1 hour annealing at 920 to 1080 0 CZIbVH 2 O subjected before following a water, oil or air cooling takes place.
  • Niobium content from 0 to 2%, Tantalum content from 0 to 1%,
  • Titanium content from 0 to 3%
  • Vanadium content from 0 to 1%
  • Aluminum content from 0.05 to 0.1%, silicon content from 0 to 0.5%,
  • Niobium content from 0 to 2%
  • Tantalum content from 0 to 1%
  • Titanium content from 0 to 3%
  • Vanadium content from 0 to 1%
  • the cast steel alloy of the present invention is melted to have a content in mass percentage of Si between 0.1-2.0%, Nb 0.05-2%, Ta 0.01-1%, Ti 0.01-3% and V has 0.01-1%.
  • a content in mass percent of Si is between 0.5 to 1.7%, at Nb between 0.1 and 1%, at Ta between 0.05 and 0.5%, at Ti between 0.1 and 1% and at V between 0.05 and 0.5%.
  • Particularly preferred is a content of Si between 1.0 to 1.5%.
  • a content of Nb and Ti of 0.1 to 0.5% each is particularly preferable.
  • the components produced by the process according to the invention exhibit under load a TRIP or TWIP effect, so that in a deformation or destruction of the component, a phase transformation occurs in such a way that the tensile strength to 550 to 1100 MPa, the elongation at break to more than 30% and the impact energy to greater than 125 J. increases.
  • inventive steel mold casting as a casting material in plant and refrigeration, for machine components, fittings, housings, covers, brackets u. ⁇ ., In vehicle and aircraft, for crash-stressed parts, such.
  • the components of the invention are characterized by excellent strength and toughness combined with high energy absorption capacity and are particularly suitable for crash-stressed components and stiffening structural components, chassis components, wear and strength components.
  • the invention therefore also includes energy absorption components made of cast steel according to the invention. With the same space, these allow higher energy intake.
  • the energy absorption components according to the invention are suitable, for example, as bumper carriers, as frame parts (eg sills) or the like in vehicles, for example in motor vehicles for absorbing kinetic energy in the event of an impact, for example as a result of an accident. They have a high deformability while ensuring a sufficient static strength.
  • the molten steel alloy is poured into a mold of a B pillar of a vehicle. After cooling, the B-pillar steel casting is demolded, deburred and optionally surface-treated.
  • the thin-walled B-pillar cast steel part has at room temperature a tensile strength of 820 MPa, an elongation at break of 46% and an impact strength of 150 J.
  • the thin-walled gear housing part was subjected to a heat treatment (1000 ° C / lh / air), then demoulded, deburred and reworked the casting surface locally.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention concerne des composants en acier moulé solide et ductile, à forte teneur en manganèse, composé, en pourcentages en poids, - de 4 à 30% de manganèse, - de 0,01 à 4% d'aluminium, - de 0 à 4% de silicium, - de 0,005 à 0,5% d'azote, - de 0,01 à 0,6% de carbone, - de 0 à 2% de niobium, - de 0 à 1% de tantale, - de 0 à 3% de titane et - de 0 à 1% de vanadium, le reste étant constitué de fer et d'impuretés résultant de la fusion. Sous contrainte, le composant présente un effet TRIP (plasticité induite par transformation) ou un effet TWIP (plasticité induite par maclage). L'invention concerne également des procédés de production du composant et son utilisation en tant que composant coulé dans la technique de construction d'installations industrielles et frigorifiques, pour des installations et des composants de transport, de production et de liquéfaction et fractionnement de gaz, et en tant que composants coulés dans la construction automobile et aéronautique, notamment pour des composants sollicités en cas de collision et des composants d'absorption d'énergie.
PCT/EP2009/050447 2008-01-17 2009-01-15 Composants en acier moulé solide et ductile, à forte teneur en manganèse, procédé de production et utilisation de ceux-ci WO2009090228A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008005806.8 2008-01-17
DE200810005806 DE102008005806A1 (de) 2008-01-17 2008-01-17 Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung

Publications (1)

Publication Number Publication Date
WO2009090228A1 true WO2009090228A1 (fr) 2009-07-23

Family

ID=40467171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/050447 WO2009090228A1 (fr) 2008-01-17 2009-01-15 Composants en acier moulé solide et ductile, à forte teneur en manganèse, procédé de production et utilisation de ceux-ci

Country Status (2)

Country Link
DE (1) DE102008005806A1 (fr)
WO (1) WO2009090228A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312158A (zh) * 2011-09-13 2012-01-11 上海交通大学 一种Nb、Ti合金化低碳高强度高塑性TWIP钢及制备方法
EP2749659A1 (fr) * 2012-12-07 2014-07-02 Benteler Automobiltechnik GmbH Procédé de fabrication d'un composant de véhicule automobile et composant de véhicule automobile
CN104233059A (zh) * 2013-06-19 2014-12-24 鞍钢股份有限公司 一种抗延迟断裂型高强twip钢

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296232B (zh) * 2011-09-08 2012-12-26 上海交通大学 超高强度高塑性低碳相变与孪晶诱发塑性热轧钢板及制法
DE112013001144A5 (de) 2012-02-25 2014-10-30 Technische Universität Bergakademie Freiberg Verfahren zur Herstellung hochfester Formteile aus hochkohlenstoff- und hochmanganhaltigem austenitischem Stahlguss mit TRIP/TWIP-Eigenschaften
DE102015204112B4 (de) 2015-03-06 2021-07-29 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verwendung eines biologisch abbaubaren Eisenbasiswerkstoffs
EP3504351B1 (fr) * 2016-08-24 2023-10-11 The University of Hong Kong Acier à deux phases et procédé de fabrication dudit acier à deux phases
EP3321386A1 (fr) 2016-11-11 2018-05-16 Wolfensberger AG Composant en acier coulé à paroi fine ayant une structure de base austénitique
DE102020121729B4 (de) 2020-08-19 2023-11-02 Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. (IFW Dresden e.V.) Implantatwerkstoff und dessen Verwendung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1032296B (de) * 1952-08-22 1958-06-19 East Hecla Works Verwendung einer austenitischen Stahllegierung als Werkstoff fuer nichtmagnetische Gegenstaende hoher Festigkeit und Streckgrenze
JPH0790496A (ja) * 1993-09-17 1995-04-04 Sumitomo Metal Ind Ltd ボイラ用耐摩耗複層鋼管およびその製造方法
WO2006048034A1 (fr) * 2004-11-03 2006-05-11 Thyssenkrupp Steel Ag Bande ou tole d'acier extremement resistante a proprietes twip et procede de fabrication de ladite bande a l'aide de la 'coulee directe de bandes'
DE102005010243A1 (de) * 2005-03-05 2006-09-07 Sms Demag Ag Verfahren und Anlage zur Herstellung eines Leichtbaustahls mit einem hohen Mangan-Gehalt
WO2007075006A1 (fr) * 2005-12-26 2007-07-05 Posco Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727759C2 (de) * 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Verwendung eines Leichtbaustahls
DE10259230B4 (de) * 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines Stahlprodukts
DE102004061284A1 (de) * 2003-12-23 2005-07-28 Salzgitter Flachstahl Gmbh Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl
DE102005024029B3 (de) 2005-05-23 2007-01-04 Technische Universität Bergakademie Freiberg Austenitischer Leichtbaustahl und seine Verwendung
DE102005030413C5 (de) 2005-06-28 2009-12-10 Technische Universität Bergakademie Freiberg Hochfester austenitisch-martensitischer Leichtbaustahl und seine Verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1032296B (de) * 1952-08-22 1958-06-19 East Hecla Works Verwendung einer austenitischen Stahllegierung als Werkstoff fuer nichtmagnetische Gegenstaende hoher Festigkeit und Streckgrenze
JPH0790496A (ja) * 1993-09-17 1995-04-04 Sumitomo Metal Ind Ltd ボイラ用耐摩耗複層鋼管およびその製造方法
WO2006048034A1 (fr) * 2004-11-03 2006-05-11 Thyssenkrupp Steel Ag Bande ou tole d'acier extremement resistante a proprietes twip et procede de fabrication de ladite bande a l'aide de la 'coulee directe de bandes'
DE102005010243A1 (de) * 2005-03-05 2006-09-07 Sms Demag Ag Verfahren und Anlage zur Herstellung eines Leichtbaustahls mit einem hohen Mangan-Gehalt
WO2007075006A1 (fr) * 2005-12-26 2007-07-05 Posco Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRÄSSEL O ET AL: "Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP steels", JOURNAL DE PHYSIQUE IV, EDITIONS DE PHYSIQUE. LES ULIS CEDEX, FR, vol. 7, no. C05, 1 November 1997 (1997-11-01), pages 383 - 388, XP002081702, ISSN: 1155-4339 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312158A (zh) * 2011-09-13 2012-01-11 上海交通大学 一种Nb、Ti合金化低碳高强度高塑性TWIP钢及制备方法
CN102312158B (zh) * 2011-09-13 2013-11-20 上海交通大学 一种Nb、Ti合金化低碳高强度高塑性TWIP钢及制备方法
EP2749659A1 (fr) * 2012-12-07 2014-07-02 Benteler Automobiltechnik GmbH Procédé de fabrication d'un composant de véhicule automobile et composant de véhicule automobile
CN104233059A (zh) * 2013-06-19 2014-12-24 鞍钢股份有限公司 一种抗延迟断裂型高强twip钢

Also Published As

Publication number Publication date
DE102008005806A1 (de) 2009-09-10

Similar Documents

Publication Publication Date Title
EP1309734B2 (fr) Acier et feuillard ou tole d'acier a resistance tres elevee, pouvant etre forme a froid, procede pour produire un feuillard d'acier et utilisations d'un tel acier
WO2009090228A1 (fr) Composants en acier moulé solide et ductile, à forte teneur en manganèse, procédé de production et utilisation de ceux-ci
DE60016369T2 (de) Kalt bearbeitbarer stahldraht oder stahlstab und verfahren
WO2008009722A1 (fr) acier moulé austénitique inoxydable, son procédé de fabrication et son utilisation
DE4219336C2 (de) Verwendung eines Stahls zur Herstellung von Konstruktionsrohren
DE102005052069B4 (de) Verfahren zum Herstellen von Vormaterial aus Stahl durch Warmverformen
EP2341156B1 (fr) Utilisation d'un alliage d'acier pour emboutissage à chaud et trempe dans la presse
EP2366035A1 (fr) Feuillard d'acier au manganèse à teneur accrue en phosphore et son procédé de fabrication
EP1905857B1 (fr) Acier à haute résistance et utilisations d'un tel acier
WO2009090231A1 (fr) Composants en acier moulé austénitique à plus forte teneur en carbone, procédé de production et utilisation de ceux-ci
EP3535431B1 (fr) Produit d'acier à teneur en manganèse intermédiaire pour application à basse température et son procédé de fabrication
EP1939308A1 (fr) Procédé de fabrication d'un composant par trempe de compression thermique et composant haute résistance présentant une amélioration de l'allongement de rupture
WO2013124283A1 (fr) Procédé de production de pièces moulées à haute résistance, en acier moulé austénitique à haute teneur en carbone et en manganèse, à propriétés trip/twip
EP2749659A1 (fr) Procédé de fabrication d'un composant de véhicule automobile et composant de véhicule automobile
WO2018083029A1 (fr) Tube fabriqué sans soudure et réalisé par formage à basse température en acier au manganèse moyen et procédé de fabrication
EP3512967A1 (fr) Procédé pour la fabrication d'une pièce façonnée en un produit plat en acier contenant du manganèse et pièce correspondante
EP1430161B1 (fr) Acier duplex/triplex a resistance elevee pour construction legere et son utilisation
EP2111475A1 (fr) Composants en acier à ultra haute teneur en carbone, de densité réduite et à haute résistance à la calamine
EP2414552B1 (fr) Pivots à rotule en aciers à structure bainitique pour de véhicules à usage personnel et de véhicules utilitaires légers
EP3512976A1 (fr) Procédé pour la fabrication d'une pièce façonnée à partir d'un produit plat en acier à teneur moyenne en manganèse et pièce correspondante
EP1992710B1 (fr) Utilisation d'un alliage d'acier
DE10231125A1 (de) Hochfester Duplex-/Triplex-Leichtbaustahl und seine Verwendung
EP0614495B1 (fr) Utilisation d'un alliage d'acier pour produire des tubes de renforcement des portes laterales de voitures particulieres
EP0994198A1 (fr) Acier pour la fabrication pour pare-chocs de vehicule automobile
DE102015210313A1 (de) Verfahren zur Herstellung dünnwandiger Stahlgussteile aus hoch legierten Stählen mit TRIP/TWIP-Eigenschaften

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09702276

Country of ref document: EP

Kind code of ref document: A1