WO2009081776A1 - ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2009081776A1
WO2009081776A1 PCT/JP2008/072688 JP2008072688W WO2009081776A1 WO 2009081776 A1 WO2009081776 A1 WO 2009081776A1 JP 2008072688 W JP2008072688 W JP 2008072688W WO 2009081776 A1 WO2009081776 A1 WO 2009081776A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
compound
Prior art date
Application number
PCT/JP2008/072688
Other languages
English (en)
French (fr)
Inventor
Mitsunori Ito
Masahiro Kawamura
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2009547040A priority Critical patent/JPWO2009081776A1/ja
Priority to US12/809,541 priority patent/US8563969B2/en
Publication of WO2009081776A1 publication Critical patent/WO2009081776A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to a novel benzanthracene compound useful as a light-emitting material of an organic electroluminescence device and an organic electroluminescence device using the same.
  • An organic electroluminescence (EL) element is a self-luminous element utilizing the principle that a light-emitting material emits light by recombination energy of holes injected from an anode and electrons injected from a cathode when an electric field is applied.
  • Organic EL devices have made remarkable progress, and organic EL devices have features such as low-voltage driving, high brightness, diversity of emission wavelengths, high-speed response, and the ability to produce thin and light-emitting devices. Application to applications is expected.
  • Luminescent materials used in organic EL elements have been actively studied since they have a great influence on the color of light emitted from the elements and the emission lifetime.
  • As the light-emitting material one that emits light by a single substance or one that emits light by adding a small amount of dopant to a host material is known.
  • fluorescent materials it has been studied to use phosphorescent compounds as light emitting materials and to use triplet state energy for light emission. With such various light emitting materials, light emission in a visible region from blue to red is obtained.
  • Benzanthracene derivatives are disclosed in Patent Documents 1 and 2 as specific light emitting materials.
  • organic EL devices using these benzanthracene derivatives have a short device life and poor chromaticity.
  • An object of the present invention is to provide a novel benzanthracene compound, a light emitting material, and an organic EL device using the light emitting material.
  • the following compounds and organic EL devices are provided.
  • FA is a condensed aromatic ring
  • Ar is an aromatic group.
  • Ar and Ar ′ are each an aromatic group, and when Ar and Ar ′ are the same, they are not rotationally symmetric about the central point of the benzanthracene skeleton. However, both Ar and Ar ′ are unsubstituted 2 -Excludes compounds that are naphthyl groups and bind to the para position of the phenyl group.
  • FA 1 and FA 1 ′ are two or three condensed aromatic rings, respectively, and when FA 1 and FA 1 ′ are the same, they are not rotationally symmetric about the center point of the benzanthracene skeleton. And compounds in which FA 1 and FA 1 ′ are both unsubstituted 2-naphthyl groups and compounds in which FA 1 and FA 1 ′ are both 9,9-dimethyl-2-fluorenyl groups are excluded.
  • a light emitting material comprising the compound according to any one of 1 to 3. 5).
  • An anode and a cathode Having one or more organic thin film layers including a light emitting layer sandwiched between the anode and the cathode, An organic electroluminescence device, wherein at least one of the organic thin film layers contains the compound according to any one of 1 to 3. 6).
  • the fluorescent dopant is at least one of an arylamine compound and a styrylamine compound. 8).
  • the phosphorescent dopant is a metal complex.
  • a novel benzanthracene compound, a light emitting material, and an organic EL element using the light emitting material can be provided.
  • the organic EL element using the light emitting material of the present invention is excellent in chromaticity and lifetime.
  • the benzanthracene compound of the present invention is a compound having at least a part of any one of the following structures (1), (1) ′, (2), and (3).
  • FA is a condensed aromatic ring
  • Ar is an aromatic group.
  • Ar and Ar ′ are each an aromatic group, and when Ar and Ar ′ are the same, they are not rotationally symmetric about the central point of the benzanthracene skeleton.
  • both Ar and Ar ′ are unsubstituted 2 -Excludes compounds that are naphthyl groups and bind to the para position of the phenyl group.)
  • FA 1 and FA 1 ′ are two or three condensed aromatic rings, respectively, and when FA 1 and FA 1 ′ are the same, they are not rotationally symmetric about the center point of the benzanthracene skeleton.
  • compounds in which FA 1 and FA 1 ′ are both unsubstituted 2-naphthyl groups and compounds in which FA 1 and FA 1 ′ are both 9,9-dimethyl-2-fluorenyl groups are excluded.
  • the benzanthracene compound of the present invention includes the structure of the above formula as a part or all of it.
  • the structure shown in the above formula may be further substituted, or the structure shown in the above formula may be used.
  • rotationally symmetric about the center point of the anthracene skeleton means that the center point of the anthracene skeleton of the benzanthracene skeleton is rotated 180 degrees on the paper as shown in the equations (2a) and (2b), for example. It means that it is rotationally symmetric.
  • the compound represented by the formula (2c) is not rotationally symmetric about the center point of the anthracene skeleton of the benzanthracene skeleton.
  • the number of nuclear carbon atoms is preferably 6 to 60. (Preferably 6 to 30.)
  • the condensed aromatic ring of FA and the bicyclic or tricyclic condensed aromatic ring of FA 1 and FA 1 ′ preferably have 10 to 18 nuclear carbon atoms.
  • the condensed aromatic ring include an indenyl group, a fluorenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an acenaphthylenyl group, and a biphenylenyl group, and a naphthyl group and a phenanthryl group are preferable.
  • 6-indenyl group, 7-indenyl group, 1-fluorenyl group, 2-fluorenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group examples include 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 3-acenaphthylenyl group, 4-acenaphthylenyl group, 1-biphenylenyl group, 2-biphenylenyl group and the like.
  • the condensed aromatic rings of FA, FA 1 and FA 1 ′ are preferably 2 or 3 6-membered and 5-membered condensed rings, and particularly preferably naphthyl and phenanthryl. In the benzanthracene derivative of the present invention, these condensed rings may be substituted.
  • substituents include an alkyl group having 1 to 6 carbon atoms, an aromatic group having 6 to 60 carbon atoms, and an alkyl group having 2 to 60 carbon atoms. Examples include heterocyclic groups.
  • an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably carbon 1 to 8, for example, methyl, ethyl, isopropyl, t-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having a carbon number) 2 to 20, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl groups (preferably carbon atoms) 2-20, more preferably 2-12 carbon atoms, particularly preferably 2-8 carbon atoms, such as propargyl, 3-pentynyl, etc.), aryl groups Pre
  • a substituted or unsubstituted amino group preferably having 0 to 20 carbon atoms, more preferably 0 to 12 carbon atoms, and particularly preferably 0 to 6 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino) , Diphenylamino, dibenzylamino and the like
  • an alkoxy group preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as methoxy, ethoxy, Butoxy and the like
  • an aryloxy group preferably having 6 to 20 carbon atoms
  • it has 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyl
  • an aryloxycarbonyl group preferably 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably Has 7 to 10 carbon atoms such as phenyloxycarbonyl
  • acyloxy groups preferably Alternatively, it has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetoxy and benzoyloxy.
  • An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetylamino, benzoylamino, etc.), an alkoxycarbonylamino group (Preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonylamino), aryloxycarbonylamino group (preferably having carbon number) 7 to 20, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino), substituted or unsubstituted sulfonylamino groups (preferably having 1 carbon atom) To 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms.
  • substituted or unsubstituted sulfamoyl groups (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms.
  • sulfamoyl Methylsulfamoyl, dimethylsulfamoyl, phenylsulfamoyl etc.
  • substituted or unsubstituted carbamoyl groups preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc.
  • an alkylthio group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably carbon atoms).
  • An arylthio group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio), substituted or unsubstituted sulfonyl A group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a substituted or unsubstituted sulfinyl group (preferably Has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), a substituted or unsubstituted ureido group (preferably It has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and
  • a substituted or unsubstituted phosphoramide group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphate amide, phenyl phosphate amide) Hydroxy group, mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino Group, imino group, heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • substituents include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, trimethylsilyl, triphenylsilyl. Examples of the compounds of the formulas (1), (1) ′, (2) and (3) are shown below.
  • the above benzanthracene compound can be used as a light emitting material for an organic EL device.
  • the organic EL device of the present invention has an anode and a cathode, and one or more organic thin film layers including a light emitting layer sandwiched between the anode and the cathode, and at least one layer of the organic thin film layer is the above compound Containing.
  • the layer containing the above compound can further contain at least one of a phosphorescent dopant and a fluorescent dopant. By including such a dopant, it can function as a phosphorescence emission layer and a fluorescence emission layer.
  • the compound of the present invention may be used in any of the organic layers described above, but is preferably contained in the light emitting band, and particularly preferably contained in the light emitting layer.
  • the content is preferably 30 to 100 wt%.
  • Fig. 1 shows the configuration (8).
  • the organic EL element includes a cathode 10 and an anode 20 and a hole injection layer 30, a hole transport layer 32, a light emitting layer 34, and an electron injection layer 36 sandwiched therebetween.
  • the hole injection layer 30, the hole transport layer 32, the light emitting layer 34, and the electron injection layer 36 correspond to a plurality of organic thin film layers. At least one of these organic thin film layers 30, 32, 34, and 36 contains the benzanthracene compound.
  • the organic EL element is usually produced on a substrate, and the substrate supports the organic EL element. It is preferable to use a smooth substrate. When light is extracted through this substrate, it is desirable that the substrate is translucent and that the transmittance of light in the visible region with a wavelength of 400 to 700 nm is 50% or more.
  • substrate a glass plate, a synthetic resin board, etc. are used suitably, for example.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the synthetic resin plate include plates of polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyethersulfone resin, polysulfone resin, and the like.
  • the anode It is effective for the anode to inject holes into the hole injection layer, the hole transport layer, or the light emitting layer and to have a work function of 4.5 eV or more.
  • the anode material include indium tin oxide (ITO), a mixture of indium oxide and zinc oxide, a mixture of ITO and cerium oxide (ITCO), a mixture of indium oxide and zinc oxide and cerium oxide (IZCO), an oxidation Examples thereof include a mixture of indium and cerium oxide (ICO), a mixture of zinc oxide and aluminum oxide (AZO), tin oxide (NESA), gold, silver, platinum, and copper.
  • the anode can be formed from these electrode materials by vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, it is usually 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer has the following functions.
  • injection function function capable of injecting holes from the anode or hole injection layer when an electric field is applied, and electron injection from the cathode or electron injection layer
  • transport function injected charge (electrons (Iii) light emission function; function to recombine electrons and holes and connect them to light emission
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposited film is a film formed by depositing a material compound in a gas phase state or a film formed by solidifying a material compound in a solution state or a liquid phase state.
  • this molecular deposited film is an LB.
  • the thin film (molecular accumulation film) formed by the method can be classified by the difference in aggregated structure and higher order structure, and the functional difference resulting therefrom.
  • the light emitting layer can also be formed by dissolving a binder such as a resin and a material compound in a solvent to form a solution, and then thinning the solution by a spin coating method or the like.
  • Examples of the light emitting material or the doping material that can be used for the light emitting layer include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, Coumarin, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine , Merocyanine, imidazole chelating oxinoid compounds, quinacrid
  • Ar 001 is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar 002 is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X 001 to X 003 independently represents a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon group having 1 to 50 alkyl groups, substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl groups having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy groups having 5 to 50 carbon atoms, substituted Or an unsubstituted arylthio group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkoxy
  • R 001 to R 010 are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted arylthio group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted A silyl group, a
  • Ar 005 and Ar 006 are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L 001 and L 002 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • m is an integer from 0 to 2
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L 001 or Ar 005 binds to any of the 1-5 positions of pyrene
  • L 002 or Ar 006 binds to any of the 6-10 positions of pyrene.
  • n + t is an even number
  • Ar 005 , Ar 006 , L 001 , and L 002 satisfy the following (1) or (2).
  • a 001 and A 002 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 007 and Ar 008 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • R 011 to R 020 are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted group Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted arylthio group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted A silyl group
  • Ar 007 , Ar 008 , R 019 and R 020 may each be plural, and adjacent ones may form a saturated or unsaturated cyclic structure.
  • a group that is symmetrical with respect to the XY axis shown on the anthracene is not bonded to the 9th and 10th positions of the central anthracene.
  • R 021 to R 030 are each independently a hydrogen atom, alkyl group, cycloalkyl group, optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkenyl group, arylamino group, or substituted.
  • a and b each represent an integer of 1 to 5, and when they are 2 or more, R 021s or R 022s may be the same or different from each other In addition, R 021 or R 022 may be bonded to each other to form a ring, or R 023 and R 024 , R 025 and R 026 , R 027 and R 028 , R 029 and R 030 are L 003 may be a single bond, —O—, —S—, —N (R) — (R is an alkyl group or an optionally substituted aryl group). Represents an alkylene group or an arylene group.)
  • R 031 to R 040 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group, or an optionally substituted multicyclic group
  • C, d, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 031s , R 032s , R 036s or R 037s may be the same.
  • R 031 may be different from each other, R 032 may be bonded to each other, R 033 may be bonded to each other, or R 037 may be bonded to each other to form a ring, and R 033 and R 034 , R 039 and R 040 are based on each other.
  • bonded to ring the optionally formed .L 004 is a single bond, -O -, - S -, - N (R) - (R is an aryl group which may be alkyl or substituted), Al Shows the alkylene group or an arylene group.)
  • a 005 to A 008 are each independently a substituted or unsubstituted biphenylyl group or a substituted or unsubstituted naphthyl group.
  • a 011 to A 013 are each independently a substituted or unsubstituted arylene group having 6 to 50 nuclear carbon atoms.
  • a 014 to A 016 are each independently a hydrogen atom, or a substituted or unsubstituted group.
  • a substituted aryl group having 6 to 50 carbon atoms, R 041 to R 043 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom; Alkoxy group having 6 to 6 carbon atoms, aryloxy group having 5 to 18 carbon atoms, aralkyloxy group having 7 to 18 carbon atoms, arylamino group having 5 to 16 carbon atoms, nitro group, cyano group, ester group having 1 to 6 carbon atoms Or a halogen atom, and at least one of A 011 to A 016 is a group having three or more condensed aromatic rings.
  • Fluorene compound represented by the following formula (ix) is represented by the following formula (ix).
  • R 051 and R 052 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, or a substituted amino group.
  • R 053 and R 054 may be a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic ring.
  • R 053 and R 054 representing a group and bonded to different fluorene groups may be the same or different.
  • R 053 and R 054 bonded to the same fluorene group may be the same or different, and Ar 011 and Ar 012 are substituted or unsubstituted condensed polycyclic aromatics having a total of 3 or more benzene rings.
  • N represents an integer of 1 to 10.
  • the light emitting layer may contain a phosphorescent dopant and / or a fluorescent dopant in addition to the light emitting material of the present invention, if desired. Moreover, you may laminate
  • a phosphorescent dopant is a compound that can emit light from triplet excitons. Although it is not particularly limited as long as it emits light from triplet excitons, it is preferably a metal complex containing at least one metal selected from the group consisting of Ir, Ru, Pd, Pt, Os and Re, and is preferably a porphyrin metal complex or ortho Metalated metal complexes are preferred.
  • the phosphorescent compounds may be used alone or in combination of two or more.
  • the porphyrin metal complex is preferably a porphyrin platinum complex.
  • ligands that form orthometalated metal complexes.
  • Preferred ligands include compounds having a phenylpyridine skeleton, bipyridyl skeleton or phenanthroline skeleton, or 2-phenylpyridine derivatives, 7,8. -Benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 2-phenylquinoline derivatives and the like.
  • These ligands may have a substituent as needed.
  • a fluorinated compound or a compound having a trifluoromethyl group introduced is preferable as a blue dopant.
  • you may have ligands other than the said ligands, such as an acetylacetonate and picric acid, as an auxiliary ligand.
  • metal complexes include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2- Phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, octaphenylpalladium porphyrin, etc.
  • An appropriate complex is selected depending on the device performance and the host compound to be used.
  • content in the light emitting layer of a phosphorescent dopant there is no restriction
  • Fluorescent dopants are required from amine compounds, aromatic compounds, chelate complexes such as tris (8-quinolinolato) aluminum complex, coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives, etc. It is preferable to select a compound according to the emission color, and a styrylamine compound, a styryldiamine compound, an arylamine compound, and an aryldiamine compound are more preferable. Moreover, the condensed polycyclic aromatic compound which is not an amine compound is also preferable. These fluorescent dopants may be used alone or in combination.
  • styrylamine compound and styryldiamine compound those represented by the following formula (A) are preferable.
  • Ar 101 is a p-valent group, and a corresponding p-valent group of a phenyl group, a naphthyl group, a biphenyl group, a terphenyl group, a stilbenyl group, or a distyrylaryl group
  • Ar 102 and Ar 103 are Each of them is an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • Ar 101 , Ar 102 and Ar 103 may be substituted, and any one of Ar 101 to Ar 103 is substituted with a styryl group.
  • At least one of Ar 102 or Ar 103 is substituted with a styryl group, and p is an integer of 1 to 4, and preferably an integer of 1 to 2.
  • examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, and a terphenyl group.
  • arylamine compound and the aryldiamine compound those represented by the following formula (B) are preferable.
  • Ar 111 is a q-valent substituted or unsubstituted aromatic group having 5 to 40 nuclear carbon atoms
  • Ar 112 and Ar 113 are each a substituted or unsubstituted aryl group having 5 to 40 nuclear carbon atoms.
  • Q is an integer of 1 to 4, preferably an integer of 1 to 2.
  • examples of the aryl group having 5 to 40 nuclear carbon atoms include phenyl, naphthyl, anthranyl, phenanthryl, pyrenyl, coronyl, biphenyl, terphenyl, pyrrolyl, furyl, thienyl.
  • Preferred substituents substituted on the aryl group include alkyl groups having 1 to 6 carbon atoms (ethyl group, methyl group, i-propyl group, n-propyl group, s-butyl group, t-butyl group, pentyl group).
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If the thickness exceeds 50 nm, the driving voltage may increase.
  • the hole injection layer and the hole transport layer help to inject holes into the light emitting layer and transport to the light emitting region, and have a high hole mobility and a small ionization energy of usually 5.5 eV or less.
  • a material for such a hole injection layer and a hole transport layer a material that transports holes to the light emitting layer with lower electric field strength is preferable, and the hole mobility is, for example, 10 4 to 10 6 V / cm. When applying the electric field of 10 ⁇ 4 cm 2 / V ⁇ sec or more, it is preferable.
  • the material for the hole injection layer and the hole transport layer is not particularly limited, and is conventionally used as a charge transport material for holes in optical transmission materials, and the hole injection layer and holes for organic EL devices. An arbitrary thing can be selected and used from the well-known things used for the transport layer.
  • Ar 211 to Ar 213 , Ar 221 to Ar 223, and Ar 203 to Ar 208 are each a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted number of 5 to 50 nuclear atoms.
  • a to c and p to r are integers of 0 to 3, respectively.
  • Ar 203 and Ar 204 , Ar 205 and Ar 206 , Ar 207 and Ar 208 may be connected to each other to form a saturated or unsaturated ring.
  • substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, and 9-anthryl group.
  • substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nucleus atoms include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, and 3-pyridinyl group.
  • Ar 231 to Ar 234 are each a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms.
  • L is a linking group, which is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms.
  • x is an integer of 0 to 5.
  • Ar 232 and Ar 233 may combine with each other to form a saturated or unsaturated ring. Specific examples of the substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms and the substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms are the same as those described above. can give.
  • the material for the hole injection layer and the hole transport layer include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives. And amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers (particularly thiophene oligomers).
  • the above materials can be used for the hole injection layer and the hole transport layer, but porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds should be used. Is preferred.
  • NPD 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl
  • MTDATA triphenylamine
  • R 201 to R 206 each represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted heterocyclic group.
  • R 201 and R 202 , R 203 and R 204 , R 205 and R 206 , R 201 and R 206 , R 202 and R 203 , or R 204 and R 205 may form a condensed ring.
  • R 211 to R 216 are substituents, each preferably an electron-withdrawing group such as a cyano group, a nitro group, a sulfonyl group, a carbonyl group, a trifluoromethyl group, or a halogen.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as materials for the hole injection layer and the hole transport layer.
  • the hole injection layer and the hole transport layer can be formed by thinning the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually 5 nm to 5 ⁇ m.
  • the hole injection layer and the hole transport layer may be composed of one or more layers made of the above-mentioned materials, or a plurality of hole injection layers and hole transport layers made of different compounds are laminated. There may be.
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10 ⁇ 10 S / cm or more.
  • a conductive oligomer such as a thiophene-containing oligomer or an arylamine oligomer, a conductive dendrimer such as an arylamine dendrimer, or the like can be used.
  • the electron injection layer and the electron transport layer are layers that assist injection of electrons into the light emitting layer and transport them to the light emitting region, and have a high electron mobility.
  • the adhesion improving layer is a kind of an electron injecting layer made of a material that particularly adheres well to the cathode.
  • the electron transport layer is appropriately selected with a film thickness of 5 nm to 5 ⁇ m. In particular, when the film thickness is large, the electron mobility is 10 ⁇ 5 cm when an electric field of 10 4 to 10 6 V / cm is applied in order to avoid an increase in voltage. It is preferable that it is 2 / Vs or more.
  • 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable.
  • metal complexes of 8-hydroxyquinoline or its derivatives include metal chelate oxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), such as tris (8-quinolinolato) aluminum. it can.
  • Examples of the oxadiazole derivatives include electron transfer compounds represented by the following formula.
  • Ar 301 , Ar 302 , Ar 303 , Ar 305 , Ar 306 , and Ar 309 each represent a substituted or unsubstituted aryl group.
  • Ar 304 , Ar 307 , and Ar 308 are each substituted or unsubstituted. Represents an arylene group.
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • This electron transfer compound is preferably a thin film-forming compound.
  • the electron transfer compound examples include the following. (Me represents a methyl group, and tBu represents a tbutyl group.)
  • materials represented by the following formulas (E) to (J) can also be used as materials used for the electron injection layer and the electron transport layer.
  • a 311 to A 313 each represent a nitrogen atom or a carbon atom.
  • Ar 311 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear atoms
  • Ar 311 ′ is a substituted or unsubstituted nuclear carbon atom.
  • Ar 312 represents a hydrogen atom, a substituted or unsubstituted aryl group of 6 to 60 nuclear carbon atoms, a substituted or unsubstituted An unsubstituted heteroaryl group having 3 to 60 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • any one of Ar 311 and Ar 312 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nucleus atoms.
  • L 311 , L 312 and L 313 are each a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear atoms, or a substituted or unsubstituted group. Substituted fluorenylene group.
  • R and R 311 are each a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear atoms, a substituted or unsubstituted carbon atom having 1 to 20 alkyl groups, or substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is 2 or more, a plurality of Rs may be the same or different.
  • adjacent R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
  • HAr-L 314 -Ar 321 -Ar 322 (G) (In the formula, HAr is a nitrogen-containing heterocyclic ring having 3 to 40 carbon atoms which may have a substituent, and L 314 has a carbon number of 6 to 60 optionally having a single bond or a substituent.
  • X 301 and Y 301 are each a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, a substituted or unsubstituted aryl group, a substituted group Or an unsubstituted heterocycle or a structure in which X and Y are combined to form a saturated or unsaturated ring
  • R 301 to R 304 are each a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryloxy group Perfluoroalkyl group, perfluoroalkoxy group, amino group, alkylcarbonyl group, arylcarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, alkylcarbonyloxy group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryl Oxycarbonyloxy group,
  • R 321 to R 328 and Z 322 are each a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryl group.
  • X 302 , Y 302 and Z 321 each represents a saturated or unsaturated hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group; 321 and Z 322 may be bonded to each other to form a condensed ring.
  • N represents an integer of 1 to 3, and when n or (3-n) is 2 or more, R 321 to R 328 , X 302 , Y 302 , Z 322 and Z 321 may be the same or different, provided that n is 1, X 302 , Y 302 and R 322 are methyl groups and R 328 is a hydrogen atom or a substituted boryl group. And a compound in which n is 3 and Z 321 is a methyl group).
  • Q 301 and Q 302 each represent a ligand represented by the following formula (K), and L 315 represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group , Substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, —OR (where R is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl Group, a substituted or unsubstituted heterocyclic group) or a ligand represented by —O—Ga—Q 303 (Q 304 ) (Q 303 and Q 304 are the same as Q 301 and Q 302 ). . ] The gallium complex represented by this.
  • ring A 301 and A 302 are each a 6-membered aryl ring structure condensed with each other, which may have a substituent. ]
  • This metal complex has strong properties as an n-type semiconductor and has a large electron injection capability. Furthermore, since the generation energy at the time of complex formation is also low, the bondability between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is large.
  • substituents of the rings A 301 and A 302 that form the ligand of the formula (K) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, butyl Group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group and other substituted or unsubstituted alkyl groups, phenyl group, naphthyl group, biphenyl group, anthranyl Group, phenanthryl group, fluorenyl group, pyrenyl group, 3-methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, etc.
  • Substituted or unsubstituted aryl group methoxy group, n-butoxy group, t-butoxy group, trichloromethoxy group Trifluoroethoxy group, pentafluoropropoxy group, 2,2,3,3-tetrafluoropropoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group, 6- (perfluoroethyl)
  • Substituted or unsubstituted alkoxy group such as hexyloxy group, phenoxy group, p-nitrophenoxy group, pt-butylphenoxy group, 3-fluorophenoxy group, pentafluorophenoxy group, 3-trifluoromethylphenoxy group, etc.
  • an unsubstituted carbamoyl group, carboxylic acid group, sulfonic acid group, imide group, cyclopentane group, cyclohexyl group and other cycloalkyl groups pyridinyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolinyl group, quinolinyl group Group, acridinyl group, pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholinyl group, piperazinyl group, carbazolyl group, furanyl group, thiophenyl group, oxazolyl group, oxadiazolyl group, benzoxazolyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, There are heterocyclic groups such as a triazolyl group, an imidazolyl group, and a benzo
  • a reducing dopant is contained in a region for transporting electrons or an interface region between the cathode and the organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1. 95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV) At least one alkaline earth metal selected from the group consisting of: A work function of 2.9 eV or less is particularly preferable.
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element.
  • a reducing dopant having a work function of 2.9 eV or less a combination of these two or more alkali metals is also preferable.
  • a combination containing Cs, for example, Cs and Na, Cs and K, Cs and Rb, A combination of Cs, Na and K is preferred.
  • An electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. With such a layer, current leakage can be effectively prevented, and the electron injection property can be improved. If the electron injection layer is an insulating thin film, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced.
  • the insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. It is preferable that the electron injection layer is composed of these alkali metal chalcogenides and the like, since the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film.
  • a material having a work function (for example, 4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, cesium, magnesium / silver alloy, aluminum / aluminum oxide, Al / Li 2 O, Al / LiO, Al / LiF, aluminum Examples include lithium alloys, indium, and rare earth metals.
  • the cathode can be produced from these electrode materials by vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is preferably greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • an insulating thin film layer may be inserted between the pair of electrodes.
  • the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, Examples include germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. A mixture or laminate of these may be used.
  • the above-described materials and methods may be used to sequentially form the necessary layers from the anode and finally form the cathode.
  • an organic EL element can also be produced in the reverse order from the cathode to the anode.
  • an example of manufacturing an organic EL element having a structure in which an anode / a hole injection layer / a light emitting layer / an electron injection layer / a cathode are sequentially provided on a translucent substrate will be described.
  • a thin film made of an anode material is formed on a translucent substrate by vapor deposition or sputtering to form an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the deposition conditions vary depending on the compound used (material of the hole injection layer), the structure of the target hole injection layer, etc., but generally the deposition source temperature is 50 to 450. It is preferable to appropriately select at a temperature of 10 ° C., a degree of vacuum of 10 ⁇ 7 to 10 ⁇ 3 Torr, a deposition rate of 0.01 to 50 nm / second, and a substrate temperature of ⁇ 50 to 300 ° C.
  • a light emitting layer is provided on the hole injection layer.
  • the light emitting layer can also be formed by thinning the light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting, but it is easy to obtain a uniform film and pinholes are not easily generated. From the point of view, it is preferable to form by vacuum deposition.
  • the vapor deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the formation of the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • a vacuum evaporation method like the hole injection layer and the light emitting layer, it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film.
  • Deposition conditions can be selected from the same condition range as the hole injection layer and the light emitting layer.
  • a cathode can be laminated
  • the cathode can be formed by vapor deposition or sputtering. In order to protect the underlying organic material layer from damage during film formation, vacuum deposition is preferred.
  • the above organic EL device is preferably produced from the anode to the cathode consistently by a single vacuum.
  • the method for forming each layer of the organic EL element is not particularly limited.
  • the organic thin film layer containing the compound of the present invention is prepared by vacuum deposition, molecular beam deposition (MBE method) or dipping method of a solution obtained by dissolving the compound of the present invention in a solvent, spin coating method, casting method, bar coating method, It can be formed by a known method using a coating method such as a roll coating method.
  • MBE method molecular beam deposition
  • the evaluation of the organic EL element is as follows.
  • the following compound A-2 having a thickness of 20 nm was formed as a hole transport layer on the A-1 film. Further, on this A-2 film, the compound H-1 of the present invention and the diamine derivative D-1 were formed in a film thickness ratio of 40: 2 at a film thickness ratio of 40: 2 to obtain a blue light emitting layer. H-1 functions as a host and D-1 functions as a dopant.
  • the following compound Alq was deposited as an electron transport layer with a thickness of 20 nm by vapor deposition. Thereafter, LiF was formed to a thickness of 1 nm. On the LiF film, metal Al was deposited to a thickness of 150 nm to form a metal cathode to form an organic EL light emitting device.
  • Examples 2 to 39 A device was prepared and evaluated in the same manner as in Example 1 except that H-1 and / or D-1 was changed to the following compounds shown in Tables 1 and 2 in Example 1. The results are shown in Tables 1 and 2.
  • the benzanthracene compound was synthesized according to synthesis routes (2) to (4).
  • Ar, Ar ′ When the aryl group Ar is a group that is hardly brominated, it can also be synthesized by the synthesis route of (4).
  • Example 40-45 Comparative Example 4-6
  • An organic EL device was produced in the same manner as in Example 1 except that the dopant material and host material of the light emitting layer were changed to the compounds shown in Table 3. The results are shown in Table 3.
  • the benzanthracene compound of the present invention can be used as a light emitting material for an organic EL device.
  • the organic EL device of the present invention can be suitably used for light sources such as flat light emitters and display backlights, display units such as mobile phones, PDAs, car navigation systems, and vehicle instrument panels, and lighting.
  • light sources such as flat light emitters and display backlights
  • display units such as mobile phones, PDAs, car navigation systems, and vehicle instrument panels, and lighting.

Abstract

 下記式(1)又は(1)’の構造を少なくとも一部として有する化合物。 (式中、FAは縮合芳香族環であり、Arは芳香族基である。)

Description

ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子の発光材料として有用な、新規なベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス(EL)素子は、電界を印加することにより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより発光材料が発光する原理を利用した自発光素子である。
 有機EL素子の進歩は目覚しく、また、有機EL素子は、低電圧駆動、高輝度、発光波長の多様性、高速応答性、薄型で軽量な発光デバイスが作製可能等の特徴を有するため、広汎な用途への適用が期待されている。
 有機EL素子で使用される発光材料は、素子の発する光の色や発光寿命に大きな影響を与えるため、従来から積極的に研究されている。
 発光材料は、単独物質で発光するものや、ホスト材料に少量のドーパントを加えて発光するものが知られている。また、蛍光発光材料の他、燐光性化合物を発光材料として用い、三重項状態のエネルギーを発光に用いることが検討されている。このような様々な発光材料により、青色から赤色までの可視領域の発光が得られている。
 具体的な発光材料として、特許文献1、2にベンズアントラセン誘導体が開示されている。しかし、これらのベンズアントラセン誘導体を用いた有機EL素子は、素子寿命が短く、色度もよくなかった。
特開2000-178548号公報 特開2007-277113号公報
 本発明の目的は、新規なベンズアントラセン化合物及び発光材料並びにその発光材料を用いた有機EL素子を提供することである。
 本発明によれば、以下の化合物及び有機EL素子等が提供される。
1.下記式(1)又は(1)’の構造を少なくとも一部として有する化合物。
Figure JPOXMLDOC01-appb-C000004
(式中、FAは縮合芳香族環であり、Arは芳香族基である。)
2.下記式(2)の構造を少なくとも一部として有する化合物。
Figure JPOXMLDOC01-appb-C000005
(式中、ArとAr’はそれぞれ芳香族基であり、ArとAr’が同じときはベンズアントラセン骨格の中心点を軸として回転対称ではない。ただし、ArとAr’が共に無置換の2-ナフチル基であって、フェニル基のパラ位に結合する化合物は除く。)
3.下記式(3)の構造を少なくとも一部として有する化合物。
Figure JPOXMLDOC01-appb-C000006
(式中、FAとFA’はそれぞれ2環又は3環の縮合芳香族環であり、FAとFA’が同じときはベンズアントラセン骨格の中心点を軸として回転対称ではない。ただし、FAとFA’が共に無置換の2-ナフチル基である化合物及びFAとFA’が共に9,9-ジメチル-2-フルオレニル基である化合物は除く。)
4.1~3のいずれかに記載の化合物からなる発光材料。
5.陽極及び陰極と、
 前記陽極及び陰極の間に挟持されている、発光層を含む1以上の有機薄膜層とを有し、
 前記有機薄膜層の少なくとも一層が、1~3のいずれかに記載の化合物を含有する有機エレクトロルミネッセンス素子。
6.前記化合物を含有する層が、さらに、りん光性ドーパント及び蛍光性ドーパントの少なくとも1つを含有する5記載の有機エレクトロルミネッセンス素子。
7.前記蛍光性ドーパントが、アリールアミン化合物及びスチリルアミン化合物の少なくとも1つである6記載の有機エレクトロルミネッセンス素子。
8.前記りん光性ドーパントが、金属錯体である6又は7記載の有機エレクトロルミネッセンス素子。
 本発明によれば、新規なベンズアントラセン化合物及び発光材料並びにその発光材料を用いた有機EL素子が提供できる。
 本発明の発光材料を用いる有機EL素子は、色度と寿命に優れる。
本発明の有機EL素子の一実施形態の概略断面図である。
 本発明のベンズアントラセン化合物は、下記の構造(1),(1)’,(2),(3)のいずれかを少なくとも一部として有する化合物である。
Figure JPOXMLDOC01-appb-C000007
(式中、FAは縮合芳香族環であり、Arは芳香族基である。)
Figure JPOXMLDOC01-appb-C000008
(式中、ArとAr’はそれぞれ芳香族基であり、ArとAr’が同じときはベンズアントラセン骨格の中心点を軸として回転対称ではない。ただし、ArとAr’が共に無置換の2-ナフチル基であって、フェニル基のパラ位に結合する化合物は除く。)
Figure JPOXMLDOC01-appb-C000009
(式中、FAとFA’はそれぞれ2環又は3環の縮合芳香族環であり、FAとFA’が同じときはベンズアントラセン骨格の中心点を軸として回転対称ではない。ただし、FAとFA’が共に無置換の2-ナフチル基である化合物及びFAとFA’が共に9,9-ジメチル-2-フルオレニル基である化合物は除く。)
 本発明のベンズアントラセン化合物は、上記式の構造を、一部又は全部として含む。例えば、本発明のベンズアントラセン化合物は、上記式に示す構造がさらに置換されていてもよく、また、上記式に示す構造そのものでもよい。
 ここで「アントラセン骨格の中心点を軸として回転対称である」とは、例えば式(2a),(2b)に示すように、ベンズアントラセン骨格のアントラセン骨格の中心点を軸として紙面上180度回転させたときに回転対称であることをいう。式(2c)に示す化合物は、ベンズアントラセン骨格のアントラセン骨格の中心点を軸として回転対称ではない。
Figure JPOXMLDOC01-appb-C000010
 上記Ar,Ar’の芳香族基の例としては、核炭素数6から60であることが好ましい。(好ましくは6から30である。)フェニル基、インデニル基、フルオレニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、アセナフチレニル基、ビフェニレニル基、クリセニル基、ピレニル基、トリフェニレニル基、フルオランテニル基、ペリレニル基が挙げられ、ナフチル基、フェナントリル基、クリセニル基、ピレニル基、トリフェニレニル基、フルオレニル基、ビフェニル基、テルフェニル基が好ましい。具体的には、フェニル基、6-インデニル基、7-インデニル基、1-フルオレニル基、2-フルオレニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、3-アセナフチレニル基、4-アセナフチレニル基、1-ビフェニレニル基、2-ビフェニレニル基、1-クリセニル基、2-クリセニル基、3-クリセニル基、6-クリセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、1-トリフェニレニル基、2-トリフェニレニル基、1-フルオランテニル基、2-フルオランテニル基、3-フルオランテニル基、7-フルオランテニル基、8-フルオランテニル基、1-ペリレニル基、2-ペリレニル基、3-ペリレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-テルフェニル-4-イル基、p-テルフェニル-3-イル基、p-テルフェニル-2-イル基、m-テルフェニル-4-イル基、m-テルフェニル-3-イル基、m-テルフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、2-ジベンゾフリル基、3-ジベンゾフリル基、4-ジベンゾフリル基、2-ジベンゾチエニル基、3-ジベンゾチエニル基、4-ジベンゾチエニル基、フルオレニル基が挙げられる。
 好ましくは、フェニル基、1-ナフチル基、2-ナフチル基、9-フェナントリル基、2-フェナントリル基、2-ジベンゾフリル基、4-ジベンゾフリル基である。
 上記FAの縮合芳香族環、及びFA、FA’の2環又は3環の縮合芳香族環としては、核炭素数10から18であることが好ましい。縮合芳香族環の例としては、インデニル基、フルオレニル基、ナフチル基、アントリル基、フェナントリル基、アセナフチレニル基、ビフェニレニル基、が挙げられ、ナフチル基、フェナントリル基が好ましい。
 具体的には、6-インデニル基、7-インデニル基、1-フルオレニル基、2-フルオレニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、3-アセナフチレニル基、4-アセナフチレニル基、1-ビフェニレニル基、2-ビフェニレニル基等が挙げられる。
 上記FA,FA及びFA’の縮合芳香族環は、好ましくは、2又は3の6員環及び5員環の縮合環であり、特に好ましくはナフチル、フェナントリルである。本発明のベンズアントラセン誘導体は、これらの縮合環が置換されていてもよく、置換基としては例えば炭素数1~6のアルキル基、炭素数6~60の芳香族基、炭素数2~60の複素環基等が挙げられる。
 上記式(1),(1)’,(2),(3)の構造の置換基としては、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、例えばメチル、エチル、イソプロピル、t-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシル等が挙げられる。)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えばビニル、アリル、2-ブテニル、3-ペンテニル等が挙げられる。)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えばプロパルニル、3-ペンチニル等が挙げられる。)、アリール基(好ましくは炭素数6~60、より好ましくは炭素数6~30、特に好ましくは炭素数6~20であり、例えばフェニル、フルオレニル、ナフチル、アントリル、フェナントリル、クリセニル、ピレニル、トリフェニレニル、フルオランテニル等が挙げられる。)置換又は無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~12、特に好ましくは炭素数0~6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジフェニルアミノ、ジベンジルアミノ等が挙げられる。)、アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、例えばメトキシ、エトキシ、ブトキシ等が挙げられる。)、アリールオキシ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、2-ナフチルオキシ等が挙げられる。)、アシル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイル等が挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル、エトキシカルボニル等が挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~10であり、例えばフェニルオキシカルボニル等が挙げられる。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキシ等が挙げられる。)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、例えばアセチルアミノ、ベンゾイルアミノ等が挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えばメトキシカルボニルアミノ等が挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルアミノ等が挙げられる。)、置換又は無置換のスルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノ等が挙げられる。)、置換又は無置換のスルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~16、特に好ましくは炭素数0~12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイル等が挙げられる。)、置換又は無置換のカルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等が挙げられる。)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオ等が挙げられる。)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えばフェニルチオ等が挙げられる。)、置換又は無置換のスルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメシル、トシル等が挙げられる。)、置換又は無置換のスルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメタンスルフィニル、ベンゼンスルフィニル等が挙げられる。)、置換又は無置換のウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばウレイド、メチルウレイド、フェニルウレイド等が挙げられる。)、置換又は無置換のリン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミド等が挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子を含むものであり具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル等が挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリル等が挙げられる。)等が挙げられる。これらの置換基はさらに置換されてもよい。また置換基が二つ以上ある場合は、同一でも異なっていてもよい。また、可能な場合には互いに連結して環を形成していてもよい。
 好適な置換基の例としては、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、tert-ブチル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、トリメチルシリル、トリフェニルシリルが挙げられる。
 以下に、式(1),(1)’,(2),(3)の化合物を例示する。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
(式中、Meはメチルを、TMSはトリメチルシリル基を表す。)
 上記のベンズアントラセン化合物は、有機EL素子用の発光材料として使用できる。
 本発明の有機EL素子は、陽極及び陰極と、陽極及び陰極の間に挟持されている、発光層を含む1以上の有機薄膜層とを有し、有機薄膜層の少なくとも一層が、上記の化合物を含有する。
 上記化合物を含有する層は、さらに、りん光性ドーパント及び蛍光性ドーパントの少なくとも1つを含有することができる。このようなドーパントを含むことにより、りん光発光及び蛍光発光層として機能することができる。
 本発明の有機EL素子の代表的な構成として、
  (1)陽極/発光層/陰極
  (2)陽極/正孔注入層/発光層/陰極
  (3)陽極/発光層/電子注入層/陰極
  (4)陽極/正孔注入層/発光層/電子注入層/陰極
  (5)陽極/有機半導体層/発光層/陰極
  (6)陽極/有機半導体層/電子障壁層/発光層/陰極
  (7)陽極/有機半導体層/発光層/付着改善層/陰極
  (8)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
  (9)陽極/絶縁層/発光層/絶縁層/陰極
  (10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
  (11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
  (12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
  (13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
等を挙げることができるが、これらに限定されない。これらの中で通常(8)の構成が好ましく用いられる。
 本発明の有機EL素子において、本発明の化合物は、上記のどの有機層に用いられてもよいが、好ましくは発光帯域に含有され、特に好ましくは発光層に含有される。含有量は好ましくは30~100wt%である。
 図1に(8)の構成を示す。この有機EL素子は、陰極10及び陽極20と、その間に挟持されている、正孔注入層30、正孔輸送層32、発光層34、電子注入層36からなる。正孔注入層30、正孔輸送層32、発光層34、電子注入層36が、複数の有機薄膜層に相当する。これら有機薄膜層30,32,34,36の少なくとも一層が、上記のベンズアントラセン化合物を含有する。
 以下有機EL素子の各部材について説明する。
 有機EL素子は、通常基板上に作製し、基板は有機EL素子を支持する。平滑な基板を用いるのが好ましい。この基板を通して光を取り出すときは、基板は透光性であり、波長400~700nmの可視領域の光の透過率が50%以上であるものが望ましい。
 このような透光性基板としては、例えば、ガラス板、合成樹脂板等が好適に用いられる。ガラス板としては、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等の板が挙げられる。また、合成樹脂板としては、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂等の板が挙げられる。
 陽極は、正孔を正孔注入層、正孔輸送層又は発光層に注入し、4.5eV以上の仕事関数を有することが効果的である。陽極材料の具体例としては、酸化インジウム錫(ITO)、酸化インジウムと酸化亜鉛の混合物、ITOと酸化セリウムの混合物(ITCO)、酸化インジウムと酸化亜鉛の混合物と酸化セリウムの混合物(IZCO)、酸化インジウムと酸化セリウムの混合物(ICO)、酸化亜鉛と酸化アルミニウムの混合物(AZO)、酸化錫(NESA)、金、銀、白金、銅等が挙げられる。
 陽極はこれらの電極物質から蒸着法やスパッタリング法等で形成できる。
 発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率を10%より大きくすることが好ましい。また陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmである。
 発光層は、以下の機能を有する。
(i)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰極又は電子注入層より電子を注入することができる機能
(ii)輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能
(iii)発光機能;電子と正孔を再結合させ、これを発光につなげる機能
 発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物を沈着して形成した膜や、溶液状態又は液相状態の材料化合物を固体化して形成した膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
 また樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 発光層に使用できる発光材料又はドーピング材料としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン及びこれらの誘導体や蛍光色素等が挙げられるが、これらに限定されるものではない。
 発光層に使用できるホスト材料の具体例としては、下記(i)~(ix)で表される化合物が挙げられる。
 下記式(i)で表される非対称アントラセン。
Figure JPOXMLDOC01-appb-C000015
(式中、Ar001は置換もしくは無置換の核炭素数10~50の縮合芳香族基である。Ar002は置換もしくは無置換の核炭素数6~50の芳香族基である。X001~X003は、それぞれ独立に置換もしくは無置換の核炭素数6~50の芳香族基、置換もしくは無置換の核原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の核原子数5~50のアリールオキシ基、置換もしくは無置換の核原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基である。a、b及びcは、それぞれ0~4の整数である。nは1~3の整数である。また、nが2以上の場合は、[ ]内は、同じでも異なっていてもよい。)
 下記式(ii)で表される非対称モノアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000016
(式中、Ar003及びAr004は、それぞれ独立に、置換もしくは無置換の核炭素数6~50の芳香族環基であり、m及びnは、それぞれ1~4の整数である。ただし、m=n=1でかつAr003とAr004のベンゼン環への結合位置が左右対称型の場合には、Ar003とAr004は同一ではなく、m又はnが2~4の整数の場合にはmとnは異なる整数である。
 R001~R010は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50の芳香族環基、置換もしくは無置換の核原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の核原子数5~50のアリールオキシ基、置換もしくは無置換の核原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基である。)
 下記式(iii)で表される非対称ピレン誘導体。
Figure JPOXMLDOC01-appb-C000017
[式中、Ar005及びAr006は、それぞれ置換もしくは無置換の核炭素数6~50の芳香族基である。L001及びL002は、それぞれ置換もしくは無置換のフェニレン基、置換もしくは無置換のナフタレニレン基、置換もしくは無置換のフルオレニレン基又は置換もしくは無置換のジベンゾシロリレン基である。
 mは0~2の整数、nは1~4の整数、sは0~2の整数、tは0~4の整数である。
 また、L001又はAr005は、ピレンの1~5位のいずれかに結合し、L002又はAr006は、ピレンの6~10位のいずれかに結合する。ただし、n+tが偶数の時、Ar005,Ar006,L001,L002は下記(1)又は(2)を満たす。
(1) Ar005≠Ar006及び/又はL001≠L002(ここで≠は、異なる構造の基であることを示す。)
(2) Ar005=Ar006かつL001=L002の時
 (2-1) m≠s及び/又はn≠t、又は
 (2-2) m=sかつn=tの時、
   (2-2-1) L001及びL002、又はピレンが、それぞれAr005及びAr006上の異なる結合位置に結合しているか、(2-2-2) L001及びL002、又はピレンが、Ar005及びAr006上の同じ結合位置で結合している場合、L001及びL002又はAr005及びAr006のピレンにおける置換位置が1位と6位、又は2位と7位である場合はない。]
 下記式(iv)で表される非対称アントラセン誘導体。
Figure JPOXMLDOC01-appb-C000018
(式中、A001及びA002は、それぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合芳香族環基である。
 Ar007及びAr008は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数6~50の芳香族環基である。
 R011~R020は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50の芳香族環基、置換もしくは無置換の核原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の核原子数5~50のアリールオキシ基、置換もしくは無置換の核原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基又はヒドロキシ基である。
 Ar007、Ar008、R019及びR020は、それぞれ複数であってもよく、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していてもよい。
 ただし、式(iv)において、中心のアントラセンの9位及び10位に、該アントラセン上に示すX-Y軸に対して対称型となる基が結合する場合はない。)
 下記式(v)で表されるアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000019
(式中、R021~R030は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換してもよいアリール基,アルコキシル基,アリーロキシ基,アルキルアミノ基,アルケニル基,アリールアミノ基又は置換してもよい複素環式基を示し、a及びbは、それぞれ1~5の整数を示し、それらが2以上の場合、R021同士又はR022同士は、それぞれにおいて、同一でも異なっていてもよく、また、R021同士又はR022同士が結合して環を形成していてもよいし、R023とR024,R025とR026,R027とR028,R029とR030がたがいに結合して環を形成していてもよい。L003は単結合、-O-,-S-,-N(R)-(Rはアルキル基又は置換してもよいアリール基である)、アルキレン基又はアリーレン基を示す。)
 下記式(vi)で表されるアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000020
(式中、R031~R040は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,アリール基,アルコキシル基,アリーロキシ基,アルキルアミノ基,アリールアミノ基又は置換してもよい複数環式基を示し、c,d,e及びfは、それぞれ1~5の整数を示し、それらが2以上の場合、R031同士,R032同士,R036同士又はR037同士は、それぞれにおいて、同一でも異なっていてもよく、またR031同士,R032同士,R033同士又はR037同士が結合して環を形成していてもよいし、R033とR034,R039とR040がたがいに結合して環を形成していてもよい。L004は単結合、-O-,-S-,-N(R)-(Rはアルキル基又は置換してもよいアリール基である)、アルキレン基又はアリーレン基を示す。)
 下記式(vii)で表されるスピロフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000021
(式中、A005~A008は、それぞれ独立に、置換もしくは無置換のビフェニリル基又は置換もしくは無置換のナフチル基である。)
 下記式(viii)で表される縮合環含有化合物。
Figure JPOXMLDOC01-appb-C000022
(式中、A011~A013は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリーレン基である。A014~A016は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数6~50のアリール基である。R041~R043は、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~6のアルコキシル基、炭素数5~18のアリールオキシ基、炭素数7~18のアラルキルオキシ基、炭素数5~16のアリールアミノ基、ニトロ基、シアノ基、炭素数1~6のエステル基又はハロゲン原子を示し、A011~A016のうち少なくとも1つは3環以上の縮合芳香族環を有する基である。)
 下記式(ix)で表されるフルオレン化合物。
Figure JPOXMLDOC01-appb-C000023
(式中、R051及びR052は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。異なるフルオレン基に結合するR051同士、R052同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR051及びR052は、同じであっても異なっていてもよい。R053及びR054は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、異なるフルオレン基に結合するR053同士、R054同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR053及びR054は、同じであっても異なっていてもよい。Ar011及びAr012は、ベンゼン環の合計が3個以上の置換あるいは無置換の縮合多環芳香族基またはベンゼン環と複素環の合計が3個以上の置換あるいは無置換の炭素でフルオレン基に結合する縮合多環複素環基を表わし、Ar011及びAr012は、同じであっても異なっていてもよい。nは、1乃至10の整数を表す。)
 本発明の有機EL素子においては、所望により発光層に、本発明の発光材料の他に、りん光性ドーパント及び/又は蛍光性ドーパントを含有してもよい。また、本発明の化合物を含む発光層に、これらのドーパントを含む発光層を積層してもよい。
 りん光性ドーパントは三重項励起子から発光することのできる化合物である。三重項励起子から発光する限り特に限定されないが、Ir、Ru、Pd、Pt、Os及びReからなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。りん光性化合物は単独で使用してもよいし、2種以上を併用してもよい。
 ポルフィリン金属錯体としては、ポルフィリン白金錯体が好ましい。
 オルトメタル化金属錯体を形成する配位子としては種々のものがあるが、好ましい配位子としては、フェニルピリジン骨格、ビピリジル骨格又はフェナントロリン骨格を有する化合物、又は2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体、2-フェニルキノリン誘導体等が挙げられる。これらの配位子は必要に応じて置換基を有してもよい。特に、フッ素化物、トリフルオロメチル基を導入したものが、青色系ドーパントとしては好ましい。さらに補助配位子としてアセチルアセトナート、ピクリン酸等の上記配位子以外の配位子を有していてもよい。
 このような金属錯体の具体例は、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等が挙げられるが、これらに限定されず、要求される発光色、素子性能、使用するホスト化合物により適切な錯体が選ばれる。
 りん光性ドーパントの発光層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1~70質量%であり、1~30質量%が好ましい。りん光性化合物の含有量が0.1質量%未満では発光が微弱でありその含有効果が十分に発揮されない恐れがあり、70質量%を超える場合は、濃度消光と言われる現象が顕著になり素子性能が低下する恐れがある。
 蛍光性ドーパントとしては、アミン系化合物、芳香族化合物、トリス(8-キノリノラート)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルアリーレン誘導体、オキサジアゾール誘導体等から、要求される発光色に合わせて化合物を選択することが好ましく、スチリルアミン化合物、スチリルジアミン化合物、アリールアミン化合物、アリールジアミン化合物がさらに好ましい。また、アミン化合物ではない縮合多環芳香族化合物も好ましい。これらの蛍光性ドーパントは単独でもまた複数組み合わせて使用してもよい。
 スチリルアミン化合物及びスチリルジアミン化合物としては、下記式(A)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000024
(式中、Ar101はp価の基であり、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、スチルベニル基、ジスチリルアリール基の対応するp価の基であり、Ar102及びAr103はそれぞれ炭素数が6~20の芳香族炭化水素基であり、Ar101、Ar102及びAr103は置換されていてもよい。Ar101~Ar103のいずれか一つはスチリル基で置換されている。さらに好ましくはAr102又はAr103の少なくとも一方はスチリル基で置換されている。pは1~4の整数であり、好ましくは1~2の整数である。)
 ここで、炭素数が6~20の芳香族炭化水素基としては、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ターフェニル基等が挙げられる。
 アリールアミン化合物及びアリールジアミン化合物としては、下記式(B)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000025
(式中、Ar111はq価の置換もしくは無置換の核炭素数5~40の芳香族基であり、Ar112,Ar113はそれぞれ置換もしくは無置換の核炭素数5~40のアリール基である。qは1~4の整数であり、好ましくは1~2の整数である。)
 ここで、核炭素数が5~40のアリール基としては、例えば、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ピレニル基、コロニル基、ビフェニル基、ターフェニル基、ピローリル基、フリル基、チエニル基、ベンゾチエニル基、オキサジアゾリル基、ジフェニルアントラニル基、インドリル基、カルバゾリル基、ピリジル基、ベンゾキノリル基、フルオランテニル基、アセナフトフルオランテニル基、スチルベン基、ペリレニル基、クリセニル基、ピセニル基、トリフェニレニル基、ルビセニル基、ベンゾアントラセニル基、フェニルアントラニル基、ビスアントラセニル基等が挙げられ、ナフチル基、アントラニル基、クリセニル基、ピレニル基が好ましい。
 なお、前記アリール基に置換する好ましい置換基としては、炭素数1~6のアルキル基(エチル基、メチル基、i-プロピル基、n-プロピル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等)、炭素数1~6のアルコキシ基(エトキシ基、メトキシ基、i-プロポキシ基、n-プロポキシ基、s-ブトキシ基、t-ブトキシ基、ペントキシ基、ヘキシルオキシ基、シクロペントキシ基、シクロヘキシルオキシ基等)、核炭素数5~40のアリール基、核炭素数5~40のアリール基で置換されたアミノ基、核炭素数5~40のアリール基を有するエステル基、炭素数1~6のアルキル基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子等が挙げられる。
 発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含有してもよい。
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、最も好ましくは10~50nmである。5nm未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、50nmを超えると駆動電圧が上昇する恐れがある。
 正孔注入層及び正孔輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい。このような正孔注入層及び正孔輸送層の材料としてはより低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10~10V/cmの電界印加時に、10-4cm/V・秒以上であれば好ましい。
 正孔注入層及び正孔輸送層の材料としては、特に制限はなく、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、有機EL素子の正孔注入層及び正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。
 正孔注入層及び正孔輸送層に、例えば、下記式で表される芳香族アミン誘導体が使用できる。
Figure JPOXMLDOC01-appb-C000026
 Ar211~Ar213、Ar221~Ar223及びAr203~Ar208はそれぞれ置換もしくは無置換の核炭素数6~50の芳香族炭化水素基、又は置換もしくは無置換の核原子数5~50の芳香族複素環基である。a~c及びp~rはそれぞれ0~3の整数である。Ar203とAr204、Ar205とAr206、Ar207とAr208はそれぞれ互いに連結して飽和もしくは不飽和の環を形成してもよい。
 置換もしくは無置換の核炭素数6~50の芳香族炭化水素基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-テルフェニル-4-イル基、p-テルフェニル-3-イル基、p-テルフェニル-2-イル基、m-テルフェニル-4-イル基、m-テルフェニル-3-イル基、m-テルフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-テルフェニル4-イル基が挙げられる。
 置換もしくは無置換の核原子数5~50の芳香族複素環基の具体例としては、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフリル基、3-ベンゾフリル基、4-ベンゾフリル基、5-ベンゾフリル基、6-ベンゾフリル基、7-ベンゾフリル基、1-イソベンゾフリル基、3-イソベンゾフリル基、4-イソベンゾフリル基、5-イソベンゾフリル基、6-イソベンゾフリル基、7-イソベンゾフリル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナントリジニル基、2-フェナントリジニル基、3-フェナントリジニル基、4-フェナントリジニル基、6-フェナントリジニル基、7-フェナントリジニル基、8-フェナントリジニル基、9-フェナントリジニル基、10-フェナントリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,9-フェナントロリン-2-イル基、1,9-フェナントロリン-3-イル基、1,9-フェナントロリン-4-イル基、1,9-フェナントロリン-5-イル基、1,9-フェナントロリン-6-イル基、1,9-フェナントロリン-7-イル基、1,9-フェナントロリン-8-イル基、1,9-フェナントロリン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル1-インドリル基、4-t-ブチル1-インドリル基、2-t-ブチル3-インドリル基、4-t-ブチル3-インドリル基が挙げられる。
 さらに、正孔注入層及び正孔輸送層に、下記式で表される化合物が使用できる。
Figure JPOXMLDOC01-appb-C000027
 Ar231~Ar234はそれぞれ置換もしくは無置換の核炭素数6~50の芳香族炭化水素基、又は置換もしくは無置換の核原子数5~50の芳香族複素環基である。Lは連結基であり、単結合、もしくは置換もしくは無置換の核炭素数6~50の芳香族炭化水素基、又は置換もしくは無置換の核原子数5~50の芳香族複素環基である。xは0~5の整数である。Ar232とAr233は互いに連結して飽和もしくは不飽和の環を形成してもよい。ここで置換もしくは無置換の核炭素数6~50の芳香族炭化水素基、及び置換もしくは無置換の核原子数5~50の芳香族複素環基の具体例としては、前記と同様のものがあげられる。
 さらに、正孔注入層及び正孔輸送層の材料の具体例としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。
 正孔注入層及び正孔輸送層の材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。
 また2個の縮合芳香族環を分子内に有する化合物、例えば4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(以下NPDと略記する)や、トリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”-トリス(N-(3-メチルフェニル)-N-フェニルアミノ)トリフェニルアミン(以下MTDATAと略記する)等を用いることが好ましい。
 この他に下記式で表される含窒素複素環誘導体も用いることができる。
Figure JPOXMLDOC01-appb-C000028
 式中、R201~R206はそれぞれ置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアラルキル基、置換もしくは無置換の複素環基のいずれかを示す。R201とR202、R203とR204、R205とR206、R201とR206、R202とR203、又はR204とR205は縮合環を形成してもよい。
 さらに、下記式の化合物も用いることができる。
Figure JPOXMLDOC01-appb-C000029
 R211~R216は置換基であり、好ましくはそれぞれシアノ基、ニトロ基、スルホニル基、カルボニル基、トリフルオロメチル基、ハロゲン等の電子吸引基である。
 また、p型Si、p型SiC等の無機化合物も正孔注入層及び正孔輸送層の材料として使用することができる。
 正孔注入層及び正孔輸送層は上述した化合物を、真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化することにより形成することができる。正孔注入層及び正孔輸送層の膜厚は特に制限はないが、通常は5nm~5μmである。正孔注入層及び正孔輸送層は上述した材料の一種又は二種以上からなる一層で構成されてもよいし、異なる化合物からなる複数の正孔注入層及び正孔輸送層を積層したものであってもよい。
 有機半導体層は発光層への正孔注入又は電子注入を助ける層であって、10-10S/cm以上の導電率を有するものが好適である。このような有機半導体層の材料としては、含チオフェンオリゴマーや含アリールアミンオリゴマー等の導電性オリゴマー、含アリールアミンデンドリマー等の導電性デンドリマー等を用いることができる。
 電子注入層及び電子輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい。また付着改善層は、特に陰極との付着が良い材料からなる電子注入層の一種である。
 電子輸送層は5nm~5μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、10~10V/cmの電界印加時に電子移動度が10-5cm/Vs以上であることが好ましい。
 電子注入層及び電子輸送層に用いられる材料としては、8-ヒドロキシキノリン又はその誘導体の金属錯体やオキサジアゾール誘導体が好適である。8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノラト)アルミニウムを挙げることができる。
 オキサジアゾール誘導体としては、以下の式で表される電子伝達化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000030
(式中、Ar301、Ar302、Ar303、Ar305、Ar306、及びAr309はそれぞれ置換又は無置換のアリール基を示す。またAr304、Ar307、Ar308はそれぞれ置換又は無置換のアリーレン基を示す。)
 ここでアリール基としてはフェニル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基等が挙げられる。また、アリーレン基としてはフェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレ基等が挙げられる。また、置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。
 上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000031
(Meはメチル基、tBuはtブチル基を示す。)
 さらに、電子注入層及び電子輸送層に用いられる材料として、下記式(E)~(J)で表されるものも用いることができる。
Figure JPOXMLDOC01-appb-C000032
(式(E)及び(F)中、A311~A313は、それぞれ窒素原子又は炭素原子である。
 Ar311は、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核原子数3~60のヘテロアリール基であり、Ar311’は、置換もしくは無置換の核炭素数6~60のアリーレン基又は置換もしくは無置換の核原子数3~60のヘテロアリーレン基であり、Ar312は、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核原子数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar311及びAr312のいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核原子数3~60のモノヘテロ縮合環基である。
 L311、L312及びL313は、それぞれ、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核原子数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
 R及びR311は、それぞれ水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核原子数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の場合、複数のRは同一でも異なっていてもよく、また、隣接するR基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環を形成していてもよい。)で表される含窒素複素環誘導体。
     HAr-L314-Ar321-Ar322  (G)
(式中、HArは、置換基を有していてもよい炭素数3~40の含窒素複素環であり、L314は、単結合、置換基を有していてもよい炭素数6~60のアリーレン基、置換基を有していてもよい原子数3~60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基であり、Ar321は、置換基を有していてもよい炭素数6~60の2価の芳香族炭化水素基であり、Ar322は、置換基を有していてもよい炭素数6~60のアリール基又は置換基を有していてもよい原子数3~60のヘテロアリール基である。)で表される含窒素複素環誘導体。
Figure JPOXMLDOC01-appb-C000033
(式中、X301及びY301は、それぞれ炭素数1~6の飽和若しくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換若しくは無置換のアリール基、置換若しくは無置換のヘテロ環又はXとYが結合して飽和又は不飽和の環を形成した構造であり、R301~R304は、それぞれ、水素、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、パーフルオロアルキル基、パーフルオロアルコキシ基、アミノ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アゾ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、スルフィニル基、スルフォニル基、スルファニル基、シリル基、カルバモイル基、アリール基、ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミル基、ニトロソ基、ホルミルオキシ基、イソシアノ基、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基又はシアノ基である。これらの基は置換されていてもよい。また、隣接した基が置換若しくは無置換の縮合環を形成してもよい。)で表されるシラシクロペンタジエン誘導体。
Figure JPOXMLDOC01-appb-C000034
(式中、R321~R328及びZ322は、それぞれ、水素原子、飽和もしくは不飽和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はアリールオキシ基を示し、X302、Y302及びZ321は、それぞれ、飽和もしくは不飽和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、アルコキシ基又はアリールオキシ基を示し、Z321とZ322は相互に結合して縮合環を形成してもよく、nは1~3の整数を示し、n又は(3-n)が2以上の場合、R321~R328、X302、Y302、Z322及びZ321は同一でも異なってもよい。但し、nが1、X302、Y302及びR322がメチル基でR328が水素原子又は置換ボリル基の化合物、及びnが3でZ321がメチル基の化合物を含まない。)で表されるボラン誘導体。
Figure JPOXMLDOC01-appb-C000035
[式中、Q301及びQ302は、それぞれ、下記式(K)で示される配位子を表し、L315は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基、-OR(Rは、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基である。)又は-O-Ga-Q303(Q304)(Q303及びQ304は、Q301及びQ302と同じ)で示される配位子を表す。]で表されるガリウム錯体。
Figure JPOXMLDOC01-appb-C000036
[式中、環A301及びA302は、それぞれ置換基を有してよい互いに縮合した6員アリール環構造である。]
 この金属錯体は、n型半導体としての性質が強く、電子注入能力が大きい。さらには、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子との結合性も強固になり、発光材料としての蛍光量子効率も大きい。
 式(K)の配位子を形成する環A301及びA302の置換基の具体的な例を挙げると、塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、エチル基、プロピル基、ブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フェニル基、ナフチル基、ビフェニル基、アントラニル基、フェナントリル基、フルオレニル基、ピレニル基、3-メチルフェニル基、3-メトキシフェニル基、3-フルオロフェニル基、3-トリクロロメチルフェニル基、3-トリフルオロメチルフェニル基、3-ニトロフェニル基等の置換もしくは無置換のアリール基、メトキシ基、n-ブトキシ基、t-ブトキシ基、トリクロロメトキシ基、トリフルオロエトキシ基、ペンタフルオロプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基、6-(パーフルオロエチル)ヘキシルオキシ基等の置換もしくは無置換のアルコキシ基、フェノキシ基、p-ニトロフェノキシ基、p-t-ブチルフェノキシ基、3-フルオロフェノキシ基、ペンタフルオロフェノキシ基、3-トリフルオロメチルフェノキシ基等の置換もしくは無置換のアリールオキシ基、メチルチオ基、エチルチオ基、t-ブチルチオ基、ヘキシルチオ基、オクチルチオ基、トリフルオロメチルチオ基等の置換もしくは無置換のアルキルチオ基、フェニルチオ基、p-ニトロフェニルチオ基、p-t-ブチルフェニルチオ基、3-フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3-トリフルオロメチルフェニルチオ基等の置換もしくは無置換のアリールチオ基、シアノ基、ニトロ基、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基等のモノ又はジ置換アミノ基、ビス(アセトキシメチル)アミノ基、ビス(アセトキシエチル)アミノ基、ビス(アセトキシプロピル)アミノ基、ビス(アセトキシブチル)アミノ基等のアシルアミノ基、水酸基、シロキシ基、アシル基、カルバモイル基、メチルカルバモイル基、ジメチルカルバモイル基、エチルカルバモイル基、ジエチルカルバモイル基、プロイピルカルバモイル基、ブチルカルバモイル基、フェニルカルバモイル基等の置換もしくは無置換のカルバモイル基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロヘキシル基等のシクロアルキル基、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリニル基、キノリニル基、アクリジニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリニル基、ピペラジニル基、カルバゾリル基、フラニル基、チオフェニル基、オキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる6員アリール環もしくは複素環を形成してもよい。
 有機EL素子の好ましい形態では、電子を輸送する領域又は陰極と有機層の界面領域に、還元性ドーパントを含有する。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は希土類金属のハロゲン化物、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、希土類金属の炭酸塩、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。
 また、具体的に、好ましい還元性ドーパントとしては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)及びCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0~2.5eV)、及びBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる。仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、Rb及びCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、Rb又はCsであり、最も好ましくは、Csである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
 陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けてもよい。このような層により、電流のリークを有効に防止して、電子注入性を向上させることができる。電子注入層が絶縁性薄膜であれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。
 絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができ好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、LiO、KO、NaS、NaSe及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS、及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、CsF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、電子注入層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物は、微結晶又は非晶質の絶縁性薄膜であることが好ましい。
 陰極としては、仕事関数の小さい(例えば、4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、セシウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、Al/LiO、Al/LiO、Al/LiF、アルミニウム・リチウム合金、インジウム、希土類金属等が挙げられる。
 陰極はこれらの電極物質から蒸着やスパッタリング等により作製できる。
 発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、さらに、膜厚は通常10nm~1μm、好ましくは50~200nmである。
 一般に、有機EL素子は、超薄膜に電界を印加するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入してもよい。
 絶縁層に用いる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。これらの混合物や積層物を用いてもよい。
 有機EL素子を作製する方法については、例えば上記の材料及び方法により、陽極から、必要な層を順次形成し、最後に陰極を形成すればよい。また、陰極から陽極へ、逆の順序で有機EL素子を作製することもできる。
 以下、透光性基板上に、陽極/正孔注入層/発光層/電子注入層/陰極が順次設けられた構成の有機EL素子の作製例について説明する。
 まず、透光性基板上に、陽極材料からなる薄膜を蒸着法あるいはスパッタリング法により形成し、陽極とする。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、その蒸着条件は使用する化合物(正孔注入層の材料)、目的とする正孔注入層の構造等により異なるが、一般に蒸着源温度50~450℃、真空度10-7~10-3Torr、蒸着速度0.01~50nm/秒、基板温度-50~300℃で適宜選択することが好ましい。
 次に、正孔注入層上に発光層を設ける。発光層の形成も、真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により、発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔注入層の形成と同様な条件範囲の中から選択することができる。
 次に、発光層上に電子注入層を設ける。この場合にも正孔注入層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔注入層、発光層と同様の条件範囲から選択することができる。
 そして、最後に陰極を積層して有機EL素子を得ることができる。陰極は蒸着法、スパッタリングにより形成できる。下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
 以上の有機EL素子の作製は、一回の真空引きで、一貫して陽極から陰極まで作製することが好ましい。
 有機EL素子の各層の形成方法は特に限定されない。本発明の化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは本発明の化合物を溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
[実施例]
 以下、実施例を説明するが、本発明はこれらの実施例によって限定されない。有機EL素子の評価は下記の通りである。
(1)初期性能:輝度計(ミノルタ社製分光輝度放射計CS-1000)で10mA/cm時の発光輝度値とCIE1931色度座標を測定し発光効率を求めた。
(2)寿命:1000cd/mの初期輝度で定電流駆動し、輝度の半減期、及び色度の変化で評価した。
[実施例1]
(1)ベンズアントラセン化合物の合成
Figure JPOXMLDOC01-appb-C000037
 1L四つ口フラスコに2-ブロモナフタレン8.28g(40.0mmol)を投入し、減圧とアルゴンガスによる復圧を3回繰り返し、系内をアルゴン置換した。次いで、乾燥テトラヒドロフラン60mlを加え攪拌して、完全に溶解した後、ドライアイス/アセトンバスで、-65℃前後に冷却し、n-ブチルリチウム1.57Mへキサン溶液25ml(40.0mmol)を約20分かけて滴下した。2時間、-65℃で反応を続けた後、ベンズアントラキノン10.3g(40.0mmol)/乾燥テトラヒドロフラン150mlの溶液を30分かけて滴下した。その後、-65℃で2時間程度反応し、次いで、室温まで昇温し2時間反応した。翌日、1N塩酸を50ml添加し、反応を停止し、次いで、酢酸エチル/水で反応溶液を抽出処理し、有機層にNaSOを加え1時間攪拌して乾燥した後に濃縮した。得られた固体に、ヘキサン/酢酸エチル=1/1溶液50mlを加え、析出物をろ取し、真空乾燥した(中間体1:収量12.4g、収率80.0%、HPLC純度98.3%)。
 1Lフラスコに、1-(4-ブロモ-フェニル)-ナフタレン9.06g(32mmol)を投入し、減圧とアルゴンガスによる復圧を3回繰り返し、系内をアルゴン置換した。次いで、乾燥テトラヒドロフラン60mlを加え攪拌して、完全に溶解した後、ドライアイス/アセトンバスで、-65℃前後に冷却し、n-ブチルリチウム1.57Mへキサン溶液20ml(32.0mmol)を約20分かけて滴下した。2時間、-65℃で反応を続けた後、中間体1 12.4g(32.0mmol)/乾燥テトラヒドロフラン150mlの溶液を30分かけて滴下した。その後、-65℃で2時間程度反応し、次いで、室温まで昇温し2時間反応した。翌日、1N塩酸を50ml添加し、反応を停止し、次いで、酢酸エチル/水で反応溶液を抽出処理し、有機層にNaSOを加え1時間攪拌して乾燥した後に濃縮した。得られた固体に、ヘキサン/酢酸エチル=1/1溶液50mlを加え、析出物をろ取し、真空乾燥した(中間体2:収量14.8g、収率78.1%、HPLC純度99.3%)。
 1Lフラスコに中間体2 14.8g(25.1mmol)、ヨウ化カリウム10.4g(62.8mmol)、NaPH・HO 3.33g(31.4mmol)を投入してから、アルゴンガスで系内を置換してから、酢酸300mlを添加した。次いで、オイルバスで加熱し80℃で、8時間反応した。翌日、析出物をろ取し、酢酸、メタノール、水で洗浄処理後、真空乾燥しH-1を得た(収量8.57g、収率61.3%)。
 次いで、特開2007-77078に記載の方法に準じてハロゲン含有量の低減処理を行った(収量6.52g、HPLC純度99.9%、FD-MS:556.69)。
(2)有機EL素子の製造
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして、正孔注入層として膜厚60nmの下記の化合物A-1を成膜した。A-1膜の成膜に続けて、このA-1膜上に正孔輸送層として膜厚20nmの下記の化合物A-2を成膜した。
 さらに、このA-2膜上に膜厚40nmで本発明の化合物H-1とジアミン誘導体D-1を40:2の膜厚比で成膜し青色系発光層とした。H-1はホスト、D-1はドーパントとして機能する。
 この膜上に電子輸送層として膜厚20nmで下記の化合物Alqを蒸着により成膜した。この後、LiFを膜厚1nmで成膜した。このLiF膜上に金属Alを150nm蒸着させ金属陰極を形成し有機EL発光素子を形成した。
Figure JPOXMLDOC01-appb-C000038
 得られた有機EL素子について初期性能(色度、発光効率)、寿命を評価した。結果を表1に示す。表から、青色色度のよい発光が得られたことが分かる。
[実施例2~39]
 実施例1において、H-1及び/又はD-1を表1及び表2に示す下記化合物に変えた他は、実施例1と同様に素子を作成し評価した。結果を表1及び表2に示す。
 尚、ベンズアントラセン化合物の合成は、合成ルート(2)~(4)に従い実施した。
Figure JPOXMLDOC01-appb-C000039
Ar,Ar’:アリール基
Arがブロモ化され難い基の場合は、(4)の合成ルートでも合成可能である。
Figure JPOXMLDOC01-appb-C000040
[比較例1~3]
(1)ベンズアントラセン化合物の合成
 実施例1と同様に、定法に従い合成した。
Figure JPOXMLDOC01-appb-C000041
(2)有機EL素子の製造
 実施例1において、H-1及びD-1を表2の化合物に変えた他は、実施例1と同様に素子を作成し評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
 表1及び表2から判るように、本発明の化合物を発光材料として用いると、色度の良い青色発光が得られ、素子の半減寿命も従来の化合物よりも長くなる。
[実施例40-45、比較例4-6]
 発光層のドーパント材料、ホスト材料を表3に示す化合物に変更した以外は、実施例1と同様に有機EL素子を作製した。結果を表3に示す。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-T000045
 表3から判るように、本発明の化合物を発光材料として用いると、色純度の良い緑色発光も得られ、素子の半減寿命も従来の化合物よりも長くなることが判る。
 本発明のベンズアントラセン化合物は、有機EL素子の発光材料として使用できる。また、本発明の有機EL素子は、平面発光体やディスプレイのバックライト等の光源、携帯電話、PDA、カーナビゲーション、車のインパネ等の表示部、照明等に好適に使用できる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (8)

  1.  下記式(1)又は(1)’の構造を少なくとも一部として有する化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、FAは縮合芳香族環であり、Arは芳香族基である。)
  2.  下記式(2)の構造を少なくとも一部として有する化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、ArとAr’はそれぞれ芳香族基であり、ArとAr’が同じときはベンズアントラセン骨格の中心点を軸として回転対称ではない。ただし、ArとAr’が共に無置換の2-ナフチル基であって、フェニル基のパラ位に結合する化合物は除く。)
  3.  下記式(3)の構造を少なくとも一部として有する化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、FAとFA’はそれぞれ2環又は3環の縮合芳香族環であり、FAとFA’が同じときはベンズアントラセン骨格の中心点を軸として回転対称ではない。ただし、FAとFA’が共に無置換の2-ナフチル基である化合物及びFAとFA’が共に9,9-ジメチル-2-フルオレニル基である化合物は除く。)
  4.  請求項1~3のいずれかに記載の化合物からなる発光材料。
  5.  陽極及び陰極と、
     前記陽極及び陰極の間に挟持されている、発光層を含む1以上の有機薄膜層とを有し、
     前記有機薄膜層の少なくとも一層が、請求項1~3のいずれかに記載の化合物を含有する有機エレクトロルミネッセンス素子。
  6.  前記化合物を含有する層が、さらに、りん光性ドーパント及び蛍光性ドーパントの少なくとも1つを含有する請求項5記載の有機エレクトロルミネッセンス素子。
  7.  前記蛍光性ドーパントが、アリールアミン化合物及びスチリルアミン化合物の少なくとも1つである請求項6記載の有機エレクトロルミネッセンス素子。
  8.  前記りん光性ドーパントが、金属錯体である請求項6又は7記載の有機エレクトロルミネッセンス素子。
PCT/JP2008/072688 2007-12-20 2008-12-12 ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子 WO2009081776A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009547040A JPWO2009081776A1 (ja) 2007-12-20 2008-12-12 ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子
US12/809,541 US8563969B2 (en) 2007-12-20 2008-12-12 Benzanthracene compound and organic electroluminescence device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-329354 2007-12-20
JP2007329354 2007-12-20

Publications (1)

Publication Number Publication Date
WO2009081776A1 true WO2009081776A1 (ja) 2009-07-02

Family

ID=40801082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072688 WO2009081776A1 (ja) 2007-12-20 2008-12-12 ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US8563969B2 (ja)
JP (1) JPWO2009081776A1 (ja)
TW (1) TW200936536A (ja)
WO (1) WO2009081776A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074252A1 (ja) * 2009-12-16 2011-06-23 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20210064078A (ko) 2019-11-22 2021-06-02 가꼬우 호징 관세이 가쿠잉 유기전계 발광소자 및 벤즈안트라센 화합물
WO2021132535A1 (ja) * 2019-12-27 2021-07-01 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021241738A1 (ja) * 2020-05-29 2021-12-02 出光興産株式会社 混合物、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法及び電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268459B2 (en) * 2007-11-29 2012-09-18 Idemitsu Kosan Co., Ltd. Benzanthracene compound and organic electroluminescence device using the same
WO2009081774A1 (ja) * 2007-12-20 2009-07-02 Idemitsu Kosan Co., Ltd. ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178548A (ja) * 1998-12-16 2000-06-27 Toppan Printing Co Ltd 発光材料
JP2001335516A (ja) * 1999-11-08 2001-12-04 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2005041843A (ja) * 2003-07-25 2005-02-17 Mitsui Chemicals Inc 非対称置換アントラセン化合物、および該非対称置換アントラセン化合物を含有する有機電界発光素子
JP2007277113A (ja) * 2006-04-03 2007-10-25 Idemitsu Kosan Co Ltd ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
JP2007308477A (ja) * 2006-04-20 2007-11-29 Canon Inc 化合物および有機発光素子
JP2008063240A (ja) * 2006-09-05 2008-03-21 Mitsui Chemicals Inc アントラセン化合物の製造方法
WO2008145239A2 (de) * 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
JP2008303365A (ja) * 2007-06-11 2008-12-18 Toppan Printing Co Ltd 蛍光材料、発光インク組成物および有機el素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053255B2 (en) 2000-11-08 2006-05-30 Idemitsu Kosan Co., Ltd. Substituted diphenylanthracene compounds for organic electroluminescence devices
JP5164389B2 (ja) * 2006-03-28 2013-03-21 キヤノン株式会社 有機発光素子用アミノ化合物およびそれを有する有機発光素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178548A (ja) * 1998-12-16 2000-06-27 Toppan Printing Co Ltd 発光材料
JP2001335516A (ja) * 1999-11-08 2001-12-04 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2005041843A (ja) * 2003-07-25 2005-02-17 Mitsui Chemicals Inc 非対称置換アントラセン化合物、および該非対称置換アントラセン化合物を含有する有機電界発光素子
JP2007277113A (ja) * 2006-04-03 2007-10-25 Idemitsu Kosan Co Ltd ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
JP2007308477A (ja) * 2006-04-20 2007-11-29 Canon Inc 化合物および有機発光素子
JP2008063240A (ja) * 2006-09-05 2008-03-21 Mitsui Chemicals Inc アントラセン化合物の製造方法
WO2008145239A2 (de) * 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
JP2008303365A (ja) * 2007-06-11 2008-12-18 Toppan Printing Co Ltd 蛍光材料、発光インク組成物および有機el素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SELIGER, H.H. ET AL.: "Chemical production of excited states. Chemiluminescence of carcinogenic hydrocarbons accompanying their metabolic hydroxylation and a proposal for common active site geometries for hydroxylation", JOURNAL OF PHYSICAL CHEMISTRY, vol. 80, no. 20, 1976, pages 2296 - 2306, XP008133513 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074252A1 (ja) * 2009-12-16 2011-06-23 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
CN102239141A (zh) * 2009-12-16 2011-11-09 出光兴产株式会社 芳香族胺衍生物和使用其的有机电致发光元件
JPWO2011074252A1 (ja) * 2009-12-16 2013-04-25 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5587302B2 (ja) * 2009-12-16 2014-09-10 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US9331285B2 (en) 2009-12-16 2016-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
US9923146B2 (en) 2009-12-16 2018-03-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
KR20210064078A (ko) 2019-11-22 2021-06-02 가꼬우 호징 관세이 가쿠잉 유기전계 발광소자 및 벤즈안트라센 화합물
WO2021132535A1 (ja) * 2019-12-27 2021-07-01 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021241738A1 (ja) * 2020-05-29 2021-12-02 出光興産株式会社 混合物、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法及び電子機器

Also Published As

Publication number Publication date
US8563969B2 (en) 2013-10-22
TW200936536A (en) 2009-09-01
US20110297918A1 (en) 2011-12-08
JPWO2009081776A1 (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5473600B2 (ja) クリセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5443996B2 (ja) ベンゾフェナントレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5399920B2 (ja) 縮合芳香族誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5539728B2 (ja) ベンゾクリセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101353635B1 (ko) 벤조크리센 유도체 및 이것을 사용한 유기 전계 발광 소자
EP2085382B1 (en) Aromatic amine derivative and organic electroluminescent element using the same
JP5335691B2 (ja) ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP5635775B2 (ja) モノベンゾクリセン誘導体、及びそれを含む有機エレクトロルミネッセンス素子用材料、並びにそれを用いた有機エレクトロルミネッセンス素子
WO2010098458A1 (ja) 有機エレクトロルミネッセンス素子
KR20140056245A (ko) 안트라센 유도체, 발광 재료 및 유기 전기발광 소자
JPWO2008156052A1 (ja) 多環系環集合化合物及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2009069602A1 (ja) ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009154207A1 (ja) アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2009133917A1 (ja) アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2009081776A1 (ja) ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2010030973A (ja) スチルベン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2009142230A1 (ja) アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009224604A (ja) 有機エレクトロルミネッセンス材料含有溶液、及びそれを用いた有機エレクトロルミネッセンス材料薄膜の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547040

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12809541

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08865314

Country of ref document: EP

Kind code of ref document: A1