WO2009081990A1 - 形状測定装置、形状測定方法 - Google Patents

形状測定装置、形状測定方法 Download PDF

Info

Publication number
WO2009081990A1
WO2009081990A1 PCT/JP2008/073653 JP2008073653W WO2009081990A1 WO 2009081990 A1 WO2009081990 A1 WO 2009081990A1 JP 2008073653 W JP2008073653 W JP 2008073653W WO 2009081990 A1 WO2009081990 A1 WO 2009081990A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
contour shape
measurement
measurement unit
reference position
Prior art date
Application number
PCT/JP2008/073653
Other languages
English (en)
French (fr)
Inventor
Masaru Akamatsu
Hidehisa Hashizume
Yasuhide Nakai
Original Assignee
Kobelco Research Institute, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute, Inc. filed Critical Kobelco Research Institute, Inc.
Publication of WO2009081990A1 publication Critical patent/WO2009081990A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a shape measuring apparatus for measuring the shape of a chamfered end of a disk-shaped object to be measured (mainly a semiconductor wafer, other hard disk aluminum substrate, glass substrate, etc.) based on the projected image. And a shape measuring method.
  • the edge (edge) of the wafer is damaged or chipped due to contact with other components or a wafer holding member. There is a case. Further, the wafer may be cracked due to the scratches or chips. It is considered that the ease of occurrence of scratches and chippings at the edge of the wafer is related to the shape of the edge surface (so-called edge profile portion) of the wafer. For this reason, it is important to correctly measure the edge profile of a disk-shaped measurement object typified by a wafer.
  • the shape of the end face here is a profile in the thickness direction (one-dimensional direction) of the wafer, that is, the shape of the cross section in the thickness direction, and is hereinafter referred to as an edge profile.
  • a typical example of the edge profile measurement method is the nondestructive inspection method (SEMI-MF-) specified in the Semi Standard, which is a standard established by the Semiconductor Equipment and Materials International (SEMI). 928-0305 Standard Metho d B).
  • SEMI-MF- nondestructive inspection method specified in the Semi Standard, which is a standard established by the Semiconductor Equipment and Materials International (SEMI). 928-0305 Standard Metho d B).
  • Patent Document 1 discloses a projected image obtained by collimating (collimating) the light emitted from a point light source through a collimator lens in the optical projection measurement method, and projecting the light beam onto a measurement object. It has been proposed to prevent the occurrence of image blurring in the outline.
  • JP 2006-145487 A discloses a projected image obtained by collimating (collimating) the light emitted from a point light source through a collimator lens in the optical projection measurement method, and projecting the light beam onto a measurement object. It has been proposed to prevent the occurrence of image blurring in the outline. JP 2006-145487 A
  • the light beam projected onto the measurement object is more likely to be scattered as the optical path length along the surface of the measurement object is longer in the process of traveling along the surface (front and back surfaces) of the measurement object. Therefore, even if a parallel light beam is projected through the collimator lens onto the measurement object, the image blur of the outline may occur in the projected image due to the scattering of the light beam.
  • a disk-shaped measurement object such as a wafer has a dimension in the light projecting direction (depth dimension) that varies depending on the position in the radial direction
  • the degree of image blur that occurs in the projected image varies depending on the position.
  • the degree of image blur that occurs in the projected image also varies depending on the intensity of the light beam projected onto the measurement object.
  • FIGS. 6 and 7 are diagrams schematically showing a first example and a second example of the projected image 1 ′ of the wafer imaged by the camera from the direction facing the light projecting direction.
  • FIG. 6 shows a state (first example) in which an image blur occurs in a direction in which the projected image 1 ′ is larger than the actual cross section of the wafer
  • FIG. This represents a state (second example) in which image blur occurs in a direction smaller than the cross section of the wafer.
  • the difference in the occurrence of image blur as shown in FIGS. 6 and 7 is caused by the intensity of light projected on the wafer.
  • FIGS. 6 and 7 show a projected image 1 ′ in which the image blur is emphasized more than the actual one.
  • contour shape g1 (dashed line) and true contour shape g0 (solid line) of the wafer edge calculated by the image processing for the projection image 1 ′ shown in FIGS. FIG.
  • the contour shape g1 shown in FIG. 8 corresponds to the projected image g1 ′ shown in FIG. 6
  • the contour shape g1 shown in FIG. 9 corresponds to the projected image g1 ′ shown in FIG.
  • the contour shape g1 shown in FIGS. 8 and 9 has, for example, a luminance change rate in a predetermined direction (for example, a thickness direction (Y-axis direction) or a direction perpendicular to the thickness direction (X-axis direction)) in the image of the projection image g1 ′.
  • the outline shape g1 of the projection image g1 ′ does not represent the original cross-sectional shape of the measurement unit.
  • the object of the present invention is to measure when measuring the shape of the end face of a disk-shaped measuring object such as a semiconductor wafer based on the projected image. It is an object of the present invention to provide a shape measuring apparatus and a shape measuring method capable of performing correct shape measurement even when an image blur occurs in a projected image of an object.
  • the shape measuring apparatus is parallel to the front and back surfaces of a measuring part including a chamfered end of a disk-shaped measuring object such as a semiconductor wafer.
  • a projection unit for projecting light from any direction, and an imaging unit for imaging the measurement unit from a direction opposite to the projection direction, with respect to the projection image of the measurement unit obtained by the imaging unit The apparatus measures the contour shape of the measurement unit by performing image processing, and includes the following components (1-1) to (1-3).
  • Image processing means for deriving first contour shape information of the measurement unit by image processing on the projection image of the measurement unit.
  • Contour shape correcting means for correcting the first contour shape information and outputting the corrected second contour shape information.
  • the process of outputting the second contour shape information include a process of storing the second contour shape information in a storage unit, a process of displaying on the display unit, or a process of transmitting to the external device. It is done. More specifically, it is considered that the thickness correction amount by the contour shape correcting means for the thickness distribution specified from the first contour shape information is a correction amount satisfying the requirement shown in the following (1-4). It is done.
  • the reference position is a correction amount for making the corrected thickness coincide with the thickness measured by the thickness measuring unit, and the other positions are the light projection directions at the reference position of the measurement unit.
  • This is a correction amount obtained by correcting the thickness correction amount at the reference position in accordance with the size of the dimension in the light projecting direction at the other position with respect to the size of the reference.
  • the thickness correction amount by the contour shape correcting unit for the thickness distribution specified from the first contour shape information is a correction amount that satisfies the following requirement (1-5).
  • (1-5) Relative value of the thickness of the reference position specified from the first contour shape information when the thickness measured by the thickness measuring unit is used as a reference, and the reference position of the measurement unit at the reference position This is a correction amount having a positive correlation with each of the relative values of the dimension in the light projecting direction at each position of the measurement unit with respect to the dimension in the light projecting direction.
  • the relative value is, for example, a difference or a ratio.
  • a contour shape g1 calculated by image processing on the projection image g1 ′ (the first contour shape).
  • the shape represented by the information has a deviation (error) from the true contour shape g0, as shown in FIGS.
  • the deviation can be grasped as a difference in dimension in the thickness direction of the measurement unit (hereinafter referred to as a thickness error). If the first contour shape information is corrected by the thickness error, the trueness of the measurement unit is corrected.
  • Information (the second contour shape information) representing the contour shape of the image can be obtained.
  • the thickness measuring unit measures an actual thickness (a reference thickness) of the measurement unit at a known reference position.
  • the contour shape correcting means corrects the thickness of the contour shape obtained by image processing on the basis of the actual thickness of the measurement unit at the reference position and the dimension in the light projecting direction. Information (the second contour shape information) is calculated (estimated). According to the shape measuring apparatus according to the present invention, correct shape measurement can be performed even if image blurring occurs in the projected image of the measurement object.
  • the shape measuring method according to the present invention is a method for executing the following procedures (2-1) to (2-3).
  • (2-1) A procedure for measuring the thickness of the reference position in the measurement unit of the measurement object by the thickness measurement means.
  • (2-2) A procedure for deriving first contour shape information of the measurement unit by performing image processing on the projection image of the measurement unit by an image processing unit.
  • the present invention when measuring the shape of the end face of a disk-shaped measuring object such as a semiconductor wafer based on the projected image, correct shape measurement is performed even if image blurring occurs in the projected image of the measuring object. be able to.
  • FIG. 1 is a schematic plan view of a shape measuring apparatus W according to an embodiment of the present invention.
  • FIG. The flowchart showing the procedure of the shape measurement process performed by the shape measuring apparatus W.
  • Shape measuring apparatus 1 Wafer 2: Point light source 3: Collimator lens 4: First lens 5: Aperture 6: Second lens 7: Image sensor 7a: Camera 8: Mask 9: Central suction support mechanism 10: Image Processing device 11: Control device 20: Thickness measurement sensors S1, S2,...: Processing procedure (step)
  • FIG. 1 is a schematic plan view of the shape measuring apparatus W according to the embodiment of the present invention
  • FIG. 2 is a schematic side view of the shape measuring apparatus W
  • FIG. 3 is a procedure of the shape measuring process executed by the shape measuring apparatus W.
  • FIG. 4 is a diagram illustrating a first example of the first contour shape (before correction) and the second contour shape (after correction) derived by the shape measuring device W, and FIG. FIG.
  • FIG. 6 is a diagram showing a second example of the first contour shape to be derived (before correction) and the second contour shape (after correction).
  • FIG. 6 is a projected image of the wafer imaged by the camera from the direction facing the light projection direction.
  • FIG. 7 is a diagram schematically showing a first example of the above
  • FIG. 7 is a diagram schematically showing a second example of a projected image of a wafer imaged by a camera from a direction opposite to the light projecting direction
  • FIG. 9 is a view showing a second example of the contour shape of the wafer end portion calculated by the image processing of the projection image of the wafer and the true contour shape.
  • the shape measuring apparatus W uses a light projecting unit from a direction parallel to the front and back surfaces of a wafer 1 to a chamfered end of a wafer 1 (semiconductor wafer) that is a disk-shaped measurement object. While projecting light, a projected image of a predetermined range (hereinafter referred to as a measurement unit) including an end portion (chamfered portion) of the wafer 1 is captured by the camera 7a from a direction opposite to the projecting direction, This is an apparatus for measuring the shape and thickness of the edge of the wafer 1 based on the projected image.
  • the wafer 1 is made of, for example, a semiconductor such as silicon having a radius of about 150 [mm] and a thickness of about 0.8 [mm], and an outer peripheral end (peripheral surface) portion thereof is chamfered.
  • the configuration of the shape measuring apparatus W will be described with reference to the plan view shown in FIG. 1 and the side view shown in FIG. In FIG. 2, some of the components shown in FIG. 1 are omitted.
  • the shape measuring device W includes a point light source 2 as a light projecting unit that is an optical system for light projection (an example of a light projecting unit), and the light from the point light source 2 is converted into parallel light.
  • a collimator lens 3 and a mask 8 are provided.
  • the point light source 2 is, for example, a light source that emits light from a white LED through a pinhole having a diameter of about 300 ⁇ m to 400 ⁇ m.
  • the light emitting portion (pinhole) of the point light source 2 is disposed at the focal position of the collimator lens 3.
  • the collimator lens 3 is collimated (parallel) in a direction (light projecting direction) parallel to both the front and back surfaces of the measurement unit while passing the light emitted from the point light source 2 and passing through the measurement unit. It is a lens to be lightened.
  • the mask 8 is a plate-like member in which an opening 8o is formed.
  • the mask 8 By restricting the passage of the light beam in the range outside the opening 8o, the mask 8 out of the light beam traveling from the collimator lens 3 toward the wafer 1 side.
  • the passage of light outside the imaging range of the camera 7a viewed from the light projecting direction R1 is blocked.
  • the mask 8 blocks the passage of light at a position that is relatively far from the range of the projected image of the wafer 1 in the process from the collimator lens 3 to the wafer 1. Therefore, it is possible to prevent the non-parallel light component from being contained as much as possible.
  • 1 and 2 show an example in which two masks 8 are provided, but an embodiment in which one or three or more masks 8 are provided, or an implementation in which the mask 8 is not provided. Examples are also possible.
  • An interval (distance) between the mask 8 (closest to the wafer 1) and the first lens 4 is set to about 200 [mm], for example, and the edge of the wafer 1 has a light beam (parallel) between them. (Light) in the optical path. Then, the parallel light beam Lp after passing through the mask 8 is projected from the direction R1 parallel to the front and back surfaces of the wafer 1 to the measurement portion (edge portion) including the end portion of the wafer 1.
  • the shape measuring apparatus W is configured as a camera 7a (corresponding to an imaging unit) that captures a projection image of a measurement unit (edge) including the end face of the wafer 1 from a direction R2 facing the light projection direction R1 with respect to the wafer 1.
  • the lens unit includes a first lens 4 and a second lens 6, a diaphragm 5 built in the lens unit, and an image sensor 7 (CCD or the like).
  • the first lens 4, the second lens 6, and the diaphragm 5 constitute a telecentric lens, and light passing through the lens is input to the image sensor 7. A projected image of (edge) is captured.
  • the shape measuring apparatus W projects the parallel light onto the wafer 1, so that the wafer 1 has a long depth length in the optical axis direction (projection direction R1) of the parallel light.
  • the image sensor 7 it is possible to obtain a projected image with a relatively small degree of outline blur.
  • the wafer 1 has a long depth in the light projecting direction R1, In the image sensor 7, a good captured image with few diffraction fringes generated in the vicinity of the contour of the projected image can be obtained.
  • the shape measuring device W further includes a central suction support mechanism 9, an image processing device 10, a control device 11, and a thickness measuring sensor 20.
  • the image processing apparatus 10 is an arithmetic unit that performs image processing based on an image captured by the image sensor 7 (an image including a projection image of the wafer 1), and executes, for example, a predetermined program stored in the storage unit in advance. DSP (Digital Signal Processor), personal computer or the like.
  • the image processing apparatus 10 calculates an index value of the end face shape of the wafer 1 by executing predetermined image processing on a captured image (projected image) by the image sensor 7.
  • the image processing device 10 executes input of a captured image (image data) by the image sensor 7 and image processing based on the captured image in accordance with a control command from the control device 11.
  • the central suction support mechanism 9 supports the disk-shaped wafer 1 by vacuum suction of the central portion of one surface (for example, the lower surface) thereof. Further, the central suction support mechanism 9 rotates and stops the wafer 1 in the circumferential direction around the central portion (center point Ow) of the wafer 1 as a rotation axis, so that the end portion at any position in the circumferential direction of the wafer 1 is located. It is also a device that adjusts whether the measuring unit is positioned in the optical path of the light beam.
  • the central suction support mechanism 9 includes a rotation encoder (not shown) as an angle detection sensor that detects a support angle (rotation angle) of the wafer 1, and positions the support position (support angle) of the wafer 1 based on the detection angle. Do.
  • the central suction support mechanism 9 positions the support position of the wafer 1 in accordance with a control command from the control device 11.
  • the control device 11 is a computer including a CPU and its peripheral devices, and the CPU executes the control program stored in advance in the storage unit, whereby the image processing device 10 and the central suction support mechanism 9 are controlled. It is a device that controls (outputs a control command).
  • the thickness measurement sensor 20 is a sensor that measures the thickness of a predetermined position (hereinafter referred to as a reference position Po) in the measurement unit of the wafer 1 in a non-contact manner, and is an example of a thickness measurement unit.
  • the reference position is a position at a predetermined distance from the center point Ow (rotation center) of the wafer 1 supported by the central suction support mechanism 9. Since the radius of the wafer 1 is known, the reference position Po can be said to be a position away from the end face of the wafer 1 (tip of the projection image) by the predetermined distance from the inside (center point Ow side). .
  • the measurement result of the thickness measurement sensor 2 is transmitted to the control device 11.
  • the thickness measuring sensor 20 includes a pair of non-contact type displacement sensors arranged to face the front surface side and the back surface side of the wafer 1 supported by the central suction support mechanism 9.
  • the pair of displacement sensors are positioned on the front and back surfaces of the wafer 1 in the direction perpendicular to the light projecting direction R1 (direction perpendicular to the front and back surfaces of the wafer 1) (distance between the sensor and the surface of the wafer 1).
  • the thickness of the wafer 1 is specified (measured) from the sum of the detection positions (detection distances) of both sensors.
  • a pair of reflection type laser displacement sensors, a pair of eddy current type displacement sensors, a pair of ultrasonic displacement sensors, and the like may be employed.
  • the thickness measurement sensor 20 is disposed at a position outside the imaging range of the camera 7a.
  • the shape measuring apparatus W rotates the wafer 1 by the central suction support mechanism 9 so that the reference position Po in the measurement unit is set to the thickness before the projection image of the measurement unit is captured (or after). Positioning at the measurement position of the measurement sensor 20, the thickness measurement by the thickness measurement sensor 20 is performed.
  • positioned so that the thickness of the measurement part located in the imaging range by the said camera 7a is measurable is also considered. It is also conceivable to employ a contact-type thickness measurement sensor having a contact portion with respect to the measurement target surface (the surface of the wafer 1) as the thickness measurement sensor 20. In that case, the shape measuring apparatus W is provided with a displacement mechanism for bringing the abutting portion into and out of contact with the surface to be measured. However, in order to prevent damage to the surface of the wafer 1, the thickness measuring sensor 20 is preferably a non-contact sensor.
  • S1, S2,... Shown below represent identification codes of processing procedures (steps). Further, the processing of the image processing apparatus 10 and the operation of the rotation support mechanism 9 described below are executed according to a control command of the control apparatus 11.
  • the central suction support mechanism 9 supports the wafer 1 at a support angle position of ⁇ 90 degrees with respect to the support position at which the first support angle ⁇ (1) is set (S1). Accordingly, the reference position Po in the first measurement unit is positioned at the measurement position of the thickness measurement sensor 20.
  • the control device 11 acquires information on the thickness (thickness Vpo (1) of the reference position Po in the first measurement unit) measured by the thickness measurement sensor 20, and stores it in the storage unit ( S2).
  • the central suction support mechanism 9 supports the wafer 1 at a support angle of ⁇ 90 degrees with respect to the support position at which the second support angle ⁇ (2) is set (S3).
  • the reference position Po in the second measurement unit is positioned at the measurement position of the thickness measurement sensor 20.
  • the control device 11 acquires information on the thickness (thickness Vpo (2) of the reference position Po in the second measurement unit) measured by the thickness measurement sensor 20, and stores it in the storage unit ( S4).
  • the point light source 2 is turned on and light projection onto the wafer 1 is started.
  • the rotation support mechanism 9 supports the wafer 1 at a support position where the i-th support angle ⁇ (i) is reached (S6).
  • the i-th measurement unit is positioned at the imaging position, and the reference position Po in the (i + 2) -th measurement unit is positioned at the measurement position of the thickness measurement sensor 20.
  • a projection image of the i-th measurement unit on the wafer 1 is captured by the image sensor 7 (S7). Further, the image processing apparatus 10 captures the captured image (image data) and stores the captured image (image data) in a predetermined storage unit (such as a memory provided in the image processing apparatus 10) (S7).
  • the projected image 1 ′ shown in FIGS. 6 and 7 is an example of the projected image obtained in step S7.
  • the image processing apparatus 10 executes predetermined image processing based on the captured image (image of the projected image of the end portion of the wafer 1) captured in step S3, so that the contour of the i-th measurement unit is obtained.
  • Information representing the shape is derived (calculated) (S8).
  • the image processing apparatus 10 stores the derived contour shape information (hereinafter referred to as first contour shape information) in a predetermined storage unit (such as a memory provided in the control device 11) (S8).
  • the image processing apparatus 10 has a positive maximum value and a negative value of the luminance change rate in the Y-axis direction (thickness direction) for each position in the X-axis direction (direction orthogonal to the thickness direction) of the image of the projection image g1 ′.
  • the position (coordinates) that is the minimum value is detected, and the set of the detected positions (coordinates) is used as the first contour shape information.
  • the contour shape g1 shown in FIGS. 8 and 9 is an example of the shape represented by the first contour shape information obtained in step S8.
  • the image processing apparatus 10 corrects the distribution (thickness distribution in the X-axis direction) of the thickness THx ⁇ (i) specified from the first contour shape information for the i-th measurement unit.
  • the contour shape information after correction (hereinafter referred to as second contour shape information) is stored in the storage unit (S9: an example of the contour shape correction means).
  • the image processing apparatus 10 determines the thickness Vpo (i) of the reference position Po in the i-th measurement unit measured by the thickness measurement sensor 20 and the light-projection direction R1 of the i-th measurement unit. Based on the dimension (hereinafter, the distribution of the depth dimension Dx (i)), the distribution of the thickness THxTH (i) specified from the first contour shape information is corrected.
  • a wavy contour shape g1 (hereinafter referred to as a first contour shape g1) is an example of a shape represented by the first contour shape information
  • a solid contour shape g2 (hereinafter referred to as a second contour shape).
  • Shape g2) is an example of the shape represented by the second contour shape information.
  • the deviation can be grasped as a difference in thickness of the measurement unit, and if the first contour shape information is corrected using the thickness error as a thickness correction amount ⁇ Tx, the first contour shape representing the true contour shape of the measurement unit is obtained. 2 contour shape information can be calculated.
  • the magnitude of the thickness error depends on the degree of image blur.
  • the degree of image blur is the dimension Dx in the light projecting direction R1 of the measurement unit (that is, the light flux along the surface of the wafer 1).
  • the degree of image blur increases as the dimension Dx increases. Therefore, the image processing apparatus 10 (an example of the contour shape correcting means) uses the actual thickness Vpo (i) of the reference position Po in the i-th measurement unit and the dimension Dx in the light projecting direction R1 as a reference.
  • a correction amount ⁇ Tx is calculated.
  • the image processing apparatus 10 calculates the thickness correction amount ⁇ Tx by executing the following equation (a1).
  • the subscript (i) indicating the identification number of the measurement unit is omitted.
  • ⁇ Tx Thickness correction at the position where the X-axis coordinate is x
  • Vpo Thickness measured by the thickness measurement sensor
  • THpo Thickness at the reference position Po (X coordinate is po) specified by the first contour shape information
  • Dx Dimension in the projection direction of the measurement unit at the position where the X-axis coordinate is x
  • Dpo Dimension in the projection direction of the measurement unit at the reference position Po (position where the X coordinate is po)
  • Predetermined correction coefficient ( ⁇ >) Constant that satisfies 0) *
  • the X axis is the coordinate axis in the direction perpendicular to the thickness direction (Y axis direction) of the measurement unit.
  • the thickness correction amount ⁇ Tpo at the reference position Po is obtained from the thickness Vpo (i) of the reference position Po measured by the thickness measurement sensor 20 and the first contour shape information. This is a difference from the thickness THpo (i) of the specified reference position Po.
  • the equation (a1) is based on the idea that the dimension Dx (hereinafter referred to as the depth dimension Dx) in the light projecting direction R1 and the thickness error (that is, the thickness correction amount ⁇ Tx) have a linear correlation. Is based.
  • the depth dimension Dx is a known value.
  • the radius of the wafer 1 that is circular when viewed from the direction perpendicular to the front and back surfaces is r
  • the X-axis coordinate is x from the tip position in the direction (X-axis direction) perpendicular to the thickness direction of the projection image 1 ′.
  • the depth dimension Dx is expressed by the following equation (b1).
  • the thickness correction amount ⁇ Tx calculated based on the equation (a1) is the reference specified from the first contour shape information when the thickness Vpo measured by the thickness measurement sensor 20 is used as a reference.
  • Each of the measurement parts when the difference (Vpo ⁇ THpo) which is the size (relative value) of the thickness THpo of the position Po and the dimension Dpo of the light projecting direction R1 at the reference position Po of the measurement part is used as a reference.
  • This is a correction amount having a positive correlation with each of (Dx ⁇ Dpo) / Dpo, which is the size (relative value) of the dimension Dx in the light projection direction R1 at the position.
  • the thickness correction amount ⁇ Tx calculated based on the equation (a1) is the correction amount (Vpo) for matching the corrected thickness with the thickness Vpo measured by the thickness measurement sensor 20 for the reference position Po. -THpo).
  • the thickness correction amount ⁇ Tx for other positions (positions other than the reference position Po) calculated based on the formula (a1) is the dimension Dpo in the light projection direction R1 at the reference position Po of the measurement unit.
  • the thickness correction amount at the reference position Po is corrected according to the dimension Dx (Dx ⁇ Dpo) / Dpo of the light projection direction R1 at the other position (position in the X-axis direction) with reference to It can be said that this is the correction amount.
  • the correction coefficient ⁇ (constant) in the equation (a1) is determined (set) in advance by experiment, simulation, or the like. Further, instead of the equation (a1), the following (a2) based on the idea that the dimension Dx in the light projection direction R1 and the thickness error (that is, the thickness correction amount ⁇ Tx) have a non-linear correlation. It is also conceivable to use an equation.
  • ⁇ Tx Thickness correction at the position where the X-axis coordinate is x
  • Vpo Thickness measured by the thickness measurement sensor
  • THpo Thickness at the reference position Po (X coordinate is po) specified by the first contour shape information
  • Dx The dimension in the light projecting direction of the measurement unit at the position where the X-axis coordinate is x
  • Dpo the dimension in the light projecting direction of the measurement unit at the reference position Po (the position where the X coordinate is po)
  • the X axis is the coordinate axis in the direction perpendicular to the thickness direction (Y axis direction) of the measurement unit.
  • the function F ( ⁇ ) in the equation (a2) for example, a function of the second order or higher is considered.
  • the function F ( ⁇ ) in the equation (a2) is determined by experiments, simulations, and the like.
  • the image processing apparatus 10 performs the correction by subtracting the thickness correction amount ⁇ Tx from the thickness THx (i) specified from the first contour shape information for each position in the X-axis direction.
  • the contour shape information is calculated.
  • the first contour shape information is corrected by shifting the Y-axis coordinates of the front and back surfaces at each position in the X-axis direction by ⁇ Tx / 2.
  • the second contour shape g2 is a shape that accurately represents the original cross-sectional shape (contour shape) of the measurement portion of the wafer 1.
  • the shape measuring apparatus W described above measures the thickness of one reference position Po by the thickness measuring sensor 20.
  • the shape measuring apparatus W includes sensors for measuring the thicknesses of a plurality of reference positions Poj (a plurality of locations along the radial direction) in the measurement unit of the wafer 1 is also conceivable.
  • the plurality of thickness measurement sensors 20 are arranged at known positions arranged on a straight line when viewed from the direction perpendicular to the front and back surfaces of the wafer 1.
  • the subscript j at the reference position Poj represents a number for identifying a plurality of positions.
  • the image processing apparatus 10 specifies the thickness correction amount ⁇ Tpoj at each of the plurality of reference positions Poj from the thickness Vpoj of the reference position Po measured by the thickness measurement sensor 20 and the first contour shape information.
  • the thickness correction amount ⁇ Tx is calculated so as to be a difference from the thickness THpoj of the reference position Poj.
  • the image processing apparatus 10 can identify a coefficient included in the calculation formula of the thickness correction amount ⁇ Tx by fitting processing based on the measured thickness values of the plurality of reference positions Poj.
  • the correction coefficient ⁇ in the equation (a1) can be identified by solving a simple simultaneous equation based on the measured thickness values of the two reference positions Poj. Thereby, shape measurement can be performed with high accuracy for various types of measurement objects.
  • the present invention can be used mainly for measuring the shape of an end face of a disk-shaped measuring object such as a semiconductor wafer, an aluminum substrate for a hard disk, or a glass substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 半導体ウェーハなどの円盤状の測定対象物の端面の形状をその投影像に基づいて測定する場合に、測定対象物の投影像に画像ボケが生じても正しい形状測定を行うことができる形状測定装置及び形状測定方法を提供する。 厚み計測センサ(20)により、測定部における基準位置(Po)の厚みを計測し、画像処理装置(10)により、測定部の投影像に対する画像処理によって測定部の第1の輪郭形状情報を導出し、さらに、厚み計測センサ(20)により計測された厚みと測定部の投光方向(R1)における寸法とに基づいて、前記第1の輪郭形状情報から特定される厚み分布を補正することにより、前記第1の輪郭形状情報を補正して補正後の第2の輪郭形状情報を出力する。

Description

形状測定装置、形状測定方法
 本発明は、円盤状の測定対象物(主として半導体ウェーハ、その他、ハードディスク用のアルミサブトレート、ガラスサブストレートなど)の面取り加工された端部の形状をその投影像に基づいて測定する形状測定装置及び形状測定方法に関するものである。
 半導体ウェーハ(以下、ウェーハという)の製造時や、ウェーハを用いたデバイス製造時において、ウェーハの端部(縁部)が、他の部品やウェーハ保持部材と接触することによって傷ついたり、欠けたりする場合がある。さらに、その傷や欠けが原因で、ウェーハが割れることもある。このウェーハの端部における傷や欠けの生じやすさは、ウェーハの端面(いわゆるエッジプロファイル部)の形状と関係があると考えられている。このため、ウェーハに代表される円盤状の測定対象物のエッジプロファイルを正しく測定することは重要である。なお、ここでいう端面の形状は、ウェーハの厚み方向(一次元方向)のプロファイル、即ち、厚み方向断面の形状であり、以下、エッジプロファイルという。
 エッジプロファイルの測定方法の代表例は、半導体製造装置/材料に関する業界団体(Semiconductor Equipment and Materials International:以下、SEMI)が定める標準規格であるSemi Standardにおいて規定された非破壊検査法(SEMI-MF-928-0305規格 Metho d B)である。この非破壊検査法は、円盤状のウェーハの面取り加工された端部に対し、そのウェーハの表裏各面にほぼ平行な方向から光を投光するとともに、その投光方向に対向する方向からカメラによってウェーハの端面の投影像を撮像し、その投影像に基づいてウェーハの端面の形状を測定する方法(以下、光投影測定法と称する)である。この光投影測定法により得られる投影像の輪郭は、ウェーハの端面の断面形状(厚み方向に切断した断面の形状)を表す。
 例えば、特許文献1には、前記光投影測定法において、点光源の出射光をコリメータレンズに通過させることによってコリメート(平行光化)し、その光束を測定対象物に投光することによって投影像における輪郭の画像ボケの発生を防止することが提案されている。
特開2006-145487号公報
 しかしながら、測定対象物に投光された光束は、測定対象物の表面(表裏各面)に沿って進行する過程において、測定対象物の表面に沿う光路長が長いほど散乱しやすい。そのため、測定対象物に対し、コリメータレンズを通じて平行光の光束を投光してもなお、その光束の散乱により、投影像において輪郭の画像ボケが生じ得る。しかも、ウェーハ等の円盤状の測定対象物は、投光方向の寸法(奥行き寸法)が半径方向の位置によって異なることから、その投影像に生じる画像ボケの程度が位置によって異なる。さらに、測定対象物に投光される光束の強度によっても、その投影像に生じる画像ボケの程度が異なる。
 図6及び図7は、投光方向に対向する方向からカメラにより撮像されたウェーハの投影像1’の第1の例及び第2の例を模式的に表した図である。ここで、図6は、投影像1’が実際のウェーハの断面よりも大きくなる方向に画像ボケが生じている状態(第1の例)を表し、図7は、投影像1’が実際のウェーハの断面よりも小さくなる方向に画像ボケが生じている状態(第2の例)を表す。図6や図7に示すような画像ボケの発生状態の違いは、ウェーハに投光される光の強度等によって生じる。なお、説明の便宜上、図6及び図7には、現実よりも画像ボケを強調した投影像1’を示している。
 そして、図8及び図9は、図6及び図7に示される投影像1’に対する画像処理によって算出されたウェーハ端部の輪郭形状g1(波線)と真の輪郭形状g0(実線)とを表した図である。ここで、図8に示す輪郭形状g1が図6に示す投影像g1’に対応し、図9に示す輪郭形状g1が図7に示す投影像g1’に対応する。図8及び図9に示す輪郭形状g1は、例えば、投影像g1’の画像において、所定方向(例えば、厚み方向(Y軸方向)やそれに直交する方向(X軸方向))における輝度変化率が正の最大値及び負の最小値となる位置(座標)を結ぶ線が形成する形状である。
 図8及び図9に示すように、投影像g1’に画像ボケが生じると、その投影像g1’の輪郭形状g1は、測定部の本来の断面形状を表さなくなる。このように、光投影測定法に基づく従来の形状測定においては、投影像の画像ボケによって正しい形状測定ができなくなる場合があるという問題点があった。
 従って、本発明は上記事情に鑑みてなされたものであり、その目的とするところは、半導体ウェーハなどの円盤状の測定対象物の端面の形状をその投影像に基づいて測定する場合に、測定対象物の投影像に画像ボケが生じても正しい形状測定を行うことができる形状測定装置及び形状測定方法を提供することにある。
 上記目的を達成するために本発明に係る形状測定装置は、例えば半導体ウェーハ等の円盤状の測定対象物の面取り加工された端部を含む測定部に対し前記測定対象物の表裏各面に平行な方向から光が投光する投光手段と、その投光方向に対向する方向から前記測定部を撮像する撮像手段と、を備え、その撮像手段により得られた前記測定部の投影画像に対して画像処理を行うことにより前記測定部の輪郭形状を測定する装置であり、次の(1-1)~(1-3)に示す各構成要素を備えるものである。
(1-1)前記測定対象物の前記測定部における基準位置の厚みを計測(実測)する厚み計測手段。
(1-2)前記測定部の投影像に対する画像処理によって前記測定部の第1の輪郭形状情報を導出する画像処理手段。
(1-3)前記厚み計測手段により計測された厚みと前記測定部の前記投光方向における寸法とに基づいて、前記第1の輪郭形状情報から特定される厚み分布を補正することにより、前記第1の輪郭形状情報を補正して補正後の第2の輪郭形状情報を出力する輪郭形状補正手段。
 なお、前記第2の輪郭形状情報を出力する処理としては、例えば、前記第2の輪郭形状情報を記憶手段に記憶させる処理や表示部に表示させる処理、或いは外部装置に伝送する処理等が考えられる。
 より具体的には、前記第1の輪郭形状情報から特定される厚み分布に対する前記輪郭形状補正手段による厚み補正量が、次の(1-4)に示す要件を満たす補正量であることが考えられる。
(1-4)前記基準位置については補正後の厚みを前記厚み計測手段により計測された厚みと一致させる補正量であり、その他の位置については、前記測定部の前記基準位置における前記投光方向の寸法を基準としたときの前記その他の位置における前記投光方向の寸法の大きさに応じて前記基準位置における厚み補正量が修正された補正量である。
 或いは、前記第1の輪郭形状情報から特定される厚み分布に対する前記輪郭形状補正手段による厚み補正量が、次の(1-5)に示す要件を満たす補正量であるといってもよい。
(1-5)前記厚み計測手段により計測された厚みを基準としたときの前記第1の輪郭形状情報から特定される前記基準位置の厚みの相対値と、前記測定部の前記基準位置における前記投光方向の寸法を基準としたときの前記測定部の各位置における前記投光方向の寸法の相対値と、のそれぞれに対して正の相関を有する補正量である。
 なお、前記相対値は、例えば、差や比などである。
 図6及び図7に示したように、前記測定部の投影像g1’に画像ボケが生じている場合、その投影像g1’に対する画像処理によって算出される輪郭形状g1(前記第1の輪郭形状情報が表す形状)は、図8及び図9に示したように、真の輪郭形状g0に対するズレ(誤差)を有している。そのズレは、前記測定部の厚み方向の寸法の差(以下、厚み誤差という)として捉えることができ、その厚み誤差の分だけ前記第1の輪郭形状情報を補正すれば、前記測定部の真の輪郭形状を表す情報(前記第2の輪郭形状情報)を求めることができる。
 また、前記厚み誤差の大きさは、画像ボケの程度に応じたものであり、その画像ボケの程度は、測定対象物の投光方向における寸法(即ち、測定対象物の表面に沿う光束の光路長)と高い相関がある。
 そこで、本発明に係る形状測定装置においては、前記厚み計測手段が、既知の基準位置における前記測定部の実際の厚み(基準となる厚み)を計測する。さらに、前記輪郭形状補正手段が、前記基準位置における前記測定部の実際の厚み及び前記投光方向の寸法を基準として画像処理により得られる輪郭形状の厚みを補正することにより、真の輪郭形状の情報(前記第2の輪郭形状情報)を算出(推定)する。
 本発明に係る形状測定装置によれば、測定対象物の投影像に画像ボケが生じても正しい形状測定を行うことができる。
 また、本発明は、以上に示した本発明に係る形状測定装置が実行する処理を行う形状測定方法として捉えることもできる。
 即ち、本発明に係る形状測定方法は、次の(2-1)~(2-3)に示す各手順を実行する方法である。
(2-1)厚み計測手段により前記測定対象物の前記測定部における基準位置の厚みを計測する手順。
(2-2)画像処理手段により前記測定部の投影像に対する画像処理を行うことによって前記測定部の第1の輪郭形状情報を導出する手順。
(2-3)前記厚み計測手段により計測された厚みと前記測定部の前記投光方向における寸法とに基づいて、前記第1の輪郭形状情報から特定される厚み分布を補正することにより、前記第1の輪郭形状情報を補正して補正後の第2の輪郭形状情報を出力する処理をプロセッサにより実行する手順。
 本発明に係る形状測定方法によっても、本発明に係る形状測定装置と同様の作用効果が得られる。
 本発明によれば、半導体ウェーハなどの円盤状の測定対象物の端面の形状をその投影像に基づいて測定する場合に、測定対象物の投影像に画像ボケが生じても正しい形状測定を行うことができる。
本発明の実施形態に係る形状測定装置Wの概略平面図。 形状測定装置Wの概略側面図。 形状測定装置Wにより実行される形状測定処理の手順を表すフローチャート。 形状測定装置Wが導出する第1の輪郭形状(補正前)及び第2の輪郭形状(補正後)の第1の例を表す図。 形状測定装置Wが導出する第1の輪郭形状(補正前)及び第2の輪郭形状(補正後)の第2の例を表す図。 投光方向に対向する方向からカメラにより撮像されたウェーハの投影像の第1の例を模式的に表した図。 投光方向に対向する方向からカメラにより撮像されたウェーハの投影像の第2の例を模式的に表した図。 ウェーハの投影像に対する画像処理によって算出されたウェーハ端部の輪郭形状の第1の例と真の輪郭形状とを表した図。 ウェーハの投影像に対する画像処理によって算出されたウェーハ端部の輪郭形状の第2の例と真の輪郭形状とを表した図。
符号の説明
W :形状測定装置
1 :ウェーハ
2 :点光源
3 :コリメータレンズ
4 :第1のレンズ
5 :絞り
6 :第2のレンズ
7 :イメージセンサ
7a:カメラ
8 :マスク
9 :中央吸着支持機構
10:画像処理装置
11:制御装置
20:厚み計測センサ
S1、S2、…:処理手順(ステップ)
 以下添付図面を参照しながら、本発明の実施の形態について説明し、本発明の理解に供する。尚、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 ここに、図1は本発明の実施形態に係る形状測定装置Wの概略平面図、図2は形状測定装置Wの概略側面図、図3は形状測定装置Wにより実行される形状測定処理の手順を表すフローチャート、図4は形状測定装置Wが導出する第1の輪郭形状(補正前)及び第2の輪郭形状(補正後)の第1の例を表す図、図5は形状測定装置Wが導出する第1の輪郭形状(補正前)及び第2の輪郭形状(補正後)の第2の例を表す図、図6は投光方向に対向する方向からカメラにより撮像されたウェーハの投影像の第1の例を模式的に表した図、図7は投光方向に対向する方向からカメラにより撮像されたウェーハの投影像の第2の例を模式的に表した図、図8はウェーハの投影像に対する画像処理によって算出されたウェーハ端部の輪郭形状の第1の例と真の輪郭形状とを表した図、図9はウェーハの投影像に対する画像処理によって算出されたウェーハ端部の輪郭形状の第2の例と真の輪郭形状とを表した図である。
 本発明に係る形状測定装置Wは、円盤状の測定対象物であるウェーハ1(半導体ウェーハ)の面取り加工された端部に対し、そのウェーハ1の表裏各面に平行な方向から投光部によって光を投光するとともに、その投光方向に対向する方向からカメラ7aによってウェーハ1の端部(面取り加工された部分)を含む所定の範囲(以下、測定部という)の投影像を撮像し、その投影像に基づいてウェーハ1の端部の形状や厚みを測定する装置である。
 ウェーハ1は、例えば、半径150[mm]程度、厚み0.8[mm]程度のシリコン等の半導体からなり、その外周端(周面)部分が面取り加工されている。
 以下、図1に示す平面図及び図2に示す側面図を参照しつつ、形状測定装置Wの構成について説明する。なお、図2において、図1に示す構成要素のうちの一部が省略されている。
 図1及び図2に示すように、形状測定装置Wは、投光用の光学系(投光手段の一例)である投光部として点光源2と、その点光源2の光を平行光とするコリメータレンズ3と、マスク8とを備えている。
 前記点光源2は、例えば白色LEDの光を300μm~400μm程度の直径のピンホールを通じて出射する光源等である。この点光源2の光の出射部(ピンホール)は、コリメータレンズ3の焦点位置に配置されている。
 前記コリメータレンズ3は、前記点光源2の出射光を通過させつつ、ウェーハ1の前記測定部に向かう方向であって、その測定部おける表裏両面に平行な方向(投光方向)においてコリメート(平行光化)するレンズである。
 前記マスク8は、開口部8oが形成された板状の部材であり、その開口部8oの外側の範囲の光束の通過を制限することにより、前記コリメータレンズ3からウェーハ1側へ向かう光束のうち、前記投光方向R1から見た前記カメラ7aの撮像範囲の外側の範囲の光の通過を遮断する。このマスク8により、前記コリメータレンズ3からウェーハ1に至る過程において、ウェーハ1の投影像の範囲から比較的大きく外れた位置での光の通過が遮断されるので、ウェーハ1に投光される光束に非平行光成分が極力含まれないようにできる。なお、図1及び図2には、2つのマスク8が設けられた例を示しているが、前記マスク8が1つ或いは3つ以上設けられた実施例や、前記マスク8が設けられない実施例も考えられる。
 前記マスク8(ウェーハ1に最も近いもの)と前記第1のレンズ4との間隔(距離)は、例えば200[mm]程度に設定され、ウェーハ1の縁部は、それらの間の光束(平行光)の光路中に配置されている。
 そして、前記マスク8を通過後の平行光の光束Lpは、ウェーハ1の表裏各面に平行な方向R1からウェーハ1の端部を含む測定部(縁部)に対して投光される。
 さらに、形状測定装置Wは、ウェーハ1に対する投光方向R1に対向する方向R2からウェーハ1の端面を含む測定部(縁部)の投影像を撮像するカメラ7a(撮像手段に相当)として、第1のレンズ4及び第2のレンズ6を備えたレンズ部と、そのレンズ部に内蔵された絞り5と、イメージセンサ7(CCD等)とを備えている。
 前記第1のレンズ4、前記第2のレンズ6及び前記絞り5は、テレセントリックレンズを構成し、それを通過した光がイメージセンサ7に入力されることにより、イメージセンサ7によってウェーハ1の測定部(端部)の投影像が撮像される。
 このように、形状測定装置Wは、平行光をウェーハ1に投光することにより、ウェーハ1が、その平行光の光軸方向(投光方向R1)の奥行き長さが長いものであっても、イメージセンサ7において、輪郭のボケの程度が比較的小さい投影像を得ることができる。また、干渉性の強い単波長光ではなく、多波長成分を有する白色LEDを用いた点光源2を採用することにより、ウェーハ1が、投光方向R1の奥行き長さが長いものであっても、イメージセンサ7において投影像の輪郭の近傍に発生する回折縞が少ない良好な撮像画像を得ることができる。
 形状測定装置Wは、さらに、中央吸着支持機構9と、画像処理装置10と、制御装置11と、厚み計測センサ20とを備えている。
 前記画像処理装置10は、イメージセンサ7による撮像画像(ウェーハ1の投影像を含む画像)に基づく画像処理を実行する演算装置であり、例えば、予めその記憶部に記憶された所定のプログラムを実行するDSP(Digital Signal Processor)やパーソナルコンピュータ等である。この画像処理装置10は、イメージセンサ7による撮像画像(投影像)について予め定められた画像処理を実行することにより、ウェーハ1の端面形状の指標値を算出する。なお、前記画像処理装置10は、制御装置11からの制御指令に従って、イメージセンサ7による撮像画像(画像データ)の入力、及びその撮像画像に基づく画像処理を実行する。
 また、前記中央吸着支持機構9は、円盤状のウェーハ1をその一方の面(例えば、下面)の中央部を真空吸着することにより支持する。さらに、前記中央吸着支持機構9は、ウェーハ1をその中央部(中心点Ow)を回転軸としてその周方向に回転駆動及び停止させることにより、ウェーハ1の周方向におけるいずれの位置の端部を前記測定部として光束の光路中に位置させるかを調節する装置でもある。前記中央吸着支持機構9は、ウェーハ1の支持角度(回転角度)を検出する角度検出センサとして不図示の回転エンコーダを備え、その検出角度に基づいてウェーハ1の支持位置(支持角度)の位置決めを行う。なお、前記中央吸着支持機構9は、制御装置11からの制御指令に従って、ウェーハ1の支持位置の位置決めを行う。
 制御装置11は、CPU及びその周辺装置を備えた計算機であり、そのCPUが、予めその記憶部に記憶された制御プログラムを実行することにより、前記画像処理装置10及び前記中央吸着支持機構9を制御する(制御指令を出力する)装置である。
 前記厚み計測センサ20は、ウェーハ1の前記測定部における予め定められた位置(以下、基準位置Poという)の厚みを非接触で計測するセンサであり、厚み計測手段の一例である。前記基準位置は、前記中央吸着支持機構9により支持されるウェーハ1の中心点Ow(回転中心)から予め定められた距離の位置である。なお、ウェーハ1の半径は既知であるので、前記基準位置Poは、ウェーハ1の端面(投影像の先端)から内側(中心点Ow側)へ予め定められた距離だけ離れた位置であるともいえる。この厚み計測センサ2の計測結果は、前記制御装置11に伝送される。
 前記厚み計測センサ20は、前記中央吸着支持機構9により支持されたウェーハ1のおもて面側及びうら面側に対向配置された一対の非接触型変位センサを備えている。その一対の変位センサは、前記投光方向R1に直交する方向(ウェーハ1の表裏各面に垂直な方向)におけるウェーハ1の表裏各面の位置(センサとウェーハ1の面との間の距離)を検出するセンサであり、両センサの検出位置(検出距離)の和からウェーハ1の厚みが特定(計測)される。例えば、前記厚み計測センサ20として、一対の反射型のレーザ変位センサや、一対の渦電流型変位センサ、一対の超音波式の変位センサ等を採用することが考えられる。
 本実施形態においては、前記厚み計測センサ20は、前記カメラ7aによる撮像範囲から外れた位置に配置されている。ウェーハ1の中心点Ow(回転中心)に対し、前記厚み計測センサ20の計測位置と投影像の撮像時における測定部の位置とのなす角がφ°であり、図1は、φ=90°であるときの例である。
 そして、形状測定装置Wは、前記中央吸着支持機構9によってウェーハ1を回転させることにより、ある測定部の投影像を撮像する前(又は後)に、その測定部における前記基準位置Poを前記厚み計測センサ20の計測位置に位置決めし、前記厚み計測センサ20による厚み計測を行う。
 なお、前記厚み計測センサ20が、前記カメラ7aによる撮像範囲に位置する測定部の厚みを計測可能に配置された構成も考えられる。
 また、前記厚み計測センサ20として、測定対象面(ウェーハ1の表面)に対する当接部とを備えた接触式の厚み計測センサを採用することも考えられる。その場合、形状測定装置Wには、前記当接部を測定対象面に対して離接させる変位機構が設けられる。しかしながら、ウェーハ1表面の損傷防止のため、前記厚み計測センサ20は、非接触式のセンサであることが望ましい。
 次に、図3に示すフローチャートを参照しつつ、形状測定装置Wによる形状測定処理(形状測定方法)の手順について説明する。
 以下に示す形状測定処理では、ウェーハ1の端部(縁部)であって、前記中心点Owを中心とした中心角が45度ずつずれた8箇所の位置のうちのノッチ等が測定位置となる場合を除く7箇所の測定部(1番目~7番目の測定部)について形状測定が行われ、図1に示す角度φ=90度である場合の例について説明する。また、i番目の測定部(i=1~7)が投影像の撮像位置に位置するときの中央吸着支持機構9の回転軸の角度を、i番目の支持角ψ(i)と称する。なお、以下に示すS1、S2、…は、処理手順(ステップ)の識別符号を表す。また、以下に示す前記画像処理装置10の処理や前記回転支持機構9の動作は、前記制御装置11の制御指令に従って実行される。
 まず、中央吸着支持機構9が、ウェーハ1を、1番目支持角度ψ(1)となる支持位置に対して-90度の支持角度の位置で支持する(S1)。これにより、1番目の測定部における前記基準位置Poが、前記厚み計測センサ20の計測位置に位置決めされる。
 続いて、前記制御装置11が、前記厚み計測センサ20により計測された厚み(1番目の測定部における基準位置Poの厚みVpo(1))の情報を取得し、それを記憶部に記憶させる(S2)。
 さらに、中央吸着支持機構9が、ウェーハ1を、2番目支持角度ψ(2)となる支持位置に対して-90度の支持角度の位置で支持する(S3)。これにより、2番目の測定部における前記基準位置Poが、前記厚み計測センサ20の計測位置に位置決めされる。
 続いて、前記制御装置11は、前記厚み計測センサ20により計測された厚み(2番目の測定部における基準位置Poの厚みVpo(2))の情報を取得し、それを記憶部に記憶させる(S4)。
 次に、前記制御装置11が、所定のカウンタ変数iの初期化(i=1)等の初期設定処理を実行する(S5)。このとき、前記点光源2が点灯され、ウェーハ1に対する投光が開始される。
 さらに、回転支持機構9が、ウェーハ1を、i番目支持角度ψ(i)となる支持位置で支持する(S6)。これにより、i番目の測定部が撮像位置に位置決めされるとともに、(i+2)番目の測定部における前記基準位置Poが、前記厚み計測センサ20の計測位置に位置決めされる。
 続いて、ウェーハ1がi番目の基準支持角度ψ(i)の位置で支持された状態において、ウェーハ1におけるi番目の測定部の投影像が、イメージセンサ7により撮像される(S7)。さらに、前記画像処理装置10が、その撮像画像(画像データ)を取り込んで所定の記憶部(前記画像処理装置10が備えるメモリ等)に記憶させる(S7)。図6及び図7に示した投影像1’が、このステップS7において得られる投影像の一例である。
 続いて、前記画像処理装置10が、ステップS3で取り込んだ撮像画像(ウェーハ1端部の投影像の画像)に基づいて予め定められた画像処理を実行することにより、i番目の測定部の輪郭形状を表す情報を導出(算出)する(S8)。さらに、前記画像処理装置10は、導出した輪郭形状情報(以下、第1の輪郭形状情報という)を所定の記憶部(前記制御装置11が備えるメモリ等)に記憶させる(S8)。例えば、前記画像処理装置10は、投影像g1’の画像のX軸方向(厚み方向に直交する方向)の各位置について、Y軸方向(厚み方向)の輝度変化率が正の最大値及び負の最小値となる位置(座標)を検出し、その検出位置(座標)の集合を前記第1の輪郭形状情報とする。図8及び図9に示す輪郭形状g1が、このステップS8において得られる第1の輪郭形状情報が表す形状の一例である。
 次に、前記画像処理装置10が、i番目の測定部について、前記第1の輪郭形状情報から特定される厚みTHx (i)の分布(X軸方向の分布)を補正することにより、前記第1の輪郭形状情報を補正して補正後の輪郭形状情報(以下、第2の輪郭形状情報という)をその記憶部に記憶させる(S9:前記輪郭形状補正手段の一例)。その際、前記画像処理装置10は、前記厚み計測センサ20により計測されたi番目の測定部における前記基準位置Poの厚みVpo(i)と、そのi番目の測定部の前記投光方向R1における寸法(以下、奥行き寸法Dx(i)の分布とに基づいて、前記第1の輪郭形状情報から特定される厚みTHx (i)の分布を補正する。
 以下、図4及び図5を参照しつつ、前記第1の輪郭形状情報の補正処理の例について説明する。図4及び図5において、波線の輪郭形状g1(以下、第1輪郭形状g1という)が、前記第1の輪郭形状情報が表す形状の一例であり、実線の輪郭形状g2(以下、第2輪郭形状g2という)が、前記第2の輪郭形状情報が表す形状の一例である。
 前記測定部の投影像g1’に画像ボケが生じている場合(図6及び図7参照)、図8及び図9に示したように、その投影像g1’に対する画像処理によって算出される前記第1輪郭形状g1は、真の輪郭形状g0に対するズレ(誤差)を有している。そのズレは、前記測定部の厚みの差として捉えることができ、その厚み誤差を厚み補正量ΔTxとして前記第1の輪郭形状情報を補正すれば、前記測定部の真の輪郭形状を表す前記第2の輪郭形状情報を算出することができる。
 また、前記厚み誤差の大きさは、画像ボケの程度に応じたものであり、その画像ボケの程度は、前記測定部の前記投光方向R1における寸法Dx(即ち、ウェーハ1の表面に沿う光束の光路長)と正の相関があり、寸法Dxが大きいほど画像ボケの程度が大きくなる。
 そこで、前記画像処理装置10(前記輪郭形状補正手段の一例)が、i番目の測定部における前記基準位置Poの実際の厚みVpo(i)及び前記投光方向R1の寸法Dxを基準として前記厚み補正量ΔTxを算出する。
 例えば、前記画像処理装置10が、次の(a1)式の演算を実行することにより、厚み補正量ΔTxを算出することが考えられる。なお、(a1)式において、前記測定部の識別番号を表す添字(i)は省略されている。
Figure JPOXMLDOC01-appb-M000001
    ΔTx:X軸座標がxである位置における厚み補正
    Vpo:厚み計測センサにより計測された厚み
    THpo:第1の輪郭形状情報により特定される
        基準位置Po(X座標がpoの位置)における厚み
    Dx:X軸座標がxである位置における測定部の投光方向の寸法
    Dpo:基準位置Po(X座標がpoの位置)における
       測定部の投光方向の寸法
    α:予め定められた補正係数(α>0を満たす定数)
    ※X軸は測定部の厚み方向(Y軸方向)に直交する方向の座標軸
 この(a1)式によれば、前記基準位置Poにおける前記厚み補正量ΔTpoは、前記厚み計測センサ20により計測された前記基準位置Poの厚みVpo(i)と、前記第1の輪郭形状情報から特定される前記基準位置Poの厚みTHpo (i)との差分となる。
 また、前記(a1)式は、前記投光方向R1の寸法Dx(以下、奥行き寸法Dxという)と前記厚み誤差(即ち、前記厚み補正量ΔTx)とが線形の相関関係を有するとの考えに基づくものである。
 前記(a1)式において、前記奥行き寸法Dxは、既知の値である。即ち、表裏各面に垂直な方向から見て円形であるのウェーハ1の半径をr、前記投影像1’の厚み方向に直交する方向(X軸方向)における先端位置からX軸座標がxである位置までの距離をXsとすると、前記奥行き寸法Dxは、次の(b1)式によって表される。
Figure JPOXMLDOC01-appb-M000002
 また、この(a1)式に基づいて算出される前記厚み補正量ΔTxは、前記厚み計測センサ20により計測された厚みVpoを基準としたときの前記第1の輪郭形状情報から特定される前記基準位置Poの厚みTHpoの大きさ(相対値)である差分(Vpo-THpo)と、前記測定部の前記基準位置Poにおける前記投光方向R1の寸法Dpoを基準としたときの前記測定部の各位置における前記投光方向R1の寸法Dxの大きさ(相対値)である(Dx-Dpo)/Dpoとのそれぞれに対して正の相関を有する補正量である。
 ここで、(a1)式に基づいて算出される前記厚み補正量ΔTxは、前記基準位置Poについては、補正後の厚みを前記厚み計測センサ20により計測された厚みVpoと一致させる補正量(Vpo-THpo)である。
 そして、(a1)式に基づいて算出されるその他の位置(前記基準位置Po以外の位置)についての前記厚み補正量ΔTxは、前記測定部の前記基準位置Poにおける前記投光方向R1の寸法Dpoを基準としたときの前記その他の位置(X軸方向の位置)における前記投光方向R1の寸法Dxの大きさ(Dx-Dpo)/Dpoに応じて前記基準位置Poにおける厚み補正量が修正された補正量であるといえる。
 なお、(a1)式における補正係数α(定数)は、実験やシミュレーション等によって予め決定(設定)される。
 また、前記(a1)式に代えて、前記投光方向R1の寸法Dxと前記厚み誤差(即ち、前記厚み補正量ΔTx)とが非線形の相関関係を有するとの考えに基づく次の(a2)式を用いることも考えられる。
Figure JPOXMLDOC01-appb-M000003
    ΔTx:X軸座標がxである位置における厚み補正
    Vpo:厚み計測センサにより計測された厚み
    THpo:第1の輪郭形状情報により特定される
        基準位置Po(X座標がpoの位置)における厚み
    Dx:X軸座標がxである位置における測定部の投光方向の寸法
    Dpo:基準位置Po(X座標がpoの位置)における
       測定部の投光方向の寸法
    F(β):βに関する予め定められた非線形関数
       (但し、βとF(β)とは正の相関を有し、F(0)=0である)
    ※X軸は測定部の厚み方向(Y軸方向)に直交する方向の座標軸
 この(a2)式における関数F(β)としては、例えば、2次以上の次数の関数等が考えられる。なお、(a2)式における関数F(β)は、実験やシミュレーション等によって定められる。
 そして、前記画像処理装置10は、X軸方向の各位置について、前記第1の輪郭形状情報から特定される厚みTHx (i)から前記厚み補正量ΔTxを差し引く補正を行うことにより、前記第2の輪郭形状情報を算出する。即ち、前記第1の輪郭形状情報について、X軸方向の各位置における表裏各面のY軸座標を、それぞれΔTx/2だけシフトさせる補正を行う。これにより、 ΔTx>0である場合は厚みが大きくなる方向に補正され(図4参照)、ΔTx<0である場合は厚みが小さくなる方向に補正される。
 図4及び図5に示すように、前記第1輪郭形状g1について前記(a1)式(係数α=1)に基づく補正を行えば第2輪郭形状g2が得られる。この第2輪郭形状g2は、ウェーハ1の前記測定部の本来の断面形状(輪郭形状)を精度良く表す形状となる。
 また、ステップS7~S9の処理が実行される際に、前記制御装置11が、前記厚み計測センサ20により計測された厚み、即ち(i+2)番目の測定部における基準位置Poの厚みVpo(i+2))の情報を取得し、それを記憶部に記憶させる(S10)。
 次に、前記制御装置11は、前記カウンタ変数iをカウントアップ(i=i+1)し(S11)、その数値が設定値M(ここでは、M=7)を超えているか否かを判別することによって全ての前記測定部についての測定(S6~S9)が完了したか否かを判別する(S12)。
 そして、形状測定装置Wは、全ての前記測定部についてステップS6~S11の処理を実行した後、形状測定処理を終了させる。
 以上に示したように、形状測定装置Wによれば、ウェーハ1の投影像1’に画像ボケが生じても正しい形状測定を行うことができる。
 以上に示した形状測定装置Wは、1箇所の前記基準位置Poの厚みを前記厚み計測センサ20により計測するものであった。
 一方、前記形状測定装置Wが、ウェーハ1の測定部における複数の基準位置Poj(半径方向に沿う複数の箇所)の厚みを計測するセンサを備えた例も考えられる。その場合、例えば、複数の前記厚み計測センサ20が、ウェーハ1の表裏各面に垂直な方向から見て直線上に並ぶ既知の位置に配列される。なお、前記基準位置Pojにおける添字jは複数の位置を識別する番号を表す。
 そして、前記画像処理装置10が、複数の前記基準位置Pojそれぞれにおける厚み補正量ΔTpojが、前記厚み計測センサ20により計測された前記基準位置Poの厚みVpojと、前記第1の輪郭形状情報から特定される前記基準位置Pojの厚みTHpojとの差分となるように、前記厚み補正量ΔTxを算出する。
 ここで、前記画像処理装置10は、複数の前記基準位置Pojの厚みの計測値に基づいて、フィッティング処理によって前記厚み補正量ΔTxの算出式に含まれる係数を同定することができ好適である。例えば、2箇所の前記基準位置Pojの厚みの計測値に基づく簡易な連立方程式を解くことにより、前記(a1)式における補正係数αを同定することができる。これにより、様々なタイプの測定対象物について高い精度で形状測定を行うことができる。
 本発明は、主として半導体ウェーハ、その他、ハードディスク用のアルミサブストレートやガラスサブストレート等の円盤状の測定対象物の端面の形状測定への利用が可能である。

Claims (6)

  1.  円盤状の測定対象物における面取り加工された端部を含む測定部に対し前記測定対象物の表裏各面に平行な方向から光が投光する投光手段と、
    その投光方向に対向する方向から前記測定部を撮像する撮像手段と、
    前記測定対象物の前記測定部における基準位置の厚みを計測する厚み計測手段と、
     前記測定部の投影像に対する画像処理によって前記測定部の第1の輪郭形状情報を導出する画像処理手段と、
     前記厚み計測手段により計測された厚みと前記測定部の前記投光方向における寸法とに基づいて、前記第1の輪郭形状情報から特定される厚み分布を補正することにより、前記第1の輪郭形状情報を補正して補正後の第2の輪郭形状情報を出力する輪郭形状補正手段と、
     を具備してなることを特徴とする形状測定装置。
  2.  前記第1の輪郭形状情報から特定される厚み分布に対する前記輪郭形状補正手段による厚み補正量が、
     前記基準位置については補正後の厚みを前記厚み計測手段により計測された厚みと一致させる補正量であり、その他の位置については、前記測定部の前記基準位置における前記投光方向の寸法を基準としたときの前記その他の位置における前記投光方向の寸法の大きさに応じて前記基準位置における厚み補正量が修正された補正量である請求項1に記載の形状測定装置。
  3.  前記第1の輪郭形状情報から特定される厚み分布に対する前記輪郭形状補正手段による厚み補正量が、
     前記厚み計測手段により計測された厚みを基準としたときの前記第1の輪郭形状情報から特定される前記基準位置の厚みの相対値と、前記測定部の前記基準位置における前記投光方向の寸法を基準としたときの前記測定部の各位置における前記投光方向の寸法の相対値と、のそれぞれに対して正の相関を有する補正量である請求項1に記載の形状測定装置。
  4.  円盤状の測定対象物における面取り加工された端部を含む測定部に対し前記測定対象物の表裏各面に平行な方向から光を投光し、
    その投光方向に対向する方向から前記測定部を撮像し、 
    前記測定対象物の前記測定部における基準位置の厚みを計測し、
     前記測定部の投影像に対する画像処理を行うことによって前記測定部の第1の輪郭形状情報を導出し、
     計測された厚みと前記測定部の前記投光方向における寸法とに基づいて、前記第1の輪郭形状情報から特定される厚み分布を補正することにより、前記第1の輪郭形状情報を補正して補正後の第2の輪郭形状情報を出力する処理を実行する
     ことを特徴とする形状測定方法。
  5.  前記第1の輪郭形状情報から特定される厚み分布に対する前記厚み補正量が、
     前記基準位置については補正後の厚みを前記計測された厚みと一致させる補正量であり、その他の位置については、前記測定部の前記基準位置における前記投光方向の寸法を基準としたときの前記その他の位置における前記投光方向の寸法の大きさに応じて前記基準位置における厚み補正量が修正された補正量である請求項4に記載の形状測定方法。
  6.  前記第1の輪郭形状情報から特定される厚み分布に対する前記厚み補正量が、
     前記計測された厚みを基準としたときの前記第1の輪郭形状情報から特定される前記基準位置の厚みの相対値と、前記測定部の前記基準位置における前記投光方向の寸法を基準としたときの前記測定部の各位置における前記投光方向の寸法の相対値と、のそれぞれに対して正の相関を有する補正量である請求項4に記載の形状測定方法。
PCT/JP2008/073653 2007-12-26 2008-12-25 形状測定装置、形状測定方法 WO2009081990A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-334324 2007-12-26
JP2007334324A JP4316643B2 (ja) 2007-12-26 2007-12-26 形状測定装置,形状測定方法

Publications (1)

Publication Number Publication Date
WO2009081990A1 true WO2009081990A1 (ja) 2009-07-02

Family

ID=40801288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073653 WO2009081990A1 (ja) 2007-12-26 2008-12-25 形状測定装置、形状測定方法

Country Status (3)

Country Link
JP (1) JP4316643B2 (ja)
TW (1) TWI390650B (ja)
WO (1) WO2009081990A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156910A (zh) * 2020-03-09 2020-05-15 西安电子科技大学 一种铝基片厚度高精度在线快速测量装置及测量方法
CN113099218A (zh) * 2021-04-08 2021-07-09 中国科学院空天信息创新研究院 视频影像测量仪性能的测试方法
US11726411B2 (en) 2019-07-12 2023-08-15 Asml Nelherlands B.V. Substrate shape measuring device, substrate handling device, substrate shape measuring unit and method to handle substrates

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629902B2 (en) 2010-10-12 2014-01-14 Kla-Tencor Corporation Coordinate fusion and thickness calibration for semiconductor wafer edge inspection
JP6420225B2 (ja) * 2015-11-11 2018-11-07 株式会社コベルコ科研 形状測定方法及び形状測定装置
JP6841202B2 (ja) * 2017-10-11 2021-03-10 株式会社Sumco 半導体ウェーハの評価方法および半導体ウェーハの製造方法
WO2022054605A1 (ja) * 2020-09-10 2022-03-17 東京エレクトロン株式会社 厚み測定装置及び厚み測定方法
JP6908206B1 (ja) * 2021-01-19 2021-07-21 オムロン株式会社 形状測定装置、形状測定システム、形状測定方法および形状測定プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198345A (ja) * 1993-12-28 1995-08-01 Olympus Optical Co Ltd 円径測定装置
JPH07218228A (ja) * 1994-01-27 1995-08-18 Tokyo Seimitsu Co Ltd ウェーハ直径・断面形状測定装置 及びそれを組み込んだウェーハ面取り機
JP2000084811A (ja) * 1998-09-16 2000-03-28 Tokyo Seimitsu Co Ltd ウェーハ面取り装置
JP2004177335A (ja) * 2002-11-28 2004-06-24 Yamatake Corp 位置検出方法および装置
JP2006145487A (ja) * 2004-11-24 2006-06-08 Kobe Steel Ltd 形状計測装置用光学系
WO2006112530A1 (en) * 2005-04-19 2006-10-26 Ebara Corporation Substrate processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198345A (ja) * 1993-12-28 1995-08-01 Olympus Optical Co Ltd 円径測定装置
JPH07218228A (ja) * 1994-01-27 1995-08-18 Tokyo Seimitsu Co Ltd ウェーハ直径・断面形状測定装置 及びそれを組み込んだウェーハ面取り機
JP2000084811A (ja) * 1998-09-16 2000-03-28 Tokyo Seimitsu Co Ltd ウェーハ面取り装置
JP2004177335A (ja) * 2002-11-28 2004-06-24 Yamatake Corp 位置検出方法および装置
JP2006145487A (ja) * 2004-11-24 2006-06-08 Kobe Steel Ltd 形状計測装置用光学系
WO2006112530A1 (en) * 2005-04-19 2006-10-26 Ebara Corporation Substrate processing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726411B2 (en) 2019-07-12 2023-08-15 Asml Nelherlands B.V. Substrate shape measuring device, substrate handling device, substrate shape measuring unit and method to handle substrates
CN111156910A (zh) * 2020-03-09 2020-05-15 西安电子科技大学 一种铝基片厚度高精度在线快速测量装置及测量方法
CN111156910B (zh) * 2020-03-09 2021-03-30 西安电子科技大学 一种铝基片厚度高精度在线快速测量装置及测量方法
CN113099218A (zh) * 2021-04-08 2021-07-09 中国科学院空天信息创新研究院 视频影像测量仪性能的测试方法
CN113099218B (zh) * 2021-04-08 2022-07-22 中国科学院空天信息创新研究院 视频影像测量仪性能的测试方法

Also Published As

Publication number Publication date
JP4316643B2 (ja) 2009-08-19
TWI390650B (zh) 2013-03-21
TW200935539A (en) 2009-08-16
JP2009156686A (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4316643B2 (ja) 形状測定装置,形状測定方法
JP4262285B2 (ja) 形状測定装置,形状測定方法
US9250071B2 (en) Measurement apparatus and correction method of the same
JPH04248409A (ja) 三次元測定機の誤差補正方法
JP2013134218A (ja) ねじ付き管の端部形状測定方法
JP6153117B2 (ja) 結晶方位マーク付き処理基板、結晶方位検出方法及び結晶方位マーク読出装置
JP6401594B2 (ja) 3次元チルトセンサ及びこれを用いた測定対象の3軸廻りの角度変位を測定する方法
JP4734398B2 (ja) 形状測定装置,形状測定方法
JP2009168634A (ja) 形状測定方法,形状測定装置
JP4853968B2 (ja) ウェハの位置決め方法および位置決め装置
JP2009174974A (ja) 3dセンサ
JP5768349B2 (ja) スリット光輝度分布設計方法および光切断凹凸疵検出装置
JP5141103B2 (ja) 非接触三次元形状測定機
JP4897658B2 (ja) 形状測定装置
JP2007315865A (ja) 三次元変位量測定器および測定方法
JP5032952B2 (ja) 光束波面の曲率測定方法
JP2019109060A (ja) 光学素子の検査方法
JP4979335B2 (ja) エッジ検出装置
TWI797039B (zh) 測量系統
JP4837541B2 (ja) 端面形状検査方法および同装置
JP2006184091A (ja) 面内方向変位計
JP2024000912A (ja) 形状測定装置の校正方法
JP2009250676A (ja) 距離測定装置
JP2023121331A (ja) 反射光分布測定装置及び方法
JP2006250593A (ja) 角柱度計測方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08865916

Country of ref document: EP

Kind code of ref document: A1