WO2013124283A1 - Procédé de production de pièces moulées à haute résistance, en acier moulé austénitique à haute teneur en carbone et en manganèse, à propriétés trip/twip - Google Patents

Procédé de production de pièces moulées à haute résistance, en acier moulé austénitique à haute teneur en carbone et en manganèse, à propriétés trip/twip Download PDF

Info

Publication number
WO2013124283A1
WO2013124283A1 PCT/EP2013/053312 EP2013053312W WO2013124283A1 WO 2013124283 A1 WO2013124283 A1 WO 2013124283A1 EP 2013053312 W EP2013053312 W EP 2013053312W WO 2013124283 A1 WO2013124283 A1 WO 2013124283A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
content
cold forming
cast
steel
Prior art date
Application number
PCT/EP2013/053312
Other languages
German (de)
English (en)
Inventor
Andreas Weiss
Marco Wendler
Original Assignee
Technische Universität Bergakademie Freiberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Bergakademie Freiberg filed Critical Technische Universität Bergakademie Freiberg
Priority to DE112013001144.1T priority Critical patent/DE112013001144A5/de
Publication of WO2013124283A1 publication Critical patent/WO2013124283A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the invention relates to a cost-effective method for producing high-strength molded parts made of high-carbon and high-manganese austenitic cast steel with TRIP / TWIP properties (formation induced plasticity / twinning induced plasticity).
  • the moldings produced according to the invention endure high static and / or dynamic stresses and are therefore suitable for components subject to wear and crash.
  • Such parts are, for example, fasteners, drive shafts, bearing parts and structural elements of the body shop as well as cutting and striking tools.
  • Austenitic cast steel is used once for the production of semi-finished products in the form of strand, slab or billet casting. These semi-finished products undergo hot working, such as rolling or forging. The hot forming transforms the primary cast structure by recrystallization into a fine-grained secondary structure. In addition, segregation caused by solidification will be reduced. In contrast to the primary cast structure, the hot formed secondary structure of the steel is cold-formable, so that the hot forming can be followed by cold forming.
  • austenitic cast steel is the starting material for the production of molded parts that are used as cast steel parts. The melt is poured into appropriate molds. The manufactured steel castings do not undergo cold forming due to their increased susceptibility to cracking.
  • a TRI P / TW IP effect is produced under load triggered.
  • the load refers to the application or overuse.
  • the TRIP / TWIP effect can be triggered during testing of the steel, for example in tensile and compression tests. If the yield strength of the steel is exceeded during the load, the cast part deforms plastically. During the plastic deformation, a deformation-induced ⁇ - and / or ⁇ '-martensite or twin formation is triggered.
  • Example a component of high manganese, solid and tough steel mold casting having a manganese content of 4 to 30% and a carbon content of 0.01 to 0.6% and other alloying elements described.
  • the tensile strength, the elongation at break and the Impact strength are achieved.
  • Components with these properties are used in plant and refrigeration, in vehicle and aircraft construction and in the transport and liquefaction of gases in the low temperature range.
  • the published patent application DE10 2010 026 808 A1 describes a corrosion-resistant austenitic steel casting with TRIP / TWIP properties and with an increased phosphorus content of 0.05 to 1.5%, which is used exclusively in its cast form while retaining the raw cast structure without deformation becomes. It is stated that the plasticity effects are not adversely affected by the high phosphorus content. As the phosphorus content increases, only the strength properties are slightly increased while the toughness properties remain unaffected. Above all, phosphorus improves the flowability of cast steel. The effect of phosphorus in high-carbon and high-manganese austenitic cast steel on the TRI P / TW IP effect and the cold workability, however, is unknown and is technically not yet used. A targeted cold forming of the cast component to increase the strength and the final production is not carried out in the aforementioned disclosure.
  • the patent DE 10 2009 013 631 B3 alone refers to a targeted cold forming of TRIP / TWIP cast steel.
  • This patent describes a process for the production of high-strength molded parts from high-alloy cast steel.
  • a near-net shape blank with narrow mass tolerance by casting preferably by the fine-pressure casting or squeeze casting process made of high-alloy steel casting with TRIP / TWIP effect is produced.
  • the geometry of the cast near-net shape blank only slightly depends on the geometry of the finished part. Therefore, this blank undergoes only a relatively small cold forming below 200 ° C. Due to the cold forming of the steel cast and the near-end molded castings solidified in finished parts.
  • the manufactured finished part consists of relatively weak cold formed, solidified cast steel and therefore has a relatively high residual toughness. Therefore, the components have a relatively high energy absorption capacity and thus have a high Crashreserve.
  • tensile strengths greater than 500 to 1600 MPa are achieved. The constriction is 80 to 50% and the associated elongation at break between 70 and 10%.
  • a disadvantage of the prior art is that the method described in DE 10 2009 013 631 B3 is applicable only to moldings made of austenite-containing cast steel with a stacking fault energy of less than 35mJ / m 2 . Therefore only austenitic steels with a relatively low carbon content are considered for this process. Because of the high carbon factor in the relationship given, one skilled in the art will conclude that the method is not applicable to high carbon and high manganese steels.
  • DE 10 2010 034 161 A1 discloses a process for the production of workpieces made of an austenitic lightweight structural steel with a carbon content of 0.2 to 1.0%, an aluminum content of 0.05 to 15%, a silicon content of 0.05 to 6.0% and a manganese content of 9 to 30%.
  • the thus molten lightweight steel is initially hot-formed.
  • the production of strips, sheets or tubes comprises a decarburizing annealing treatment under an oxidizing atmosphere.
  • the performed annealing serves to decarburize the surface layer of the steel.
  • the carbon escapes. It sets a concentration gradient of carbon between the center and edge of the workpiece.
  • the result is that the originally stable austenite in the edge region becomes unstable or metastable. This austenite converts to martensite during cooling or remains austenitic.
  • the metastable austenite can convert to martensite during cold working. Due to the formation of martensite in the edge area, the surface layer solidifies and becomes hard.
  • a gradient material is produced for a wrought alloy, which consists of an edge area with a martensitic structure and a center area with an austenitic structure.
  • the object of the invention is to specify a cost-effective method for producing a molded part of high-carbon and high manganese-containing austenitic cast steel with TWIP / TRIP properties and its use.
  • the object is achieved by a method for producing high-strength moldings or semi-finished austenitic cast steel with the following steps:
  • an austenitic cast steel having the following composition (in percent by mass) a carbon content of 0.4 to 1.2%, preferably 0.4 to 0.8% of a manganese content of 12 to 25%, preferably 12 to 20%; a phosphorus content of 0.01 to 1, 5%, preferably 0.1 to 1, 0% a silicon content of ⁇ _3%, preferably ⁇ 2%, particularly preferably 0.3 to 3%, most preferably 0.3 to 2 %, and an aluminum content of ⁇ 3%, preferably ⁇ 0.1%, particularly preferably 0.01 to 0.1%, very particularly preferably 0.1 to 3%,
  • the austenitic cast green stock melted with the composition according to the invention has TRIP / TWIP properties.
  • TRIP / TWIP property means that the austenite of the cast steel transforms deformation-induced into ⁇ - and / or ⁇ '-martensite during a mechanical stress. As a result, the plastic deformation capacity and the tensile strength increase. By twinning (TWIP effect) these property changes can be enhanced.
  • Austenitic steels are high-alloyed steels. At room temperature, they have an austenitic structure with u. U. small ⁇ -ferrite. The Ms temperatures for the ⁇ '- or ⁇ -martensite formations are below room temperature.
  • Cast steel is steel, which is cast in molds or as a semi-finished product. One uses the advantageous properties of the material steel and at the same time the casting advantages in the component geometry and design.
  • an austenitic cast raw material with TRIP / TWIP properties is first prepared by cooling a high-carbon and high manganese-containing melt having a carbon content of 0.4 to 1.2%, a manganese content of 12 to 25%, a phosphorus content of 0.01 to 1, 5%, preferably 0.1 to 1, 0%, a silicon content of ⁇ _3%, preferably ⁇ 2%, particularly preferably 0.3 to 3%, very particularly preferably 0.3 to 2%, an aluminum content of ⁇ 3% , preferably ⁇ 0.1%, particularly preferably 0.01 to 0.1%, very particularly preferably 0.1 to 3%, the remainder being iron and melting-accompanying steel accompanying elements is produced (contents in each case in percent by mass).
  • This Gussrohteil locally may already have the dimensions of the finished part, but it is usually a close to the final dimensions or endab spresfernes Gussrohteil.
  • the casting blank subsequently undergoes cold working of at least 10% below 200 ° C, preferably below 100 ° C, most preferably near room temperature.
  • it is cooled during the cold forming
  • Cold forming means that the cast semifinished product or molded part cooled to below 200 ° C., preferably to below 100 ° C., more preferably to near room temperature, is not heated before or during the shaping, wherein heating by the deformation itself does not warm up be valid. According to the invention, however, the cold-formed semi-finished products or molded parts are cooled during the cold forming, i. Heating of the castings is restricted during cold forming by cooling or by stepwise cold forming with subsequent cooling to room temperature.
  • the room temperature is determined by the ambient temperature of the air.
  • the temperature of the medium used (air, oil, water) to which the parts are subjected at the beginning of cold forming determines the initial temperature during forming. If the parts are removed, for example, from fresh tap water, this initial temperature is usually slightly lower than room temperature. This temperature is in the sense of inventive method but also attributed to the room temperature for cold forming.
  • the molten cast austenitic steel cast ingot according to the invention which has been cast in molds or as a semi-finished product, has a dendritic cast structure which, on account of its chemical composition, exhibits TRIP / TWIP properties.
  • This cast structure has a coarse primary grain, high macro and microsections and dendrites. Due to these structural features, cast structures are in principle fundamentally susceptible to cracking and brittleness and are not cold-formed or are unsuitable or not intended for cold forming.
  • the chemical composition and the cold forming conditions are matched to one another.
  • cold forming process conventional methods such. As pressing, upsetting, stretching, rolling, drawing, embossing, kneading, flow molding, vocationalage, swaging and high-pressure forming apply.
  • the aim of cold forming is the production of a high-strength molded part or semi-finished product in its final dimensions by one or more cold forming steps. Cold forming introduces forming energy into the casting blank.
  • the austenitic cast part or semifinished product deforms plastically during cold forming. During plastic deformation austenite is sheared. The concomitant deployment movements result in sliding belts and stacking faults. Intrinsic stacking faults are nuclei for the ⁇ - and ⁇ '-martensite and extrinsic stacking faults are seeds for the twinning twins. The resulting structural defects cause an increase in plasticity. It triggers a TRIP or / and TWIP effect. At the same time, the structural defects formed represent obstacles to further dislocation movement in the course of cold forming. The molding solidifies at the same time. It does not break even when high cold workings are applied.
  • This behavior distinguishes the inventively manufactured moldings with austenitic TRIP / TWIP cast steel in principle from conventional moldings made of austenitic cast steel without TRIP / TWIP properties.
  • the susceptibility to cracking of the inventively manufactured moldings is reduced by the TRI P / TW IP effect.
  • Such a behavior is caused by the fact that at the points where the highest stresses prevail in the molded part or in the austenitic structure, the expected crack does not occur, but remains absent. Locally deforming martensite and / or deformation twins form at these points, which is accompanied by an increase in strength.
  • several cold forming in the temperature range below 200 ° C are carried out while the conventional cold forming process, such as rolling, kneading, descendingage, drawing, pressing and / or pressing applied.
  • the cold forming also includes the mechanical processing of the cast body.
  • Cold forming is advantageously carried out in several passes at or above room temperature.
  • the cold forming in several forming steps has the advantage that the steel is heated less at small forming steps and can be cooled again after each forming step. As a result, the overall cold workability is generally increased.
  • a recrystallization annealing in the temperature range of 600 to 900 ° C is advantageously carried out before the second and each further cold forming with subsequent air or water cooling.
  • the presence of ⁇ '- and / or ⁇ -cooling martensite in the austenitic cast structure of the molded part is to be avoided because this reduces the cold workability and thus the required minimum degree of cold forming of 10% may not be achieved.
  • the TRIP / TWIP properties of the austenitic molding are utilized to provide the required shape change for the finished part by a trailing cold working of at least 10% with or without recrystallization annealing.
  • the plasticity effects are triggered by the formation of ⁇ - and ⁇ '-deformation martensite and / or deformation twins. It comes to the superposition of sliding processes, martensite and / or twin formations in the plastic deformation range of austenite. Due to the cold forming solidifies the molding and is pore and mikrolunkerärmer. In addition, it becomes highly resistant and wear resistant.
  • the molded part is used as a construction, wear or crash element.
  • Partial cold forming of the casting is then performed, for example, where areas of increased strength and hardness are required. Examples include surfaces, edges and edges of the casting that are subject to wear.
  • Solution heat treatment in the temperature range from 900 to 1100 ° C. with subsequent water quenching before the first cold forming has a positive effect on the cold workability, but is not mandatory.
  • a solution annealing proves to be advantageous if high degrees of deformation or complicated geometries are to be realized.
  • the primary cast structure of the molding remains intact, provided no recrystallization annealing is interposed.
  • cold forming the prefabricated molded part is brought into the final shape and solidified. Until reaching the final shape several intermediate forms of the molding are possible. If the cold workability is almost exhausted, without the required total deformation is applied in the finished part, a Rekristallisationsglühung in the temperature range of 600 to 900 ° C with subsequent air or water cooling before each further cold forming is required.
  • the recrystallization annealing converts the formed ⁇ - and ⁇ '-deformation martensite into austenite.
  • the work-hardened, primary cast structure is softened and transformed into a secondary, more homogeneous, finely dispersed grain structure.
  • the austenite that forms has a higher dislocation density than the original austenite and is therefore stronger but less tough.
  • the recrystallized austenite has TRIP / TWIP properties that are more significant at a higher level of strength.
  • the cold forming of the moldings can be done in several stitches.
  • a recrystallization annealing between the individual stitches is not always mandatory. It is only appropriate for the realization of high shape changes.
  • the required minimum degree of cold forming for the initiation of austenite recrystallization is at least 10%.
  • the cold transformations are preferably carried out in a temperature range near room temperature but always below 200 ° C., preferably below 100 ° C.
  • finished austenitic cast steel members according to the invention may have a 0.2% proof stress of about 370 to 900 MPa, a tensile strength of about 800 to 2100 MPa, a throat of 70 to 5%, and a breaking elongation of 60 to 2%.
  • the mechanical parameters of the finished components are determined according to DIN 50 125 or DIN 50 1 14.
  • the hardness test is carried out according to Vickers.
  • Austenitic cast steel moldings produced by the inventive process can therefore in many cases replace cold-formed components of the same steel produced by the forging technique.
  • the inventive method is material and energy saving, because any hot forming is eliminated. Due to the increase in strength, finished molded parts can absorb higher forces. This makes it possible to produce high-strength components with slim dimensions and complicated geometries.
  • the benefits of light construction come into play.
  • the manufactured components are used as construction, wear or crash elements of the highest quality.
  • a casting in the form of a cast-iron plate 200 mm long, 150 mm wide and 5 mm thick is made from an austenitic steel of 0.42% C, 18.1% Mn, 0.1% P, 1, 1% Si and 0.05% Al produced. After casting and solidification, the casting skin is removed. Thereafter, the board is pre-rolled at room temperature in a stitch to a thickness of 3.5 mm. This solidifies the material. Slip belts, stacking faults and twins are formed in austenite. The cast steel remains paramagnetic because no ⁇ '-martensite has formed.
  • the cold-formed blank is subsequently subjected to a recrystallization annealing at 700 ° C. and a holding time of 20 minutes and cooled to RT in water.
  • the recrystallized austenite has a higher dislocation density and a smaller grain size than the austenite in the cast material.
  • the austenite is more homogeneous and pore and mikrolun-unkermer.
  • the former sliding strips and twin structures formed in the work-hardened material have largely been preserved.
  • the deformation twins have become Glühzwillingen.
  • the increased dislocation density of the austenite causes a hardness increase to approximately twice the casting state.
  • the 0.2% proof stress and the tensile strength of the recrystallized austenite have increased by the treatment.
  • the 0.2% proof stress is 300 MPa and the tensile strength is 810 MPa.
  • the recrystallized austenitic microstructure has a 0.2% proof stress of 370 MPa and a tensile strength of 988 MPa. This is accompanied by a decrease in the elongation at break from 60 to 45%.
  • the recrystallized austenite board is subsequently cold-rolled to a thickness of 2.5 mm without cracking at room temperature without intermediate heating and brought into its final shape.
  • the cold forming can take place in one or more steps. Of importance is that the molding is cooled during forming.
  • the applied total cold working degree is 50%.
  • the cold-formed finished part remains austenitic. In austenite, slip bands, stacking faults and deformation twins can be detected.
  • the finished molded article reaches a 0.2% proof stress of 733 MPa, a tensile strength of 1420 MPa and an elongation at break of 22%.
  • the hardness HV10 is 620.
  • the casting skin is removed.
  • the board is placed in a tool die having the shape of a stepped rail having a total length of 60 mm, a width of 30 mm and over the length three different heights of 5, 3 and 2 mm, each 10 mm in length. Under a 2000 ton press, the board was cold formed in the die at RT to the finished part using lubricants. No intermediate annealing was carried out between the forming steps.
  • the finished component In the area of the highest degree of deformation, the finished component has, in addition to twins, an ⁇ '-martensite content of about 10%. There is no ⁇ '-martensite in the rest of the component, but slip bands, stacking faults and twins in austenite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention concerne un procédé à coût réduit, pour la production de pièces moulées à haute résistance, en acier moulé austénitique, présentant, en pourcentage en masse, une teneur en carbone de 0,4 à 1,2%, une teneur en manganèse de 12 à 25%, une teneur en phosphore de 0,01 à 1,5%, une teneur en silicium inférieure ou égale à 3%, et une teneur en aluminium inférieure ou égale à 3%, le reste étant constitué par du fer et des éléments d'accompagnement de l'acier, conditionnés par l'élaboration; l'acier en fusion étant élaboré par un procédé de fusion traditionnel, et coulé dans des moules ou sous forme de produit semi-fini, les pièces brutes coulées étant ensuite finies par déformation à froid de plus de 10%, dans une gamme de température inférieure à 200°C. Les pièces moulées sont utilisées comme éléments de structure, éléments d'usure ou éléments anti-choc.
PCT/EP2013/053312 2012-02-25 2013-02-20 Procédé de production de pièces moulées à haute résistance, en acier moulé austénitique à haute teneur en carbone et en manganèse, à propriétés trip/twip WO2013124283A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013001144.1T DE112013001144A5 (de) 2012-02-25 2013-02-20 Verfahren zur Herstellung hochfester Formteile aus hochkohlenstoff- und hochmanganhaltigem austenitischem Stahlguss mit TRIP/TWIP-Eigenschaften

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012003790.2 2012-02-25
DE102012003790 2012-02-25

Publications (1)

Publication Number Publication Date
WO2013124283A1 true WO2013124283A1 (fr) 2013-08-29

Family

ID=47749816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053312 WO2013124283A1 (fr) 2012-02-25 2013-02-20 Procédé de production de pièces moulées à haute résistance, en acier moulé austénitique à haute teneur en carbone et en manganèse, à propriétés trip/twip

Country Status (2)

Country Link
DE (1) DE112013001144A5 (fr)
WO (1) WO2013124283A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749659A1 (fr) * 2012-12-07 2014-07-02 Benteler Automobiltechnik GmbH Procédé de fabrication d'un composant de véhicule automobile et composant de véhicule automobile
WO2014180456A1 (fr) * 2013-05-06 2014-11-13 Salzgitter Flachstahl Gmbh Procédé de fabrication de pièces en acier léger
DE102015111680A1 (de) * 2015-07-17 2017-01-19 Benteler Steel/Tube Gmbh Gasgenerator
WO2017211952A1 (fr) * 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Procédé de fabrication d'une bande d'acier laminée à froid présentant des propriétés trip à partir d'un acier à résistance élevée contenant du manganèse
CN108559919A (zh) * 2018-05-24 2018-09-21 山东钢铁集团日照有限公司 一钢多级的经济型冷轧相变诱导塑性钢及其生产方法
DE102017119076A1 (de) * 2017-08-21 2019-02-21 Benteler Steel/Tube Gmbh Hydraulik- oder Pneumatikleitungsrohrelement und Verwendung einer Stahllegierung zur Herstellung
WO2019177896A1 (fr) * 2018-03-13 2019-09-19 Ak Steel Properties, Inc. Réduction à température élevée d'aciers revêtus contenant de l'austénite métastable
DE102018212899A1 (de) * 2018-08-02 2020-02-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines Kraftfahrzeugbauteils
CN113388787A (zh) * 2021-06-27 2021-09-14 上交大(徐州)新材料研究院有限公司 一种高强韧耐磨钢及其纳米孪晶增强增韧化的制备方法
CN115287542A (zh) * 2022-08-19 2022-11-04 四川大学 一种具有均匀纳米孪晶分布的高强度低磁钢及其制备方法
CN115595510A (zh) * 2022-10-10 2023-01-13 中南大学(Cn) 一种加工硬化能力高的铁锰合金及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889144A1 (fr) * 1997-07-01 1999-01-07 Max-Planck-Institut für Eisenforschung GmbH Acier pour des éléments de construction et son application
WO2004055223A1 (fr) * 2002-12-17 2004-07-01 Thyssenkrupp Stahl Ag Procede de fabrication d'un produit en acier
DE102004061284A1 (de) * 2003-12-23 2005-07-28 Salzgitter Flachstahl Gmbh Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl
DE102004054444B3 (de) * 2004-08-10 2006-01-19 Daimlerchrysler Ag Verfahren zur Herstellung von Stahlbauteilen mit höchster Festigkeit und Plastizität
DE102005062221B3 (de) * 2005-12-20 2007-05-03 Salzgitter Flachstahl Gmbh Umformbarer Leichtbaustahl
DE102006033973A1 (de) 2006-07-20 2008-01-24 Technische Universität Bergakademie Freiberg Nichtrostender austenitischer Stahlguss und seine Verwendung
DE102008005803A1 (de) 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Bauteil aus höher kohlnstoffhaltigem austenitischem Stahlformguss, Verfahren zu deren Herstellung und deren Verwendung
DE102008005806A1 (de) 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
WO2010054813A1 (fr) * 2008-11-12 2010-05-20 Voestalpine Stahl Gmbh Feuillard d'acier au manganèse à teneur accrue en phosphore et son procédé de fabrication
DE102009013631B3 (de) 2009-03-18 2010-08-19 Burkhard Weiss Verfahren zur prozessstufenarmen Herstellung hochfester, hochwertiger Formteile aus hochlegierten Stählen mit Plastizitätseffekt und deren Verwendung
DE102010034161A1 (de) 2010-03-16 2011-09-22 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Werkstücken aus Leichtbaustahl mit über die Wanddicke einstellbaren Werkstoffeigenschaften
DE102010026808A1 (de) 2010-07-10 2012-01-12 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889144A1 (fr) * 1997-07-01 1999-01-07 Max-Planck-Institut für Eisenforschung GmbH Acier pour des éléments de construction et son application
WO2004055223A1 (fr) * 2002-12-17 2004-07-01 Thyssenkrupp Stahl Ag Procede de fabrication d'un produit en acier
DE102004061284A1 (de) * 2003-12-23 2005-07-28 Salzgitter Flachstahl Gmbh Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl
DE102004054444B3 (de) * 2004-08-10 2006-01-19 Daimlerchrysler Ag Verfahren zur Herstellung von Stahlbauteilen mit höchster Festigkeit und Plastizität
DE102005062221B3 (de) * 2005-12-20 2007-05-03 Salzgitter Flachstahl Gmbh Umformbarer Leichtbaustahl
DE102006033973A1 (de) 2006-07-20 2008-01-24 Technische Universität Bergakademie Freiberg Nichtrostender austenitischer Stahlguss und seine Verwendung
DE102008005803A1 (de) 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Bauteil aus höher kohlnstoffhaltigem austenitischem Stahlformguss, Verfahren zu deren Herstellung und deren Verwendung
DE102008005806A1 (de) 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
WO2010054813A1 (fr) * 2008-11-12 2010-05-20 Voestalpine Stahl Gmbh Feuillard d'acier au manganèse à teneur accrue en phosphore et son procédé de fabrication
DE102009013631B3 (de) 2009-03-18 2010-08-19 Burkhard Weiss Verfahren zur prozessstufenarmen Herstellung hochfester, hochwertiger Formteile aus hochlegierten Stählen mit Plastizitätseffekt und deren Verwendung
DE102010034161A1 (de) 2010-03-16 2011-09-22 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Werkstücken aus Leichtbaustahl mit über die Wanddicke einstellbaren Werkstoffeigenschaften
DE102010026808A1 (de) 2010-07-10 2012-01-12 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRÄSSEL O ET AL: "High strength Fe-Mn-(Al,Si)-TRIP/TWIN steels development - properties - application", INTERNATIONAL JOURNAL OF PLASTICITY, PERGAMON, AMSTERDAM, NL, no. 16, 1 January 2000 (2000-01-01), pages 1391 - 1409, XP002335443, ISSN: 0749-6419, DOI: 10.1016/S0749-6419(00)00015-2 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749659A1 (fr) * 2012-12-07 2014-07-02 Benteler Automobiltechnik GmbH Procédé de fabrication d'un composant de véhicule automobile et composant de véhicule automobile
US10214790B2 (en) 2013-05-06 2019-02-26 Salzgitter Flachstahl Gmbh Method for producing components from lightweight steel
WO2014180456A1 (fr) * 2013-05-06 2014-11-13 Salzgitter Flachstahl Gmbh Procédé de fabrication de pièces en acier léger
DE102015111680A1 (de) * 2015-07-17 2017-01-19 Benteler Steel/Tube Gmbh Gasgenerator
WO2017211952A1 (fr) * 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Procédé de fabrication d'une bande d'acier laminée à froid présentant des propriétés trip à partir d'un acier à résistance élevée contenant du manganèse
DE102017119076A1 (de) * 2017-08-21 2019-02-21 Benteler Steel/Tube Gmbh Hydraulik- oder Pneumatikleitungsrohrelement und Verwendung einer Stahllegierung zur Herstellung
WO2019177896A1 (fr) * 2018-03-13 2019-09-19 Ak Steel Properties, Inc. Réduction à température élevée d'aciers revêtus contenant de l'austénite métastable
US10711320B2 (en) 2018-03-13 2020-07-14 Ak Steel Properties, Inc. Reduction at elevated temperature of coated steels containing metastable austenite
CN108559919A (zh) * 2018-05-24 2018-09-21 山东钢铁集团日照有限公司 一钢多级的经济型冷轧相变诱导塑性钢及其生产方法
DE102018212899A1 (de) * 2018-08-02 2020-02-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines Kraftfahrzeugbauteils
CN113388787A (zh) * 2021-06-27 2021-09-14 上交大(徐州)新材料研究院有限公司 一种高强韧耐磨钢及其纳米孪晶增强增韧化的制备方法
CN115287542A (zh) * 2022-08-19 2022-11-04 四川大学 一种具有均匀纳米孪晶分布的高强度低磁钢及其制备方法
CN115595510A (zh) * 2022-10-10 2023-01-13 中南大学(Cn) 一种加工硬化能力高的铁锰合金及其制备方法和应用

Also Published As

Publication number Publication date
DE112013001144A5 (de) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013124283A1 (fr) Procédé de production de pièces moulées à haute résistance, en acier moulé austénitique à haute teneur en carbone et en manganèse, à propriétés trip/twip
DE60130755T2 (de) Warmgewalzter draht oder stahlblock, die wärmebandelbar und verwendbar im maschinenbau sind und herstellungsverfahren dafür
DE1508416C3 (de) Verfahren zur Herstellung von Stahlteilen wie Bolzen, Schrauben, Zapfen u.dgl.
DE60024672T2 (de) Stab- oder drahtprodukt zur verwendung beim kaltschmieden und herstellungsverfahren dafür
DE69720163T3 (de) Stahl und Verfahren zur Formung eines Stahlwerkstückes durch kalte plastische Verarbeitung
DE102005046459B4 (de) Verfahren zur Herstellung von kaltgefertigten Präzisionsstahlrohren
DE102009013631B3 (de) Verfahren zur prozessstufenarmen Herstellung hochfester, hochwertiger Formteile aus hochlegierten Stählen mit Plastizitätseffekt und deren Verwendung
EP2366035A1 (fr) Feuillard d'acier au manganèse à teneur accrue en phosphore et son procédé de fabrication
DE60021670T2 (de) Verfahren zur Herstellung eines Werkzeugstahles sowie Werkzeug
DE00420071T1 (de) Verfahren zur Herstellung von Formteilen aus Aluminiumlegierung vom Typ 2024
EP3325678B1 (fr) Acier léger deformable de construction présentant des propriétés mécaniques améliorées et procédé de fabrication de produit semi-fini à partir de cet acier
EP2840159B1 (fr) Procédé destiné à la fabrication d'un composant en acier
DE60103598T2 (de) Nicht-gefrischter stahl mit verminderter anisotropie und ausgezeichneter festigkeit, zähigkeit und verarbeitbarkeit
DE102008005806A1 (de) Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
WO2013064698A2 (fr) Procédé de fabrication d'éléments structuraux de résistance élevée en acier moulé présentant des propriétés trip/twip et utilisation des éléments structuraux ainsi réalisés
EP2749659A1 (fr) Procédé de fabrication d'un composant de véhicule automobile et composant de véhicule automobile
DE102012003791B3 (de) Verfahren zur Herstellung hochfester Formteile aus Stahlguss mit TRIP-Effekt und mit austenitisch-martensitischem Gefüge
WO2016020519A1 (fr) Produits semi-finis à haute résistance et en même temps durs, et composants en acier fortement allié, leur procédé de fabrication et utilisation
DE2657435C2 (de) Verfahren zum Verbessern der physikalischen Eigenschaften eines hochfesten, niedriglegierten Kohlenstoff-Mangan-Stahls
DE102006032617B4 (de) Verfahren zur Herstellung eines zum Formhärten geeigneten Blechhalbzeugs
DE102008020757A1 (de) Verfahren zur Umformung von Blechwerkstücken aus Eisen-Mangan-Stahl
DE102012216468B3 (de) Verfahren zum Herstellen eines Metallbauteils für eine Metallvorrichtung
DE3702634A1 (de) Stahlstift fuer ein befestigungsmittel und verfahren zu dessen herstellung
DE112014004087B4 (de) Verfahren zur Herstellung eines hochfesten bzw. höchstfesten Formteils aus härtbarem Stahl
DE102013018744A1 (de) Verfahren zur Herstellung eines Bauteils für ein Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13705981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130011441

Country of ref document: DE

Ref document number: 112013001144

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013001144

Country of ref document: DE

Effective date: 20141030

122 Ep: pct application non-entry in european phase

Ref document number: 13705981

Country of ref document: EP

Kind code of ref document: A1