EP3321386A1 - Composant en acier coulé à paroi fine ayant une structure de base austénitique - Google Patents

Composant en acier coulé à paroi fine ayant une structure de base austénitique Download PDF

Info

Publication number
EP3321386A1
EP3321386A1 EP16198488.5A EP16198488A EP3321386A1 EP 3321386 A1 EP3321386 A1 EP 3321386A1 EP 16198488 A EP16198488 A EP 16198488A EP 3321386 A1 EP3321386 A1 EP 3321386A1
Authority
EP
European Patent Office
Prior art keywords
cast steel
steel component
content
thin
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16198488.5A
Other languages
German (de)
English (en)
Inventor
Marc-Oliver Borel
Tobias Henne
Michael Sieger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfensberger AG
Original Assignee
Wolfensberger AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfensberger AG filed Critical Wolfensberger AG
Priority to EP16198488.5A priority Critical patent/EP3321386A1/fr
Publication of EP3321386A1 publication Critical patent/EP3321386A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the invention relates to a non-cold-formed thin-walled cast steel component with Austentiticianm basic structure, a method for producing such a cast steel component and its use according to the preambles of the independent claims.
  • Austenitic steel is a high alloy material.
  • the chemical composition of the austenitic basic structure depends on the one hand on the requirement of a stable austenitic matrix and on the other hand on the required properties.
  • austenite stabilizing elements such as nickel, manganese and copper are used.
  • Austenitic steel alloys have special properties that make them interesting for a variety of applications: corrosion resistance, scale resistance, high heat resistance, thermal shock resistance, high ductility, wear and erosion resistance, favorable running properties, cold toughness, particularly high and low expansion coefficients.
  • the invention relates to a non-cold-formed, thin-walled cast steel component with austenitic basic structure.
  • the cast steel component contains in mass percent maximum 1.5% manganese and maximum 0.04% phosphorus.
  • Cast steel is steel, which is cast in molds.
  • the cast steel component identifies the resulting component after cooling the cast steel.
  • the thin-walled cast steel components typically have a wall thickness of 0.5-5 mm. This is selected as a function of the load occurring, which has been determined, for example, by means of an FEM calculation or has been determined experimentally. Thicker wall sections can pass smoothly into thinner wall sections.
  • Manganese deoxidized It binds sulfur as manganese sulfide and thereby reduces the adverse influence of iron sulfide.
  • alloys with higher manganese content have the disadvantage that they can not be melted or poured in air.
  • a protective gas atmosphere is necessary.
  • the provision of inert gas has a significant influence on the manufacturing costs of the cast steel components.
  • Manganese in the stated amount has proven to be particularly advantageous. In particular, no melting under inert gas is required, the adverse effects of iron sulfide are still reduced.
  • Low phosphorus content is desirable in metallurgical manufacturing processes. Too high a phosphorus content increases the heat cracking.
  • phosphorus has a high segregation coefficient, ie the concentration differences in austenitic cast steel vary widely, which can lead to structural inhomogeneities. The segregation can cause stress cracks and fatigue the material early on.
  • the melt shows excellent flow behavior. As a result, even narrow mold gaps can be filled without having to resort to disadvantageous elements
  • the thin-walled cast steel component is obtained without cold working, i. it can be removed from a mold directly after cooling the cast steel. An additional heat treatment is not necessary. The corrosion resistance remains, thanks to the rapid cooling, in the cast condition.
  • the cast steel component according to the invention is characterized by high strength and elongation at break. At the same time, the negative properties resulting from too high levels of phosphorus and manganese are avoided.
  • the production is inexpensive, since on the one hand, the cost of materials is reduced and on the other hand can be dispensed with a protective gas atmosphere.
  • Chromium is austenite-stabilizing in austenitic chromium-nickel steels and improves corrosion resistance up to 20%, the strength, the erosion and wear resistance and the weldability. Chromium forms carbides. Heat resistance and hydrogen peroxide resistance are favored by chromium. For corrosion resistance, a minimum content of 13% chromium in the basic mass is required in steels. Chromium reduces the electrical conductivity and the thermal conductivity, the thermal expansion is lowered. Overall, chromium has a positive impact on heat resistance. The stated proportion of chromium in the composition according to the invention has proved to be particularly advantageous.
  • Nickel increases the yield strength and notch toughness in structural steels.
  • the element extends the gamma region and therefore causes the austenite structure in corrosion and scale resistant chromium-nickel steels.
  • High nickel contents lead to steels with a small thermal expansion.
  • the stated proportion of nickel in the composition according to the invention has proved to be particularly advantageous.
  • the combination of said Cr and Ni contents is also particularly advantageous.
  • Molybdenum largely reduces the tempering brittleness in, for example, chrome and nickel steels, promotes fine grain formation and also has a favorable effect on the weldability. It also increases the yield strength and the strength. In austenitic chromium-nickel steels, it supports corrosion resistance. Molybdenum also increases the heat resistance. The stated proportion of molybdenum in the composition according to the invention has proved to be particularly advantageous.
  • Carbon is the essential companion element of all steels. Cr-Ni steels he greatly expands the austenite area. The tendency to austenite is already at low levels of carbon very strong. The stated proportion of carbon in the composition according to the invention turned out to be particularly advantageous.
  • Silicon is a cost-effective alloying element with which the stacking energy of austenite can be influenced.
  • the stacking energy plays an important role in the TWIP effect.
  • the stated proportion of silicon in the composition according to the invention is therefore particularly advantageous.
  • Fusion-related accompanying elements can be, for example, phosphorus, sulfur, hydrogen, nitrogen and oxygen.
  • Fusion-related accompanying elements can be, for example, phosphorus, sulfur, hydrogen, nitrogen and oxygen.
  • the cast steel component according to the invention has the advantage that it has an improved corrosion resistance in the cast state, has a high strength and a high elongation at break. It is resistant to conventional chemicals. By varying the mass fractions of the individual elements, the properties can be adapted to the use. Various applications are possible.
  • the cast steel component according to the invention preferably has a maximum percentage by mass of 15% ⁇ -ferrite.
  • ⁇ -ferrite can be present with or without finely dispersed carbides, nitrides or carbonitrides.
  • a low content of ⁇ -ferrite is desirable in austenitic cast steel, since the tendency to heat cracking is reduced.
  • phosphorus in the presence of phosphorus can be a limited ⁇ -ferrite content counteract the tendency to heat cracking of the phosphor and thus increase the quality of the material.
  • the cast steel component is not cold-formed.
  • the casting mold can be designed in such a way that the cast steel component resulting after solidification of the molten steel has a plurality of ribs which extend from the region of an annular sprue along the planar base body.
  • the major difficulty is that during casting, the liquid material flows into all areas of the later cast steel component before it solidifies.
  • the annular sprue allows that pour the material completely before it starts to cool. Unlike a point sprue, the annular sprue allows a much larger flow of liquid metal so that the liquid metal can flow faster into all areas before it cools.
  • the cross-sectional area of the annular sprue is significantly larger than is possible with a punctual sprue.
  • the annular sprue can additionally be supported by ribs on the flat main body of the cast steel component.
  • the ribs serve as feeders during casting and stiffen the cast steel component at the same time. They allow the rapid distribution of the liquid material from the sprue in all areas of the flat thin-walled body.
  • the shape and dimensioning of the ribs is designed topology-optimized.
  • the ribs are thus designed so that they can optimally feed the liquid material into the planar body.
  • thin-walled cast steel components with optimized properties can be produced inexpensively, and the cost of materials is reduced.
  • Another aspect of the invention relates to the use of a thin-walled cast steel component, in particular a cast steel component as described herein.
  • the cast steel component can be used, for example, in vehicle and aircraft construction, in refrigeration plants, for components subject to crash impact and in the chemical industry.
  • the cast steel components according to the invention can be processed, for example, in the bodywork. This allows the production of lightweight bodies, which reduces fuel consumption and lowers exhaust emissions. At the same time, the occupants are well protected due to their stability and rigidity in the event of an accident. The impact energy can be better intercepted by such steels better. The body components give way less. The safety in vehicles is increased.
  • corrosion-resistant steels can be used for the large-scale realization and optimization of chemical processes, for example for the production of chemical reactors.
  • FIG. 1 shows the function of an inventive thin-walled cast steel component 2 in a frontal impact 5.
  • a vehicle body 1 which is designed as a connection point A between the A-pillar 3 and the engine mount 4
  • the figure shows the situation of a crash with a partial frontal impact 5. Due to the design of the connection point A between the A-pillar 3 and the engine mount 4, the impact energy can be absorbed and forwarded without component failure (shown by arrows).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
EP16198488.5A 2016-11-11 2016-11-11 Composant en acier coulé à paroi fine ayant une structure de base austénitique Withdrawn EP3321386A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16198488.5A EP3321386A1 (fr) 2016-11-11 2016-11-11 Composant en acier coulé à paroi fine ayant une structure de base austénitique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16198488.5A EP3321386A1 (fr) 2016-11-11 2016-11-11 Composant en acier coulé à paroi fine ayant une structure de base austénitique

Publications (1)

Publication Number Publication Date
EP3321386A1 true EP3321386A1 (fr) 2018-05-16

Family

ID=57354117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16198488.5A Withdrawn EP3321386A1 (fr) 2016-11-11 2016-11-11 Composant en acier coulé à paroi fine ayant une structure de base austénitique

Country Status (1)

Country Link
EP (1) EP3321386A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530675A2 (fr) * 1991-08-28 1993-03-10 Nippon Steel Corporation Procédé pour la fabrication de tôles minces d'acier inoxydable à base de chrome-nickel ayant une qualité de surface et une aptitude au formage excellente
WO1999006602A1 (fr) * 1997-08-01 1999-02-11 Acciai Speciali Terni S.P.A. Bandes d'acier inoxydable austenitique presentant une bonne soudabilite lors de leur moulage
JPH1161345A (ja) * 1997-08-11 1999-03-05 Nkk Corp 高温強度と熱間加工性に優れたステンレス鋼
DE102008005806A1 (de) 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
DE102010026808B4 (de) 2010-07-10 2013-02-07 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530675A2 (fr) * 1991-08-28 1993-03-10 Nippon Steel Corporation Procédé pour la fabrication de tôles minces d'acier inoxydable à base de chrome-nickel ayant une qualité de surface et une aptitude au formage excellente
WO1999006602A1 (fr) * 1997-08-01 1999-02-11 Acciai Speciali Terni S.P.A. Bandes d'acier inoxydable austenitique presentant une bonne soudabilite lors de leur moulage
JPH1161345A (ja) * 1997-08-11 1999-03-05 Nkk Corp 高温強度と熱間加工性に優れたステンレス鋼
DE102008005806A1 (de) 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
DE102010026808B4 (de) 2010-07-10 2013-02-07 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung

Similar Documents

Publication Publication Date Title
DE60012595T2 (de) Warmgewalztes hochfestes Stahlblech und dessen Herstelllungsverfahren
US9175372B2 (en) Aluminum alloy forged material for automobile and method for manufacturing the same
KR101060917B1 (ko) 알루미늄합금 단조 부재 및 그 제조 방법
TWI396755B (zh) 高強度截斷分割用非調質鋼及截斷分割用鋼零件
DE102010026808B4 (de) Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung
EP2059623A1 (fr) Acier moulé austénitique inoxydable, son procédé de fabrication et son utilisation
EP3228724A1 (fr) Procédé de réglage de la conductivité thermique d'un acier, acier à outil, en particulier acier pour travail à chaud et objet en acier
RU2494165C2 (ru) Высокопрочный, высоковязкий тонкий стальной пруток и способ его изготовления
EP2557185A1 (fr) Hot-rolled profiled steel reinforcement for reinforced concrete with improved fire resistance and method for producing same
EP2703509A1 (fr) Particules TiC et TiB2 haute résistance renforcées et acier à faible densité avec un module E amélioré et procédé de production dudit acier
WO2009090228A1 (fr) Composants en acier moulé solide et ductile, à forte teneur en manganèse, procédé de production et utilisation de ceux-ci
DE1533279A1 (de) Legiertes oder unlegiertes graues Gusseisen
EP1430161B1 (fr) Acier duplex/triplex a resistance elevee pour construction legere et son utilisation
EP2535430B1 (fr) Acier à outil pour outils de formage à chaud plus sollicités et son procédé de fabrication
DE60024495T2 (de) Stahl mit ausgezeichneter Schmiedbarkeit und Bearbeitbarkeit
JP7305483B2 (ja) 靱性に優れた熱間工具鋼
EP2617855B1 (fr) Acier faiblement alié et composant ainsi fabriqué
EP2895637B1 (fr) Produits d'acier renforcés de particules en tic à très haute résistance et faible densité avec module e amélioré et procédé de production dudit produit
EP3412790A1 (fr) Acier durci par précipitation et son utilisation pour des outils de façonnage à chaud
US6837945B1 (en) Steel cold work tool, its use and manufacturing
EP1069202B1 (fr) Acier austenitique, paramagnetique, résistant à la corrosion et possédant une élasticité, une résistance mécanique et une tènacité èlevées, ainsi que son procédé de fabrication
EP3321386A1 (fr) Composant en acier coulé à paroi fine ayant une structure de base austénitique
DE112015004992T5 (de) Walzdraht mit verbesserter festigkeit und schlagzähigkeit und herstellungsverfahren für diesen
DE2611247C3 (de) Herstellungsverfahren für Gußeisen
JP4676817B2 (ja) 破断分割性に優れたコネクティングロッド用鋼

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENNE, TOBIAS

Inventor name: BOREL, MARC-OLIVER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603