WO2009081677A1 - 酸化スズ-酸化マグネシウム系スパッタリングターゲット及び透明半導体膜 - Google Patents

酸化スズ-酸化マグネシウム系スパッタリングターゲット及び透明半導体膜 Download PDF

Info

Publication number
WO2009081677A1
WO2009081677A1 PCT/JP2008/071210 JP2008071210W WO2009081677A1 WO 2009081677 A1 WO2009081677 A1 WO 2009081677A1 JP 2008071210 W JP2008071210 W JP 2008071210W WO 2009081677 A1 WO2009081677 A1 WO 2009081677A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
target
semiconductor film
sintered body
compound
Prior art date
Application number
PCT/JP2008/071210
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Inoue
Yukio Shimane
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2009546989A priority Critical patent/JP5377328B2/ja
Publication of WO2009081677A1 publication Critical patent/WO2009081677A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to a target, a method for producing the target, and a transparent amorphous thin film produced therefrom.
  • silicon-based semiconductor films dominate switching elements that drive these display devices. This is because, in addition to the stability and workability of the silicon thin film, the switching speed is fast.
  • This silicon-based thin film is generally produced by a chemical vapor deposition method (CVD) method.
  • the silicon-based thin film has a drawback that when the crystal system is amorphous, the switching speed is relatively slow, and an image cannot be displayed when displaying a high-speed moving image or the like.
  • the switching speed is relatively fast, but high temperature of 800 ° C. or higher, heating with a laser, etc. are necessary for crystallization, which requires a great deal of energy and process for manufacturing. I need it.
  • the silicon-based thin film has excellent performance as a voltage element, a change in the characteristics with time is a problem when a current is passed.
  • these transparent semiconductor films have a very fast etching property with a weak acid, but they are also etched with an etching solution for a metal thin film, and are etched at the same time when the metal thin film on the transparent semiconductor film is etched. In other words, it is unsuitable when only the metal thin film on the transparent semiconductor film is selectively etched.
  • An object of the present invention is to provide a transparent amorphous thin film excellent in acid resistance and alkali resistance and excellent in light transmittance, and a target for producing the same.
  • the present inventors have intensively studied, and a thin film obtained by sputtering using an oxide sintered body containing Sn and Mg as main components and containing SnMg 2 O 4 as a target.
  • the present invention was completed by finding out that it was excellent in acid resistance and alkali resistance and also excellent in light transmittance.
  • a target comprising a sintered body of an oxide containing Sn and Mg as main components and containing SnMg 2 O 4 .
  • 3. The target according to 1 or 2 above, wherein [Sn / (Sn + Mg)] (atomic ratio) is in the range of 0.2 to 0.99. 4).
  • the molded product obtained in the above step is sintered, and Sn and Mg are the main components.
  • the total trivalent element in the oxide containing SnMg 2 O 4 is 100 atomic parts or more in total trivalent or more atoms.
  • a transparent amorphous semiconductor film comprising Sn and Mg as main components and [Sn / (Sn + Mg)] (atomic ratio) in the range of 0.2 to 0.99. 8). At least one element having a positive trivalent or higher valence with respect to a total amount of 100 atomic parts of all cationic elements in the transparent amorphous semiconductor film is dissolved in an amount of 30 atomic parts or less.
  • the target which provides the transparent amorphous thin film which was excellent in acid resistance and alkali resistance and excellent in the light transmittance is provided.
  • a transparent amorphous thin film having excellent acid resistance and alkali resistance and excellent light transmittance is provided.
  • FIG. 1 is a chart showing an X-ray diffraction pattern of the target obtained in Example 1.
  • FIG. 2 is a chart showing an X-ray diffraction pattern of the target obtained in Example 2.
  • the target of the present invention is characterized by comprising a sintered body of an oxide containing Sn and Mg as main components and containing SnMg 2 O 4 (hereinafter, this target is referred to as “target I”).
  • the main component is that the two components having the largest amount among all the cation elements contained in the oxide are Sn and Mg.
  • the target of the present invention is doped with at least one element having a valence of not less than positive trivalent and not more than 30 atomic parts with respect to a total amount of 100 atomic parts of all cation elements in the oxide. (Hereinafter, this target is referred to as “target II”).
  • the method for producing the target of the present invention is as follows. Mixing a tin compound and a magnesium compound; Forming the mixture obtained in the step; Sintering the molded product obtained in the above step to obtain an oxide sintered body containing SnMg 2 O 4 based on Sn and Mg, (Hereinafter, this method is referred to as “Method I”).
  • the target of the present invention is a step of adding and mixing at least one elemental compound having a valence of three or more to a tin compound and a magnesium compound, Forming the mixture obtained in the step;
  • the molded product obtained in the above step is sintered, and Sn and Mg are the main components.
  • the total trivalent element in the oxide containing SnMg 2 O 4 is 100 atomic parts or more in total trivalent or more atoms.
  • the target I of the present invention is made of a sintered body of an oxide containing Sn and Mg as main components and containing SnMg 2 O 4 as described above.
  • the “sintered oxide of a compound-containing oxide” means an oxide sintered body substantially consisting only of a substance exhibiting an X-ray diffraction pattern attributed to the compound in X-ray diffraction measurement or It means an oxide sintered body containing a substance exhibiting an X-ray diffraction pattern attributed to another structure together with a substance exhibiting an X-ray diffraction pattern attributed to a compound.
  • the “sintered oxide of a compound-containing oxide” contains the compound in an amount of 1% by weight or more, more preferably 3% by weight or more.
  • Preferred examples thereof include the following.
  • SnO 2 and MgO in (b) and (c) have a specific crystal structure. It may be amorphous.
  • the Sn content that is, [Sn / (Sn + Mg)] (atomic ratio) is preferably in the range of 0.2 to 0.99, more preferably 0.2. Is in the range of -0.95, particularly preferably in the range of 0.5-0.9. If [Sn / (Sn + Mg)] is less than 0.2, the durability (acid resistance and / or alkali resistance) of the transparent conductive film obtained from the target may be lowered. This is because the transparency of the film may be lowered, or the thin film may be colored.
  • [Sn / (Sn + Mg)] (atomic ratio) in the above range is obtained by adjusting the mixing ratio of the tin compound and the magnesium compound before sintering, and the chemical stoichiometry depends on the mixing ratio of the compound before sintering. It is presumed that a compound composed of tin oxide and magnesium oxide corresponding to the ratio is generated, and the remaining tin oxide and magnesium oxide are present as a crystalline substance or an amorphous substance.
  • the relative density of the sintered body constituting the target I of the present invention is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the density of the sintered body is less than 80%, there is a possibility that the film formation rate becomes slow or abnormal discharge occurs, and the target and the film obtained therefrom are easily blackened.
  • the target I of the present invention is composed of the sintered body of tin / magnesium oxide as described above, and the target I composed of this sintered body is excellent in transparency, acid resistance and alkali resistance, and is a transparent amorphous semiconductor film. It is suitable as a target for obtaining a transparent amorphous film for various uses such as an amorphous film for a transparent insulating film and a transparent protective film for a solar cell by a sputtering method.
  • the amorphous tin oxide / gallium oxide / zinc oxide amorphous film and the transparent amorphous material with superior acid and alkali resistance and superior light transmittance than the zinc oxide / magnesium oxide film A quality semiconductor film or an insulating amorphous film can be obtained.
  • the target I can be produced by various methods, but is preferably produced by the method I of the present invention described later.
  • the oxide sintered body in the target I of the present invention is an element having a valence of positive trivalent or higher with respect to 100 atomic parts of the total amount of all the cation elements in the oxide. At least one species is doped in an amount of 30 atomic parts or less.
  • doping elements include Ga, In, lanthanoid elements, Ge, Ti, Zr, Hf, and Nb.
  • the reason for limiting the ratio of the doping element to 30 atomic parts or less is that, when doped in an amount exceeding 30 atomic parts, carrier scattering by ions occurs in the transparent amorphous film obtained from this target. This is because the mobility of the transparent amorphous semiconductor film may be lowered. Since the target II is doped with an element having a positive trivalent or higher valence, the transparent amorphous semiconductor film having higher mobility than the transparent amorphous semiconductor film obtained from the target I described above is provided.
  • the target II of the present invention is a transparent amorphous semiconductor film for various uses such as a transparent amorphous semiconductor film, an amorphous film for a transparent insulating film, a transparent protective film for solar cells, and a transparent non-crystalline film. It is suitable as a target for obtaining a crystalline insulating film by a sputtering method. Even when this target II is used, a transparent amorphous semiconductor having excellent acid resistance and alkali resistance and excellent light transmittance as compared with transparent amorphous semiconductor indium oxide / gallium oxide / zinc oxide film and zinc oxide / magnesium oxide film. A quality semiconductor film or an insulating amorphous film can be obtained.
  • the target II can also be produced by various methods, but is preferably produced by the method II of the present invention described later.
  • the method I of the present invention includes a step of mixing a tin compound and a magnesium compound, a step of molding the mixture obtained in the step, and a molding obtained in the step as described above. And a step of obtaining a sintered body of oxide containing Sn and Mg as main components and containing SnMg 2 O 4 .
  • the tin compound and the magnesium compound used in Method I may be oxides or oxides (oxide precursors) that become oxides after firing.
  • Tin oxide and magnesium oxide precursors include tin and magnesium sulfides, sulfates, nitrates, halides (chlorides, bromides, etc.), carbonates, organic acid salts (acetates, propionic acids) Salt, naphthenate, etc.), alkoxide (methoxide, ethoxide, etc.), organometallic complex (acetylacetonate, etc.) and the like.
  • nitrates, organic acid salts, alkoxides, and organometallic complexes are preferably used in order to completely thermally decompose at low temperatures so that no impurities remain.
  • Step of mixing tin compound and magnesium compound In the method I of the present invention, the step of first mixing the above tin compound and magnesium compound to obtain a mixture is carried out. It is preferable to carry out by the method (coprecipitation method) or (ii) physical mixing method, and the following physical mixing method is particularly preferably used.
  • the above tin compound is tin oxide or a precursor thereof (regardless of water solubility or poor solubility), and the above magnesium compound is magnesium oxide or a precursor thereof (water solubility or poor solubility).
  • the tin compound and the magnesium compound are put into a mixer such as a ball mill, jet mill, pearl mill, or bead mill, and both compounds are mixed uniformly.
  • the mixing time is preferably 1 to 200 hours. This is because homogenization tends to be insufficient if the time is less than 1 hour, and productivity decreases if the time exceeds 200 hours.
  • a particularly preferred mixing time is 10 to 120 hours.
  • a step of calcining the mixture may be performed.
  • the calcining conditions in the calcining step of the mixture of the tin compound and the magnesium compound vary depending on the balance between temperature and time, but in general, it is preferably carried out at a temperature of 800 to 1500 ° C. for 1 to 100 hours. If it is less than 800 ° C or less than 1 hour, the thermal decomposition and reaction of the tin compound and the magnesium compound may be insufficient. Conversely, if the temperature exceeds 1500 ° C or exceeds 100 hours, the particles may sinter. There is a risk of coarsening of the particles.
  • Particularly preferred calcining conditions are a temperature of 1000 to 1400 ° C. and a time of 2 to 50 hours.
  • the obtained calcined product is preferably pulverized, and if necessary, reduction treatment may be performed before and after pulverization.
  • the calcined product is preferably pulverized using a ball mill, roll mill, pearl mill, jet mill, bead mill or the like so that the particle diameter is within a range of 0.01 to 1.0 ⁇ m. If the particle size is less than 0.01 ⁇ m, the powder tends to aggregate, handling becomes worse, and a dense sintered body may be difficult to obtain. On the other hand, if it exceeds 1.0 ⁇ m, it may be difficult to obtain a dense sintered body. A sintered body having a uniform composition can be obtained by repeated calcination and pulverization.
  • reduction with a reducing gas As a reduction method in the case of performing the reduction treatment, reduction with a reducing gas, vacuum firing, reduction with an inert gas, or the like can be applied.
  • hydrogen, methane, CO, or a mixed gas of these gases and oxygen can be used as the reducing gas.
  • reduction by calcination in an inert gas nitrogen, argon, a mixed gas of these gases and oxygen, or the like can be used as the inert gas.
  • the reduction temperature is preferably 100 to 800 ° C. If it is less than 100 degreeC, it is difficult to perform sufficient reduction
  • a particularly preferred reduction temperature is 200 to 800 ° C. Although the reduction time depends on the reduction temperature, it is preferably 10 minutes to 10 hours. If it is less than 10 minutes, it is difficult to perform sufficient reduction. On the other hand, if it exceeds 10 hours, the economy becomes poor. A particularly preferred reduction time is 30 minutes to 5 hours. In addition, when starting from an oxide (that is, tin oxide and magnesium oxide), this calcining step may not be provided.
  • an oxide that is, tin oxide and magnesium oxide
  • Step of obtaining a molded product by molding the mixture obtained in the above step In the method I of the present invention, the mixture obtained in the above step or a calcined product of the mixture (including calcined powder) is used as a target. The step of forming into a shape is then performed.
  • Molding of the mixture or calcined product is performed by a mold molding method, a casting molding method, an injection molding method, or the like.
  • molding is performed by CIP (cold isostatic pressure) or the like.
  • CIP cold isostatic pressure
  • the shape of a molded object can be made into various shapes suitable as a target.
  • a molding aid such as PVA (polyvinyl alcohol), MC (methyl cellulose), polywax, oleic acid or the like may be used.
  • the compact is sintered by normal pressure firing, HIP (hot isostatic pressure) firing, or the like.
  • the sintering temperature may be higher than the temperature at which the tin compound and the magnesium compound are thermally decomposed to form an oxide, and usually 900 to 1500 ° C. is preferable. Exceeding 1500 ° C. is not preferable because magnesium and tin are sublimated to cause a composition shift.
  • a particularly preferable sintering temperature is 1000 to 1400 ° C.
  • the sintering time depends on the sintering temperature, it is usually 1 to 50 hours, particularly 2 to 10 hours.
  • Sintering may be performed in a reducing atmosphere
  • examples of the reducing atmosphere include an atmosphere of a reducing gas such as H 2 , methane, and CO, and an inert gas such as Ar and N 2 .
  • a reducing gas such as H 2 , methane, and CO
  • an inert gas such as Ar and N 2 .
  • magnesium oxide and tin oxide are easily evaporated, it is desirable to perform pressure sintering by HIP sintering or the like.
  • a target I made of an oxide sintered body containing SnMg 2 O 4 can be obtained.
  • the method II of the present invention comprises a step of adding at least one elemental compound having a valence of 3 or more to a tin compound and a magnesium compound and mixing the mixture, and molding the mixture obtained in the above step. And a step of obtaining a molded product, and sintering the molded product obtained in the above-mentioned step, and a total amount of all cationic elements in the oxide containing Sn and Mg as main components and containing SnMg 2 O 4 is 100 atomic parts. On the other hand, a step of obtaining a sintered body in which at least one element having a valence of at least positive trivalence is doped in an amount of 30 atomic parts or less is included.
  • Method II is suitable as a method for obtaining target II.
  • a compound of an element having a valence greater than or equal to positive trivalent for example, Ga compound, In compound, lanthanoid element compound, Ge compound, Ti compound, Zr compound, Hf
  • the method is different from the above method I only in that at least one kind of compound, Nb compound, etc.) is added and mixed, and the others are the same as the above method I.
  • Gallium compounds used in Method II include gallium oxide or a gallium oxide precursor that becomes gallium oxide after firing, such as gallium acetate, gallium oxalate, 2-ethylhexyl gallium, trimethoxy gallium, triethoxy gallium, tripropoxy gallium, Examples include gallium alkoxide such as tributoxy gallium, gallium chloride, gallium fluoride, gallium nitrate, and gallium sulfate.
  • Indium compounds include indium oxide or an indium oxide precursor that becomes indium oxide after firing, such as indium acetate, indium oxalate, 2-ethylhexyl indium, trimethoxy indium, triethoxy indium, tripropoxy indium, tributoxy indium, etc.
  • Indium alkoxide, indium chloride, indium fluoride, indium nitrate, indium sulfate, and the like can be given.
  • the lanthanoid element compound includes a lanthanoid oxide element or a lanthanoid oxide element precursor that becomes a lanthanoid oxide element after firing, such as a lanthanoid acetate element, a lanthanoid oxalate element, a 2-ethylhexyl lanthanoid element, a trimethoxy lanthanoid element Lanthanoid element alkoxide, lanthanoid chloride element, fluorinated lanthanoid element, lanthanoid nitrate element, lanthanoid sulfate element, etc., such as lanthanide element, triethoxylanthanoid element, tripropoxylantanoid element, tributoxylantanoid element It is done.
  • a lanthanoid oxide element or a lanthanoid oxide element precursor that becomes a lanthanoid oxide element after firing, such as a lanthanoid acetate element, a lanthanoi
  • germanium alkoxide such as germanium chloride, tetramethoxy germanium, tetraethoxy germanium, tetrapropoxy germanium, tetrabutoxy germanium, germanium sulfate, germanium nitrate, germanium oxalate, etc. Can be mentioned.
  • titanium compound examples include titanium oxide or a precursor thereof, for example, titanium alkoxides such as titanium chloride, titanium fluoride, tetramethoxy titanium, tetraethoxy titanium, tetrapropoxy titanium, and tetrabutoxy titanium, titanium sulfate, and titanium hydroxide. It is done.
  • titanium alkoxides such as titanium chloride, titanium fluoride, tetramethoxy titanium, tetraethoxy titanium, tetrapropoxy titanium, and tetrabutoxy titanium, titanium sulfate, and titanium hydroxide. It is done.
  • zirconium compound examples include zirconium oxide or a precursor thereof, for example, zirconium alkoxide such as zirconium chloride, tetramethoxyzirconium, tetraethoxyzirconium, tetrapropoxyzirconium, tetrabutoxyzirconium, zirconium sulfate, zirconium nitrate, zirconium oxalate and the like.
  • hafnium compound examples include hafnium oxide or a precursor thereof, for example, hafnium alkoxide such as hafnium chloride, tetramethoxyhafnium, tetraethoxyhafnium, tetrapropoxyhafnium, tetrabutoxyhafnium, hafnium sulfate, hafnium nitrate, hafnium oxalate, and the like.
  • hafnium alkoxide such as hafnium chloride, tetramethoxyhafnium, tetraethoxyhafnium, tetrapropoxyhafnium, tetrabutoxyhafnium, hafnium sulfate, hafnium nitrate, hafnium oxalate, and the like.
  • niobium compound examples include niobium oxide or a precursor thereof, for example, niobium alkoxide such as niobium chloride, tetramethoxyniobium, tetraethoxyniobium, tetrapropoxyniobium, tetrabutoxyniobium, niobium sulfate, niobium nitrate, niobium oxalate, and the like.
  • niobium alkoxide such as niobium chloride, tetramethoxyniobium, tetraethoxyniobium, tetrapropoxyniobium, tetrabutoxyniobium, niobium sulfate, niobium nitrate, niobium oxalate, and the like.
  • the doping amount of the elemental compound having a positive trivalent or higher valence for example, gallium, indium, lanthanoid element, tin, germanium, titanium, zirconium, hafnium, cerium, niobium is finally obtained.
  • the total ratio of doping elements (Ga, In, lanthanoid elements, Ge, Ti, Zr, Hf, Nb, etc.) in the target II is 30 with respect to 100 atomic parts of the total amount of all the cation elements in the oxide. It is preferable to set appropriately in consideration of the transpiration of each component in the production process so as to be equal to or less than the atomic part.
  • the ratio of the doping element finally exceeds 30 atomic parts, the mobility of ions in the target, and hence the transparent amorphous semiconductor film, is reduced due to scattering by ions.
  • a target II is obtained, which is obtained by doping Sn with Mg as main components and an oxide containing SnMg 2 O 4 with an element having a positive trivalent or higher valence. be able to.
  • the transparent amorphous semiconductor film of the present invention is characterized in that Sn and Mg are the main components, and [Sn / (Sn + Mg)] (atomic ratio) is in the range of 0.2 to 0.99.
  • Sn and Mg are the main components
  • [Sn / (Sn + Mg)] (atomic ratio) is in the range of 0.2 to 0.99.
  • the transparent amorphous semiconductor film of the present invention at least one element having a valence of positive trivalent or more with respect to a total amount of 100 atomic parts of all the cation elements in the transparent amorphous semiconductor film, It may be dissolved in an amount of 30 atomic parts or less. As described above, when an element having a valence of not less than positive trivalence is dissolved, a transparent amorphous semiconductor film having further excellent mobility can be obtained.
  • the transparent amorphous semiconductor film of the present invention can be produced by various methods, it is preferably produced by a sputtering method using the target I or II of the present invention.
  • volume solid resistance (bulk resistance) The volume solid resistance was measured for the sintered body using Loresta or Hiresta manufactured by Mitsubishi Chemical.
  • Example 1 Production of Target I 790 g of tin oxide and 210 g of magnesium oxide were dispersed in ion-exchanged water, and pulverized and mixed in a bead mill. Next, the obtained slurry was dried and powdered with a spray dryer. Next, the obtained powder was charged into a 100 mm ⁇ mold, and preformed at a pressure of 100 kg / cm 2 with a mold press molding machine. Next, after consolidation at a pressure of 4 t / cm 2 using a cold isostatic press molding machine, sintering was performed at a temperature of 1300 ° C. for 5 hours to obtain a sintered body. Sn / (Sn + Mg) (atomic ratio) of this sintered body was 0.5.
  • the sintered body thus obtained was confirmed to be a target I composed of a compound represented by SnMg 2 O 4 (FIG. 1).
  • the bulk resistance measured by Hiresta was 10 7 ⁇ cm.
  • the dispersion state of Sn and Mg was confirmed by electron beam probe microscope (EPMA) measurement, but the dispersion state of the composition was substantially uniform.
  • the relative density of this sintered body was 90% or more.
  • Example 2 Production of target I First, 650 g of tin oxide and 350 g of magnesium oxide were dispersed in ion-exchanged water, and pulverized and mixed in a bead mill. Next, the obtained slurry was dried and powdered with a spray dryer. Next, the obtained powder was charged into a 100 mm ⁇ mold, and preformed at a pressure of 100 kg / cm 2 with a mold press molding machine. Next, after consolidation at a pressure of 4 t / cm 2 using a cold isostatic press molding machine, sintering was performed at a temperature of 1300 ° C. for 5 hours to obtain a sintered body.
  • the sintered body thus obtained was confirmed to be a target I made of a compound represented by SnMg 2 O 4 (FIG. 2).
  • Sn / (Sn + Mg) (atomic ratio) of this sintered body was 0.33.
  • the bulk resistance measured by Hiresta was on the order of 10 8 ⁇ cm.
  • the dispersion state of Sn and Mg was confirmed by EPMA measurement, but the dispersion state of the composition was substantially uniform.
  • the relative density of this sintered body was 90% or more.
  • Example 3 Production of Target I First, 900 g of tin oxide and 100 g of magnesium oxide were dispersed in ion-exchanged water, and pulverized and mixed in a bead mill. Next, the obtained slurry was dried and powdered with a spray dryer. Next, the obtained powder was charged into a 100 mm ⁇ mold, and preformed at a pressure of 100 kg / cm 2 with a mold press molding machine. Next, after consolidation at a pressure of 4 t / cm 2 using a cold isostatic press molding machine, sintering was performed at a temperature of 1300 ° C. for 5 hours to obtain a sintered body.
  • the sintered body thus obtained was confirmed to be a target I composed of a compound represented by SnMg 2 O 4 and tin oxide.
  • Sn / (Sn + Mg) (atomic ratio) of this sintered body was 0.7.
  • the bulk resistance measured by Hiresta was on the order of 10 8 ⁇ cm.
  • the dispersion state of Sn and Mg was confirmed by EPMA measurement, but the dispersion state of the composition was substantially uniform.
  • the relative density of this sintered body was 90%.
  • Example 4 Production of Target II 710 g of tin oxide, 190 g of magnesium oxide, and 100 g of indium oxide were placed in a pot made of polyimide having a volume of 10 liters together with an alumina ball having a diameter of 2 mm, added with ethanol, and pulverized and mixed with a planetary ball mill for 10 hours. did. The obtained powder was placed in a 4 inch diameter mold and pre-molded with a mold press molding machine at a pressure of 100 kg / cm 2 .
  • the sintered body had Sn / (Sn + Mg) (atomic ratio) of 0.5 and In / (Sn + Mg + In) (atomic ratio) of 0.07.
  • SnMg 2 O 4 atomic ratio
  • SnMg 2 O 4 indium oxide
  • the dispersion state of Sn and Mg was confirmed by EPMA measurement, but the dispersion state of the composition was substantially uniform.
  • Indium oxide was observed as particles of 3 ⁇ m or less.
  • the bulk resistance measured by Hiresta was on the order of 10 ⁇ 10 7 ⁇ cm.
  • the relative density of this sintered body was 90%.
  • Example 5 Production of target II 405 g of tin oxide, 220 g of magnesium oxide, and 375 g of indium oxide were placed in a 10 liter polyimide pot together with alumina balls having a diameter of 2 mm, added with ethanol, and ground and mixed in a planetary ball mill for 10 hours. did.
  • the obtained powder was charged into a 4 inch diameter mold and pre-molded with a mold press molding machine at a pressure of 100 kg / cm 2 . Then, it compacted with the pressure of 4 t / cm ⁇ 2 > with the cold isostatic press molding machine, and it sintered at the temperature of 1000 kgf / cm ⁇ 2 > and 1300 degreeC with the hot isostatic press for 3 hours, and obtained the sintered compact.
  • This sintered body had Sn / (Sn + Mg) (atomic ratio) of 0.33 and In / (Sn + Mg + In) (atomic ratio) of 0.25.
  • the obtained sintered body was confirmed to be a compound represented by SnMg 2 O 4 and In 2 MgO 4 composed of indium oxide and magnesium oxide.
  • the dispersion state of Sn and Mg was confirmed by EPMA measurement, but the dispersion state of the composition was substantially uniform.
  • the dispersion state of the composition of indium oxide was observed as particles of 5 ⁇ m or less.
  • the bulk resistance measured by Hiresta was on the order of 10 5 ⁇ cm.
  • the relative density of this sintered body was 90% or more.
  • Example 6 Production of target II 710 g of tin oxide, 190 g of magnesium oxide, and 100 g of gallium oxide were placed in a pot made of polyimide having a volume of 10 liters together with an alumina ball having a diameter of 2 mm, added with ethanol, and pulverized and mixed in a planetary ball mill for 10 hours. did. The obtained powder was charged into a 4 inch diameter mold and pre-molded with a mold press molding machine at a pressure of 100 kg / cm 2 .
  • the sintered body had Sn / (Sn + Mg) (atomic ratio) of 0.5 and Ga / (Sn + Mg + Ga) (atomic ratio) of 0.1.
  • the obtained sintered body was confirmed to be a compound represented by SnMg 2 O 4 and gallium oxide.
  • the dispersion state of Sn and Mg was confirmed by EPMA measurement, but the dispersion state of the composition was substantially uniform.
  • gallium oxide was observed as particles of 3 ⁇ m or less.
  • the bulk resistance measured by Hiresta was on the order of 10 ⁇ 10 8 ⁇ cm.
  • the relative density of this sintered body was 90% or more.
  • Example 7 Production of Target II 710 g of tin oxide, 190 g of magnesium oxide, and 100 g of oxide of lanthanoid oxide element were placed in a 10 liter polyimide pot together with 2 mm diameter alumina balls, and ethanol was added to a planetary ball mill. And mixed for 10 hours.
  • the obtained powder was charged into a 4 inch diameter mold and pre-molded with a mold press molding machine at a pressure of 100 kg / cm 2 . Then, it compacted with the pressure of 4 t / cm ⁇ 2 > with the cold isostatic press molding machine, and it sintered at the temperature of 1000 kgf / cm ⁇ 2 > and 1300 degreeC with the hot isostatic press for 3 hours, and obtained the sintered compact.
  • the sintered body had an Sn / (Sn + Mg) (atomic ratio) of 0.5, and a lanthanoid element / (Sn + Mg + lanthanoid element) (atomic ratio) of 0.05 to 0.1.
  • the bulk resistance measured by Hiresta was on the order of 10 9 ⁇ cm for lanthanoid elements.
  • the oxides of lanthanoid elements used at this time were oxides of La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the bulk resistance of the oxides of Ti, Zr, and Hf was on the order of 10 9 ⁇ cm.
  • the relative density of this sintered body was 90% or more.
  • Example 8 Production of transparent semiconductor film Using the sintered body obtained in Example 1 as a sputtering target, a transparent semiconductor film was produced in the following manner.
  • a substrate (glass plate with a thickness of 1.1 mm) was mounted on an RF magnetron sputtering apparatus, and the inside of the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa or less. Thereafter, argon gas was introduced to a vacuum pressure of 3 ⁇ 10 ⁇ 1 Pa, and sputtering was performed under the conditions of an output of 100 W and a substrate temperature of room temperature to form a transparent semiconductor film having a thickness of 100 nm.
  • the transparent semiconductor film thus obtained was confirmed to be amorphous as a result of X-ray diffraction measurement.
  • ICP inductively coupled plasma
  • the specific resistance of the transparent semiconductor film thus obtained was 10 6 ⁇ cm, and the visible light transmittance was 86.4%.
  • This transparent semiconductor film has an energy gap of 3.9 eV or more, is inactive with respect to visible light, and inactive with respect to UV-A, and can be used as a transparent TFT element. It was.
  • the specific resistance did not change as 10 6 ⁇ cm, and it was confirmed that the obtained transparent semiconductor film was excellent in moisture resistance.
  • the obtained transparent semiconductor film was immersed in phosphoric acid / acetic acid / nitric acid solution, which is an aluminum etching solution, at 30 ° C. for 5 minutes, but no change was observed. Furthermore, as a result of immersing the obtained transparent semiconductor film in a 3% aqueous sodium hydroxide solution at 30 ° C. for 5 minutes, it was revealed that the resistance value did not change and the alkali resistance was sufficient.
  • transparent semiconductor films were produced in the same manner as in Example 8 using the sintered bodies obtained in Examples 2 to 7 as sputtering targets. Each obtained transparent semiconductor film was immersed in the phosphoric acid / acetic acid / nitric acid solution at 30 ° C. for 5 minutes, but no change was observed.
  • the energy gap of these transparent semiconductor films is 3.9 eV or more, is inactive with respect to visible light, is inactive with respect to UV-A, and can be used as a transparent TFT element. all right.
  • Comparative Example 1 (1) Manufacture of target 440 g of indium oxide, 300 g of gallium oxide, and 260 g of zinc oxide were placed in a 10 liter polyimide pot together with an alumina ball having a diameter of 2 mm, ethanol was added, and the mixture was pulverized and mixed in a planetary ball mill for 10 hours. The obtained powder was charged into a 4 inch diameter mold and pre-molded with a mold press molding machine at a pressure of 100 kg / cm 2 .
  • the obtained sintered body was confirmed to be a compound represented by InGaZnO 4 .
  • the dispersion state of In, Ga, and Zn was confirmed by EPMA measurement, but the composition and particle size were substantially uniform.
  • the relative density of this sintered body was 90% or more.
  • a substrate (glass plate with a thickness of 1.1 mm) was mounted on an RF magnetron sputtering apparatus, and the inside of the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa or less. Thereafter, argon gas was introduced to a vacuum pressure of 3 ⁇ 10 ⁇ 1 Pa, and sputtering was performed under the conditions of an output of 100 W and a substrate temperature of room temperature to form a transparent semiconductor film having a thickness of 100 nm. The transparent semiconductor film thus obtained was confirmed to be amorphous as a result of X-ray diffraction measurement.
  • In / (In + Ga + Zn) (atomic ratio) is 0.33
  • Ga / (In + Ga + Zn) (atomic ratio) is 0.33
  • Zn / (In + Ga + Zn) (atomic ratio) is It was 0.33.
  • the specific resistance of the transparent semiconductor film thus obtained was 10 4 ⁇ cm, and the visible light transmittance was 88.5%.
  • the specific resistance was stable at 10 4 ⁇ cm, and it was confirmed that the obtained transparent semiconductor film was excellent in moisture resistance.
  • phosphoric acid / acetic acid / nitric acid solution which is an aluminum etching solution, at 30 ° C. for 5 minutes, it was revealed that all of the transparent semiconductor film was not resistant to the acid.
  • Comparative Example 2 (1) Manufacture of target 100 g of magnesium oxide and 900 g of zinc oxide were placed in a pot made of polyimide having a volume of 10 liters together with alumina balls having a diameter of 2 mm, ethanol was added, and the mixture was pulverized and mixed in a planetary ball mill for 10 hours. The obtained powder was charged into a 4 inch diameter mold and pre-molded with a mold press molding machine at a pressure of 100 kg / cm 2 .
  • a substrate (glass plate with a thickness of 1.1 mm) was mounted on an RF magnetron sputtering apparatus, and the inside of the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa or less. Thereafter, argon gas was introduced to a vacuum pressure of 3 ⁇ 10 ⁇ 1 Pa, and sputtering was performed under the conditions of an output of 100 W and a substrate temperature of room temperature to form a transparent semiconductor film having a thickness of 100 nm.
  • the transparent semiconductor film thus obtained was confirmed to be amorphous as a result of X-ray diffraction measurement. Further, as a result of ICP analysis in this transparent semiconductor film, Mg / (Mg + Zn) (atomic ratio) was 0.18.
  • the specific resistance of the transparent semiconductor film thus obtained was 10 5 ⁇ cm, and the visible light transmittance was 86.4%.
  • the specific resistance was unstable at 10 6 ⁇ cm, and it was confirmed that the obtained transparent semiconductor film was inferior in moisture resistance.
  • the transparent amorphous semiconductor film excellent in light transmittance is provided.
  • a transparent amorphous semiconductor film having further excellent mobility is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 SnとMgを主成分とし、SnMg2O4を含む酸化物の焼結体からなるターゲット。

Description

酸化スズ-酸化マグネシウム系スパッタリングターゲット及び透明半導体膜
 本発明は、ターゲット及びその製造方法、それから製造される透明非晶質薄膜に関する。
 近年、表示装置の発展は目覚ましく、液晶表示装置やEL表示装置等、種々の表示装置がパソコンやワ-プロ等のOA機器へ活発に導入されている。これらの表示装置は、いずれも表示素子を透明導電膜で挟み込んだサンドイッチ構造を有している。
 それら表示装置を駆動させるスイッチング素子には、現在、シリコン系の半導体膜が主流を占めている。それは、シリコン系薄膜の安定性、加工性の良さの他、スイッチング速度が速い等のためである。このシリコン系薄膜は、一般に化学蒸気析出法(CVD)法により作製されている。
 しかしながら、シリコン系薄膜は結晶系が非晶質の場合、スイッチング速度が比較的遅く、高速な動画等を表示する場合は画像を表示できないという難点を有している。また、結晶質のシリコン系薄膜の場合には、スイッチング速度は比較的速いが、結晶化に800℃以上の高温や、レーザーによる加熱等が必要であり、製造に対して多大なエネルギーと工程を要している。また、シリコン系の薄膜は、電圧素子としても性能は優れているものの、電流を流した場合、その特性の経時変化が問題となっている。
 シリコン系薄膜よりも安定性に優れるとともにITO膜と同等の光透過率を有する透明半導体膜を得るための材料等として好適なターゲット及びその製造方法を提供する方法として、酸化インジウム、酸化ガリウム及び酸化亜鉛からなる透明半導体薄膜や、酸化亜鉛と酸化マグネシウムからなる透明半導体薄膜が提案されている(例えば、特許文献1)。
 しかしながら、これら透明半導体膜は、弱酸でのエッチング性が非常に早い特徴を持っているが、金属薄膜のエッチング液でもエッチングされ、透明半導体膜上の金属薄膜をエッチングする場合に、同時にエッチングされてしまうことがあり、透明半導体膜上の金属薄膜だけを選択的にエッチングする場合には不適であった。
特開2004-119525号公報
 本発明の目的は、耐酸性・耐アルカリ性に優れるとともに光透過率に優れた透明非晶質薄膜、及びそれを製造するためのターゲットを提供することである。
 上記目的を達成するため、本発明者らは鋭意研究を行い、SnとMgを主成分とし、SnMgを含む酸化物の焼結体をターゲットとして用いて、スパッタリング法によって得られる薄膜が、耐酸性及び耐アルカリ性に優れるとともに光透過率に優れていることを見出し、本発明を完成させた。
 本発明によれば、以下のターゲット、ターゲットの製造方法、透明非晶質半導体膜、及び透明非晶質半導体膜の製造方法が提供される。
1.SnとMgを主成分とし、SnMgを含む酸化物の焼結体からなることを特徴とするターゲット。
2.前記酸化物が、酸化スズを含むことを特徴とする上記1に記載のターゲット。
3.[Sn/(Sn+Mg)](原子比)が、0.2~0.99の範囲内である上記1又は2に記載のターゲット。
4.前記酸化物中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量でドープされていることを特徴とする上記1~3のいずれかに記載のターゲット。
5.スズ化合物とマグネシウム化合物とを混合する工程と、
 前記工程で得られた混合物を成形して成形物を得る工程と、
 前記工程で得られた成形物を焼結して、SnとMgを主成分とし、SnMgを含む酸化物の焼結体を得る工程と、
を含むことを特徴とするターゲットの製造方法。
6.スズ化合物とマグネシウム化合物に、正三価以上の原子価を有する元素の化合物の少なくとも1種を加えて混合する工程と、
 前記工程で得られた混合物を成形して成形物を得る工程と、
 前記工程で得られた成形物を焼結して、SnとMgを主成分とし、SnMgを含む酸化物中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量でドープされた焼結体を得る工程と、
を含むことを特徴とするターゲットの製造方法。
7.SnとMgを主成分とし、[Sn/(Sn+Mg)](原子比)が0.2~0.99の範囲内である透明非晶質半導体膜。
8.前記透明非晶質半導体膜中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量で固溶されていることを特徴とする上記7に記載の透明非晶質半導体膜。
9.上記1~3のいずれかに記載のターゲットを用いて、スパッタリング法により薄膜を製造することを特徴とする上記7に記載の透明非晶質半導体膜の製造方法。
10.上記4に記載のターゲットを用いて、スパッタリング法により薄膜を製造することを特徴とする上記8に記載の透明非晶質半導体膜の製造方法。
 本発明によれば、耐酸性及び耐アルカリ性に優れるとともに光透過率に優れた透明非晶質薄膜を与えるターゲットが提供される。
 本発明によれば、耐酸性及び耐アルカリ性に優れるとともに光透過率に優れた透明非晶質薄膜が提供される。
図1は、実施例1で得られたターゲットのX線回折パターンを示すチャートである。 図2は、実施例2で得られたターゲットのX線回折パターンを示すチャートである。
 以下、本発明を詳細に説明する。
 本発明のターゲットは、SnとMgを主成分とし、SnMgを含む酸化物の焼結体からなることを特徴とする(以下、このターゲットを「ターゲットI」という)。
 ここで主成分とは、酸化物に含まれる全カチオン元素のうち、最も量の多い2つの成分がSnとMgであることである。
 また、本発明のターゲットは、上記酸化物中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量でドープされている(以下、このターゲットを「ターゲットII」という)。
 一方、本発明のターゲットの製造方法は、
 スズ化合物とマグネシウム化合物とを混合する工程と、
 前記工程で得られた混合物を成形する工程と、
 前記工程で得られた成形物を焼結して、SnとMgを主成分とし、SnMgを含む酸化物の焼結体を得る工程と、
を含む(以下、この方法を「方法I」という)。
 さらに、本発明のターゲットは、スズ化合物とマグネシウム化合物に、正三価以上の原子価を有する元素の化合物の少なくとも1種を加えて混合する工程と、
 前記工程で得られた混合物を成形する工程と、
 前記工程で得られた成形物を焼結して、SnとMgを主成分とし、SnMgを含む酸化物中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量でドープされた焼結体を得る工程と、
を含む(以下、この方法を「方法II」という)。
1.ターゲットI
 まず、本発明のターゲットIは、上述したようにSnとMgを主成分とし、SnMgを含む酸化物の焼結体からなるものである。
 ここに、上記「化合物を含む酸化物の焼結体」とは、X線回折測定で、当該化合物に帰属されるX線回折パターンを示す物質のみから実質的になる酸化物の焼結体又は化合物に帰属されるX線回折パターンを示す物質と共に、他の構造に帰属されるX線回折パターンを示す物質を含む酸化物の焼結体を意味する。
 より具体的には、この「化合物を含む酸化物の焼結体」は、当該化合物を1重量%以上、より好ましくは3重量%以上含み、その好ましい例として以下のものが挙げられる。
(a)SnMg
(b)SnMgと、SnOとの混合物
(c)SnMgと、MgOとの混合物
 ここで(b)、(c)中のSnO及びMgOは、特定の結晶構造を有していても非晶質であってもよい。
 本発明のターゲットIにおいて、Snの含有割合、即ち、[Sn/(Sn+Mg)](原子比)は、0.2~0.99の範囲内であるのが好ましく、より好ましくは、0.2~0.95の範囲内、特に好ましくは0.5~0.9の範囲内である。[Sn/(Sn+Mg)]が0.2未満ではターゲットから得られる透明導電膜の耐久性(耐酸性及び/又は耐アルカリ性)が低くなるおそれがあり、0.99を超えると透明非晶質薄膜の透明性が低下したり、薄膜が着色したりするおそれがあるからである。
 上記範囲の[Sn/(Sn+Mg)](原子比)は、焼結前のスズ化合物とマグネシウム化合物の混合比を調整することにより得られ、焼結前の化合物の混合比により、化学的量論比率に見合うスズ酸化物とマグネシウム酸化物からなる化合物が生成し、残りのスズ酸化物とマグネシウム酸化物が結晶性物質又は非晶質物質等として存在するものと推定される。
 また、本発明のターゲットIを構成する焼結体の相対密度は80%以上であることが好ましく、より好ましい相対密度は85%以上であり、さらに好ましくは90%以上である。焼結体の密度が80%未満である場合、成膜速度が遅くなったり異常放電をおこしたり、又ターゲット及びそれから得られる膜が黒化しやすくなるおそれがある。より密度の高い焼結体を得るためには、CIP(冷間静水圧)等で成型後焼結したり、HIP(熱間静水圧)等により焼結することが好ましい。
 本発明のターゲットIは、上述したように上記スズ・マグネシウム酸化物の焼結体からなり、この焼結体からなるターゲットIは透明性及び耐酸性・耐アルカリ性に優れ、透明非晶質半導体膜、透明絶縁膜用非晶質膜、太陽電池用透明保護膜等、種々の用途の透明非晶質膜をスパッタリング法により得るためのターゲットとして好適である。このターゲットを用いた場合には、非晶質酸化スズ・酸化ガリウム・酸化亜鉛非晶質膜、酸化亜鉛・酸化マグネシウム膜よりも耐酸性・耐アルカリ性に優れると共に光透過率に優れた透明非晶質半導体膜や絶縁性非晶質膜を得ることができる。
 ターゲットIは種々の方法により製造することが可能であるが、後述する本発明の方法Iにより製造することが好ましい。
2.ターゲットII
 本発明のターゲットIIは、上記本発明のターゲットIにおける酸化物の焼結体が、上記酸化物中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量でドープされたものである。
 正三価以上の原子価を有する元素(以下、ドープ元素ということがある)としては、例えば、Ga、In、ランタノイド系元素、Ge、Ti、Zr、Hf及びNbが挙げられる。
 ここで、[Sn/(Sn+Mg)](原子比)、焼結体の相対密度等については、ターゲットIと同様であるので、その説明は省略する。また、本発明のターゲットIIにおいて、ドープ元素の割合を30原子部以下に限定する理由は、30原子部を超える量でドープすると、このターゲットから得られる透明非晶質膜においてイオンによるキャリヤー散乱が起こり、透明非晶質半導体膜の移動度が低下する場合があるからである。
 ターゲットIIは、正三価以上の原子価を有する元素をドープしているため、前述したターゲットIから得られた透明非晶質半導体膜よりも移動度に優れた透明非晶質半導体膜を与える。
 本発明のターゲットIIは、ターゲットIと同様に、透明非晶質半導体膜、透明絶縁膜用非晶質膜、太陽電池用透明保護膜等、種々の用途の透明非晶質半導体膜や透明非晶質絶縁膜をスパッタリング法により得るためのターゲットとして好適である。このターゲットIIを用いた場合にも、透明非晶質半導体酸化インジウム・酸化ガリウム・酸化亜鉛膜、酸化亜鉛・酸化マグネシウム膜よりも耐酸性及び耐アルカリ性に優れるとともに光透過率に優れた透明非晶質半導体膜や絶縁性非晶質膜を得ることができる。
 ターゲットIIも種々の方法により製造することが可能であるが、後述する本発明の方法IIにより製造することが好ましい。
3.方法I
 まず本発明の方法Iは、前述したようにスズ化合物とマグネシウム化合物とを混合する工程と、前記工程で得られた混合物を成形する工程と、前記工程で得られた成形物を焼結して、SnとMgを主成分とし、SnMgを含む酸化物の焼結体を得る工程とを含むことを特徴とする。
 方法Iで用いるスズ化合物及びマグネシウム化合物は、酸化物又は焼成後に酸化物になるもの(酸化物前駆体)であればよい。スズ酸化物前駆体、マグネシウム酸化物前駆体としては、スズ及びマグネシウムのそれぞれの硫化物、硫酸塩、硝酸塩、ハロゲン化物(塩化物、臭化物等)、炭酸塩、有機酸塩(酢酸塩、プロピオン酸塩、ナフテン酸塩等)、アルコキシド(メトキシド、エトキシド等)、有機金属錯体(アセチルアセトナート等)等が挙げられる。
 これらの化合物のうち、低温で完全に熱分解し、不純物が残存しないようにするためには、硝酸塩、有機酸塩、アルコキシド、有機金属錯体を用いるのが好ましい。
(1)スズ化合物とマグネシウム化合物とを混合する工程
 本発明の方法Iにおいては、上記のスズ化合物とマグネシウム化合物とを混合して混合物を得る工程を先ず行なうが、この工程は、(i)溶液法(共沈法)又は(ii)物理混合法により実施するのが好ましく、特に下記の物理混合法が好適に使用される。
 物理混合法は、上記のスズ化合物が酸化スズ又はその前駆体(水溶性、難溶性を問わない)である場合、及び上記のマグネシウム化合物が酸化マグネシウム又はその前駆体(水溶性、難溶性を問わない)である場合のいずれの場合にも実施できる方法であり、スズ化合物とマグネシウム化合物をボールミル、ジェットミル、パールミル、ビーズミル等の混合器に入れ、両化合物を均一に混ぜ合わせるものである。混合時間は1~200時間とするのが好ましい。1時間未満では均一化が不十分となりやすく、200時間を超えると生産性が低下するからである。特に好ましい混合時間は10~120時間である。
 本発明の方法では、上述のスズ化合物とマグネシウム化合物の混合物を得る工程の後、この混合物を仮焼する工程を行ってもよい。
 スズ化合物とマグネシウム化合物との混合物の仮焼工程における仮焼条件は、温度と時間との兼ね合いで種々異なってくるが、一般に、温度800~1500℃で1~100時間行うことが好ましい。800℃未満又は1時間未満ではスズ化合物とマグネシウム化合物の熱分解や反応が不十分となるおそれがあり、逆に1500℃を超えた場合又は100時間を超えた場合には粒子が焼結して粒子の粗大化が起こるおそれがある。特に好ましい仮焼条件は、温度1000~1400℃で2~50時間である。
 本発明の方法Iでは、上述のようにして仮焼を行った場合、得られた仮焼物の粉砕を行なうことが好ましく、また必要に応じて、粉砕前後に還元処理を行ってもよい。
 仮焼物の粉砕は、ボールミル、ロールミル、パールミル、ジェットミル、ビーズミル等を用いて、粒子径が0.01~1.0μmの範囲内になるように行うことが好ましい。粒子径が0.01μm未満では粉末が凝集しやすく、ハンドリングが悪くなる上、緻密な焼結体が得にくい場合がある。一方1.0μmを超えると緻密な焼結体が得にくい場合がある。
 尚、仮焼と粉砕を繰り返し行なった方が組成の均一な焼結体が得られる。
 また還元処理を行う場合の還元方法としては還元性ガスによる還元、真空焼成又は不活性ガスによる還元等を適用することができる。還元性ガスによる還元を行う場合、還元性ガスとしては水素、メタン、CO等や、これらのガスと酸素との混合ガス等を用いることができる。又、不活性ガス中での焼成による還元の場合、不活性ガスとしては、窒素、アルゴン等や、これらガスと酸素との混合ガス等を用いることができる。還元温度は100~800℃が好ましい。100℃未満では十分な還元を行うことが困難である。一方、800℃を超えるとマグネシウムの蒸発が生じて組成が変化するため好ましくない。特に好ましい還元温度は200~800℃である。還元時間は、還元温度にもよるが、10分~10時間が好ましい。10分未満では十分な還元を行うことが困難である。一方、10時間を超えると経済性に乏しくなる。特に好ましい還元時間は30分~5時間である。
 尚、酸化物(即ち、酸化スズ及び酸化マグネシウム)より出発する場合には、この仮焼工程を設けなくてもよい。
(2)前記工程で得られた混合物を成形して成形物を得る工程
 本発明の方法Iにおいては、上記の工程で得られた混合物若しくは混合物の仮焼物(仮焼粉末を含む)をターゲットの形状に成形する工程を次に行なう。
 混合物若しくは仮焼物の成形は、金型成型法、鋳込み成型法、射出成型法等により行なわれるが、焼結密度の高い焼結体を得るためには、CIP(冷間静水圧)等で成形し、後記する焼結処理に付するのが好ましい。成形体の形状は、ターゲットとして好適な各種形状とすることができる。また成形するに当たっては、PVA(ポリビニルアルコール)、MC(メチルセルロース)、ポリワックス、オレイン酸等の成型助剤を用いてもよい。
(3)前記工程で得られた成形物を焼結して焼結体を得る工程
 成形体の焼結は、常圧焼成、HIP(熱間静水圧)焼成等により行なわれる。焼結温度は、スズ化合物とマグネシウム化合物が熱分解し、酸化物となる温度以上であればよく、通常900~1500℃が好ましい。1500℃を超えるとマグネシウム及びスズが昇華し組成のずれを生じるので好ましくない。特に好ましい焼結温度は1000~1400℃である。焼結時間は焼結温度にもよるが、通常1~50時間、特に2~10時間が好ましい。
 焼結は還元雰囲気で行なってもよく、還元雰囲気としては、例えばH、メタン、CO等の還元性ガス、Ar、N等の不活性ガスの雰囲気が挙げられる。尚、この場合、酸化マグネシウム及び酸化スズが蒸発しやすいので、HIP焼結等により加圧焼結することが望ましい。
 このようにして焼結を行なうことにより、SnMgを含む酸化物の焼結体からなる、目的とするターゲットIを得ることができる。
4.方法II
 本発明の方法IIは、前述したようにスズ化合物とマグネシウム化合物に、正三価以上の原子価を有する元素の化合物の少なくとも1種を加えて混合する工程と、前記工程で得られた混合物を成形して成形物を得る工程と、前記工程で得られた成形物を焼結して、SnとMgを主成分とし、SnMgを含む酸化物中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量でドープされた焼結体を得る工程とを含む。
 方法IIはターゲットIIを得るための方法として好適である。この方法IIは前述したように、スズ化合物とマグネシウム化合物に、正三価以上の原子価を有する元素の化合物(例えばGa化合物、In化合物、ランタノイド系元素化合物、Ge化合物、Ti化合物、Zr化合物、Hf化合物、Nb化合物等)の少なくとも1種を加えて混合した混合物を得る点でのみ上記方法Iと異なり、他は上記方法Iと同様に行うものである。
 方法IIにおいて用いられるガリウム化合物としては、酸化ガリウム又は焼成後に酸化ガリウムになる酸化ガリウム前駆体、例えば、酢酸ガリウム、シュウ酸ガリウム、2-エチルヘキシルガリウム、トリメトキシガリウム、トリエトキシガリウム、トリプロポキシガリウム、トリブトキシガリウム、等のガリウムアルコキシド、塩化ガリウム、フッ化ガリウム、硝酸ガリウム、硫酸ガリウム等が挙げられる。
 インジウム化合物としては、酸化インジウム又は焼成後に酸化インジウムになる酸化インジウム前駆体、例えば、酢酸インジウム、シュウ酸インジウム、2-エチルヘキシルインジウム、トリメトキシインジウム、トリエトキシインジウム、トリプロポキシインジウム、トリブトキシインジウム、等のインジウムアルコキシド、塩化インジウム、フッ化インジウム、硝酸インジウム、硫酸インジウム等が挙げられる。
 ランタノイド系元素化合物としては、酸化ランタノイド系元素又は焼成後に酸化ランタノイド系元素になる酸化ランタノイド系元素前駆体、例えば、酢酸ランタノイド系元素、シュウ酸ランタノイド系元素、2-エチルヘキシルランタノイド系元素、トリメトキシランタノイド系元素、トリエトキシランタノイド系元素、トリプロポキシランタノイド系元素、トリブトキシランタノイド系元素等のランタノイド系元素アルコキシド、塩化ランタノイド系元素、フッ化ランタノイド系元素、硝酸ランタノイド系元素、硫酸ランタノイド系元素等が挙げられる。
 また、ゲルマニウム化合物としては、酸化ゲルマニウム又はその前駆体、例えば、塩化ゲルマニウム、テトラメトキシゲルマニウム、テトラエトキシゲルマニウム、テトラプロポキシゲルマニウム、テトラブトキシゲルマニウム等のゲルマニウムアルコキシド、硫酸ゲルマニウム、硝酸ゲルマニウム、シュウ酸ゲルマニウム等が挙げられる。
 チタン化合物としては、酸化チタン又はその前駆体、例えば、塩化チタン、フッ化チタン、テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトラブトキシチタン等のチタンアルコキシド、硫酸チタン、水酸化チタン等が挙げられる。
 ジルコニウム化合物としては、酸化ジルコニウム又はその前駆体、例えば、塩化ジルコニウム、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラプロポキシジルコニウム、テトラブトキシジルコニウム等のジルコニウムアルコキシド、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ジルコニウム等が挙げられる。
 ハフニウム化合物としては、酸化ハフニウム又はその前駆体、例えば、塩化ハフニウム、テトラメトキシハフニウム、テトラエトキシハフニウム、テトラプロポキシハフニウム、テトラブトキシハフニウム等のハフニウムアルコキシド、硫酸ハフニウム、硝酸ハフニウム、シュウ酸ハフニウム等が挙げられる。
 ニオブ化合物としては、酸化ニオブ又はその前駆体、例えば、塩化ニオブ、テトラメトキシニオブ、テトラエトキシニオブ、テトラプロポキシニオブ、テトラブトキシニオブ等のニオブアルコキシド、硫酸ニオブ、硝酸ニオブ、シュウ酸ニオブ等が挙げられる。
 ドーピング原料である正三価以上の原子価を有する元素の化合物、例えば、ガリウム、インジウム、ランタノイド系元素、錫、ゲルマニウム、チタン、ジルコニウム、ハフニウム、セリウム、ニオブの化合物の添加量は、最終的に得られるターゲットIIにおけるドープ元素(Ga、In、ランタノイド系元素、Ge、Ti、Zr、Hf、Nb等)の合計の割合が、上記酸化物中の全カチオン元素の合量100原子部に対して30原子部以下となるように、製造過程での各成分の蒸散を考慮して適宜設定することが好ましい。ドープ元素の割合が最終的に30原子部を超えると、イオンによる散乱によりターゲット、ひいては透明非晶質半導体膜でのイオンの移動度が低下する。
 本発明の方法IIにより、SnとMgを主成分とし、SnMgを含む酸化物に、正三価以上の原子価を有する元素を所定量ドープしたものである、目的とするターゲットIIを得ることができる。
5.透明非晶質半導体膜及びその製造方法
 次に、本発明の透明非晶質半導体膜及びその製造方法について説明する。
 本発明の透明非晶質半導体膜は、SnとMgを主成分とし、[Sn/(Sn+Mg)](原子比)が0.2~0.99の範囲内であることを特徴とする。このように構成されていることにより、本発明の透明非晶質半導体膜は、耐酸性及び耐アルカリ性に優れ、かつ光透過率にも優れている。
 また、本発明の透明非晶質半導体膜は、上記透明非晶質半導体膜中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量で固溶されていてもよい。このように正三価以上の原子価を有する元素が固溶されていることにより、さらに移動度に優れる透明非晶質半導体膜となる。
 本発明の透明非晶質半導体膜は種々の方法により製造することが可能であるが、上記本発明のターゲットI又はIIを用いて、スパッタリング法により製造することが好ましい。
[実施例]
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
 最初に、実施例で得られた物質の測定方法及び測定条件について説明する。
(1)体積固体抵抗(バルク抵抗)
 体積固体抵抗の測定は、焼結体について、三菱化学製ロレスタ、又はハイレスタにより求めた。
(2)焼結密度(相対密度)
 焼結密度は、混合する原料の理論密度を重量分率に按分し、混合物の理論密度を算出し、実測密度より相対密度として表示した。
 実施例1:ターゲットIの製造
 まず、酸化スズ790gと酸化マグネシウム210gとをイオン交換水に分散させて、ビーズミルにて粉砕・混合した。次いで、得られたスラリーをスプレイドライヤーにて乾燥・粉末化した。次に、得られた粉末を100mmφの金型に装入し、金型プレス成型機により100kg/cmの圧力で予備成型を行った。次に、冷間静水圧プレス成型機により4t/cmの圧力で圧密化した後、1300℃の温度で5時間焼結して、焼結体を得た。この焼結体のSn/(Sn+Mg)(原子比)は0.5であった。
 このようにして得られた焼結体はSnMgで表される化合物からなるターゲットIであることが確認された(図1)。
 ハイレスタにより測定したバルク抵抗は、10Ωcmであった。
 電子線プローブ顕微鏡(EPMA)測定により、Sn及びMgの分散状態を確認したが、その組成の分散状態は実質的に均一であった。
 また、この焼結体の相対密度は90%以上であった。
 実施例2:ターゲットIの製造
 まず、酸化スズ650gと酸化マグネシウム350gとをイオン交換水に分散させて、ビーズミルにて粉砕・混合した。次いで、得られたスラリーをスプレイドライヤーにて乾燥・粉末化した。次に、得られた粉末を100mmφの金型に装入し、金型プレス成型機により100kg/cmの圧力で予備成型を行った。次に、冷間静水圧プレス成型機により4t/cmの圧力で圧密化した後、1300℃の温度で5時間焼結して、焼結体を得た。
 このようにして得られた焼結体はSnMgで表される化合物からなるターゲットIであることが確認された(図2)。
 この焼結体のSn/(Sn+Mg)(原子比)は0.33であった。
 ハイレスタにより測定したバルク抵抗は、10Ωcm台であった。
 EPMA測定により、Sn及びMgの分散状態を確認したが、その組成の分散状況は実質的に均一であった。
 また、この焼結体の相対密度は90%以上であった。
 実施例3:ターゲットIの製造
 まず、酸化スズ900gと酸化マグネシウム100gとをイオン交換水に分散させて、ビーズミルにて粉砕・混合した。次いで、得られたスラリーをスプレイドライヤーにて乾燥・粉末化した。次に、得られた粉末を100mmφの金型に装入し、金型プレス成型機により100kg/cmの圧力で予備成型を行った。次に、冷間静水圧プレス成型機により4t/cmの圧力で圧密化した後、1300℃の温度で5時間焼結して、焼結体を得た。
 このようにして得られた焼結体はSnMgで表される化合物及び酸化スズからなるターゲットIであることが確認された。
 この焼結体のSn/(Sn+Mg)(原子比)は0.7であった。
 ハイレスタにより測定したバルク抵抗は、10Ωcm台であった。
 EPMA測定により、Sn及びMgの分散状態を確認したが、その組成の分散状況は実質的に均一であった。
 また、この焼結体の相対密度は90%であった。
 実施例4:ターゲットIIの製造
 酸化スズ710g、酸化マグネシウム190g、及び酸化インジウム100gを、直径2mmのアルミナボールとともに容積10リットルのポリイミド製のポットに入れ、エタノールを加えて遊星ボールミルで10時間粉砕混合した。
 得られた粉末を直径4インチの金型に装入し、100kg/cmの圧力で金型プレス成型機にて予備成型を行なった。その後、冷間静水圧プレス成型機にて4t/cmの圧力で圧密化し、熱間静水圧プレスにて1000kgf/cm、1300℃の温度で3時間焼成し焼結体を得た。
 この焼結体のSn/(Sn+Mg)(原子比)は0.5、In/(Sn+Mg+In)(原子比)は0.07であった。
 得られた焼結体はX線回折測定結果、SnMgで表される化合物及び酸化インジウムであることが確認された。
 EPMA測定により、Sn及びMgの分散状態を確認したが、その組成の分散状態は実質的に均一であった。
 また、酸化インジウムは、3μm以下の粒子として観察された。
 ハイレスタにより測定したバルク抵抗は、10×10Ωcm台であった。
 また、この焼結体の相対密度は90%であった。
 実施例5:ターゲットIIの製造
 酸化スズ405g、酸化マグネシウム220g、及び酸化インジウム375gを、直径2mmのアルミナボールとともに容積10リットルのポリイミド製のポットに入れ、エタノールを加えて遊星ボールミルで10時間粉砕混合した。
 得られた粉末を、直径4インチの金型に装入し、100kg/cmの圧力で金型プレス成型機にて予備成型を行なった。その後、冷間静水圧プレス成型機にて4t/cmの圧力で圧密化し、熱間静水圧プレスにて1000kgf/cm、1300℃の温度で3時間焼成し焼結体を得た。
 この焼結体のSn/(Sn+Mg)(原子比)は0.33、In/(Sn+Mg+In)(原子比)は0.25であった。
 得られた焼結体はX線回折測定結果、SnMgで表される化合物、及び酸化インジウムと酸化マグネシウムからなるInMgOであることが確認された。
 EPMA測定により、Sn及びMgの分散状態を確認したが、その組成の分散状態は実質的に均一であった。
 また、酸化インジウムの組成の分散状態は、5μm以下の粒子として観察された。
 ハイレスタにより測定したバルク抵抗は、10Ωcm台であった。
 また、この焼結体の相対密度は90%以上であった。
 実施例6:ターゲットIIの製造
 酸化スズ710g、酸化マグネシウム190g、及び酸化ガリウム100gを、直径2mmのアルミナボールとともに容積10リットルのポリイミド製のポットに入れ、エタノールを加えて遊星ボールミルで10時間粉砕混合した。
 得られた粉末を、直径4インチの金型に装入し、100kg/cmの圧力で金型プレス成型機にて予備成型を行なった。その後、冷間静水圧プレス成型機にて4t/cmの圧力で圧密化し、熱間静水圧プレスにて1000kgf/cm、1300℃の温度で3時間焼成し焼結体を得た。この焼結体のSn/(Sn+Mg)(原子比)は0.5、Ga/(Sn+Mg+Ga)(原子比)は0.1であった。
 得られた焼結体はX線回折測定結果、SnMgで表される化合物及び酸化ガリウムであることが確認された。
 EPMA測定により、Sn及びMgの分散状態を確認したが、その組成の分散状態は実質的に均一であった。
 また、酸化ガリウムは、3μm以下の粒子として観察された。
 ハイレスタにより測定したバルク抵抗は、10×10Ωcm台であった。
 また、この焼結体の相対密度は90%以上であった。
 実施例7:ターゲットIIの製造
 酸化スズ710g、酸化マグネシウム190g、及び酸化ランタノイド系元素の酸化物100gを、直径2mmのアルミナボールとともに容積10リットルのポリイミド製のポットに入れ、エタノールを加えて遊星ボールミルで10時間粉砕混合した。
 得られた粉末を、直径4インチの金型に装入し、100kg/cmの圧力で金型プレス成型機にて予備成型を行なった。その後、冷間静水圧プレス成型機にて4t/cmの圧力で圧密化し、熱間静水圧プレスにて1000kgf/cm、1300℃の温度で3時間焼成し焼結体を得た。この焼結体のSn/(Sn+Mg)(原子比)は0.5、であり、ランタノイド系元素/(Sn+Mg+ランタノイド元素)(原子比)は0.05~0.1であった。
 得られた焼結体はX線回折測定結果、SnMgで表される化合物及び酸化ランタノイド系元素の酸化物、若しくはSnMgのみが観察された。
 EPMA測定により、Sn及びMgの分散状態を確認したが、その組成の分散状態は実質的に均一であった。
 また、ランタノイド系元素の酸化物は、3μm以下の粒子若しくは、均一分散状態として観察された。
 ハイレスタにより測定したバルク抵抗は、ランタノイド系元素について10Ωcm台であった。この時使用したランタノイド系元素の酸化物は、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuの酸化物であった。また、同様にTi、Zr、Hfの酸化物でも、バルク抵抗は10Ωcm台であった。
 また、この焼結体の相対密度は90%以上であった。
 実施例8:透明半導体膜の製造
 上記実施例1で得られた焼結体をスパッタリングターゲットとして用いて、以下の要領で透明半導体膜を製造した。
 まず、基板(厚さ1.1mmのガラス板)をRFマグネトロンスパッタ装置に装着し、真空槽内を5×10-4Pa以下まで減圧した。この後、アルゴンガスを真空圧3×10-1Paまで導入し、出力100W、基板温度が室温の条件でスパッタリングを行い、膜厚100nmの透明半導体膜を成膜した。
 このようにして得られた透明半導体膜は、X線回折測定の結果、非晶質であることが確認された。
 また、この透明半導体膜における誘導結合プラズマ(ICP)分析の結果、Sn/(Sn+Mg)(原子比)は0.5であることがわかった。
 このようにして得られた透明半導体膜の比抵抗は10Ωcmであり、可視光透過率は86.4%であった。
 この、透明半導体膜のエネルギーギャップは、3.9eV以上であり、可視光に対して、不活性であり、かつUV-Aについても不活性であり、透明TFT素子として使用可能であることがわかった。
 また、40℃、90%RHの条件で1000時間の耐湿性試験後でも、比抵抗は10Ωcmと変化がなく、得られた透明半導体膜は、耐湿性に優れていることが確認された。
 また、得られた透明半導体膜を、アルミのエッチング液である、燐酸・酢酸・硝酸液に、30℃で5分間浸漬したが変化は見られなかった。
 さらに、得られた透明半導体膜を、3%水酸化ナトリウム水溶液に、30℃で5分間浸漬した結果、抵抗値は変化なく、耐アルカリ性が十分にあることが明らかになった。
 同様に、実施例2~7で得られた焼結体をスパッタリングターゲットとして用い、実施例8と同様にしてそれぞれ透明半導体膜を作製した。
 得られた各透明半導体膜を、上記燐酸・酢酸・硝酸液に、30℃で5分間浸漬したが変化は見られなかった。
 また、これらの透明半導体膜のエネルギーギャップは、3.9eV以上であり、可視光に対して不活性であり、かつUV-Aについても不活性であり、透明TFT素子として使用可能であることがわかった。
 比較例1
(1)ターゲットの製造
 酸化インジウム440g、酸化ガリウム300g、及び酸化亜鉛260gを、直径2mmのアルミナボールとともに容積10リットルのポリイミド製のポットに入れ、エタノールを加えて遊星ボールミルで10時間粉砕混合した。
 得られた粉末を、直径4インチの金型に装入し、100kg/cmの圧力で金型プレス成型機にて予備成型を行なった。その後、冷間静水圧プレス成型機にて4t/cmの圧力で圧密化し、熱間静水圧プレスにて1000kgf/cm、1300℃の温度で3時間焼成し焼結体を得た。
 得られた焼結体はX線回折測定結果、InGaZnOで表される化合物であることが確認された。
 EPMA測定により、In、Ga、及びZnの分散状態を確認したが、その組成及び粒径は実質的に均一であった。
 また、この焼結体の相対密度は90%以上であった。
(2)透明半導体膜の製造
 上記(1)で得られた焼結体をスパッタリングターゲットとして用いて、以下の要領で透明半導体膜を製造した。
 まず、基板(厚さ1.1mmのガラス板)をRFマグネトロンスパッタ装置に装着し、真空槽内を5×10-4Pa以下まで減圧した。この後、アルゴンガスを真空圧3×10-1Paまで導入し、出力100W、基板温度室温の条件でスパッタリングを行い、膜厚100nmの透明半導体膜を成膜した。
 このようにして得られた透明半導体膜は、X線回折測定の結果、非晶質であることが確認された。
 また、この透明半導体膜におけるICP分析の結果、In/(In+Ga+Zn)(原子比)は0.33、Ga/(In+Ga+Zn)(原子比)は0.33、Zn/(In+Ga+Zn)(原子比)は0.33であった。
 このようにして得られた透明半導体膜の比抵抗は、10Ωcmであり、可視光透過率は88.5%であった。
 また、40℃、90%RHの条件で1000時間の耐湿性試験後、比抵抗は10Ωcmと安定しており、得られた透明半導体膜は、耐湿性に優れることが確認された。
 また、得られた透明半導体膜を、アルミのエッチング液である、燐酸・酢酸・硝酸液に30℃で5分間浸漬した結果、全て溶解し、上記酸に耐性がないことが明らかになった。
 また、同様に得られた透明半導体膜を、炭酸水溶液に室温で15分間浸漬した結果、抵抗値は測定できなかったことから、上記酸に耐性がないことが明らかになった。
 また、得られた透明半導体膜を、3%水酸化ナトリウム水溶液に30℃で5分間浸漬した結果、抵抗値は測定できなかったことから、耐アルカリ性がないことが明らかになった。
 比較例2
(1)ターゲットの製造
 酸化マグネシウム100g及び酸化亜鉛900gを、直径2mmのアルミナボールとともに容積10リットルのポリイミド製のポットに入れ、エタノールを加えて遊星ボールミルで10時間粉砕混合した。
 得られた粉末を、直径4インチの金型に装入し、100kg/cmの圧力で金型プレス成型機にて予備成型を行なった。その後、冷間静水圧プレス成型機にて4t/cmの圧力で圧密化し、熱間静水圧プレスにて1000kgf/cm、1300℃の温度で3時間焼成し焼結体を得た。
 EPMA測定により、Mg、Znの分散状態を確認したが、その組成及び粒径は実質的に均一であった。
 また、この焼結体の相対密度は90%以上であった。
(2)透明導電膜の製造
 上記(1)で得られた焼結体をスパッタリングターゲットとして用いて、以下の要領で透明半導体膜を製造した。
 まず、基板(厚さ1.1mmのガラス板)をRFマグネトロンスパッタ装置に装着し、真空槽内を5×10-4Pa以下まで減圧した。この後、アルゴンガスを真空圧3×10-1Paまで導入し、出力100W、基板温度が室温の条件でスパッタリングを行い、膜厚100nmの透明半導体膜を成膜した。
 このようにして得られた透明半導体膜は、X線回折測定の結果、非晶質であることが確認された。
 また、この透明半導体膜におけるICP分析の結果、Mg/(Mg+Zn)(原子比)は0.18、であった。
 このようにして得られた透明半導体膜の比抵抗は10Ωcmであり、可視光透過率は86.4%であった。
 また、40℃、90%RHの条件で1000時間の耐湿性試験後、比抵抗は10Ωcmと不安定であり、得られた透明半導体膜は、耐湿性に劣ることが確認された。
 また、得られた透明半導体膜を、アルミのエッチング液である、燐酸・酢酸・硝酸液に30℃で5分間浸漬した結果、全て溶解し、上記酸に耐性がないことが明らかになった。
 また、同様に得られた透明半導体膜を、炭酸水溶液に室温で15分間浸漬した結果、全て溶解し、抵抗値は測定できなかったことから、上記炭酸水溶液に耐性がないことが明らかになった。
 また、得られた透明半導体膜を、3%水酸化ナトリウム水溶液に30℃に5分間浸漬した結果、抵抗値は測定できなかったことから、耐アルカリ性がないことが明らかになった。
 本発明によれば、耐酸性及び耐アルカリ性に優れると共に、光透過率に優れる透明非晶質半導体膜が提供される。
 本発明によれば、さらに移動度に優れる透明非晶質半導体膜が提供される。

Claims (10)

  1.  SnとMgを主成分とし、SnMgを含む酸化物の焼結体からなるターゲット。
  2.  前記酸化物が、酸化スズを含む請求項1に記載のターゲット。
  3.  [Sn/(Sn+Mg)](原子比)が、0.2~0.99の範囲内である請求項1又は2に記載のターゲット。
  4.  前記酸化物中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量でドープされている請求項1~3のいずれか1項に記載のターゲット。
  5.  スズ化合物とマグネシウム化合物とを混合する工程と、
     前記工程で得られた混合物を成形して成形物を得る工程と、
     前記工程で得られた成形物を焼結して、SnとMgを主成分とし、SnMgを含む酸化物の焼結体を得る工程と、
    を含むターゲットの製造方法。
  6.  スズ化合物とマグネシウム化合物に、正三価以上の原子価を有する元素の化合物の少なくとも1種を加えて混合する工程と、
     前記工程で得られた混合物を成形して成形物を得る工程と、
     前記工程で得られた成形物を焼結して、SnとMgを主成分とし、SnMgを含む酸化物中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量でドープされた焼結体を得る工程と、
    を含むターゲットの製造方法。
  7.  SnとMgを主成分とし、[Sn/(Sn+Mg)](原子比)が0.2~0.99の範囲内である透明非晶質半導体膜。
  8.  前記透明非晶質半導体膜中の全カチオン元素の合量100原子部に対して、正三価以上の原子価を有する元素の少なくとも1種が、30原子部以下の量で固溶されている請求項7に記載の透明非晶質半導体膜。
  9.  請求項1~3のいずれか1項に記載のターゲットを用いて、スパッタリング法により薄膜を製造する請求項7に記載の透明非晶質半導体膜の製造方法。
  10.  請求項4に記載のターゲットを用いて、スパッタリング法により薄膜を製造する請求項8に記載の透明非晶質半導体膜の製造方法。
PCT/JP2008/071210 2007-12-25 2008-11-21 酸化スズ-酸化マグネシウム系スパッタリングターゲット及び透明半導体膜 WO2009081677A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009546989A JP5377328B2 (ja) 2007-12-25 2008-11-21 酸化スズ−酸化マグネシウム系スパッタリングターゲット及び透明半導体膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-332509 2007-12-25
JP2007332509 2007-12-25

Publications (1)

Publication Number Publication Date
WO2009081677A1 true WO2009081677A1 (ja) 2009-07-02

Family

ID=40800990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071210 WO2009081677A1 (ja) 2007-12-25 2008-11-21 酸化スズ-酸化マグネシウム系スパッタリングターゲット及び透明半導体膜

Country Status (3)

Country Link
JP (1) JP5377328B2 (ja)
TW (1) TWI429776B (ja)
WO (1) WO2009081677A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192977A (ja) * 2010-02-19 2011-09-29 Semiconductor Energy Lab Co Ltd トランジスタ及びそれを用いた表示装置
JP2012031497A (ja) * 2010-07-02 2012-02-16 Mitsubishi Materials Corp 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート
WO2012029408A1 (ja) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 酸化物焼結体及び酸化物半導体薄膜
JP2012051745A (ja) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp 酸化物焼結体及び酸化物半導体薄膜
CN115029670A (zh) * 2022-06-13 2022-09-09 宁波江丰电子材料股份有限公司 一种铬硅合金管状靶材的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037239B2 (ja) * 2014-09-12 2016-12-07 長州産業株式会社 透明導電膜、これを用いた装置または太陽電池、及び透明導電膜の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148706A (ja) * 1994-11-16 1996-06-07 Fujitsu Ltd 太陽電池
JPH10151696A (ja) * 1996-02-16 1998-06-09 Mitsui Chem Inc 積層体及びその製造方法
JP2003160861A (ja) * 2001-11-27 2003-06-06 Tosoh Corp Mg含有ITOスパッタリングターゲットの製造方法
JP2007077365A (ja) * 2005-09-16 2007-03-29 Niigata Univ 長残光蛍光体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148706A (ja) * 1994-11-16 1996-06-07 Fujitsu Ltd 太陽電池
JPH10151696A (ja) * 1996-02-16 1998-06-09 Mitsui Chem Inc 積層体及びその製造方法
JP2003160861A (ja) * 2001-11-27 2003-06-06 Tosoh Corp Mg含有ITOスパッタリングターゲットの製造方法
JP2007077365A (ja) * 2005-09-16 2007-03-29 Niigata Univ 長残光蛍光体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192977A (ja) * 2010-02-19 2011-09-29 Semiconductor Energy Lab Co Ltd トランジスタ及びそれを用いた表示装置
US9082858B2 (en) 2010-02-19 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Transistor including an oxide semiconductor and display device using the same
US9564534B2 (en) 2010-02-19 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device using the same
JP2012031497A (ja) * 2010-07-02 2012-02-16 Mitsubishi Materials Corp 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート
WO2012029408A1 (ja) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 酸化物焼結体及び酸化物半導体薄膜
JP2012051745A (ja) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp 酸化物焼結体及び酸化物半導体薄膜
JP2012051747A (ja) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp 酸化物焼結体及び酸化物半導体薄膜
KR101467131B1 (ko) * 2010-08-31 2014-11-28 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 산화물 소결체 및 산화물 반도체 박막
CN115029670A (zh) * 2022-06-13 2022-09-09 宁波江丰电子材料股份有限公司 一种铬硅合金管状靶材的制备方法
CN115029670B (zh) * 2022-06-13 2023-09-08 宁波江丰电子材料股份有限公司 一种铬硅合金管状靶材的制备方法

Also Published As

Publication number Publication date
JP5377328B2 (ja) 2013-12-25
TW200927974A (en) 2009-07-01
TWI429776B (zh) 2014-03-11
JPWO2009081677A1 (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5269501B2 (ja) 酸化物焼結体及びそれからなるスパッタリングターゲット
TWI461382B (zh) ZnO-SnO 2 -In 2 O 3 Department of oxide sintered body and amorphous transparent conductive film
JP5089386B2 (ja) In・Sm酸化物系スパッタリングターゲット
TWI400346B (zh) Sputtering target, transparent conductive film and touch panel with transparent electrode
JP4850378B2 (ja) スパッタリングターゲット、透明導電性酸化物、およびスパッタリングターゲットの製造方法
JP3179287B2 (ja) 導電性透明基材およびその製造方法
TWI441933B (zh) Targets containing oxides of lanthanides
JP4488184B2 (ja) 酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜
JP5377328B2 (ja) 酸化スズ−酸化マグネシウム系スパッタリングターゲット及び透明半導体膜
US8664136B2 (en) Indium oxide sintered compact and sputtering target
JPH06234565A (ja) ターゲットおよびその製造方法
JP2011184715A (ja) 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法
KR100891952B1 (ko) 투명 도전막용 산화물계 타겟 및 그 제조방법, 그리고산화물계 투명 도전막
JP5952031B2 (ja) 酸化物焼結体の製造方法およびターゲットの製造方法
JP5087605B2 (ja) 酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜
TW201522689A (zh) 濺鍍靶及其製造方法
JP2012106879A (ja) 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法
JP2008075124A (ja) 酸化イッテルビウム含有酸化物ターゲット
US20110114475A1 (en) Method for producing transparent conductive film
JP2017014535A (ja) スパッタリングターゲット及びその製造方法
JP2010269984A (ja) ホウ素を含有するZnO系焼結体の製造方法
JP2012140673A (ja) 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法
JP5878045B2 (ja) 酸化亜鉛系焼結体およびその製造方法
JP2017014534A (ja) スパッタリングターゲット及びその製造方法
JP2012140276A (ja) 酸化亜鉛系透明導電膜形成材料、それを用いたターゲット、酸化亜鉛系透明導電膜の形成方法および透明導電性基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009546989

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863970

Country of ref document: EP

Kind code of ref document: A1