WO2009087798A1 - 電池用ガスケット及びアルカリ乾電池 - Google Patents

電池用ガスケット及びアルカリ乾電池 Download PDF

Info

Publication number
WO2009087798A1
WO2009087798A1 PCT/JP2008/068419 JP2008068419W WO2009087798A1 WO 2009087798 A1 WO2009087798 A1 WO 2009087798A1 JP 2008068419 W JP2008068419 W JP 2008068419W WO 2009087798 A1 WO2009087798 A1 WO 2009087798A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
battery
mass
component
Prior art date
Application number
PCT/JP2008/068419
Other languages
English (en)
French (fr)
Inventor
Seiji Wada
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008004058A external-priority patent/JP5470611B2/ja
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2009087798A1 publication Critical patent/WO2009087798A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/195Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery gasket and an alkaline battery obtained by using a polyamide resin composition.
  • polyamide resins are widely used in various parts such as automobile parts, electronic / electric parts, and industrial machine parts because they are excellent in various characteristics including mechanical characteristics, such as molding processability.
  • polyamide resins have been required to have various properties that have not been conventionally required.
  • one of the specifications required for polyamide resin is a specification that is excellent in balance between chemical resistance such as alkali resistance and calcium chloride resistance and mechanical properties. More specifically, the molded product obtained from the polyamide resin has a mechanical strength equivalent to or higher than that of the conventional one, and there is little decrease in mechanical strength due to the chemical in an environment where the molded product is excessively in contact with the chemical. There is a need for a polyamide resin composition that has little change in mechanical strength and appearance due to moisture in the atmosphere and moisture in the atmosphere.
  • the present invention has been made in view of the above circumstances, and the obtained molded product has a mechanical strength equivalent to or higher than that of the conventional one, and the mechanical strength is reduced by the chemical in an environment where it is excessively in contact with the chemical. It is an object of the present invention to provide a battery gasket and an alkaline battery that are obtained from a polyamide resin composition that is sufficiently small and that has a sufficiently small change in mechanical strength and appearance due to chemicals, moisture in the chemicals, and moisture in the atmosphere.
  • a polyamide resin composition containing (A) a polyamide resin composed of polyhexamethylene sebacamide and / or polyhexamethylene dodecamide, (B) boron nitride, and (C) calcined kaolin is molded. Battery gasket obtained.
  • the polyamide resin composition contains 0.0001 to 3 parts by mass of component (B) and 0.01 to 20 parts by mass of component (C) with respect to 100 parts by mass of component (A).
  • the obtained molded article has a mechanical strength equivalent to or higher than that of the conventional one, and in an environment where the molded product is excessively contacted with the chemical, the decrease in mechanical strength due to the chemical is sufficiently small. It is possible to provide a battery gasket and an alkaline battery obtained from a polyamide resin composition in which mechanical strength and appearance change due to moisture in chemicals and moisture in the atmosphere are sufficiently small.
  • SYMBOLS 1 Battery gasket, 2 ... Positive electrode, 3 ... Gel-like negative electrode, 4 ... Separator, 5 ... Battery case, 6 ... Negative electrode collector, 7 ... Negative electrode terminal board, 8 ... Exterior label, 9 ... Sealing unit, 10 ... Alkaline battery, 20 ... mold, 28 ... molded product.
  • the present embodiment will be described in detail with reference to the drawings as necessary.
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • the polyamide resin composition of this embodiment contains (A) a polyamide resin composed of polyhexamethylene sebacamide and / or polyhexamethylene dodecamide, (B) boron nitride, and (C) calcined kaolin. It is.
  • A a polyamide resin composed of polyhexamethylene sebacamide and / or polyhexamethylene dodecamide
  • B boron nitride
  • C calcined kaolin
  • the component (A) is a polyamide resin composed of polyhexamethylene sebacamide and / or polyhexamethylene dodecamide.
  • Polyhexamethylene sebacamide is also referred to as “polyamide 610”
  • polyhexamethylene dodecamide is also referred to as “polyamide 612”.
  • the component (A) preferably contains at least polyhexamethylene dodecamide, and more preferably consists of polyhexamethylene dodecamide. Thereby, the object of the present invention can be achieved more reliably and effectively. These can be obtained by obtaining commercially available products or by synthesizing them by conventional methods.
  • the degree of polymerization of the polyamide resin as component (A) is preferably such that the relative viscosity at 25 ° C. is 1.8 to 3.8, more preferably 1.9 to 3.5. More preferably, the degree of polymerization is 2.0 to 3.3.
  • the “relative viscosity” is measured using an Ostwald viscometer in a 98% concentrated sulfuric acid solution containing 1% by mass of a polyamide resin.
  • the boron nitride component (B) is represented by the chemical formula “BN”. This boron nitride is obtained by heating boron at a high temperature in a nitrogen stream, heating ammonia and boron oxide, or heating ammonium chloride and borax. The boron nitride thus obtained is a fine powder.
  • the powder average particle size of boron nitride is preferably 10 ⁇ m or less, and more preferably 0.1 to 10 ⁇ m.
  • “powder average particle size” means the particle size distribution of powder measured using a commercially available particle size distribution measuring device (for example, a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation, trade name “SALD-2200”).
  • D50 a particle size
  • the average particle size of the boron nitride powder By controlling the average particle size of the boron nitride powder within the above numerical range, structural defects that can occur in the molded product obtained from the polyamide resin composition of the present embodiment tend to be more effectively prevented. . By preventing structural defects in the molded product in this way, the object of the present invention can be achieved more reliably and effectively.
  • the polyamide resin composition of the present embodiment contains a change in mechanical strength due to moisture in the medicine or in the medicine or in the atmosphere when in contact with the medicine, particularly impact strength. Can be suppressed. Such a suppression effect can be clearly recognized when compared with the case where the polyamide resin composition contains a crystal nucleating agent different from boron nitride.
  • the calcined kaolin as the component (C) is metakaolin (Al 2 O 3 .2SiO 2 ) obtained by calcining kaolinite and dehydrating, and is amorphous in terms of X-rays.
  • the shape of the calcined kaolin is not particularly limited, but is preferably a non-fibrous shape such as a plate shape, a rod shape, or a spherical shape.
  • the average particle diameter of the calcined kaolin is preferably 0.05 to 10 ⁇ m from the viewpoint of more effectively achieving the object of the present invention.
  • the calcined kaolin can be obtained by obtaining a commercially available product, by synthesizing by a conventional method, or by obtaining commercially available kaolinite and dehydrating it by a conventional method.
  • the calcined kaolin which is the component (C) is preferably subjected to surface treatment from the viewpoint of more effectively achieving the object of the present invention.
  • surface treatment include surface treatment in which calcined kaolin is brought into contact with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound.
  • organosilane compounds are preferable.
  • specific examples thereof include epoxy group-containing alkoxysilanes represented by ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • organosilane compounds in particular, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) ) Aminopropylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ -aminotrimethoxysilane, ⁇ -aminotriethoxysilane, ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane are preferably used.
  • ⁇ Coupling agents may be used alone or in combination of two or more.
  • the composition ratio of the above components is not particularly limited as long as it does not impair the object of the present invention, but is preferably as follows. That is, the polyamide resin composition of the present embodiment has a content of 0.0001 to 3 parts by mass of component (B) with respect to 100 parts by mass of component (A), from the viewpoint of more reliably and effectively achieving the object of the invention. It is preferably contained in an amount of 0.001 to 2 parts by mass, more preferably 0.01 to 1 part by mass.
  • the polyamide resin composition of the present embodiment is based on 100 parts by mass of component (A) from the viewpoint of further suppressing changes in strength due to chemicals, moisture in the chemicals, moisture in the atmosphere, especially changes in impact strength.
  • component (C) is preferably contained in an amount of 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and further preferably 0.5 to 10 parts by mass.
  • the polyamide resin composition of the present embodiment preferably contains 100 to 20000 parts by mass of the component (C) with respect to 100 parts by mass of the component (B).
  • the content is more preferably 500 to 18000 parts by mass, and even more preferably 1000 to 15000 parts by mass.
  • the polyamide resin composition of the present embodiment may further contain a polyamide resin that is different from the component (A) as long as the object of the present invention is not impaired. Thereby, the effect that crystallinity can be improved or heat resistance can be improved is obtained.
  • polyamide resin for example, polyhexamethylene adipamide (polyamide 66), poly ⁇ capramide (polyamide 6), a copolymer of polyhexamethylene adipamide and polyisophthalamide (polyamide 6I), Examples thereof include a copolymer of polyhexamethylene adipamide and polyterephthalamide (polyamide 6T), and a terpolymer of polyhexamethylene adipamide, polyisophthalamide and polyterephthalamide.
  • polyamide resins are used alone or in combination of two or more.
  • the content is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the component (A). By adjusting the content ratio within this numerical range, an effect of excellent balance of chemical resistance, mechanical properties and heat resistance tends to be obtained.
  • the degree of polymerization of the different type of polyamide resin as component (D) is preferably such that the relative viscosity at 25 ° C. is 1.8 to 3.8, and the degree of polymerization is 1.9 to 3.5. More preferably, the degree of polymerization is 2.0 to 3.3. Further, the relative viscosity at 25 ° C. of the mixture of the component (A) and a polyamide resin different from this is preferably 1.8 to 3.8, more preferably 1.9 to 3.5. More preferably, it is 0.0 to 3.3. As a result, the polyamide resin composition of the present embodiment is further excellent in moldability and mechanical strength.
  • the polyamide resin composition of the present embodiment includes, in addition to the above-described components, inorganic fillers, flame retardants, and pigments contained in ordinary polyamide resin compositions, as long as they do not impair the purpose of the present invention. Or a colorant. Furthermore, the polyamide resin composition of the present embodiment may be added with various additives such as a moldability improver, a heat stabilizer, a light stabilizer, an antioxidant, and an antistatic agent in any stage within a range not impairing the object of the present invention. May be added. These are used singly or in combination of two or more.
  • the polyamide resin composition of the present embodiment may contain a polymer other than the above-described polyamide resin as long as it does not hinder the object of the present invention.
  • a polymer include polypropylene, ABS resin, polyphenylene oxide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyarylate, liquid crystal polyester, and various elastomers. These are used singly or in combination of two or more.
  • the polyamide resin composition of the present embodiment can be produced by the same method as the conventional polyamide resin composition.
  • the boron nitride of component (B) when mixing the boron nitride of component (B) with the polyamide resin of component (A), it may be added to the raw material of component (A) during the synthesis of component (A), or during melt kneading of component (A) It may be added.
  • the component (A) may be blended and added to the pellet surface after the component (A) is formed into a pellet, or the component (B) may be added as a high-concentration master batch.
  • the calcined kaolin of the component (C) may be added to the raw material of the component (A) when the component (A) is synthesized, or may be added when the component (A) is melt-kneaded.
  • the pellets of the component (A) and the component (C) are weighed in advance and then hand-blended, and these are simultaneously fed to the extruder. You may supply. Or the pellet of (A) component may be supplied from the upstream of an extruder, and (C) component may be supplied to an extruder, after (A) component fully fuse
  • the component (C) is subjected to surface treatment with these coupling agents in accordance with a conventional method before the component (A). It is preferable to mix with a polyamide resin.
  • a so-called integral blend method in which a coupling agent is added when melt kneading with the component (A) without subjecting the component (C) to surface treatment in advance may be used.
  • the polyamide resin composition of the present embodiment described above is blended with a specific ratio of boron nitride as the component (B) and calcined kaolin as the component (C) to the polyamide resin as the component (A) as a matrix. It is uniformly and finely dispersed.
  • the molded product obtained from the polyamide resin composition of the present embodiment has a mechanical strength equivalent to or higher than that of the conventional one, and the mechanical strength is sufficiently lowered by the chemical in an environment where it is in excessive contact with the chemical. And the change in mechanical strength and appearance due to chemicals, moisture in the chemicals and moisture in the atmosphere is sufficiently reduced. Therefore, the battery gasket obtained by molding the polyamide resin composition of the present embodiment has extremely excellent alkali resistance and liquid leakage resistance.
  • the polyamide resin composition of the present embodiment has good moldability, and is particularly excellent in releasability. Therefore, when the polyamide resin composition of the present embodiment is used, a molded product having excellent mass productivity can be obtained.
  • the polyamide resin composition of the present embodiment is not limited to battery gaskets, and can be molded into various molded products. In order to effectively utilize the above-described characteristics, automotive parts, electronic / electrical parts, industrial machinery Application to various parts such as parts is expected. Specific examples of molded products obtained by molding the polyamide resin composition of the present embodiment include battery gaskets, water inlets, water outlets, radiator tanks, hot water tanks, water pumps, connectors, various switches, and engine covers. Can be mentioned.
  • molded products are not particularly limited in shape, except that the polyamide resin composition of the present embodiment is adopted as a raw material, and may be the same as known ones, and can be manufactured by a conventionally known method.
  • the molding method there are known molding methods such as press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding, multilayer molding, etc. Can be mentioned. Even if these molding methods are used, good molding processing is possible, and the above-mentioned molded product can be obtained. Among these, it is preferable to form the molded product by injection molding from the viewpoint that it can be efficiently produced by utilizing the characteristics of polyamide having good fluidity and good releasability (high cycle moldability).
  • the battery gasket of the present embodiment is a sealing part for alkaline dry batteries and alkaline button type batteries that are generally widely distributed. If the polyamide gasket is obtained by molding the polyamide resin composition of the present embodiment, its shape and the like are There is no particular limitation.
  • the battery gasket of the present embodiment has a function of sealing the opening of a bottomed battery case containing a power generation element containing an alkaline electrolyte to keep the battery sealed. This battery gasket is obtained by molding the polyamide resin composition of this embodiment into a predetermined shape.
  • the battery gasket of the present embodiment may be partially provided with a thin portion having a thickness of about 0.1 to 0.4 mm that acts as a safety valve when the battery is misused.
  • the battery gasket of the present embodiment has good alkali resistance, it is possible to impart excellent chemical resistance and liquid leakage resistance to an alkaline dry battery equipped therewith.
  • this battery gasket has good moldability and is particularly excellent in releasability, it can be molded in the same excellent molding cycle as that of the polyamide 66 battery gasket.
  • FIG. 1 is a schematic cross-sectional front view showing an example of the battery gasket of the present embodiment.
  • the battery gasket 1 is provided with a cylindrical outer wall 1d on the outer peripheral portion, a central boss 1a provided with a through-hole for press-fitting and inserting other parts to be described later in the center, and a connecting portion 1c provided therebetween. Are formed continuously.
  • the connecting portion 1c is provided with a thin-walled portion 1b that acts as a safety valve so as to break when a certain pressure is reached when an abnormal pressure rise occurs inside the battery.
  • the thickness of the thin portion 1b is sufficiently thin with respect to the thickness of the connecting portion 1c, and is set to 0.2 to 0.3 mm.
  • alkaline dry battery and alkaline button type battery of this embodiment will be described with reference to the drawings as necessary.
  • other components may be conventionally known as long as the battery gasket provided is the battery gasket of this embodiment.
  • FIG. 2 is a schematic half-sectional front view showing an AA alkaline battery which is an example of the present embodiment.
  • the alkaline dry battery 10 includes a bottomed cylindrical battery case 5 and a hollow cylindrical positive electrode 2 accommodated therein so as to be inscribed therein.
  • a gelled negative electrode 3 is disposed in the hollow portion of the positive electrode 2 with a bottomed cylindrical separator 4 interposed therebetween.
  • Most of the needle-shaped negative electrode current collector 6 is immersed in the gelled negative electrode 3, and one end of the negative electrode current collector 6 not immersed in the gelled negative electrode 3 is the center of the disk-shaped negative electrode terminal plate 7. It is electrically connected to the part.
  • the negative electrode current collector 6 and the negative electrode terminal plate 7 are integrated with the battery gasket 1 described above to constitute a sealing unit 9.
  • the battery gasket 1 is in contact with the opening end of the separator 4 at the connecting portion 1c, and the cylindrical outer wall portion 1d is sandwiched and fixed between the opening end of the battery case 5 and the outer edge portion of the negative electrode terminal plate 7.
  • the power generation elements such as the positive electrode 2 and the gelled negative electrode 3 containing an alkaline electrolyte are accommodated, and the sealing unit 9 is arranged as illustrated, and then the opening end of the battery case 5 is opened. It is obtained by folding inward in an arc shape and sealing.
  • the outer peripheral surface of the battery case 5 is covered with an exterior label 8 to ensure insulation.
  • an aqueous solution containing 30 to 40% by mass of potassium hydroxide and 1 to 3% by mass of zinc oxide is generally used.
  • a battery gasket obtained by molding a conventional polyamide resin or a composition thereof is hydrolyzed by an alkaline electrolyte, resulting in a decrease in mechanical strength. There is also. Therefore, in order to maintain the function of the thin portion 1b for a long time after the battery is manufactured, the battery gasket is required to have high chemical resistance (strong alkali resistance).
  • the battery gasket of the present embodiment has been completed to meet such demands, and is a battery gasket that is sufficiently excellent in chemical resistance (alkali resistance).
  • the alkaline dry battery and the alkaline button battery provided with this battery gasket exhibit sufficiently good leakage resistance.
  • the molded product obtained by molding has a mechanical strength equivalent to or higher than that of the conventional one, and in an environment where it is in excessive contact with the chemical, the mechanical strength is sufficiently lowered or deteriorated by the chemical. It is possible to provide a polyamide resin composition that is useful as a gasket for a battery with a small amount and sufficient change in mechanical strength and appearance due to chemicals, moisture in the chemicals, and moisture in the atmosphere.
  • Relative viscosity of polyamide resin The relative viscosity ( ⁇ r) at 25 ° C. of the polyamide resin was measured according to JIS K6810 using an Ostwald viscometer in a 98% concentrated sulfuric acid solution containing 1% by mass of the polyamide resin. .
  • Izod impact test (g) Izod impact value before chemical resistance test Notched test piece in the dry state (usually so-called absolutely dry state) before the above chemical resistance test conforms to ASTM D256 The Izod impact value (unit: J / m) was measured.
  • the polyamide resin composition was molded by injection molding to obtain a battery gasket having the same shape as in FIG. However, the thickness of the thin portion (corresponding to the portion indicated by reference numeral 1b in FIG. 1) was adjusted so that the operating pressure described later was about 8 MPa.
  • the cylinder temperature was set to 290 ° C.
  • the mold temperature was set to 80 ° C.
  • injection was set to 4 seconds
  • cooling was set to 10 seconds.
  • cover the said battery gasket was immersed, the container was sealed, and 80 degreeC was sealed. In an environmental test tank for 3 months. Thereafter, the battery gasket was taken out of the container, washed with water and dried with warm air.
  • This battery gasket was subjected to a chemical resistance test as follows. First, there is a path through which oil for oil pressure measurement flows, and a central boss part (corresponding to a part indicated by reference numeral 1a in FIG. 1) and a cylindrical outer wall part (part indicated by reference numeral 1d in FIG. 1) of the battery gasket. And a test jig for sealing the whole battery gasket was prepared. This test jig is provided with a hydraulic gauge so that the oil that has flowed in immerses the entire battery gasket, the hydraulic pressure of which is adjustable. The test gasket was stored with the battery gasket before being immersed in the aqueous solution, filled with oil, and the battery gasket was immersed in the oil.
  • the hydraulic pressure at the time of fracture corresponds to a pressure at which the thin portion of the battery gasket operates as a safety valve (hereinafter referred to as “operating pressure”).
  • operating pressure a pressure at which the thin portion of the battery gasket operates as a safety valve
  • the operating pressure of the battery gasket after drying with hot air was measured in the same manner.
  • the operating pressure (unit: MPa) for the battery gasket before immersion / the operating pressure (unit: MPa) for the battery gasket after drying with hot air ⁇ 100 was calculated as the holding ratio (unit:%) of the operating pressure. It was judged that the chemical resistance of the battery gasket was good when the retention rate was 80% or more.
  • the release force of the molded product was measured by the following method to evaluate the release property.
  • die 20 which shows a cross section in FIG. 3 was prepared.
  • the molten polyamide resin composition was injected into the mold 20.
  • the injected polyamide resin composition was filled into the box mold cavity 22 via the sprue runner 21.
  • the polyamide resin composition was sufficiently cooled in the mold 20 so that the polyamide resin was cured.
  • the mold 20 is separated between the mold part 20 a provided with the sprue runner 21 and the mold part 20 b provided with the box-shaped molding cavity 22, and the pressure sensor 25, the ejector plate 24 and the ejector are ejected by the ejector rod 26.
  • the force for projecting the molded product 28 at this time was measured by a pressure sensor 25 installed on the ejector plate 24 to obtain a release force (unit: kgf).
  • the value of the release force was recorded by a release force recorder 27.
  • the box-shaped molding cavity 22 has an inner wall on which a molded product 28 having a rectangular parallelepiped shape (bottomed container shape) having a thickness of 2 mm, a width of 32 mm, a depth of 40 mm, and a height of 21 mm can be formed. And one having a surface corresponding to the bottom side of the molded product 28 opened. Further, using an injection molding machine (trade name “SE-50D” manufactured by Sumitomo Heavy Industries, Ltd.), the mold surface temperature is 80 ° C., the polyamide resin composition temperature is 260 ° C.
  • the pressure in the autoclave was about 1.8 MPa in terms of gauge pressure, but water was discharged from the system as needed so that the pressure did not exceed 1.8 MPa. Further, the polymerization time was adjusted so that the relative viscosity of the polyamide resin became the target relative viscosity. After the polymerization in the autoclave was completed, the polyamide resin was sent out in a strand form from the lower nozzle, and after water cooling and cutting, pellet-shaped polyhexamethylene sebacamide (polyamide 610) was obtained. This polyamide resin was vacuum dried at 80 ° C. for 24 hours. When the relative viscosity ( ⁇ r) of the polyamide resin was measured as described above, it was 2.50.
  • boron nitride of the component (B) a commercial product having a powder average particle diameter of 2.5 ⁇ m measured as described above (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “DENCABORON NITRIDE SP-2”) Prepared.
  • calcined kaolin of component (C) a commercial product (trade name, manufactured by Hayashi Kasei Co., Ltd.) having an average particle diameter of 1.5 ⁇ m measured as described above and surface-treated with ⁇ -aminopropyltriethoxysilane. “TRANSLINK 445”) was prepared.
  • boron nitride and calcined kaolin commercially available talc having a powder average particle diameter of 4.0 ⁇ m measured as described above (trade name “Microace L-1” manufactured by Nippon Talc Co., Ltd.)
  • talc having a powder average particle diameter of 4.0 ⁇ m measured as described above
  • wollastonite trade name “Nyyard 325” manufactured by Hayashi Kasei Co., Ltd.
  • Example 1 (B) Boron nitride is 0.1 parts by mass and (C) calcined kaolin is 5.5 parts by mass with respect to 100 parts by mass of the pellet-like polyamide resin obtained in Production Example 1 above. Mix to obtain a mixture. The mixture was put into a twin screw extruder (trade name “ZSK26MC” manufactured by Coperion Co., Ltd.) and melt kneaded at 270 ° C. to obtain a polyamide resin composition. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 1 shows the composition and evaluation results of the polyamide resin composition. In the table, “PA” in the type of polyamide resin refers to “polyamide”.
  • Example 2 (B) 0.1 part by mass of boron nitride and (C) calcined kaolin are 5.5 parts with respect to 100 parts by mass of the pellet-like polyamide resin having a relative viscosity of 2.15 obtained in Production Example 2 above. They were mixed so that it might become a mass part, and the mixture was obtained. The mixture was put into a twin screw extruder (trade name “ZSK26MC” manufactured by Coperion Co., Ltd.) and melt kneaded at 250 ° C. to obtain a polyamide resin composition. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 1 shows the composition and evaluation results of the polyamide resin composition.
  • Example 2 A polyamide resin composition was obtained in the same manner as in Example 2 except that talc was used instead of boron nitride. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 1 shows the composition and evaluation results of the polyamide resin composition. From this evaluation result, it is recognized that after the chemical resistance test, the Izod impact value is remarkably increased and the releasability is lowered due to the influence of the 3% by mass calcium chloride aqueous solution, which indicates a tendency to deteriorate the moldability. . In addition, leakage from alkaline batteries was observed. This is probably because the battery gasket was too soft and deformed because the Izod impact value after the chemical resistance test was high.
  • Example 3 A polyamide resin composition was obtained in the same manner as in Example 2 except that wollastonite was used instead of calcined kaolin. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 1 shows the composition and evaluation results of the polyamide resin composition. From this evaluation result, it was confirmed that the Izod impact value was remarkably lowered after the chemical resistance test due to the influence of 3% by mass of calcium chloride aqueous solution, and leaked from the alkaline battery.
  • Example 4 A polyamide resin composition was obtained in the same manner as in Example 2 except that boron nitride was not added. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 1 shows the composition and evaluation results of the polyamide resin composition. From this evaluation result, it was recognized that, due to the influence of 3 mass% calcium chloride aqueous solution, after the chemical resistance test, the Izod impact value was remarkably increased, the releasability was remarkably decreased, and the liquid was leaked from the alkaline battery.
  • Example 3 (B) 0.06 parts by mass of boron nitride and (C) 10 parts by mass of calcined kaolin with respect to 100 parts by mass of the pellet-like polyamide resin having a relative viscosity of 1.85 obtained in Production Example 2 above. They were mixed to obtain a mixture. The mixture was put into a twin screw extruder (trade name “ZSK26MC” manufactured by Coperion Co., Ltd.) and melt kneaded at 250 ° C. to obtain a polyamide resin composition. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 2 shows the composition and evaluation results of the polyamide resin composition.
  • Example 4 A polyamide resin composition was obtained in the same manner as in Example 3 except that a pellet-like polyamide resin having a relative viscosity of 3.20 obtained in Production Example 2 was used instead of the polyamide resin described above. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 2 shows the composition and evaluation results of the polyamide resin composition.
  • Example 5 A polyamide resin composition was obtained in the same manner as in Example 3 except that a pellet-like polyamide resin having a relative viscosity of 3.75 obtained in Production Example 2 was used instead of the polyamide resin described above. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 2 shows the composition and evaluation results of the polyamide resin composition.
  • Example 6 a pellet-like polyamide resin having a relative viscosity of 2.15 obtained in Production Example 2 was used, and the boron nitride content was changed from 0.06 parts by mass to 0.01 parts by mass.
  • a polyamide resin composition was obtained in the same manner as in Example 3 except that the content ratio of the calcined kaolin was changed from 10 parts by mass to 1.8 parts by mass.
  • Table 2 shows the composition and evaluation results of the polyamide resin composition.
  • Example 7 A polyamide resin was obtained in the same manner as in Example 6 except that the content ratio of boron nitride was changed from 0.01 parts by mass to 0.08 parts by mass, and the content ratio of calcined kaolin was changed from 1.8 parts by mass to 15 parts by mass. A composition was obtained. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 2 shows the composition and evaluation results of the polyamide resin composition.
  • Example 8 Except for changing the content ratio of boron nitride from 0.01 parts by mass to 2.5 parts by mass, and changing the content ratio of calcined kaolin from 1.8 parts by mass to 7.5 parts by mass, the same as in Example 6, A polyamide resin composition was obtained. Various physical properties and characteristics of the obtained polyamide resin composition were evaluated as described above. Table 2 shows the composition and evaluation results of the polyamide resin composition.
  • the industrial applicability of the present invention is expected to be used for various parts of automobiles, electronic and electrical products, industrial machinery, particularly battery gaskets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、得られる成形品が、従来と同程度又はそれ以上の機械強度を有すると共に、薬品と過度に接触する環境下で、薬品による機械強度低下が十分に少なく、かつ、薬品や薬品中の水分及び大気中の水分による機械強度や外観の変化の十分に少ないポリアミド樹脂組成物から得られる電池用ガスケットを提供する。本発明の電池用ガスケットは、(A)ポリヘキサメチレンセバカミド及び/又はポリヘキサメチレンドデカミドからなるポリアミド樹脂と、(B)窒化ホウ素と、(C)焼成カオリンと、を含有するポリアミド樹脂組成物を成形して得られるものである。

Description

電池用ガスケット及びアルカリ乾電池
 本発明は、ポリアミド樹脂組成物を用いて得られる電池用ガスケット及びアルカリ乾電池に関するものである。
 従来、ポリアミド樹脂は、機械特性を始めとする各種特性、例えば成形加工性などにおいて優れているため、自動車部品、電子電気部品、工業機械部品などの各種部品に広く利用されている。しかしながら、近年の産業の高度化に伴い、従来は必要とされていない多様な特性がポリアミド樹脂に求められてきている。
 例えば、ポリアミド樹脂が有する優れた成形加工性を利用して、従来、金属製の自動車部品、電子電気部品、工業機械部品をポリアミド樹脂製に代替しようとする試みがなされている。ところが、ポリアミド樹脂は一般に耐水性に優れていない。そこで、その耐水性を向上させることを目的として、吸水率を低下させたポリアミド樹脂組成物が提案されている(例えば特許文献1参照)。かかるポリアミド樹脂組成物は従来のものと比較して、耐水性に優れるポリアミド樹脂組成物である、とされている。また、耐湿熱性を向上させたポリアミド樹脂組成物が提案されている(例えば、特許文献2参照)。この組成物は従来のものと比較して成形性及び耐湿熱性に優れるポリアミド樹脂組成物である、とされている。
特開2000-86890号公報 特開2005-78890号公報
 しかしながら、ポリアミド樹脂の使用環境の変化に伴い、ポリアミド樹脂に求められる要求スペックが年々厳しくなっている。そのため、特許文献1、2に記載のようなポリアミド樹脂組成物であっても、そのスペックを十分に満足できなくなっている。
 最近ポリアミド樹脂に要求されているスペックの一つとして、耐アルカリ性や耐塩化カルシウム性などの耐薬品性能と機械特性とのバランスに優れるというスペックが挙げられる。より詳しくは、ポリアミド樹脂から得られる成形品が、従来と同程度又はそれ以上の機械強度を有すると共に、薬品と過度に接触する環境下で、薬品による機械強度低下が少なく、かつ、薬品や薬品中の水分及び大気中の水分による機械強度や外観の変化の少ないポリアミド樹脂組成物が要求される。
 本発明は上記事情に鑑みてなされたものであり、得られる成形品が、従来と同程度又はそれ以上の機械強度を有すると共に、薬品と過度に接触する環境下で、薬品による機械強度低下が十分に少なく、かつ、薬品や薬品中の水分及び大気中の水分による機械強度や外観の変化の十分に少ないポリアミド樹脂組成物から得られる電池用ガスケット及びアルカリ乾電池を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定のポリアミド樹脂に窒化ホウ素と焼成カオリンとを配合して得られるポリアミド樹脂組成物が、上記目的を達成するのに有効であることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記のものを提供する。
 [1](A)ポリヘキサメチレンセバカミド及び/又はポリヘキサメチレンドデカミドからなるポリアミド樹脂と、(B)窒化ホウ素と、(C)焼成カオリンと、を含有するポリアミド樹脂組成物を成形して得られる電池用ガスケット。
 [2]上記ポリアミド樹脂組成物は、上記(A)成分100質量部に対して、(B)成分を0.0001~3質量部、及び(C)成分を0.01~20質量部含有する上記[1]の電池用ガスケット。
 [3]上記ポリアミド樹脂組成物は、(D)上記(A)成分とは異種のポリアミド樹脂を(A)成分100質量部に対して1~20質量部含有する上記[1]又は[2]の電池用ガスケット。
 [4]上記(B)成分の粉末平均粒径が10μm以下である上記[1]~[3]のいずれか一つの電池用ガスケット。
 [5]上記ポリアミド樹脂組成物は、上記(B)成分100質量部に対して、(C)成分を100~20000質量部含有する上記[1]~[4]のいずれか一つのポリアミド樹脂組成物。
 [6]上記[1]~[5]のいずれか一つの電池用ガスケットを備えるアルカリ乾電池。
 本発明によれば、得られる成形品が、従来と同程度又はそれ以上の機械強度を有すると共に、薬品と過度に接触する環境下で、薬品による機械強度低下が十分に少なく、かつ、薬品や薬品中の水分及び大気中の水分による機械強度や外観の変化の十分に少ないポリアミド樹脂組成物から得られる電池用ガスケット及びアルカリ乾電池を提供することができる。
本実施形態の電池用ガスケットの一例を示す模式的な断面正面図である。 本実施形態の一例である単3形のアルカリ乾電池を示す模式的な半断面正面図である。 実施例に係る射出成形用の金型を示す模式的な断面正面図である。
符号の説明
 1…電池用ガスケット、2…正極、3…ゲル状負極、4…セパレータ、5…電池ケース、6…負極集電体、7…負極端子板、8…外装ラベル、9…封口ユニット、10…アルカリ乾電池、20…金型、28…成形品。
 以下、必要に応じて図面を参照しつつ、本発明を実施するための最良の形態(以下、「本実施形態」と表記する。)について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 本実施形態のポリアミド樹脂組成物は、(A)ポリヘキサメチレンセバカミド及び/又はポリヘキサメチレンドデカミドからなるポリアミド樹脂と、(B)窒化ホウ素と、(C)焼成カオリンとを含有するものである。以下、各成分について詳細に説明する。
<(A)成分>
 (A)成分は、ポリヘキサメチレンセバカミド及び/又はポリヘキサメチレンドデカミドからなるポリアミド樹脂である。ポリヘキサメチレンセバカミドは「ポリアミド610」とも称されるものであり、ポリヘキサメチレンドデカミドは「ポリアミド612」とも称されるものである。(A)成分は少なくともポリヘキサメチレンドデカミドを含むことが好ましく、ポリヘキサメチレンドデカミドからなることがより好ましい。これにより本発明の目的をより確実かつ効果的に達成することができる。これらは市販のものを入手することにより、あるいは常法により合成することにより得られる。
 (A)成分のポリアミド樹脂の重合度は、25℃における相対粘度が1.8~3.8となる重合度であると好ましく、1.9~3.5となる重合度であるとより好ましく、2.0~3.3となる重合度であると更に好ましい。ここで「相対粘度」とは、ポリアミド樹脂1質量%を含む98%濃硫酸溶液中、オストワルド粘度計を用いて測定されるものである。(A)成分のポリアミド樹脂の相対粘度が上述の数値範囲になるように重合度を制御することにより、本実施形態のポリアミド樹脂組成物は、成形性及び機械強度に一層優れたものとなる。
<(B)成分>
 (B)成分の窒化ホウ素は「BN」の化学式で表されるものである。この窒化ホウ素は、ホウ素を窒素気流中で高温加熱すること、アンモニアと酸化ホウ素とを加熱すること、あるいは塩化アンモニウムとホウ砂とを加熱することにより得られる。こうして得られる窒化ホウ素は微粉末である。窒化ホウ素の粉末平均粒径は10μm以下であると好ましく、0.1~10μmであるとより好ましい。ここで「粉末平均粒径」とは、市販の粒度分布測定装置(例えば、株式会社島津製作所製、レーザ回折粒度分布測定装置、商品名「SALD-2200)を用いて測定した粉末の粒径分布において、全粉末の質量の50%を占める際の粒径(いわゆる「D50」)を意味する。窒化ホウ素の粉末平均粒径を上述の数値範囲内に制御することにより、本実施形態のポリアミド樹脂組成物から得られる成形品に生じ得る構造欠陥を、より有効に防止することができる傾向にある。このようにして成形品の構造欠陥を防止することで、本発明の目的をより確実かつ効果的に達成することができる。
 本実施形態のポリアミド樹脂組成物は、この(B)成分を含有することにより、薬品と接触した際の薬品若しくは薬品中の水分又は大気中の水分に起因する機械強度の変化、特に衝撃強さの変化を抑制することができる。このような抑制効果は、ポリアミド樹脂組成物に窒化ホウ素とは異なる結晶核剤を含有させた場合と比較すれば、明らかに認識することができる。
<(C)成分>
 (C)成分の焼成カオリンは、カオリナイトを焼成して脱水することにより得られるメタカオリン(Al・2SiO)であり、X線的に非晶質である。焼成カオリンの形状は特に限定されないが、板状、棒状、球状などの非繊維状であると好ましい。これにより、ポリアミド樹脂組成物を成形して成形品を得た際の寸法や機械的特性の異方性が生じ難いという効果が得られる。焼成カオリンの粉末平均粒径は、本発明の目的を一層有効に発揮する観点から、0.05~10μmであると好ましい。焼成カオリンは、市販のものを入手することにより、常法により合成することにより、あるいは、市販のカオリナイトを入手してそれを常法により脱水することにより得られる。
 (C)成分である焼成カオリンは、本発明の目的を一層有効に発揮する観点から、表面処理を施されたものであると好ましい。そのような表面処理としては、焼成カオリンをイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤と接触させる表面処理が挙げられる。
 これらのカップリング剤の中では、有機シラン系化合物(シランカップリング剤)が好ましい。その具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランに代表されるエポキシ基含有アルコキシシラン化合物、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランに代表されるメルカプト基含有アルコキシシラン化合物、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシシラン、γ-(2-ウレイドエチル)アミノプロピルトリメトキシシランに代表されるウレイド基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシランに代表されるイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-アミノトリメトキシシラン、γ-アミノトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、に代表されるアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシランに代表される水酸基含有アルコキシシラン化合物、γ―メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン・塩酸塩に代表される炭素-炭素不飽和結合含有アルコキシシラン化合物が挙げられる。これらの有機シラン系化合物の中でも、特に、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-アミノトリメトキシシラン、γ-アミノトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランが好ましく用いられる。
 カップリング剤は1種を単独で又は2種以上を組み合わせて用いられる。
 本実施形態のポリアミド樹脂組成物において、上記各成分の組成比は本発明の目的を阻害しない範囲であれば特に限定されないが、下記のとおりであると好ましい。すなわち、本実施形態のポリアミド樹脂組成物は、本発明の目的を更に確実かつ効果的に達成する観点から、(A)成分100質量部に対して、(B)成分を0.0001~3質量部含有すると好ましく、0.001~2質量部含有するとより好ましく、0.01~1質量部含有すると更に好ましい。
 また、本実施形態のポリアミド樹脂組成物は、薬品や薬品中の水分、大気中の水分による強度変化、特に衝撃強さの変化を更に抑制する観点から、(A)成分100質量部に対して、(C)成分を0.01~20質量部含有すると好ましく、0.1~15質量部含有するとより好ましく、0.5~10質量部含有すると更に好ましい。
 本発明により得られる効果を一層有効に発揮する観点から、本実施形態のポリアミド樹脂組成物は、(B)成分100質量部に対して、(C)成分を100~20000質量部含有すると好ましく、500~18000質量部含有するとより好ましく、1000~15000質量部含有すると更に好ましい。
<(D)成分>
 本実施形態のポリアミド樹脂組成物は、本発明の目的を阻害しない範囲で、上述の(A)成分とは異種のポリアミド樹脂を更に含有してもよい。これにより、結晶性を高めたり、耐熱性を高めたりできるという効果が得られる。そのようなポリアミド樹脂としては、例えば、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリεカプラミド(ポリアミド6)、ポリヘキサメチレンアジパミドとポリイソフタラミド(ポリアミド6I)との共重合体、ポリヘキサメチレンアジパミドとポリテレフタルアミド(ポリアミド6T)との共重合体、ポリヘキサメチレンアジパミドとポリイソフタラミドとポリテレフタルミドの3元共重合体が挙げられる。これらのポリアミド樹脂は1種を単独で又は2種以上を組み合わせて用いられる。その含有割合は上記(A)成分100質量部に対して1~20質量部であると好ましい。含有割合をこの数値範囲内に調整することにより、耐薬品性、機械的特性及び耐熱性のバランスに優れるという効果が得られる傾向にある。
 (D)成分である異種のポリアミド樹脂の重合度は、25℃における相対粘度が1.8~3.8のとなる重合度であると好ましく、1.9~3.5となる重合度であるとより好ましく、2.0~3.3となる重合度であると更に好ましい。また、(A)成分とこれとは異種のポリアミド樹脂との混合物の25℃における相対粘度が1.8~3.8であると好ましく、1.9~3.5であるとより好ましく、2.0~3.3であると更に好ましい。これらにより、本実施形態のポリアミド樹脂組成物は、成形性及び機械強度に一層優れたものとなる。
 本実施形態のポリアミド樹脂組成物は、上述の各成分以外に、必要に応じて、本発明の目的を阻害しない範囲で、通常のポリアミド樹脂組成物に含有される無機充填剤や難燃剤、顔料や着色剤を含有してもよい。さらに本実施形態のポリアミド樹脂組成物は、本発明の目的を阻害しない範囲で、成形性改良剤、熱安定剤、光安定剤、酸化防止剤、帯電防止剤などの各種添加剤を任意の段階で添加されてもよい。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 本実施形態のポリアミド樹脂組成物は、必要に応じて、本発明の目的を阻害しない範囲で、上述のポリアミド樹脂以外のポリマーを含有してもよい。このようなポリマーとしては、例えば、ポリプロピレン、ABS樹脂、ポリフェニレンオキサイド、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、液晶ポリエステル、各種エラストマーが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 本実施形態のポリアミド樹脂組成物は、従来のポリアミド樹脂組成物と同様の方法により製造することができる。例えば、(B)成分の窒化ホウ素を(A)成分のポリアミド樹脂と混合する場合、(A)成分の合成時に(A)成分の原料に添加してもよく、(A)成分の溶融混練時に添加してもよい。あるいは、(A)成分をペレット状に成形した後にそのペレット表面に(B)成分をブレンド添加してもよく、高濃度のマスターバッチとして(B)成分を添加してもよい。
 また、(C)成分の焼成カオリンは、(A)成分の合成時に(A)成分の原料に添加してもよく、(A)成分の溶融混練時に添加してもよい。(A)成分を押出機内で溶融混練する時に(C)成分を添加する場合、予め(A)成分のペレットと(C)成分とを所定量計量した後にハンドブレンドし、それらを同時に押出機に供給してもよい。あるいは、押出機の上流から(A)成分のペレットを供給し、(A)成分が十分に溶融した後に(C)成分を押出機に供給してもよい。
 (C)成分の焼成カオリンに上記カップリング剤を用いて表面処理を施す場合、(C)成分は、常法に従って、これらのカップリング剤により予め表面処理を施されてから(A)成分のポリアミド樹脂と混合されると好ましい。ただし、(C)成分に対して予め表面処理を施さずに、(A)成分と共に溶融混練する際にカップリング剤を添加するいわゆるインテグラルブレンド法を用いてもよい。
 以上説明した本実施形態のポリアミド樹脂組成物は、マトリックスである(A)成分のポリアミド樹脂に、(B)成分の窒化ホウ素と、(C)成分の焼成カオリンとを特定の比で配合し、均一かつ微細に分散させている。これにより、本実施形態のポリアミド樹脂組成物から得られる成形品は、従来と同程度又はそれ以上の機械強度を有すると共に、薬品と過度に接触する環境下で、薬品による機械強度低下が十分に少なく、かつ、薬品や薬品中の水分及び大気中の水分による機械強度や外観の変化が十分に少なくなる。したがって、本実施形態のポリアミド樹脂組成物を成形して得られる電池用ガスケットは、極めて優れた耐アルカリ性、耐漏液性を有するものとなる。
 また、本実施形態のポリアミド樹脂組成物は、良好な成形性を有しており、特に離型性に優れている。したがって、本実施形態のポリアミド樹脂組成物を用いると、量産性に優れた成形品を得ることができる。
 本実施形態のポリアミド樹脂組成物は、電池用ガスケットに限定されず、種々の成形品に成形され得るものであり、上述の特性を有効に活用するために、自動車部品、電子電気部品、工業機械部品などの各種部品への応用が期待される。本実施形態のポリアミド樹脂組成物を成形して得られる成形品の具体例としては、電池用ガスケット、ウォーターインレット、ウォーターアウトレット、ラジエータータンク、温水タンク、ウォーターポンプ、コネクター、各種スイッチ類、エンジンカバーが挙げられる。
 これらの成形品は、原材料として本実施形態のポリアミド樹脂組成物を採用すること以外、形状などは特に限定されず公知のものと同様であってもよく、従来公知の方法によって製造することができる。成形方法としては公知の成形方法、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形など、一般に知られているプラスチック成形方法が挙げられる。これらの成形方法を用いても、良好な成形加工が可能であり、上述の成形品を得ることができる。これらの中でも射出成形を用いて上記成形品に成形することが、ポリアミドの良流動性、良離型性(ハイサイクル成形性)という特徴を活用して効率的に生産できる点で好ましい。
 次に、本実施形態の電池用ガスケットについて、必要に応じて図面を参照しながら説明する。本実施形態の電池用ガスケットは、一般に広く流通するアルカリ乾電池やアルカリボタン型電池の封口用部品であり、本実施形態のポリアミド樹脂組成物を成形して得られるものであれば、その形状等は特に限定されない。本実施形態の電池用ガスケットは、アルカリ電解液を含有する発電要素を収納した有底の電池ケースの開口部を封着して電池の密封を保つ機能を有する。この電池用ガスケットは本実施形態のポリアミド樹脂組成物を所定の形状に成形して得られるものである。本実施形態の電池用ガスケットには、電池の誤使用時に安全弁として作用する厚さ0.1~0.4mm程度の薄肉部を部分的に設けてもよい。
 本実施形態の電池用ガスケットは良好な耐アルカリ性を有しているため、それを備えたアルカリ乾電池に対して優れた耐薬品性及び耐漏液性を付与することができる。また、この電池用ガスケットは成形性が良好であり、特に離型性に優れているため、ポリアミド66製の電池用ガスケットと同様の優れた成形サイクルにて成形することが可能となる。
 図1は、本実施形態の電池用ガスケットの一例を示す模式的な断面正面図である。電池用ガスケット1は、外周部に円筒状外壁部1d、中央に、後述する他の部品を圧入して挿通するための貫通孔を設けた中央ボス部1a、これらの間に連結部1cを設けて連続して形成されている。そして連結部1cには、電池内部に異常な圧力上昇が生じた際に一定の圧力に達すると破断するように安全弁として作用する薄肉部1bが設けられている。薄肉部1bの厚さは、連結部1cの厚さに対して十分に薄く、0.2~0.3mmに設定される。
 次に、本実施形態のアルカリ乾電池及びアルカリボタン型電池について、必要に応じて図面を参照しながら説明する。本実施形態のアルカリ乾電池及びアルカリボタン型電池は、備えられる電池用ガスケットが本実施形態の電池用ガスケットであれば、その他の部品は従来公知のものであってもよい。
 図2は、本実施形態の一例である単3形のアルカリ乾電池を示す模式的な半断面正面図である。アルカリ乾電池10は、有底円筒形の電池ケース5と、その中に内接するように収納された中空円筒状の正極2とを備えている。正極2の中空部には有底円筒形のセパレータ4を介してゲル状負極3が配置されている。ゲル状負極3には針型の負極集電体6の大部分が浸漬されており、ゲル状負極3に浸漬されていない負極集電体6の一端は、円盤状の負極端子板7の中心部と電気的に接続されている。更に負極集電体6及び負極端子板7は上述の電池用ガスケット1と一体化して封口ユニット9を構成している。電池用ガスケット1は連結部1cでセパレータ4の開口端に当接しており、円筒状外壁部1dを電池ケース5の開口端と負極端子板7の外縁部とに挟持されて固定されている。かかる構成は、電池ケース5内に、アルカリ電解液を含有する正極2、ゲル状負極3等の発電要素を収納し、封口ユニット9を図示のように配置した後、電池ケース5の開口端を内方へ円弧状に折り曲げて封着することにより得られる。電池ケース5の外周面は、絶縁を確保するため外装ラベル8により被覆されている。
 上記アルカリ電解液としては、水酸化カリウムを30~40質量%、酸化亜鉛を1~3質量%含む水溶液が一般的に用いられる。従来のポリアミド樹脂又はその組成物を成形して得られる電池用ガスケットは、アルカリ電解液によって加水分解して機械強度が低下し、更には亀裂を生じて密封性を損ない電池が漏液に至る場合もある。したがって、電池製造後から長期に亘って薄肉部1bの機能を維持するため、電池用ガスケットには高い耐薬品性(耐強アルカリ性)が要求される。本実施形態の電池用ガスケットは、かかる要求に対応すべく完成に至ったものであり、耐薬品性(耐アルカリ性)に十分優れた電池用ガスケットである。したがって、この電池用ガスケットを備えたアルカリ乾電池及びアルカリボタン型電池は、十分に良好な耐漏液性を示す。
 本実施形態によれば、成形して得られる成形品が、従来と同程度又はそれ以上の機械強度を有すると共に、薬品と過度に接触する環境下で、薬品による機械強度低下や劣化が十分に少なく、かつ、薬品や薬品中の水分及び大気中の水分による機械強度や外観の変化の十分に少ない電池用ガスケットとして有用なポリアミド樹脂組成物を提供することができる。
 以上、本発明を実施するための最良の形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各種物性・特性の評価は下記(1)~(6)に示すようにして行った。
(1)ポリアミド樹脂の相対粘度
 ポリアミド樹脂の25℃の相対粘度(ηr)は、ポリアミド樹脂1質量%を含む98%濃硫酸溶液中、オストワルド粘度計を用いて、JIS K6810に準拠して測定した。
(2)粉末平均粒径
 株式会社島津製作所製のレーザ回折式粒度分布測定装置(商品名「SALD-2200」)を用いて測定した粉末の粒径分布において、全粉末の質量の50%を占める際の粒径(D50)を、粉末平均粒径として求めた。
(3)成形品の耐薬品性試験
(3-1)成形品の作製
 まず、射出成形機(日精樹脂株式会社製、商品名「PS60E」)によりポリアミド樹脂組成物を成形することにより、各種試験に供する成形品を作製した。シリンダー温度を270℃、金型温度を80℃に設定し、射出10秒、冷却15秒の射出成形条件で成形を行った。成形品として、ASTMダンベル型試験片タイプ1(試験片厚み:1/8インチ、以下「ダンベル型試験片」という。)及びASTM短冊型試験片タイプ1(試験片厚み:1/8インチ、以下「短冊型試験片」という。)を得た。このうち短冊型試験片に対して更に切削加工を施して、アイゾット衝撃試験用のノッチ入りの試験片(試験片厚み:1/8インチ)を得た。
(3-2)成形品の薬品処理
 上述のダンベル型試験片及びノッチ入りの試験片を3質量%の塩化カルシウム水溶液に60℃で500時間浸漬して耐薬品性試験を行った。耐薬品性試験前後の試験片の表面外観、引張特性、アイゾット衝撃値について下記のようにして評価した。
(3-3)表面外観試験
(a)耐薬品性試験前の表面外観
 上記耐薬品性試験前のダンベル型試験片の表面について、株式会社堀場製作所製のハンディ光沢計(商品名「IG320」)を用い、JIS Z 8741に準拠して、鏡面光沢度Gs(60°)を測定した。
(b)耐薬品性試験後の表面外観
 上記耐薬品性試験後のダンベル型試験片を塩化カルシウム水溶液から取り出してその表面を拭き、室温23℃、相対湿度55%の室内に1時間静置した。次いで、そのダンベル型試験片の表面について、鏡面光沢度Gs(60°)を上記(a)と同様にして測定した。
(c)鏡面光沢度の保持率
 耐薬品性試験後の上記鏡面光沢度Gs÷耐薬品性試験前の上記鏡面光沢度Gs×100を鏡面光沢度の保持率(単位:%)として算出した。この保持率が高いほど、試験片が耐薬品性に優れていることを示す。
(3-4)引張試験
(d)耐薬品性試験前の引張強度
 上記耐薬品性試験前の乾燥状態(通常はいわゆる絶乾状態)にあるダンベル型試験片について、ASTM D638に準拠して、引張強度(単位:MPa)を測定した。
(e)耐薬品性試験後の引張強度
 上記耐薬品性試験後のダンベル型試験片を塩化カルシウム水溶液から取り出してその表面を拭き、室温23℃、相対湿度55%の室内に1時間静置した。次いで、そのダンベル型試験片について、ASTM D638に準拠して、引張強度(単位:MPa)を測定した。
(f)引張強度の保持率
 耐薬品性試験後の上記引張強度(単位:MPa)÷耐薬品性試験前の上記引張強度(単位:MPa)×100を引張強度の保持率(単位:%)として算出した。この保持率が高いほど、試験片が機械強度のひとつである引張特性に優れていることを示す。
(3-5)アイゾット衝撃試験
(g)耐薬品性試験前のアイゾット衝撃値
 上記耐薬品性試験前の乾燥状態(通常はいわゆる絶乾状態)にあるノッチ入りの試験片について、ASTM D256に準拠してアイゾット衝撃値(単位:J/m)を測定した。
(h)耐薬品性試験後のアイゾット衝撃値
 上記耐薬品性試験後のノッチ入りの試験片を塩化カルシウム水溶液から取り出してその表面を拭き、室温23℃、相対湿度55%の室内に1時間静置した。次いで、そのノッチ入りの試験片について、ASTM D256に準拠して、アイゾット衝撃値(単位:J/m)を測定した。
(i)アイゾット衝撃値の保持率
 耐薬品性試験後の上記アイゾット衝撃値(単位:J/m)÷耐薬品性試験前の上記アイゾット衝撃値(単位:J/m)×100をアイゾット衝撃値の保持率(単位:%)として算出した。この保持率が高いほど、試験片が機械強度のひとつである耐衝撃性に優れていることを示す。
(4)電池用ガスケットの耐薬品性試験
 まず、ポリアミド樹脂組成物を射出成形により成形して、図1と同様の形状を有する電池用ガスケットを得た。ただし、薄肉部(図1の符号1bで示す部分に相当)の厚さは、後述の作動圧が約8MPaとなるように調整した。また、射出成形条件について、シリンダー温度を290℃、金型温度を80℃に設定し、射出4秒、冷却10秒に設定した。そして、蓋付の容器内に水酸化カリウムを34.5質量%及び酸化亜鉛を2.0質量%含む水溶液を満たして、上記電池用ガスケットを浸漬させた後、容器を密封して、80℃の環境試験槽内に3ヶ月間保存した。その後、電池用ガスケットを容器から取り出し、水洗後に温風乾燥した。
 この電池用ガスケットについて、耐薬品性試験を下記のようにして行った。まず、内部に油圧測定用の油が流入する経路を有し、電池用ガスケットの中央ボス部(図1の符号1aで示す部分に相当)と筒状外壁部(図1の符号1dで示す部分に相当)とを保持し、電池用ガスケットの全体を密封する試験治具を準備した。この試験治具は、流入した油が電池用ガスケットの全体を浸漬し、その油圧が調整可能になっており、油圧ゲージを備えている。この試験治具に、上記水溶液に浸漬する前の電池用ガスケットを収容し、そこに油を充填して電池用ガスケットをその油に浸漬した。その後、電池用ガスケットを浸漬した油の油圧を徐々に上昇させ、電池用ガスケットの薄肉部が破断する際の油圧(単位:MPa)を測定した。この破断する際の油圧は、電池用ガスケットの薄肉部が安全弁として作動する圧力(以下、「作動圧」という。)に相当する。次いで、上記温風乾燥後の電池用ガスケットについて、同様に作動圧を測定した。浸漬前の電池用ガスケットについての作動圧(単位:MPa)÷温風乾燥後の電池用ガスケットについての作動圧(単位:MPa)×100を作動圧の保持率(単位:%)として算出した。この保持率が80%以上であると、電池用ガスケットの耐薬品性が良好であると判断した。
(5)アルカリ乾電池の耐漏液性試験
 電池用ガスケットの原材料に種々のポリアミド樹脂組成物を用いた以外は図1に示すものと同様の構成を有する単3形アルカリ乾電池を作製し、以下の評価を実施した。まず、該乾電池の各20個ずつを80℃の環境試験槽内に3ヶ月保存した。その後、電池を環境試験槽から取り出して目視にてアルカリ電解液の漏液の有無を確認した。さらに、漏液が発生した電池を分解して電池用ガスケットを取り出した。その電池用ガスケットを光学顕微鏡で観察し、薄肉部に亀裂が生じて漏液に至っているか否かを確認し、漏液に至っている乾電池の個数を勘定した。
(6)離型力
 下記方法により成形品の離型力を測定して離型性を評価した。まず、図3に断面を示す金型20を準備した。次いで、溶融したポリアミド樹脂組成物を金型20内に射出した。射出されたポリアミド樹脂組成物はスプルーランナー21を経由して、箱型成形キャビティ22に充填された。次に、ポリアミド樹脂が硬化するように十分に金型20内でポリアミド樹脂組成物を冷却した。その後、スプルーランナー21を設けた金型部20aと箱型成形キャビティ22を備えた金型部20bとの間で金型20を離間し、エジェクターロッド26により、圧力センサー25、エジェクタープレート24及びエジェクターピン23を介して、ポリアミド樹脂組成物が固化した成形品28を図示した矢印方向に突き出した。この際の成形品28を突き出す力を、エジェクタープレート24に設置した圧力センサー25で測定して離型力(単位:kgf)とした。また、離型力の値は離型力記録計27にて記録した。
 なお、箱型成形キャビティ22は、肉厚2mm、幅32mm×奥行き40mm×高さ21mmの寸法を有する、一面が開口した直方体状(有底容器状)である成形品28を成形可能な内壁を有しており、成形品28の底側に相当する1面が開放されたものを用いた。また、射出成形機(住友重機械工業株式会社製、商品名「SE-50D」)を用い、金型表面温度80℃、ポリアミド樹脂組成物温度260℃(ただし、比較例1は280℃)、スクリュー前進速度100mm/秒、保圧力40MPa、射出時間5秒、冷却時間20秒、成形サイクル30秒の射出条件に設定した。それぞれのポリアミド樹脂組成物について、離型力が安定するまで連続成形し、離型力が安定した後の10ショットの離型力を平均して平均離型力を求めた。平均離型力が小さいほど離型性に優れ、ハイサイクル成形性が良好なものであることを示す。
(ポリアミド樹脂の製造)
(製造例1)
 重合成分としてヘキサメチレンジアミンとセバシン酸との等モル塩をポリアミド樹脂として50質量%相当含有する水溶液を15kg調製した。次いで、撹拌装置を有し、かつ下部に抜出しノズルを有する40リットルのオートクレーブ中に上記水溶液を仕込み、50℃の温度下で十分に水溶液を攪拌した。次に、オートクレーブ内を十分に窒素で置換した後、水溶液を撹拌しながらオートクレーブ内の温度を50℃から約270℃まで昇温した。この際、オートクレーブ内の圧力は、ゲージ圧にして約1.8MPaであったが、この圧力が1.8MPa以上にならないよう水を随時系外に排出した。また、重合時間は、ポリアミド樹脂の相対粘度が目的の相対粘度になるように調整した。オートクレーブ内での重合終了後、下部ノズルからストランド状にポリアミド樹脂を送出し、水冷・カッティングを経て、ペレット状のポリヘキサメチレンセバカミド(ポリアミド610)を得た。このポリアミド樹脂を80℃、24時間の条件で真空乾燥した。ポリアミド樹脂の相対粘度(ηr)を上述のようにして測定したところ、2.50であった。
(製造例2)
 重合成分として上述のものに代えて、ヘキサメチレンジアミンとドデカン二酸との等モル塩を用いた以外は製造例1と同様にして、それぞれ相対粘度の異なる4種類のペレット状のポリヘキサメチレンドデカミド(ポリアミド612)を得た。これらのポリアミド樹脂を80℃、24時間の条件で真空乾燥した。ポリアミド樹脂の相対粘度(ηr)を上述のようにして測定したところ、それぞれ、1.85、2.15、3.20、3.75であった。
(製造例3)
 重合成分として上述のものに代えて、ヘキサメチレンジアミンとアジピン酸との等モル塩を用いた以外は製造例1と同様にして、ペレット状のポリヘキサメチレンアジパミド(ポリアミド66)を得た。このポリアミド樹脂を80℃、24時間の条件で真空乾燥した。ポリアミド樹脂の相対粘度(ηr)を上述のようにして測定したところ、2.30であった。
 また、(B)成分の窒化ホウ素として、上述のようにして測定した粉末平均粒径が2.5μmである市販品(電気化学工業株式会社製、商品名「デンカボロンナイトライドSP-2」)を準備した。(C)成分の焼成カオリンとして、上述のようにして測定した粉末平均粒径が1.5μmであり、γ-アミノプロピルトリエトキシシランで表面処理された市販品(林化成株式会社製、商品名「TRANSLINK445」)を準備した。
 上記ポリアミド樹脂、窒化ホウ素、焼成カオリン以外の成分として、上述のようにして測定した粉末平均粒径が4.0μmである市販のタルク(日本タルク株式会社製、商品名「ミクロエースL-1」)、同様に粉末平均粒径が10μmである市販のワラストナイト(林化成株式会社製、商品名「ナイヤード325」)を準備した。
(実施例1)
 上記製造例1にて得られたペレット状のポリアミド樹脂100質量部に対して、(B)窒化ホウ素が0.1質量部、(C)焼成カオリンが5.5質量部になるようにそれらを混合して混合物を得た。その混合物を二軸押出機(コペリオン株式会社製、商品名「ZSK26MC」)に投入して、270℃の条件下で溶融混練してポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表1に示す。なお、表中、ポリアミド樹脂の種類においての「PA」との表記は「ポリアミド」を指す。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 上記製造例2にて得られた相対粘度が2.15であるペレット状のポリアミド樹脂100質量部に対して、(B)窒化ホウ素が0.1質量部、(C)焼成カオリンが5.5質量部になるようにそれらを混合して混合物を得た。その混合物を二軸押出機(コペリオン株式会社製、商品名「ZSK26MC」)に投入して、250℃の条件下で溶融混練してポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表1に示す。
(比較例1)
 上記製造例3にて得られたペレット状のポリアミド樹脂100質量部に対して、(B)窒化ホウ素が0.1質量部、(C)焼成カオリンが5.5質量部になるようにそれらを混合して混合物を得た。その混合物を二軸押出機(コペリオン株式会社製、商品名「ZSK26MC」)に投入して、280℃の条件下で溶融混練してポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表1に示す。この評価結果から、3質量%の塩化カルシウム水溶液の影響により、耐薬品性試験後に、アイゾット衝撃値が低下し、電池用ガスケットの作動圧が著しく低下し、アルカリ乾電池から漏液することが認められた。
(比較例2)
 窒化ホウ素に代えてタルクを用いた以外は実施例2と同様にして、ポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表1に示す。この評価結果から、3質量%の塩化カルシウム水溶液の影響により、耐薬品性試験後に、アイゾット衝撃値が著しく増大し、離型性が低下することが認められ、成形性の悪化傾向が示唆される。また、アルカリ乾電池から漏液することが認められた。これは、耐薬品性試験後のアイゾット衝撃値が高いことから、電池用ガスケットが柔らかすぎて変形を起こしたためと考えられる。
(比較例3)
 焼成カオリンに代えてワラストナイトを用いた以外は実施例2と同様にして、ポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表1に示す。この評価結果から、3質量%の塩化カルシウム水溶液の影響により、耐薬品性試験後に、アイゾット衝撃値が著しく低下し、アルカリ乾電池から漏液することが認められた。
(比較例4)
 窒化ホウ素を添加しなかった以外は実施例2と同様にして、ポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表1に示す。この評価結果から、3質量%の塩化カルシウム水溶液の影響により、耐薬品性試験後に、アイゾット衝撃値が著しく増大し、離型性が著しく低下し、アルカリ乾電池から漏液することが認められた。
(実施例3)
 上記製造例2にて得られた相対粘度が1.85であるペレット状のポリアミド樹脂100質量部に対して、(B)窒化ホウ素が0.06質量部、(C)焼成カオリンが10質量部になるようにそれらを混合して混合物を得た。その混合物を二軸押出機(コペリオン株式会社製、商品名「ZSK26MC」)に投入して、250℃の条件下で溶融混練してポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例4)
 上述のポリアミド樹脂に代えて上記製造例2にて得られた相対粘度が3.20であるペレット状のポリアミド樹脂を用いた以外は実施例3と同様にして、ポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表2に示す。
(実施例5)
 上述のポリアミド樹脂に代えて上記製造例2にて得られた相対粘度が3.75であるペレット状のポリアミド樹脂を用いた以外は実施例3と同様にして、ポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表2に示す。
(実施例6)
 上述のポリアミド樹脂に代えて上記製造例2にて得られた相対粘度が2.15であるペレット状のポリアミド樹脂を用い、窒化ホウ素の含有割合を0.06質量部から0.01質量部に、焼成カオリンの含有割合を10質量部から1.8質量部にそれぞれ代えた以外は実施例3と同様にして、ポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表2に示す。
(実施例7)
 窒化ホウ素の含有割合を0.01質量部から0.08質量部に、焼成カオリンの含有割合を1.8質量部から15質量部にそれぞれ代えた以外は実施例6と同様にして、ポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表2に示す。
(実施例8)
 窒化ホウ素の含有割合を0.01質量部から2.5質量部に、焼成カオリンの含有割合を1.8質量部から7.5質量部にそれぞれ代えた以外は実施例6と同様にして、ポリアミド樹脂組成物を得た。得られたポリアミド樹脂組成物について、上述のようにして各種物性・特性を評価した。ポリアミド樹脂組成物の組成及び評価結果を表2に示す。
 本発明の産業上利用可能性として、自動車、電子電気製品、工業機械の各種部品、特に、電池用ガスケットに用いられることが期待される。
 

Claims (6)

  1.  (A)ポリヘキサメチレンセバカミド及び/又はポリヘキサメチレンドデカミドからなるポリアミド樹脂と、
     (B)窒化ホウ素と、
     (C)焼成カオリンと、
    を含有するポリアミド樹脂組成物を成形して得られる電池用ガスケット。
  2.  前記ポリアミド樹脂組成物は、前記(A)成分100質量部に対して、前記(B)成分を0.0001~3質量部、及び前記(C)成分を0.01~20質量部含有する、請求項1記載の電池用ガスケット。
  3.  前記ポリアミド樹脂組成物は、(D)前記(A)成分とは異種のポリアミド樹脂を前記(A)成分100質量部に対して1~20質量部含有する、請求項1又は2に記載の電池用ガスケット。
  4.  前記(B)成分の粉末平均粒径が10μm以下である、請求項1~3のいずれか一項に記載の電池用ガスケット。
  5.  前記ポリアミド樹脂組成物は、前記(B)成分100質量部に対して、前記(C)成分を100~20000質量部含有する、請求項1~4のいずれか一項に記載の電池用ガスケット。
  6.  請求項1~5のいずれか一項に記載の電池用ガスケットを備えるアルカリ乾電池。
     
PCT/JP2008/068419 2008-01-11 2008-10-10 電池用ガスケット及びアルカリ乾電池 WO2009087798A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-004058 2008-01-11
JP2008004058A JP5470611B2 (ja) 2007-04-12 2008-01-11 ポリアミド樹脂組成物及び成形品

Publications (1)

Publication Number Publication Date
WO2009087798A1 true WO2009087798A1 (ja) 2009-07-16

Family

ID=40853830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068419 WO2009087798A1 (ja) 2008-01-11 2008-10-10 電池用ガスケット及びアルカリ乾電池

Country Status (1)

Country Link
WO (1) WO2009087798A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011128321A1 (fr) 2010-04-13 2011-10-20 Rhodia Operations Garniture d'etancheite en polyamide pour piles alcalines
JP2015026477A (ja) * 2013-07-25 2015-02-05 新生化学工業株式会社 アルカリ乾電池用ガスケット
CN113871112A (zh) * 2021-09-17 2021-12-31 惠州东铭新能源研究院有限公司 一种电池模组顶部绝缘片生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189416A (ja) * 1992-01-17 1996-07-23 Nissan Motor Co Ltd 高剛性樹脂カバー
JPH0927305A (ja) * 1995-07-11 1997-01-28 Unitika Ltd アルカリ電池封口ガスケット用材料
JP2003261705A (ja) * 2002-03-07 2003-09-19 Nichias Corp 発泡ptfe樹脂組成物、ガスケット及び複合ガスケット
JP2004155948A (ja) * 2002-11-07 2004-06-03 Kanebo Ltd 中空成形体
WO2005024976A1 (ja) * 2003-09-02 2005-03-17 Fdk Energy Co., Ltd. アルカリ乾電池とその封口ガスケット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189416A (ja) * 1992-01-17 1996-07-23 Nissan Motor Co Ltd 高剛性樹脂カバー
JPH0927305A (ja) * 1995-07-11 1997-01-28 Unitika Ltd アルカリ電池封口ガスケット用材料
JP2003261705A (ja) * 2002-03-07 2003-09-19 Nichias Corp 発泡ptfe樹脂組成物、ガスケット及び複合ガスケット
JP2004155948A (ja) * 2002-11-07 2004-06-03 Kanebo Ltd 中空成形体
WO2005024976A1 (ja) * 2003-09-02 2005-03-17 Fdk Energy Co., Ltd. アルカリ乾電池とその封口ガスケット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011128321A1 (fr) 2010-04-13 2011-10-20 Rhodia Operations Garniture d'etancheite en polyamide pour piles alcalines
US8900745B2 (en) 2010-04-13 2014-12-02 Rhodia Operations Polyamide packing seal for alkaline batteries
JP2015026477A (ja) * 2013-07-25 2015-02-05 新生化学工業株式会社 アルカリ乾電池用ガスケット
CN113871112A (zh) * 2021-09-17 2021-12-31 惠州东铭新能源研究院有限公司 一种电池模组顶部绝缘片生产工艺
CN113871112B (zh) * 2021-09-17 2023-12-08 惠州东铭新能源材料股份有限公司 一种电池模组顶部绝缘片生产工艺

Similar Documents

Publication Publication Date Title
JP5470611B2 (ja) ポリアミド樹脂組成物及び成形品
EP2128200B1 (en) Polyphenylene sulfide resin composition
CN101535409B (zh) 阻燃性聚酰胺组合物
JP5185758B2 (ja) 電池用ガスケット及びアルカリ乾電池
KR100901043B1 (ko) 난연성 폴리아마이드 조성물
US20100063191A1 (en) Polyamide resin composition pellet blend, mold article and method for manufacturing pellet blend
JP5451970B2 (ja) ポリアミド樹脂組成物ペレットブレンド物、成形品およびペレットブレンド物の製造方法
JPH0812886A (ja) ポリアリーレンサルファイド樹脂組成物
US20090280311A1 (en) Polyamide resin composition and molded article
JP5199056B2 (ja) 熱可塑性ポリエステル樹脂組成物およびその車両用成形品
JP5476688B2 (ja) ポリアミド樹脂組成物およびそれからなる成形品
US6617381B1 (en) Polyamide resin composition and forming from the same
EP0901507B2 (en) Aromatic polyamide resin composition having excellent balance of toughness and stiffness
WO2013125495A1 (ja) 熱可塑性樹脂組成物および成形品
WO2009087798A1 (ja) 電池用ガスケット及びアルカリ乾電池
JP2008007753A (ja) ポリアミド樹脂組成物および成形品
JP2009032639A (ja) 電池ガスケット用ポリアミド樹脂組成物
JP4633532B2 (ja) 気密性スイッチ部品
JPH08199063A (ja) ポリアミド樹脂組成物及びその製造方法
WO2010041327A1 (ja) ポリアミド樹脂組成物及び成形品
CN109804019B (zh) 聚酰胺树脂组合物
JP2021105112A (ja) インサート成形品用ポリアリーレンサルファイド樹脂組成物及びインサート成形品
JP2006104222A (ja) ポリフェニレンスルフィド樹脂組成物
JP3591189B2 (ja) 溶着用樹脂組成物
JP6968322B1 (ja) ポリアリーレンサルファイド樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870009

Country of ref document: EP

Kind code of ref document: A1