WO2009081729A1 - ハイブリッドシステムの制御方法 - Google Patents

ハイブリッドシステムの制御方法 Download PDF

Info

Publication number
WO2009081729A1
WO2009081729A1 PCT/JP2008/072375 JP2008072375W WO2009081729A1 WO 2009081729 A1 WO2009081729 A1 WO 2009081729A1 JP 2008072375 W JP2008072375 W JP 2008072375W WO 2009081729 A1 WO2009081729 A1 WO 2009081729A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
clutch
electric
engine
speed
Prior art date
Application number
PCT/JP2008/072375
Other languages
English (en)
French (fr)
Inventor
Takashi Imaseki
Original Assignee
Bosch Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corporation filed Critical Bosch Corporation
Priority to CN2008801225912A priority Critical patent/CN101903230B/zh
Priority to JP2009547020A priority patent/JPWO2009081729A1/ja
Priority to EP08864395.2A priority patent/EP2226228A4/en
Priority to US12/809,949 priority patent/US20100273604A1/en
Publication of WO2009081729A1 publication Critical patent/WO2009081729A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0425Bridging torque interruption
    • F16H2061/0433Bridging torque interruption by torque supply with an electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a hybrid system control method for reducing torque loss caused by a shift shock or a time lag that occurs when shifting a transmission in an axle split type hybrid system, for example.
  • a transmission is arranged between an engine and a drive wheel, and a motor is further arranged on one shaft of the transmission so that the vehicle is driven by engine torque fluctuation that occurs when the transmission is switched.
  • a method for preventing force drop by torque correction by the motor is disclosed. Specifically, the engine output shaft torque is detected, the amount of fluctuation in the driving force of the vehicle is calculated, and the amount of fluctuation in the driving force of the vehicle is corrected by torque correction means using a motor. That is, torque compensation by the motor is executed during this time period in order to avoid a state in which the engine output torque that is temporarily transmitted when switching gears during shifting is not transmitted.
  • the purpose is to suppress fluctuations in engine output torque, and a method for detecting fluctuations in engine output torque and applying motor torque to suppress the fluctuations is taken.
  • a problem that it was not supposed to suppress fluctuations. For example, a change in output shaft torque due to a change in inertia at the time of a shift does not have an effect even if the change in the engine output torque is detected and corrected with the motor torque.
  • the present invention has been made in view of the above-described facts, and even when an automatic transmission has a gear change or an automatic transmission having a large shift shock / time lag mechanically, torque loss due to the shift shock or time lag is eliminated. It is an object of the present invention to provide a hybrid system control method that can be reduced.
  • the hybrid system includes an internal combustion engine for driving the vehicle, and a rotational speed of the internal combustion engine that is a plurality of speed ratios.
  • a first electric torque control step for controlling the electric means, and for compensating for an increase or a decrease in the vehicle driving torque due to the rotational inertia of the engine while the clutch means is controlled to be engaged in a half-clutch state.
  • a second electric torque control step for controlling the electric means so as to output the torque.
  • the clutch means when the clutch means is started to be engaged in the half-clutch state, torque for compensating for a decrease in the vehicle driving torque is output, and then the clutch means is controlled to be engaged in the half-clutch state. In the meantime, torque is output to compensate for the increase or decrease in vehicle drive torque caused by engine rotation inertia, so that not only torque is prevented during clutch switching, but vehicle drive by engine rotation inertia is also performed. Torque fluctuation can be suppressed, and thus sudden fluctuation of the vehicle G can be prevented.
  • the first electric torque control step includes a step of increasing the torque of the electric means to compensate for a decrease in the vehicle driving torque.
  • the second electric torque control step includes a step of controlling the torque of the electric means to a predetermined value or less in order to compensate for an increase in the vehicle driving torque due to the rotational inertia of the engine.
  • the torque of the electric means is controlled to increase by a predetermined magnitude over a predetermined time.
  • the torque of the electric means is controlled to zero or negative.
  • it further includes a third electric torque control step of increasing the torque of the electric means when the clutch means is completely engaged, and attenuating with a predetermined time constant after the torque is increased.
  • it further includes an engine output reduction step of performing control so as to reduce the output of the engine when the clutch means is controlled to be engaged in a half-clutch state during the upshift.
  • the first electric torque control step includes a step of increasing the torque of the electric means to compensate for a decrease in the vehicle driving torque.
  • the second electric torque control step compensates for a decrease in the vehicle driving torque due to the rotational inertia of the engine, so that the electric motor is driven with a predetermined time constant from the torque increased in the first electric torque control step. Control is performed to attenuate the torque of the means. More preferably, in the second electric torque control step, the torque of the electric means is attenuated so as to be smoothly connected to a torque increase amount generated when the clutch means is completely engaged.
  • it further includes an engine output increasing step of controlling to increase the output of the engine when the clutch means is controlled to be engaged in a half-clutch state during the downshift.
  • FIG. 1 is a block diagram showing a hybrid system control method according to an embodiment of the present invention and a schematic diagram of a vehicle to which the hybrid system control method is applied.
  • FIG. 2 is a main flowchart showing the flow of the control method of the hybrid system according to the embodiment of the present invention.
  • FIGS. 3A and 3B are diagrams for explaining the operation during the upshift of the transmission, in which FIG. 3A is a shift clutch operation, FIG. 3B is an engine torque control operation, FIG. 3C is a change in engine speed, ) Shows a change in AT output shaft torque, (e) shows a change in motor output shaft torque, and (f) shows a change in vehicle driving torque.
  • FIGS. 3A and 3B are diagrams for explaining the operation during the upshift of the transmission, in which FIG. 3A is a shift clutch operation, FIG. 3B is an engine torque control operation, FIG. 3C is a change in engine speed, ) Shows a change in AT output shaft torque, (e) shows a
  • FIG. 4A and 4B are diagrams for explaining the operation during a downshift of the transmission, in which FIG. 4A is a shift clutch operation, FIG. 4B is an engine torque control operation, FIG. 4C is a change in engine speed, and FIG. ) Shows a change in AT output shaft torque, (e) shows a change in motor output shaft torque, and (f) shows a change in vehicle driving torque.
  • FIG. 1 shows a vehicle 10 to which a hybrid system control method according to a first embodiment of the present invention is applied, and a control system of the vehicle 10 that enables control of the hybrid system.
  • the vehicle 10 is a four-wheel drive hybrid vehicle in which an electric axle unit is disposed on a driven wheel shaft of an existing two-wheel drive vehicle, and is configured with a minimum of vehicle modifications.
  • the starter motor 14 the first drive system 17 for transmitting the driving force of the internal combustion engine to the axles of the front wheels 20L, 20R, the battery 24, and the axles of the rear wheels 22L, 22R for supplying electric power.
  • the second drive system 27 is provided.
  • the first drive system 17 includes an automatic transmission 18 that is an automatic transmission (AT) or an automated manual transmission (AMT), and the transmission 18 reduces the engine output to a low speed side (for example, first speed) / A clutch element 16 is provided for switching to either the high speed side (for example, second speed) gear ratio or the neutral state.
  • the output shaft of the engine 12 is connected to the input shaft 31 of the transmission 18, and the input shaft 31 is connected to the input side of the clutch element 16.
  • the output shaft (AT output shaft) of the transmission 18 is linked to the axles of the front wheels 20R and 20L.
  • the second drive system 27 includes a main motor 26 powered by the battery 24 and a differential gear 28 provided on the rear wheel axle.
  • the electric power from the main motor 26 is transmitted to the rear wheel axle via the differential gear 28.
  • the main motor 26 can generate power during the regeneration sequence to charge the battery 24.
  • the control system of the vehicle 10 includes an engine controller 38 that executes control necessary for controlling the engine, and an AT / AMT controller that controls the transmission 18 including the engagement and release of the clutch element 16.
  • a battery controller 48 for controlling charging / discharging of the battery 24
  • an inverter 46 for controlling the number of rotations of the main motor 26, and the controller and inverter described above are managed and command-controlled.
  • a hybrid controller 50 for executing the hybrid control method according to the embodiment.
  • the control system of the vehicle 10 includes an accelerator opening sensor 64 that detects the accelerator opening, and a vehicle speed sensor 66 that detects the vehicle speed.
  • FIG. 1 shows a functional block diagram of the hybrid controller 50.
  • the hybrid controller 50 includes a battery SOC determination means 52 that determines the state of charge (SOC) of the battery 24 based on a signal from the battery controller 48, and an accelerator opening from the accelerator opening sensor 64.
  • SOC state of charge
  • a vehicle drive torque request value calculation means 51 for calculating a torque request value for driving the vehicle, and a vehicle drive torque request value calculation
  • An electric travel (E-drive) mode control command generating means 53 for outputting a torque command value to the main motor 26 in the electric travel (E-drive) mode based on the output value from the means 51, and a vehicle drive torque request value calculation Based on the output value from the means 51, the engine 12 in the HEV-drive mode and A hybrid driving (HEV-drive) mode control command generating means 54 for generating a torque command value to the in-motor 26, an electric driving mode control command generating means 53, and a motor 26 from at least one of the hybrid driving mode control command generating means 54.
  • E-drive electric travel
  • HEV-drive hybrid driving
  • Motor torque command generating means 55 for generating a torque command signal to the inverter 46 for realizing a torque command value for the engine 46, and an engine controller for realizing a torque command value for the engine 12 from the hybrid travel mode control command generating means 54
  • An engine controller for instructing start and stop of the engine based on an engine torque command value from an engine torque command generating means 56 for generating a torque command signal to the engine 38 and a hybrid running (HEV-drive) mode control command generating means 54
  • Engine star that commands and controls 38 Based on information from the start / stop mode control command generating means 57 and the engine start / stop mode control command generating means 57, the AT / AMT controller 60 is commanded to control the engagement / release of the clutch element 16 and the transmission mode of the transmission 18.
  • Clutch engaging mode / AT shift mode control command generating means 58 for controlling.
  • the AT / AMT controller 60 stores a shift pattern map 61 for determining a gear ratio based on the vehicle speed and the engine torque command generated by the engine torque command generating means 56, and based on the shift pattern map 61.
  • Clutch shift sequence control generating means 62 for generating a shift sequence for switching the transmission 18 by controlling the clutch element 16 and for increasing or decreasing the engine torque in accordance with the gear ratio determined based on the shift pattern map 61
  • the time of upshift is determined, and a torque correction command to the inverter 46 is generated so as to correct the motor torque.
  • Upshift mode Downshift that generates a torque correction command to the inverter 46 so as to determine the downshift time based on the shift sequence generated by the torque correction control generation means 64 and the clutch shift sequence control generation means 62 and to correct the motor torque.
  • Hour motor torque correction control generating means 65 Hour motor torque correction control generating means 65.
  • the clutch engagement control at the time of upshift is executed as shown in FIG.
  • FIG. 3A shows an example in which the clutch element 16 is controlled from a state in which the clutch element 16 is engaged with the first speed gear to a state in which the clutch element 16 is engaged with the second speed gear, for example.
  • the first speed gear engagement state is initially maintained (section 100).
  • the clutch pressure is suddenly increased to engage the second speed gear (section 101), and the half-clutch state is established (section 102), and then the half-clutch state is gradually strengthened in the engagement direction ( Section 103).
  • the engine torque is controlled as shown in FIG. 3 (b). That is, during the first-speed clutch engagement (section 100 in FIG. 3A), the engine torque is decreased very slowly until the section 108 when the half-clutch control is started (section 107).
  • the engine torque is rapidly reduced (section 109), and is controlled to a constant engine torque during the half-clutch state (section 110).
  • the engine torque is increased (section 111).
  • the engagement of the second speed clutch is started (section 105)
  • the engine torque is controlled to an engine torque appropriate for the second speed (section 112), and then decreases very slowly as the rotation speed increases (section 112).
  • Section 113 Section 113).
  • the engine speed changes as shown in FIG. 3 (c) in accordance with the shift clutch operation in FIG. 3 (a) and the engine torque reduction control in FIG. 3 (b).
  • the engine speed increases slowly (section 114), and this increasing tendency continues until the half-clutch control is started (section 115), and the half-clutch control starts.
  • the engine speed starts decreasing (section 116), and during the half-clutch control (sections 103 and 104), the engine speed continues to decrease (sections 117 and 118).
  • the decreasing tendency of the engine speed in the section 117 is further strengthened not only by the upshift but by the engine torque reduction control of FIG.
  • the second-speed clutch engagement is started (section 105)
  • the engine speed starts to increase (section 119).
  • the engine speed slowly increases during the second speed clutch engagement state (section 120).
  • the output shaft torque (AT output shaft torque) of the transmission 18 changes as shown in FIG. That is, the AT output shaft torque also decreases very slowly in response to the engine torque being slowly decreased during the first speed clutch engagement state (section 121).
  • the shift stage section 101 in FIG. 3 (a)
  • the half-clutch control of the second-speed clutch is started
  • the engine torque transmission path is momentarily disconnected by the shift lag.
  • the output shaft torque rapidly decreases (section 122).
  • the AT output shaft torque rapidly increases and then decreases somewhat (section 123).
  • the AT output shaft torque is influenced by the engine rotation inertia and conversely increases (section 124). While starting to increase (section 111 in FIG. 3B), the AT output shaft torque further increases (section 125). Next, the engagement control of the second speed clutch is started (section 105), and when the engine rotation change is finished, the AT output shaft torque decreases rapidly (section 126), and then decreases very slowly (section). 128).
  • the clutch engagement control at the time of downshift is executed as shown in FIG.
  • FIG. 4A shows an example in which the clutch element 16 is controlled from a state in which the clutch element 16 is engaged with a third speed gear to a state in which the clutch element 16 is engaged with a second speed gear.
  • the third speed gear engagement state is initially maintained (section 150).
  • the clutch pressure is suddenly increased to engage the second speed gear (section 151), the half clutch state is established (section 152), and then the half clutch state is gradually increased to the engaged state (section 153).
  • the engine torque is controlled as shown in FIG. 4B in accordance with the shift clutch operation of FIG. That is, during the third speed clutch engagement (section 150 in FIG. 4A), the engine torque is decreased very slowly (section 157) until the section 158 when the half-clutch control is started.
  • the engine torque is rapidly increased (section 159), and is controlled to a constant engine torque during the half-clutch state (section 160).
  • the engine torque is decreased (section 161).
  • the second-speed clutch engagement is started (section 155)
  • the engine torque is controlled to an engine torque appropriate for the second speed (section 162), and then decreases very slowly as the rotation speed increases (section 162). Section 163).
  • the engine speed changes as shown in FIG. 4 (c) in accordance with the shift clutch operation in FIG. 4 (a) and the engine torque increase control in FIG. 4 (b).
  • the engine speed increases slowly (section 164), and this increasing tendency continues until the half clutch control is started (section 165), and the half clutch control starts.
  • the engine speed starts increasing (section 166), and during the half-clutch control (sections 153 and 154), the engine speed continues to increase (sections 167 and 168).
  • the increasing tendency of the engine speed in the section 167 is further strengthened not only by the downshift but also by the engine torque increase control of FIG. 4B.
  • the second-speed clutch engagement is started (section 155)
  • the increase in the engine speed is ended (section 169).
  • the engine speed is maintained substantially constant during the second speed clutch engagement state (section 170).
  • the output shaft torque (AT output shaft torque) of the transmission 18 changes as shown in FIG. 4 (d). That is, the AT output shaft torque also decreases very slowly (section 171) in response to the engine torque being slowly decreased during the third-speed clutch engagement state.
  • the shift stage (section 151 in FIG. 4 (a)) in which the 3-speed clutch is released and the half-clutch control of the 2-speed clutch is started the transmission path of the engine torque is momentarily interrupted by the shift lag.
  • the output shaft torque rapidly decreases (section 172).
  • the AT output shaft torque starts to slightly increase (section 173), but remains in a torque-down state due to the influence of the engine rotation inertia (section 174).
  • the AT output shaft torque starts to increase rapidly upon completion of the engine rotation change (section 175).
  • the engagement control of the second speed clutch is started (section 155)
  • the AT output shaft torque maintains a substantially constant value (section 176).
  • FIG. 2 The flow of processing based on the control method for reducing the transmission shift shock / time lag in the axle split type hybrid system according to the first embodiment described above is shown in FIG. 2 with reference to FIGS. It demonstrates along a flowchart.
  • step 200 it is determined whether the gear ratio of the transmission 18 has been upshifted or downshifted after the vehicle 10 is started or during travel (step 200). If it is determined that the shift is an upshift, the low-speed gear clutch is released in the transmission 18 (step 202), and control for engaging the high-speed gear clutch is started (step 204).
  • step 204 as described above with reference to FIG. 3A, half-clutch control is performed to the high-speed side gear.
  • the half-clutch control is started (section 101 in FIG. 3A)
  • the AT output shaft torque is rapidly reduced by the shift lag (section 122 in FIG. 3D). Therefore, in the embodiment of the present invention, control is performed to instantaneously increase the output shaft torque of the motor 26 (FIG.
  • step 208 it is determined whether or not the clutch to the high speed side gear is a half clutch (step 208). If the clutch is not yet half clutch (No at Step 208), the process waits as it is, and if the clutch is half clutch (Yes at Step 208), the motor torque is reduced to zero or minus (Step 210).
  • the torque increase control from step 206 to step 210 is executed as shown in FIG. That is, during the first-speed clutch engagement (section 100 in FIG. 3A), the motor output shaft torque is maintained at a constant value (section 128). At the time of upshifting, the motor output shaft torque is instantaneously increased (section 129 in FIG. 3E) to compensate for torque reduction due to the shift lag (section 122 in FIG. 3D). When the clutch is in a half-clutch state (section 102 in FIG. 3A) and the AT output shaft torque increases (section 123 in FIG. 3D), the motor torque is reduced to zero or minus (FIG. 3E). Section 130). Therefore, as shown in FIG.
  • the driving torque for actually driving the vehicle is such that torque reduction 136 due to the shift lug occurs in the conventional torque torque curve (solid line 138).
  • torque torque curve (broken line 135) according to the example, such torque loss can be reduced by the motor torque instantaneous increase control.
  • step 212 control of the motor torque to zero or minus in step 210 is continued until the high-speed side clutch is completely engaged (determination of step 212). That is, as shown in a section 131 in FIG. 3E, the motor output shaft torque is controlled over a certain period of time so as to maintain a zero or negative value. In this section, torque is increased due to the engine speed inertia of the engine speed (section 124 in FIG. 3 (d)). However, since the motor acts as a rotational load by the control of step 210, the vehicle is actually driven. As shown in FIG. 3 (f), the driving torque for the vehicle is suppressed from changing to the torque increasing side in the section corresponding to the section 131 shown in FIG. 3 (e).
  • step 212 when the half-clutch of the high-speed side gear clutch is finished and the high-speed side gear clutch is completely engaged (Yes at step 212), the motor torque is instantaneously increased by a preset amount (FIG. 3). Thereafter, the control is performed so as to attenuate with a predetermined time constant (section 134 in FIG. 3E) (step 214).
  • torque reduction (section 126 in FIG. 3 (d)) occurs due to the end of the engine speed change as shown in FIG. 3 (d).
  • FIG. 3 (f) in the conventional torque curve at the time of shifting that does not execute step 214, the vehicle driving torque has a large slope torque reduction indicated by 137, and the high-speed gear side clutch is completely engaged. It was not possible to smoothly connect to the torque 138 generated later.
  • the torque reduction is reduced by the instantaneous increase control of the motor torque as shown by the broken line 135 in FIG. It is possible to smoothly connect to the torque generated after the clutch is completely engaged.
  • the torque down reduction control described above can achieve a smooth torque change even during a shift and enjoy a comfortable driving.
  • step 200 If it is determined in step 200 that the gear ratio of the transmission 18 has been downshifted, the high-speed gear clutch is released in the transmission 18 (step 220), and control for engaging the low-speed gear clutch is started (step 220). 222).
  • step 222 as described above with reference to FIG. 4A, half-clutch control is performed to the low-speed gear.
  • the half-clutch control is started (section 151 in FIG. 4A)
  • the AT output shaft torque is rapidly reduced by the shift lag (section 172 in FIG. 4D). Therefore, in the embodiment of the present invention, control is performed to increase the output shaft torque of the motor 26 (FIG. 1) by a predetermined amount (step 224).
  • the torque increase control in step 224 is executed as shown in FIG.
  • the motor output shaft torque is maintained at a constant value (section 178).
  • the motor output shaft torque is rapidly increased (section 179 in FIG. 4E) to compensate for torque reduction due to the shift lag (section 172 in FIG. 4D). Therefore, as shown in FIG. 4 (f), the driving torque for actually driving the vehicle has a torque reduction 183 caused by a shift lug in the conventional shift torque curve (solid line 182).
  • solid line 182 In the torque torque curve (broken line 181) according to the example, such torque loss can be reduced by the motor torque instantaneous increase control.
  • step 226 it is determined whether or not the clutch to the low-speed gear is a half-clutch (step 226). If the clutch is not yet half clutch (No at step 226), the system waits as it is, and if the clutch is half clutch (Yes at step 226), the motor torque is determined in advance as shown by the broken line 180 in FIG. Attenuation is performed with a time constant (step 228). Finally, the low speed side clutch is completely engaged (step 230).
  • step 2208 the motor torque is attenuated with a predetermined time constant from the value increased in step 224. Therefore, as shown by the broken line 181 in FIG.
  • the vehicle driving torque is smoothly connected without the torque being lost to the torque increase amount (section 186) that is generated when the side gear clutch is completely engaged. Therefore, according to the present embodiment, it is possible to suppress rapid fluctuations in the vehicle G that the driver feels sensitive even during downshifting.
  • the present invention is not limited to the above example, and can be arbitrarily modified within the scope of the present invention defined by the claims.
  • the first drive system 17 driven by the engine is provided on the front wheel side and the second drive system 27 having the main motor 26 is provided on the rear wheel side.
  • a second drive system 27 having 26 may be provided, and a first drive system 17 driven by the engine may be provided on the rear wheel side.
  • FIG. 3 shows an example of upshifting the transmission 18 from the first speed to the second speed
  • FIG. 4 shows an example of downshifting the transmission 18 from the third speed to the second speed.
  • the downshift referred to in the present invention is a shift from an arbitrary speed ratio to a speed ratio one step lower than the speed ratio. It is an exhaustive one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 ハイブリッドシステムにおいて変速ショックやタイムラグに起因したトルク抜けを低減する。  本発明のハイブリッドシステムの制御方法では、トランスミッションの速度比がアップシフトされる場合、クラッチが半クラッチ制御開始されるときモータのトルクを瞬間的に増大させ、半クラッチ制御の間には、エンジンの回転イナーシャによる車両駆動トルクの増加を補償するためモータのトルクをゼロ又はマイナスに制御する。クラッチが完全に締結されるとき、モータのトルクを増大させ、該トルクの増大後に所定の時定数で減衰させる。ダウンシフトされる場合、クラッチが半クラッチ制御開始されるときモータのトルクを増大させ、半クラッチ制御の間には、エンジンの回転イナーシャによる車両駆動トルクの低下を補償するため、増大されたトルクから所定の時定数でモータのトルクを減衰させ、クラッチ完全締結時のトルクアップ量へと滑らかに接続させる。

Description

ハイブリッドシステムの制御方法
 本発明は、例えばアクスルスプリット式のハイブリッドシステムにおいて変速機の変速時に発生する変速ショックやタイムラグに起因するトルク抜けを低減するための、ハイブリッドシステムの制御方法に関する。
 特開2004-034816号には、エンジンと駆動輪との間に変速機が配置され、さらにこの変速機の一軸にモータを配置し、変速機の切り替え時などで起こるエンジントルク変動による車両の駆動力低下を該モータによるトルク補正で防止する方法が開示されている。具体的には、エンジン出力軸トルクを検出し、車両の駆動力変動分を算出し、この車両の駆動力変動分をモータによるトルク補正手段で補正している。即ち、変速時ギアを切り替える際に一時的に生じるエンジン出力トルクが伝わらない状態を回避するために、この時間帯に、モータによるトルク補償を実行するものである。
 しかし、この従来例では、エンジン出力トルクの変動を抑えることが目的とされ、エンジン出力トルクの変動を検知して、モータトルクを印加してこの変動を抑える方法が取られており、車両駆動トルクの変動を抑えることにはなっていないという問題があった。例えば、変速時のイナーシャの変化などによる変速機出力軸トルク変動などは、エンジン出力トルク変動を検知して該モータトルクで補正しても効果がない。
 具体的には、AT自動変速機の場合などのように迅速な変速を実現する際には、例えばダウンシフトする際、変速ギアクラッチが高速ギア側から低速ギア側へつながりだした時に発生するエンジン回転イナーシャによる車両トルク低下側変動を抑えることができない。また、アップシフトをする際には、高速側クラッチが締結終了した直後に発生するトルク低下側変動を抑えることができない、といった問題がある。
 なお、一般的に、上記のような自動変速式トランスミッションを有する車両においては、変速機の変速を行う際に変速ショックのみならずタイムラグも問題となる。オートマチック・トランスミッション(AT)においては、例えばギアシフトする際の変速ショック・タイムラグを低減するために、エンジンとの総合調整や半クラッチの制御を用いて、ドライバーに気付きにくいレベルに調整する試みがなされているが、十分な解決策には至っていない。また、オートメーテッド・マニュアルトランスミッション(AMT)においては、基本的にアップシフト変速時の大きなタイムラグに起因するトルク抜けは避けることができなかった。
特開2004-034816号
 本発明は、上記事実に鑑みなされたもので、自動変速式トランスミッションの変速時や、機構的に大きな変速ショック・タイムラグがある自動変速機であっても、変速ショックやタイムラグに起因したトルク抜けを低減することを可能とする、ハイブリッドシステムの制御方法を提供することをその目的とする。
 上記課題を解決するため、本発明に係る、車両のためのハイブリッドシステムの制御方法では、前記ハイブリッドシステムは、前記車両を駆動するための内燃エンジンと、前記内燃エンジンの回転速度を複数の速度比のいずれかで変速して出力するための変速手段であって、該変速手段は、速度比を切り替えるために締結動作を実行するクラッチ手段を有する、前記変速手段と、前記車両を電動駆動するための電動手段と、を備え、前記制御方法は、前記変速手段の速度比が切り替えられるとき、前記クラッチ手段を半クラッチ状態で締結させ、その後に完全に締結させるように制御する、クラッチ締結工程と、前記クラッチ手段が半クラッチ状態へと締結開始されるとき、車両駆動トルクの低下を補償するためのトルクを出力するように前記電動手段を制御する、第1の電動トルク制御工程と、前記クラッチ手段が半クラッチ状態に締結制御されている間に、前記エンジンの回転イナーシャによる前記車両駆動トルクの増加又は低下を補償するためのトルクを出力するように前記電動手段を制御する、第2の電動トルク制御工程と、を備えて構成したものである。
 本発明によれば、クラッチ手段が半クラッチ状態へと締結開始されるとき、車両駆動トルクの低下を補償するためのトルクを出力し、次に、クラッチ手段が半クラッチ状態に締結制御されている間に、エンジンの回転イナーシャによる車両駆動トルクの増加又は低下を補償するためのトルクを出力するようにしたので、クラッチ切り替えの際のトルク抜けを防止するのみならず、エンジンの回転イナーシャによる車両駆動トルクの変動を抑制し、かくして、車両Gの急激な変動を防止することができる。
 好ましい態様では、前記速度比がより高速側に切り替えられるアップシフト時において、前記第1の電動トルク制御工程は、前記車両駆動トルクの低下を補償するため前記電動手段のトルクを増大させる工程を有し、前記第2の電動トルク制御工程は、前記エンジンの回転イナーシャによる前記車両駆動トルクの増加を補償するため、前記電動手段のトルクを所定値以下に制御する工程を有する。
 例えば、前記第1の電動トルク制御工程は、前記電動手段のトルクを所定時間に亘って所定の大きさだけ増大させる制御をする。例えば、前記第2の電動トルク制御工程は、前記電動手段のトルクをゼロ又はマイナスに制御する。 
 更に好ましくは、前記クラッチ手段が完全に締結されるとき、前記電動手段のトルクを増大させ、該トルクの増大後に所定の時定数で減衰させる、第3の電動トルク制御工程を更に備える。
 好ましくは、前記アップシフト時において、前記クラッチ手段が半クラッチ状態に締結制御されているとき前記エンジンの出力を低減するように制御する、エンジン出力低減工程を更に備える。
 好ましい態様では、前記速度比がより低速側に切り替えられるダウンシフト時において、 前記第1の電動トルク制御工程は、前記車両駆動トルクの低下を補償するため前記電動手段のトルクを増大させる工程を有する。また、前記第2の電動トルク制御工程は、前記エンジンの回転イナーシャによる前記車両駆動トルクの低下を補償するため、前記第1の電動トルク制御工程で増大されたトルクから所定の時定数で前記電動手段のトルクを減衰させるように制御する。更に好ましくは、前記第2の電動トルク制御工程では、前記クラッチ手段が完全に締結されたときに発生するトルクアップ量に滑らかに接続されるように前記電動手段のトルクが減衰される。
 好ましくは、前記ダウンシフト時において、前記クラッチ手段が半クラッチ状態に締結制御されているとき前記エンジンの出力を増大するように制御する、エンジン出力増大工程を更に備える。
図1は、本発明の一実施例に係るハイブリッドシステムの制御方法を示すブロック図及び該ハイブリッドシステムの制御方法が適用される車両の概略図である。 図2は、本発明の実施例に係るハイブリッドシステムの制御方法の流れを示すメインフローチャートである。 図3は、トランスミッションのアップシフト時における動作を説明するための図であり、(a)は変速クラッチ動作、(b)はエンジントルクの制御動作、(c)はエンジン回転数の変化、(d)はAT出力軸トルクの変化、(e)はモータ出力軸トルクの変化、(f)は車両駆動トルクの変化を示す。 図4は、トランスミッションのダウンシフト時における動作を説明するための図であり、(a)は変速クラッチ動作、(b)はエンジントルクの制御動作、(c)はエンジン回転数の変化、(d)はAT出力軸トルクの変化、(e)はモータ出力軸トルクの変化、(f)は車両駆動トルクの変化を示す。
符号の説明
  10  ハイブリッド車両
  12  内燃エンジン
  14  スターターモータ
  16  クラッチ要素
  17  第1の駆動系
  18  自動変速式トランスミッション(AT、AMT)
  20L、20R 前輪
  22L,22R 後輪
  24  バッテリ
  26  メインモータ
  27  第2の駆動系
  28  差動ギア
  31  AT入力シャフト
  38  エンジンコントローラ
  46  インバータ
  48  バッテリコントローラ
  50  ハイブリッドコントローラ
  51  車両駆動トルク要求値計算手段
  52  バッテリSOC判断手段
  53  電動走行(E-drive)モード制御指令発生手段
  54  ハイブリッド走行(HEV-drive)モード制御指令発生手段
  55  モータトルク指令発生手段
  56  エンジントルク指令発生手段
  57  エンジンスタートストップモード制御指令発生手段
  58  クラッチ締結モード・AT変速モード制御指令発生手段
  60  AT/AMTコントローラ
  61  変速パターンマップ
  63  クラッチシフトシーケンス制御発生手段
  64  アップシフト時モータトルク補正制御発生手段
  65  ダウンシフト時モータトルク補正制御発生手段
  64  アクセル開度センサ
  66  車速センサ
 以下、図面を参照して本発明の実施例を説明する。
 図1には、本発明の第1の実施例に係るハイブリッドシステムの制御方法が適用される車両10と、該ハイブリッドシステムの制御を可能にした車両10の制御系とが示されている。車両10は、既存の二輪駆動車の被駆動輪軸上に電動アクスルユニットを配置し、最小限の車両改造で構成した四輪駆動式ハイブリッド車であり、内燃エンジン12と、エンジン12を始動させるためのスターターモータ14と、該内燃エンジンの駆動力を前輪20L、20Rの車軸に伝達させるための第1の駆動系17と、バッテリ24と、後輪22L、22Rの車軸に電動力を供給するための第2の駆動系27と、を備えている。
 第1の駆動系17は、オートマチック・トランスミッション(AT)又はオートメーテッド・マニュアルトランスミッション(AMT)である自動変速式トランスミッション18を備えており、トランスミッション18は、エンジン出力を低速側(例えば1速)/高速側(例えば2速)のギアレシオのいずれか又はニュートラル状態に切り替えるためのクラッチ要素16を有する。エンジン12の出力軸は、トランスミッション18の入力シャフト31に接続され、該入力シャフト31はクラッチ要素16の入力側に接続されている。また、トランスミッション18の出力軸(AT出力軸)は前輪20R及び20Lの車軸に連動されている。これによって、クラッチ要素16が低速側に切り替えられたときエンジン12の出力は低速のギアレシオで前輪20L、20Rの車軸に伝達され、クラッチ要素16が高速側に切り替えられたときエンジン12の出力は高速のギアレシオで前輪20L、20Rの車軸に伝達される。クラッチ要素16がニュートラル状態に切り替えられたときは、エンジン12の出力は前輪の車軸に伝達されない。
 第2の駆動系27は、バッテリ24により電力供給されるメインモータ26と、後輪の車軸上に設けられた差動ギア28と、を備えている。メインモータ26からの電動力は、差動ギア28を介して後輪車軸上に伝達される。なお、メインモータ26は回生シーケンスのときに発電を行い、バッテリ24を充電することができる。
 図1に示されるように、車両10の制御系は、エンジンを制御するため必要な制御を実行するエンジンコントローラ38と、クラッチ要素16の締結、開放を始めとしてトランスミッション18を制御するAT/AMTコントローラ60と、バッテリ24の充放電を制御するためのバッテリコントローラ48と、メインモータ26の回転数を制御するインバータ46と、前記したコントローラ及びインバータを管理・指令制御することにより、本発明の第1の実施例に係るハイブリッド制御方法を実行するハイブリッドコントローラ50と、を備えている。更に、車両10の制御系は、アクセル開度を検出するアクセル開度センサ64と、車両速度を検出する車速センサ66と、を備えている。
 更に図1には、ハイブリッドコントローラ50の機能ブロック図が示されている。この機能ブロック図によれば、ハイブリッドコントローラ50は、バッテリコントローラ48からの信号に基づいてバッテリ24の充電状態(SOC)を判断するバッテリSOC判断手段52と、アクセル開度センサ64からのアクセル開度信号、車速センサ66からの車速信号及びバッテリSOC判断手段52からのSOC情報に基づいて、車両を駆動すべきトルク要求値を計算する車両駆動トルク要求値計算手段51と、車両駆動トルク要求値計算手段51からの出力値に基づいて電動走行(E-drive)モードにおけるメインモータ26へのトルク指令値を出力する電動走行(E-drive)モード制御指令発生手段53と、車両駆動トルク要求値計算手段51からの出力値に基づいてハイブリッド走行(HEV-drive)モードにおけるエンジン12及びメインモータ26へのトルク指令値を発生するハイブリッド走行(HEV-drive)モード制御指令発生手段54と、電動走行モード制御指令発生手段53及びハイブリッド走行モード制御指令発生手段54の少なくともいずれかからのモータ26へのトルク指令値を実現するためインバータ46へのトルク指令信号を発生するモータトルク指令発生手段55と、ハイブリッド走行モード制御指令発生手段54からのエンジン12へのトルク指令値を実現するためエンジンコントローラ38へのトルク指令信号を発生するエンジントルク指令発生手段56と、ハイブリッド走行(HEV-drive)モード制御指令発生手段54からのエンジントルク指令値に基づいてエンジンの始動及び停止を指令するためエンジンコントローラ38を指令制御するエンジンスタートストップモード制御指令発生手段57と、エンジンスタートストップモード制御指令発生手段57からの情報に基づいてクラッチ要素16の締結・開放並びにトランスミッション18の変速モードを制御するためAT/AMTコントローラ60を指令制御するクラッチ締結モード・AT変速モード制御指令発生手段58と、を備えている。
 AT/AMTコントローラ60は、車速とエンジントルク指令発生手段56により発生されたエンジントルク指令とに基づいて変速比を決定するための変速パターンマップ61を記憶したメモリと、変速パターンマップ61に基づいてクラッチ要素16を制御してトランスミッション18を変速切替するためのシフトシーケンスを発生するクラッチシフトシーケンス制御発生手段62と、変速パターンマップ61に基づいて決定された変速比に応じてエンジントルクを増減するためのエンジントルク増減制御発生手段63と、クラッチシフトシーケンス制御発生手段62により発生されたシフトシーケンスに基づいてアップシフト時を判定し、モータトルクを補正するようにインバータ46へのトルク補正指令を発生するアップシフト時モータトルク補正制御発生手段64と、クラッチシフトシーケンス制御発生手段62により発生されたシフトシーケンスに基づいてダウンシフト時を判定し、モータトルクを補正するようにインバータ46へのトルク補正指令を発生するダウンシフト時モータトルク補正制御発生手段65と、を備えている。
 次に、トランスミッション18の変速比をアップシフト(低速側から高速側にギアレシオをシフト)させるときのクラッチ締結制御について図3を用いて説明する。
 アップシフト時のクラッチ締結制御は図3(a)に示されるように実行される。図3(a)には、例えばクラッチ要素16が第1速のギアに締結されている状態から第2速のギアに締結された状態へと制御される例が示されている。この制御の場合、最初に第1速ギア締結状態に維持されている(区間100)。アップシフト時には、第2速ギアへのクラッチ締結のためクラッチ圧を急激に上昇させ(区間101)、半クラッチ状態にし(区間102)、その後、ゆっくりと半クラッチ状態を締結方向に強めていく(区間103)。この半クラッチ制御で所定の時間を経過した段階(区間104)で急激に締結を強め(区間105)、第2速ギアへとクラッチを完全に締結させる(区間106)。このように半クラッチ制御を介在させることにより、締結のショックを緩和させることができる。
 図3(a)の変速クラッチ動作に伴い、エンジントルクは図3(b)に示すように制御される。即ち、1速クラッチ締結の間(図3(a)の区間100)では、半クラッチ制御が開始されるときの区間108まで、エンジントルクは非常にゆっくりと減少される(区間107)。半クラッチ状態となったとき(図3(a)の区間102)、エンジントルクは急激に低減され(区間109)、半クラッチ状態の間、一定のエンジントルクに制御される(区間110)。半クラッチ制御が終了する図3(a)の104の区間で、エンジントルクは増大される(区間111)。2速クラッチ締結が開始されたとき(区間105)、エンジントルクは、2速に適切なエンジントルクへと制御され(区間112)、その後、回転数の増大と共に、非常にゆっくりと減少される(区間113)。
 図3(a)の変速クラッチ動作及び図3(b)のエンジントルクの低減制御に従って、エンジン回転数は図3(c)に示すように変化する。1速クラッチ締結の間(区間100)、エンジン回転数はゆっくりと増大していき(区間114)、半クラッチ制御が開始されるまで、この増大傾向が続く(区間115)、半クラッチ制御が開始されると、エンジン回転数は減少を始め(区間116)、半クラッチ制御の間(区間103、104)、エンジン回転数の減少傾向が続いていく(区間117、118)。なお、この区間117でのエンジン回転数の減少傾向は、アップシフトによるものだけではなく、図3(b)のエンジントルク低減制御によって更に強化される。2速クラッチ締結が開始されるとき(区間105)、エンジン回転数は上昇傾向に転じる(区間119)。その後、エンジン回転数は、2速クラッチ締結状態の間に、ゆっくりと上昇していく(区間120)。
 図3(a)の変速クラッチ動作及び図3(b)のエンジントルクの低減制御に従って、トランスミッション18の出力軸のトルク(AT出力軸トルク)は図3(d)に示すように変化する。即ち、1速クラッチ締結状態の間でエンジントルクがゆっくりと減少されることに応じて、AT出力軸トルクも非常にゆっくりと減少していく(区間121)。次に1速クラッチが開放され、2速クラッチの半クラッチ制御が開始されるシフト段階(図3(a)の区間101)で、シフトラグによりエンジントルクの伝達経路が瞬間的に断絶するため、AT出力軸トルクが急激に低下する(区間122)。その直後に2速クラッチが半クラッチとなるときAT出力軸トルクが急激に増大し、その後、幾分低下する(区間123)。エンジントルクの低減制御が実行されている間(図3(b)の区間110)、AT出力軸トルクは、エンジン回転イナーシャによる影響を受けて逆にトルクが上昇し(区間124)、エンジントルクが上昇に転じる間に(図3(b)の区間111)、AT出力軸トルクは更に上昇する(区間125)。次に、2速クラッチの締結制御が開始され(区間105)、エンジン回転変化が終了すると、AT出力軸トルクは急激に減少し(区間126)、その後、非常にゆっくりと減少していく(区間128)。
 図3の制御とは対照的にトランスミッション18の変速比をダウンシフト(高速側から低速側にギアレシオがシフト)させるときのクラッチ締結制御について図4を用いて説明する。
 ダウンシフト時のクラッチ締結制御は図4(a)に示されるように実行される。図4(a)には、例えばクラッチ要素16が第3速のギアに締結されている状態から第2速のギアに締結された状態へと制御される例が示されている。この制御の場合、最初に第3速ギア締結状態に維持されている(区間150)。ダウンシフト時には、第2速ギアへのクラッチ締結のためクラッチ圧を急激に上昇させ(区間151)、半クラッチ状態にし(区間152)、その後、ゆっくりと半クラッチ状態を締結状態に強める(区間153)。この半クラッチ制御で所定の時間を経過した段階(区間154)で急激に第二クラッチ締結を強め(区間155)、第2速ギアへとクラッチを完全に締結させる(区間156)。このように半クラッチ制御を介在させることにより、締結のショックを緩和させることができる。
 図4(a)の変速クラッチ動作に伴い、エンジントルクは図4(b)に示すように制御される。即ち、3速クラッチ締結の間(図4(a)の区間150)では、半クラッチ制御が開始されるときの区間158まで、エンジントルクは非常にゆっくりと減少される(区間157)。半クラッチ状態となったとき(図4(a)の区間152)、エンジントルクは急激に増大され(区間159)、半クラッチ状態の間、一定のエンジントルクに制御される(区間160)。半クラッチ制御が終了する図4(a)の154の区間で、エンジントルクは減少される(区間161)。2速クラッチ締結が開始されたとき(区間155)、エンジントルクは、2速に適切なエンジントルクへと制御され(区間162)、その後、回転数の増大と共に、非常にゆっくりと減少される(区間163)。
 図4(a)の変速クラッチ動作及び図4(b)のエンジントルクの増加制御に従って、エンジン回転数は図4(c)に示すように変化する。3速クラッチ締結の間(区間150)、エンジン回転数はゆっくりと増大していき(区間164)、半クラッチ制御が開始されるまで、この増大傾向が続く(区間165)、半クラッチ制御が開始されると、エンジン回転数は増加を始め(区間166)、半クラッチ制御の間(区間153、154)、エンジン回転数の増加傾向が続いていく(区間167、168)。なお、この区間167でのエンジン回転数の増加傾向は、ダウンシフトによるものだけではなく、図4(b)のエンジントルク増加制御によって更に強化される。2速クラッチ締結が開始されるとき(区間155)、エンジン回転数の増加が終了される(区間169)。その後、エンジン回転数は、2速クラッチ締結状態の間に、ほぼ一定に維持される(区間170)。
 図4(a)の変速クラッチ動作及び図4(b)のエンジントルクの増加制御に従って、トランスミッション18の出力軸のトルク(AT出力軸トルク)は図4(d)に示すように変化する。即ち、3速クラッチ締結状態の間でエンジントルクがゆっくりと減少されることに応じて、AT出力軸トルクも非常にゆっくりと減少していく(区間171)。次に3速クラッチが開放され、2速クラッチの半クラッチ制御が開始されるシフト段階(図4(a)の区間151)で、シフトラグによりエンジントルクの伝達経路が瞬間的に断絶するため、AT出力軸トルクが急激に低下する(区間172)。その直後に2速クラッチが半クラッチとなるときAT出力軸トルクがやや増加傾向に転じる(区間173)が、エンジン回転イナーシャによる影響を受けてトルクダウンした状態のまま推移する(区間174)。エンジントルクの増加制御が実行されて一定期間後には、AT出力軸トルクは、エンジン回転変化終了により急激に上昇し始める(区間175)。次に、2速クラッチの締結制御が開始されると(区間155)、AT出力軸トルクは、ほぼ一定値を維持する(区間176)。
 以上説明した第1の実施例に係る、アクスルスプリット式のハイブリッドシステムにおいて変速機変速ショック・タイムラグを低減するための制御方法に基づく処理の流れを、図3及び図4を参照しつつ図2のフローチャートに沿って説明する。
 図2に示すように、車両10が始動した後又は走行中に、トランスミッション18の変速比がアップシフトしたか又はダウンシフトしたかを判定する(ステップ200)。アップシフトと判定された場合、トランスミッション18において低速側ギアのクラッチを開放し(ステップ202)、高速側ギアのクラッチを締結するための制御を開始する(ステップ204)。ステップ204では、図3(a)を参照して上記したように、高速側ギアへと半クラッチ制御を行う。半クラッチ制御を開始するとき(図3(a)の区間101)、シフトラグによりAT出力軸トルクは急激に低減する(図3(d)の区間122)。そこで、本発明の実施例では、モータ26(図1)の出力軸トルクを予め定められた量だけ瞬間的に増大させる制御を行う(ステップ206)。次に、高速側ギアへのクラッチが半クラッチとなったか否かを判定する(ステップ208)。未だ半クラッチとならない場合(ステップ208否定判定)、そのまま待機し、半クラッチとなった場合(ステップ208肯定判定)、モータトルクをゼロ又はマイナスへと低減させる(ステップ210)。
 ステップ206からステップ210までのトルク増大制御は、図3(e)に示されるように実行される。即ち、1速クラッチ締結の間には(図3(a)の区間100)、モータ出力軸トルクは一定値に維持されている(区間128)。アップシフト時には、これに伴い発生するシフトラグによるトルクダウン(図3(d)の区間122)を補償するため、モータ出力軸トルクを瞬間的に増大させる(図3(e)の区間129)。半クラッチ状態となり(図3(a)の区間102)、AT出力軸トルクが上昇したとき(図3(d)の区間123)、モータトルクをゼロ又はマイナスへと低減させる(図3(e)の区間130)。従って、実際に車両を駆動するための駆動トルクは、図3(f)に示すように、従来の変速時トルクカーブ(実線138)では、シフトラグによるトルクダウン136が生じたところ、本発明の実施例による変速時トルクカーブ(破線135)では、モータトルク瞬間増大制御により、このようなトルク抜けを低減することができる。
 図2を再び参照すると、ステップ210のモータトルクのゼロ又はマイナスへの制御は、高速側クラッチが完全に締結されるまで(ステップ212の否定判定)続行される。即ち、図3(e)の区間131に示すように、モータ出力軸トルクはゼロ又はマイナスの値を維持するように一定時間に亘って制御される。この区間では、エンジン回転数エンジン回転イナーシャによるトルクアップ(図3(d)の区間124)が発生しているが、ステップ210の制御によりモータが回転負荷として作用するため、実際に車両を駆動するための駆動トルクは、図3(f)に示すように、図3(e)に示す区間131に対応する区間において車両のトルク増大側への変動が抑制される。
 次に、高速側ギアクラッチの半クラッチが終了して高速側ギアクラッチが完全に締結された場合(ステップ212肯定判定)、モータトルクを、瞬間的に予め設定された量だけ増大させ(図3(e)の区間133)、その後、予め定められた時定数で減衰させる(図3(e)の区間134)ように制御する(ステップ214)。
 高速側クラッチへの完全締結が開始されると、図3(d)に示すようにエンジン回転数変化終了によるトルクダウン(図3(d)の区間126)が発生する。ステップ214を実行しない従来の変速時トルクカーブは、図3(f)に示すように、車両駆動トルクに、137で示す大きな傾斜のトルクダウンが発生し、高速ギア側クラッチが完全に締結された後に発生するトルク138へと滑らかに接続することができなかった。しかし、本発明の実施例に係る制御によれば、上記トルクダウンは、図3(f)の破線135に示すように、モータトルクの瞬間増大制御により低減され、その後の減衰制御により高速ギア側クラッチが完全に締結された後に発生するトルクへと滑らかに接続することができる。
 一般にドライバーは車両Gの急激な変動に敏感であるため、以上説明したトルクダウン低減制御によって、変速時においても滑らかなトルク変化を達成し、快適な走行を享受することができる。
 ステップ200でトランスミッション18の変速比がダウンシフトされたと判定された場合、トランスミッション18において高速側ギアのクラッチを開放し(ステップ220)、低速側ギアのクラッチを締結するための制御を開始する(ステップ222)。ステップ222では、図4(a)を参照して上記したように、低速側ギアへと半クラッチ制御を行う。半クラッチ制御を開始するとき(図4(a)の区間151)、シフトラグによりAT出力軸トルクは急激に低減する(図4(d)の区間172)。そこで、本発明の実施例では、モータ26(図1)の出力軸トルクを予め定められた量だけ増大させる制御を行う(ステップ224)。ステップ224のトルク増大制御は、図4(e)に示されるように実行される。即ち、3速クラッチ締結の間には(図4(a)の区間150)、モータ出力軸トルクは一定値に維持されている(区間178)。ダウンシフト時には、これに伴い発生するシフトラグによるトルクダウン(図4(d)の区間172)を補償するため、モータ出力軸トルクを急激に増大させる(図4(e)の区間179)。従って、実際に車両を駆動するための駆動トルクは、図4(f)に示すように、従来の変速時トルクカーブ(実線182)では、シフトラグによるトルクダウン183が生じたところ、本発明の実施例による変速時トルクカーブ(破線181)では、モータトルク瞬間増大制御により、このようなトルク抜けを低減することができる。
 次に、低速側ギアへのクラッチが半クラッチとなったか否かを判定する(ステップ226)。未だ半クラッチとならない場合(ステップ226否定判定)、そのまま待機し、半クラッチとなった場合(ステップ226肯定判定)、図4(e)の破線180で示すように、モータトルクを予め定められた時定数で減衰させる(ステップ228)。最終的に、低速側ギアのクラッチを完全に締結させる(ステップ230)。
 図4(d)に示すように、低速側ギアへのクラッチを半クラッチにする制御の間(図4(a)の区間153)、エンジン回転イナーシャによるトルクダウン(図4(d)の区間174)及びこれに続いてエンジン回転変化終了によるトルクアップ(図4(d)の区間175)が発生する。これによって、従来の変速時トルクカーブは、図4(f)の実線182に示すように、車両駆動トルクは、区間183で急激に低下してから低下した状態が一定期間続き(区間184)、その後、急激に上昇し(区間185)、クラッチ締結時のトルク(区間186)へと至る。しかし、本発明の実施例では、ステップ228のように、モータトルクを、ステップ224で増大された値から所定の時定数で減衰させるため、図4(f)の破線181に示すように、低速側ギアのクラッチが完全に締結されたときに発生するトルクアップ量(区間186)へとトルク抜けすること無く、車両駆動トルクが滑らかに接続される。従って、本実施例によれば、ダウンシフト時においても、ドライバーが敏感に感じる車両Gの急激な変動を抑えることができる。
 以上が、本発明の各実施例であるが、本発明は、上記例にのみ限定されるものではなく、請求の範囲により画定される本発明の範囲内で任意好適に変更可能である。例えば、図1の構成では、前輪側にエンジンで駆動される第1の駆動系17を設け、後輪側にメインモータ26を有する第2の駆動系27を設けたが、前輪側にメインモータ26を有する第2の駆動系27を設け、後輪側にエンジンで駆動される第1の駆動系17を設けてもよい。
 また、図3にはトランスミッション18を1速から2速までアップシフトする例を、図4にはトランスミッション18を3速から2速までダウンシフトする例を示したが、本発明でいうアップシフトは、任意の速度比から該速度比より1段以上高い速度比へのシフトを網羅し、本発明でいうダウンシフトは、任意の速度比から該速度比より1段以上低い速度比へのシフトを網羅するものである。

Claims (10)

  1.  車両のためのハイブリッドシステムの制御方法であって、
     前記ハイブリッドシステムは、
     前記車両を駆動するための内燃エンジンと、
     前記内燃エンジンの回転速度を複数の速度比のいずれかで変速して出力するための変速手段であって、該変速手段は、速度比を切り替えるために締結動作を実行するクラッチ手段を有する、前記変速手段と、
     前記車両を電動駆動するための電動手段と、
     を備え、
     前記制御方法は、
     前記変速手段の速度比が切り替えられるとき、前記クラッチ手段を半クラッチ状態で締結させ、その後に完全に締結させるように制御する、クラッチ締結工程と、
     前記クラッチ手段が半クラッチ状態へと締結開始されるとき、車両駆動トルクの低下を補償するためのトルクを出力するように前記電動手段を制御する、第1の電動トルク制御工程と、
     前記クラッチ手段が半クラッチ状態に締結制御されている間に、前記エンジンの回転イナーシャによる前記車両駆動トルクの増加又は低下を補償するためのトルクを出力するように前記電動手段を制御する、第2の電動トルク制御工程と、を備える、方法。
  2.  前記速度比がより高速側に切り替えられるアップシフト時において、
     前記第1の電動トルク制御工程は、前記車両駆動トルクの低下を補償するため前記電動手段のトルクを増大させる工程を有し、
     前記第2の電動トルク制御工程は、前記エンジンの回転イナーシャによる前記車両駆動トルクの増加を補償するため、前記電動手段のトルクを所定値以下に制御する工程を有する、請求項1に記載の方法。
  3.  前記第1の電動トルク制御工程は、前記電動手段のトルクを所定時間に亘って所定の大きさだけ増大させる、請求項2に記載の方法。
  4.  前記第2の電動トルク制御工程は、前記電動手段のトルクをゼロ又はマイナスに制御する、請求項2に記載の方法。 
  5.  前記クラッチ手段が完全に締結されるとき、前記電動手段のトルクを増大させ、該トルクの増大後に所定の時定数で減衰させる、第3の電動トルク制御工程を更に備える、請求項2に記載の方法。
  6.  前記アップシフト時において、前記クラッチ手段が半クラッチ状態に締結制御されているとき前記エンジンの出力を低減するように制御する、エンジン出力低減工程を更に備える、請求項2乃至5のいずれか1項に記載の方法。
  7.  前記速度比がより低速側に切り替えられるダウンシフト時において、
     前記第1の電動トルク制御工程は、前記車両駆動トルクの低下を補償するため前記電動手段のトルクを増大させる工程を有する、請求項1に記載の方法。
  8.  前記第2の電動トルク制御工程は、前記エンジンの回転イナーシャによる前記車両駆動トルクの低下を補償するため、前記第1の電動トルク制御工程で増大されたトルクから所定の時定数で前記電動手段のトルクを減衰させるように制御する、請求項7に記載の方法。
  9.  前記第2の電動トルク制御工程では、前記クラッチ手段が完全に締結されたときに発生するトルクアップ量に滑らかに接続されるように前記電動手段のトルクが減衰される、請求項8に記載の方法。
  10.  前記ダウンシフト時において、前記クラッチ手段が半クラッチ状態に締結制御されているとき前記エンジンの出力を増大するように制御する、エンジン出力増大工程を更に備える、請求項7に記載の方法。
PCT/JP2008/072375 2007-12-20 2008-12-10 ハイブリッドシステムの制御方法 WO2009081729A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801225912A CN101903230B (zh) 2007-12-20 2008-12-10 混合系统控制方法
JP2009547020A JPWO2009081729A1 (ja) 2007-12-20 2008-12-10 ハイブリッドシステムの制御方法
EP08864395.2A EP2226228A4 (en) 2007-12-20 2008-12-10 METHOD FOR CONTROLLING HYBRID SYSTEM
US12/809,949 US20100273604A1 (en) 2007-12-20 2008-12-10 Hybrid system control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-328683 2007-12-20
JP2007328683 2007-12-20

Publications (1)

Publication Number Publication Date
WO2009081729A1 true WO2009081729A1 (ja) 2009-07-02

Family

ID=40801037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072375 WO2009081729A1 (ja) 2007-12-20 2008-12-10 ハイブリッドシステムの制御方法

Country Status (5)

Country Link
US (1) US20100273604A1 (ja)
EP (1) EP2226228A4 (ja)
JP (1) JPWO2009081729A1 (ja)
CN (1) CN101903230B (ja)
WO (1) WO2009081729A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189913A (ja) * 2010-03-17 2011-09-29 Toyota Motor Corp 車両駆動装置
CN102529968A (zh) * 2010-12-13 2012-07-04 罗伯特·博世有限公司 对机动车的驱动系统的驱动装置进行监控的方法和装置
JP2012140118A (ja) * 2011-11-04 2012-07-26 Aisin Ai Co Ltd 車両の動力伝達制御装置
US8712622B2 (en) 2010-12-28 2014-04-29 Aisin Ai Co., Ltd. Power transmission control device for vehicle
JP2015024687A (ja) * 2013-07-24 2015-02-05 トヨタ自動車株式会社 ハイブリッド車両の動力伝達装置
KR101744839B1 (ko) 2015-11-19 2017-06-08 현대자동차주식회사 하이브리드 차량의 토크 인터벤션 제어 방법 및 그 제어 장치
US10106147B2 (en) 2015-11-19 2018-10-23 Hyundai Motor Company Method and device for controlling torque intervention of hybrid vehicle

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023503A1 (de) * 2004-05-10 2005-12-15 Volkswagen Ag Verfahren und Vorrichtung zum Motorstopp-Motorstart von Hybridfahrzeugen
JP5019870B2 (ja) * 2006-12-27 2012-09-05 ボッシュ株式会社 ハイブリッド車両の制御方法
KR101505349B1 (ko) * 2011-01-28 2015-03-23 쟈트코 가부시키가이샤 하이브리드 차량의 제어 장치
CN103338959B (zh) * 2011-01-28 2016-02-10 日产自动车株式会社 混合动力车辆的控制装置
JP5477319B2 (ja) * 2011-03-25 2014-04-23 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置の制御装置
US8845481B2 (en) * 2011-06-03 2014-09-30 GM Global Technology Operations LLC Method and apparatus for executing a transmission shift in a powertrain system including a torque machine and an engine
JP2014163410A (ja) * 2013-02-21 2014-09-08 Aisin Seiki Co Ltd 車両用駆動装置
US9199637B1 (en) * 2014-05-19 2015-12-01 GM Global Technology Operations LLC Engine autostop control system and method for hybrid powertrain
CN104192147B (zh) * 2014-07-31 2017-02-08 长城汽车股份有限公司 车辆的控制方法、控制系统及具有该控制系统的车辆
US9643590B2 (en) * 2015-04-14 2017-05-09 Ford Global Technologies, Llc Methods and system for shifting a hybrid vehicle
CN105673832B (zh) * 2016-01-15 2017-10-31 上海汽车变速器有限公司 双离合器自动变速器半结合点工况控制方法
JP6354769B2 (ja) * 2016-02-16 2018-07-11 トヨタ自動車株式会社 ハイブリッド車両
JP6374431B2 (ja) * 2016-03-29 2018-08-15 株式会社Subaru 駆動制御機構および駆動制御装置
JP6717965B2 (ja) * 2016-10-31 2020-07-08 ボッシュ株式会社 車両の制御装置
US10358125B2 (en) * 2017-03-03 2019-07-23 Ford Global Technologies, Llc Hybrid vehicle powertrain torque hole fill during transmission shift
DE102017215477B4 (de) * 2017-09-04 2019-03-21 Audi Ag Verfahren zum Betreiben eines Antriebsstrangs eines Kraftwagens
KR102322569B1 (ko) * 2017-09-25 2021-11-04 현대자동차주식회사 하이브리드 차량의 변속 제어 방법
KR102370944B1 (ko) * 2017-12-12 2022-03-07 현대자동차주식회사 하이브리드 전기차량의 모터속도 발산 방지 방법
CN110027543A (zh) * 2019-03-14 2019-07-19 阿尔特汽车技术股份有限公司 一种混合动力汽车整车模式动态调节的方法
CN111071236B (zh) * 2019-12-29 2021-08-03 吉泰车辆技术(苏州)有限公司 一种混合动力等时长换挡控制方法
CN111071239B (zh) * 2019-12-29 2021-08-03 吉泰车辆技术(苏州)有限公司 一种混动系统无缝升挡控制方法
CN111071240B (zh) * 2019-12-29 2021-08-03 吉泰车辆技术(苏州)有限公司 混动系统中无缝升挡控制方法
CN110925417A (zh) * 2020-02-19 2020-03-27 盛瑞传动股份有限公司 一种p2混合动力变速器无动力升挡过程降扭辅助控制方法
CN110925416A (zh) * 2020-02-19 2020-03-27 盛瑞传动股份有限公司 一种p2混合动力变速器有动力降挡过程升扭辅助控制方法
CN114103660A (zh) * 2021-12-09 2022-03-01 安徽江淮汽车集团股份有限公司 一种电动车低速扭矩波动的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034816A (ja) 2002-07-03 2004-02-05 Hitachi Ltd ハイブリッド自動車の制御装置
JP2004245325A (ja) * 2003-02-14 2004-09-02 Nissan Motor Co Ltd 自動クラッチ式歯車変速機の変速制御装置
JP2005069172A (ja) * 2003-08-27 2005-03-17 Toyota Motor Corp 車両の制御装置および車両の制御方法
JP2006177424A (ja) * 2004-12-21 2006-07-06 Toyota Motor Corp 車両用駆動装置の変速制御装置
JP2006327511A (ja) * 2005-05-30 2006-12-07 Hitachi Ltd 電動4輪駆動車の制御装置,電動駆動システムおよび電動4輪駆動車
JP2006327435A (ja) * 2005-05-26 2006-12-07 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006341662A (ja) * 2005-06-07 2006-12-21 Toyota Motor Corp 車両用駆動装置の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861321B2 (ja) * 1996-05-02 2006-12-20 トヨタ自動車株式会社 ハイブリッド車
GB2346124A (en) * 1999-01-27 2000-08-02 Rover Group Hybrid vehicle powertrain control
JP3515006B2 (ja) * 1999-02-23 2004-04-05 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2000308206A (ja) * 1999-04-19 2000-11-02 Toyota Motor Corp 車両用パワープラント
JP3991538B2 (ja) * 1999-12-02 2007-10-17 トヨタ自動車株式会社 車両の制御装置
JP3638876B2 (ja) * 2001-03-01 2005-04-13 株式会社日立製作所 車両の駆動装置及び車両
US6638195B2 (en) * 2002-02-27 2003-10-28 New Venture Gear, Inc. Hybrid vehicle system
US7261671B2 (en) * 2003-09-10 2007-08-28 Ford Global Technologies, Llc Hybrid vehicle powertrain with a multiple-ratio power transmission mechanism
JP3985766B2 (ja) * 2003-10-15 2007-10-03 日産自動車株式会社 車両の駆動力制御装置
JP2005186740A (ja) * 2003-12-25 2005-07-14 Aisin Seiki Co Ltd 車両の変速制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034816A (ja) 2002-07-03 2004-02-05 Hitachi Ltd ハイブリッド自動車の制御装置
JP2004245325A (ja) * 2003-02-14 2004-09-02 Nissan Motor Co Ltd 自動クラッチ式歯車変速機の変速制御装置
JP2005069172A (ja) * 2003-08-27 2005-03-17 Toyota Motor Corp 車両の制御装置および車両の制御方法
JP2006177424A (ja) * 2004-12-21 2006-07-06 Toyota Motor Corp 車両用駆動装置の変速制御装置
JP2006327435A (ja) * 2005-05-26 2006-12-07 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006327511A (ja) * 2005-05-30 2006-12-07 Hitachi Ltd 電動4輪駆動車の制御装置,電動駆動システムおよび電動4輪駆動車
JP2006341662A (ja) * 2005-06-07 2006-12-21 Toyota Motor Corp 車両用駆動装置の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2226228A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189913A (ja) * 2010-03-17 2011-09-29 Toyota Motor Corp 車両駆動装置
CN102529968A (zh) * 2010-12-13 2012-07-04 罗伯特·博世有限公司 对机动车的驱动系统的驱动装置进行监控的方法和装置
US8712622B2 (en) 2010-12-28 2014-04-29 Aisin Ai Co., Ltd. Power transmission control device for vehicle
JP2012140118A (ja) * 2011-11-04 2012-07-26 Aisin Ai Co Ltd 車両の動力伝達制御装置
JP2015024687A (ja) * 2013-07-24 2015-02-05 トヨタ自動車株式会社 ハイブリッド車両の動力伝達装置
KR101744839B1 (ko) 2015-11-19 2017-06-08 현대자동차주식회사 하이브리드 차량의 토크 인터벤션 제어 방법 및 그 제어 장치
US10106147B2 (en) 2015-11-19 2018-10-23 Hyundai Motor Company Method and device for controlling torque intervention of hybrid vehicle

Also Published As

Publication number Publication date
EP2226228A1 (en) 2010-09-08
CN101903230A (zh) 2010-12-01
CN101903230B (zh) 2013-09-11
EP2226228A4 (en) 2014-10-29
US20100273604A1 (en) 2010-10-28
JPWO2009081729A1 (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
WO2009081729A1 (ja) ハイブリッドシステムの制御方法
EP2028353B1 (en) Acceleration shock reduction apparatus for vehicle
US8394000B2 (en) Method for operating a vehicle drivetrain
US7976427B2 (en) Vehicle control apparatus and vehicle equipped with the control apparatus
JP5506484B2 (ja) 車両の動力伝達制御装置
US20170101101A1 (en) Control method of dual clutch transmission for hybrid electric vehicle and control system for the same
JP2009513896A (ja) 自動車のパワートレインを駆動機械と変速機とで制御するための方法
JP2005033983A (ja) ハイブリッド電気車両の動力伝達システム
PL218426B1 (pl) Układ sterowania hybrydowego bloku napędowego
JP5307587B2 (ja) 車両の動力伝達制御装置
KR102598558B1 (ko) 하이브리드 차량의 파워-오프 다운시프트를 위한 능동 변속 제어 방법
JP2013043503A (ja) ハイブリッド車両の制御装置
JP2017094785A (ja) 自動変速機の変速制御装置
JP5930541B2 (ja) 電気自動車の変速制御装置
CN111251897B (zh) 电动汽车及其控制方法、控制装置、电子设备
CN115217962B (zh) 换挡转矩交互阶段的发动机扭矩补偿控制方法及系统
WO2013145970A1 (ja) 自動変速機及びその制御方法
JP5661363B2 (ja) パワーユニットの制御装置
JP6294587B2 (ja) 内燃機関制御装置
JP4496762B2 (ja) モータ四輪駆動車の変速制御装置
KR102621616B1 (ko) 하이브리드 차량의 변속기 입력 토크 제어 방법
US11215279B2 (en) Method to automatically control a drivetrain provided with a servo-assisted transmission
JP3606048B2 (ja) 自動変速機の変速制御装置
JP5163481B2 (ja) 四輪駆動車の電動機トルク制御装置および方法
JP4967647B2 (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122591.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008864395

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009547020

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12809949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE