WO2009081662A1 - 共振器およびそれを備える基板、ならびに共振を生じさせる方法 - Google Patents

共振器およびそれを備える基板、ならびに共振を生じさせる方法 Download PDF

Info

Publication number
WO2009081662A1
WO2009081662A1 PCT/JP2008/070407 JP2008070407W WO2009081662A1 WO 2009081662 A1 WO2009081662 A1 WO 2009081662A1 JP 2008070407 W JP2008070407 W JP 2008070407W WO 2009081662 A1 WO2009081662 A1 WO 2009081662A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
resonator
conductor
internal
Prior art date
Application number
PCT/JP2008/070407
Other languages
English (en)
French (fr)
Inventor
Atsushi Toujo
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2009546985A priority Critical patent/JP5104879B2/ja
Publication of WO2009081662A1 publication Critical patent/WO2009081662A1/ja
Priority to US12/815,668 priority patent/US8264305B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators

Definitions

  • the present invention relates to a resonator that can generate resonance by being brought close to a conductor through which a current flows, a substrate including the resonator, and a method of generating resonance, and more particularly, to a configuration that uses a negative magnetic permeability.
  • metamaterials are an artificial material having electromagnetic or optical characteristics that a substance existing in nature does not have.
  • Typical properties of such metamaterials include negative permeability ( ⁇ ⁇ 0), negative dielectric constant ( ⁇ ⁇ 0), or negative refractive index (when both permeability and dielectric constant are negative) Is mentioned.
  • the region of ⁇ ⁇ 0 and ⁇ > 0, or the region of ⁇ > 0 and ⁇ ⁇ 0 is also referred to as “evanescent solution region”, and the region of ⁇ ⁇ 0 and ⁇ ⁇ 0 is also referred to as “left-handed region”.
  • FIG. 10 is a four-quadrant diagram showing the characteristics that appear with respect to the incident wave to the medium according to the signs of the magnetic permeability ⁇ and dielectric constant ⁇ .
  • Most of the substances existing in the natural world correspond to the right-handed medium located in the first quadrant shown in FIG. 10, and the wave incident on the medium is refracted by the refractive index determined by the magnetic permeability and the dielectric constant, Propagate in the incident direction.
  • incident waves cannot propagate in the second quadrant and the fourth quadrant (evanescent solution region) shown in FIG.
  • the third region left-handed region shown in FIG. 10 since the refractive index is negative, the wave incident on the medium propagates in the direction opposite to the incident direction.
  • an unnecessary electromagnetic wave radiated from an electronic device or the like can be suppressed by expressing a negative magnetic permeability. That is, when a magnetic flux is incident on a medium that exhibits negative permeability, unnecessary electromagnetic waves radiated from an electronic device or the like can be reflected or suppressed.
  • the present invention has been made to solve such a problem, and the purpose thereof is a smaller size capable of expressing negative permeability by generating resonance by receiving electromagnetic waves from the outside. It is to provide a resonator.
  • a resonator that is arranged in the vicinity of a conductor through which a current including a predetermined frequency component flows to receive resonance by receiving an electromagnetic wave generated by the current.
  • the resonator includes a plurality of electrode pairs each including a first electrode and a second electrode, which are opposed to each other via an insulator, a third electrode electrically connected to each of the first electrodes, and each of the second electrodes And a fourth electrode electrically connected.
  • Each electrode surface of the first and second electrodes is configured to be arranged substantially parallel to the magnetic field lines generated when a current flows through the conductor, and each electrode surface of the third and fourth electrodes Is configured such that it can be arranged substantially parallel to the magnetic field lines on a surface different from the electrode surfaces of the first and second electrodes.
  • a resonator that is arranged in the vicinity of a conductor through which a current including a predetermined frequency component flows to receive an electromagnetic wave generated by the current and cause resonance.
  • the resonator includes an external electrode pair composed of two external electrodes formed to face each other in parallel, a plurality of first internal electrodes electrically connected to one of the external electrode pairs, and the other of the external electrode pair. And an internal electrode group including a plurality of second internal electrodes connected to each other. Each electrode surface of the internal electrode group is formed perpendicular to the electrode surface of the external electrode. Each electrode surface of the external electrode pair is formed in parallel with a surface perpendicular to the propagation direction of the current flowing through the conductor.
  • An electrical circulation path including a second capacitance formed between the second internal electrode and the external electrode pair is formed.
  • the width of the external electrode is narrower than the width of each electrode of the internal electrode group at the connection surface between each electrode of the internal electrode group and the external electrode.
  • a resonator that is arranged in the vicinity of a conductor through which a current including a predetermined frequency component flows to receive resonance by receiving an electromagnetic wave generated by the current.
  • the resonator includes a plurality of plate electrodes arranged in parallel with each other through an insulator, a first connection electrode electrically connected to an even-numbered plate electrode of the plurality of plate electrodes, and an odd number of the plurality of plate electrodes.
  • a second connection electrode electrically connected to the second plate electrode.
  • each electrode surface of the first and second electrodes is substantially parallel to a magnetic field generated when a current flows through the conductor, and each electrode surface of the third and fourth electrodes is the first electrode surface. And it arrange
  • a strip-shaped conductor is disposed as a conductor at a position away from the uppermost surface of the plurality of flat plate electrodes by a predetermined distance, and a ground electrode is further disposed at a position away from the lowermost surface of the plurality of flat plate electrodes by a predetermined distance.
  • a resonator that is arranged in the vicinity of a conductor through which a current including a predetermined frequency component flows to receive resonance by receiving an electromagnetic wave generated by the current.
  • the resonator includes first and second comb electrodes each having a plurality of electrode surfaces parallel to each other.
  • the uppermost electrode surface of the first comb electrode and the uppermost electrode surface of the second comb electrode are formed so as to face each other in parallel at a predetermined interval, and the lowermost electrode surface of the first comb electrode And the lowermost electrode surface of the second comb-shaped electrode are formed to face each other in parallel with a predetermined interval.
  • the electrode surfaces of the first and second comb-shaped electrodes are configured to be arranged so as to be substantially parallel to the lines of magnetic force generated when a current flows through the conductor.
  • the length along the resonator conductor is formed to be shorter than 1 ⁇ 4 of one wavelength corresponding to a predetermined frequency component.
  • a substrate according to still another aspect of the present invention includes a plurality of the resonators described above. Further, the substrate includes a strip-shaped conductor through which a current including a predetermined frequency component flows, and the plurality of resonators are periodically arranged along the strip-shaped conductor.
  • a method for causing resonance between a predetermined frequency component of a current flowing through a conductor includes placing the resonator in proximity to the conductor.
  • the resonator includes a plurality of electrode pairs each including a first electrode and a second electrode, which are opposed to each other via an insulator, a third electrode electrically connected to each of the first electrodes, and each of the second electrodes And a fourth electrode electrically connected.
  • the arranging step includes arranging each electrode surface of the first and second electrodes so as to be substantially parallel to the magnetic field lines generated when a current flows through the conductor, and the third and fourth electrodes. Arranging each electrode surface so as to be substantially parallel to the magnetic field lines on a surface different from each electrode surface of the first and second electrodes.
  • FIG. 1 is a schematic external view of a resonator built-in substrate according to a first embodiment of the present invention. It is the II-II sectional view taken on the line shown in FIG. It is a figure for demonstrating the resonant circuit formed with a resonator in a resonant frequency. It is a figure which shows an example of the frequency characteristic of the relative magnetic permeability produced in the board
  • FIG. 4 is a four-quadrant diagram showing characteristics appearing with respect to an incident wave to a medium for each sign of magnetic permeability ⁇ and dielectric constant ⁇ .
  • Embodiments according to the present invention provide a resonator classified as a metamaterial or a substrate including a plurality of the resonators. Specifically, in these resonators and substrates, a capacitance (capacitance) generated between the electrodes using a device (typically, a multilayer capacitor) including a plurality of electrodes arranged at a predetermined distance from each other. ) Is formed as a main component.
  • This resonance circuit is sensitive to a specific frequency component of an electromagnetic wave generated by an alternating current flowing through the conductor, and can generate an electrical resonance phenomenon by receiving the electromagnetic wave of this frequency component. Due to this resonance phenomenon, negative magnetic permeability is developed, and electromagnetic waves radiated from the conductor can be reflected or suppressed.
  • the length of each resonator in the current propagation direction is the wavelength of the electromagnetic wave at the frequency to be targeted.
  • it must be at least shorter than ⁇ / 4.
  • the length of each resonator in the current propagation direction is preferably ⁇ / 20 or less.
  • a resonator or a substrate according to the present invention can be realized more easily by using a multilayer capacitor formed by laminating an insulating material (dielectric material) with a plurality of plate electrodes.
  • the configuration will be exemplified.
  • FIG. 1 is a schematic external view of resonator built-in substrate 110 according to the first embodiment of the present invention.
  • resonator built-in substrate 110 includes a resonator 100 and an exterior portion 12 that is a nonmagnetic material that covers the periphery of resonator 100.
  • a resin material such as Teflon (registered trademark) is suitable.
  • the resonator 100 is disposed in the vicinity of a strip-like conductor 14 (hereinafter also simply referred to as “conductor 14”) through which a current including a predetermined frequency component flows, so that a specific frequency of an electromagnetic wave generated by the current is generated. Resonance is generated in response to the component (resonance frequency).
  • a ground electrode 16 (not shown) is disposed on the surface of the resonator 100 opposite to the surface in contact with the conductor 14.
  • Resonance in the resonator 100 generates a magnetic flux from the inside of the resonator 100 to the outside, and an electric field induced by the generated magnetic flux prevents an electromagnetic wave generated by the current.
  • the conductor 14 the flow of the alternating current of the resonance frequency component in the resonator 100 is hindered, and the resonator-embedded substrate 110 functions as a kind of band cutoff filter.
  • the resonator-embedded substrate 110 is a passive device that does not require electrical energy from an external power source or the like, and that resonates only with an electromagnetic wave (particularly magnetic flux) radiated from the conductor 14. That is, the resonator 100 is not electrically connected to the strip-shaped conductor 14 or the ground electrode 16 and is in a floating state. And the resonator 100 expresses a negative magnetic permeability by producing such a resonance.
  • the length l in the current propagation direction of the conductor 14 of the resonator 100 is the wavelength of the electromagnetic wave at the resonance frequency. For ⁇ , it must be at least shorter than ⁇ / 4. Furthermore, the length l of the resonator 100 is preferably ⁇ / 20 or less.
  • the distance h between the conductor 14 and the multilayer capacitor is 0.2 mm, and the distance between the multilayer capacitor and the ground h ′ is 0.2 mm.
  • FIGS. 2 is a cross-sectional view taken along line II-II shown in FIG.
  • resonator 100 includes a plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 that face each other with spacers 6 each being an insulator having a high relative dielectric constant.
  • the plurality of first internal electrodes 4 are electrically connected to the first external electrode 2, and the plurality of second internal electrodes 5 are electrically connected to the second external electrode 3.
  • the plurality of plate-like internal electrodes 4 and internal electrodes 5 are alternately stacked.
  • An electrostatic capacitance (capacitance) whose value is determined by the area of the electrodes, the distance between the electrodes, the relative dielectric constant of the spacer 6 and the like is generated between the adjacent first internal electrodes 4 and the second internal electrodes 5.
  • each electrode surface of first internal electrode 4 and second internal electrode 5 constituting the multilayer capacitor is arranged to be substantially parallel to the magnetic field lines of the magnetic field. Is done.
  • the electrode surfaces of the first external electrode 2 and the second external electrode 3 are substantially different from the magnetic field lines on the surfaces different from the electrode surfaces of the first external electrode 2 and the second external electrode 3. It arrange
  • a resonance circuit as shown in FIG. 3 is formed for a predetermined frequency component, and this resonance circuit causes a negative permeability.
  • FIG. 3 is a diagram for explaining a resonance circuit formed by the resonator 100 at the resonance frequency.
  • the electrode 3 acts as a coil (inductor) according to the path length.
  • the uppermost layer electrode 4a, the first outer electrode 2, and the lowermost layer electrode 4b of the first inner electrodes are electrically connected to each other and include these.
  • a current path is formed.
  • the uppermost electrode 5a, the second outer electrode 3, and the lowermost electrode 5b of the second internal electrodes are electrically connected to each other, and a current path including them. Is formed.
  • both current paths are electrically connected to each other via the electrostatic capacitance (capacitance C1) between the electrode 4a and the electrode 5a and the electrostatic capacitance (capacitance C2) between the electrode 4b and the electrode 5b.
  • a resonant circuit is formed which is connected and includes capacitances C1 and C2 and inductances L1 to L6 generated by the respective electrodes. Therefore, the resonator 100 according to the present embodiment has a resonance frequency determined by the capacitance (C1 + C2) and the inductance (L1 + L2 + L3 + L4 + L5 + L6), and permeability resonance occurs when an electromagnetic wave having this resonance frequency is incident.
  • capacitance is generated between adjacent internal electrodes.
  • the capacitance other than the uppermost layer capacitance and the lowermost layer capacitance is the same as that of this resonance circuit.
  • the impact on formation is small. This is because current concentrates on the outermost layer of the circulation path causing resonance.
  • FIG. 4 is a diagram showing an example of frequency characteristics of relative magnetic permeability generated in resonator built-in substrate 110 according to the first embodiment of the present invention.
  • the change characteristics shown in FIG. 4 are calculated by simulation.
  • the relative magnetic permeability represents a ratio of magnetic permeability to vacuum magnetic permeability.
  • resonator built-in substrate 110 has about 4.9 GHz as one resonance frequency, and the relative permeability greatly fluctuates before and after that.
  • the impedance also fluctuates greatly and mismatch occurs, and functions as a band cutoff filter for the current flowing through the conductor 14 in this frequency region.
  • the electrode surfaces of the first internal electrode 4 and the second internal electrode 5, and the first external electrode 2 and the second external electrode 3 are arranged so as to be substantially parallel to the magnetic field lines of the magnetic field.
  • negative permeability which is a function as a metamaterial
  • substantially parallel means to exclude the state in which each electrode surface is orthogonal to the magnetic field lines, and in addition to the state in which each electrode surface is completely parallel to the magnetic field lines, Including a state having a predetermined angle.
  • the magnitude of the negative magnetic permeability developed in the resonator 100 is a value that can satisfy the requirements of the application, etc., it can be regarded as “substantially parallel”.
  • FIG. 5 is a diagram showing a result of simulating the frequency characteristics of the relative magnetic permeability generated in the resonator 100 according to the first embodiment of the present invention for each orientation of the multilayer capacitor.
  • arrangement (a) and arrangement (b) are as follows: the first internal electrode 4 and the second internal electrode 5, and the electrode surfaces of the first external electrode 2 and the second external electrode 3 are magnetic field lines. The case where it arrange
  • the arrangement (c) shows a case where the electrode surfaces of the first internal electrode 4 and the second internal electrode 5 are arranged at an angle of 45 ° with respect to the magnetic field lines.
  • Arrangement (d) shows a case where the electrode surfaces of the first external electrode 2 and the second external electrode 3 are arranged so as to be orthogonal to the magnetic field lines of the magnetic field, and arrangement (e) shows the first internal electrode 4. And the case where each electrode surface of the 2nd internal electrode 5 is arrange
  • any one of the first internal electrode 4 and the second internal electrode 5, and the first external electrode 2 and the second external electrode 3 is disposed orthogonal to the magnetic field lines of the magnetic field.
  • the negative magnetic permeability does not appear.
  • the configuration of the resonator-embedded substrate 110 in which the positional relationship between the conductor 14 and the resonator 100 is predetermined is illustrated, but the resonator 100 is disposed at a predetermined position with respect to the conductor 14.
  • negative magnetic permeability may be developed.
  • the electrode surfaces of the first internal electrode 4 and the second internal electrode 5 are arranged so as to be substantially parallel to the lines of magnetic force generated when a current flows through the conductor 14.
  • the upper and lower electrode surfaces of the resonator 100 are arranged so as to be parallel to the extending direction of the conductor 14.
  • the electrode surfaces of the first external electrode 2 and the second external electrode 3 are arranged so as to be substantially parallel to the lines of magnetic force generated when a current flows through the conductor 14.
  • the orientation of the resonator 100 is adjusted so that the external electrode surface of the resonator 100 coincides with the plane perpendicular to the extending direction of the conductor 14.
  • the resonator 100 is electrically connected to an external electrode pair including a first external electrode 2 and a second external electrode 3 that are formed to face each other in parallel and the first external electrode 2 that is one of the external electrode pairs.
  • a plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 electrically connected to the second external electrode 3 which is the other of the pair of external electrodes.
  • Each electrode surface of the internal electrode group including the first internal electrode 4 and the second internal electrode 5 is formed to be perpendicular to the electrode surfaces of the first external electrode 2 and the second external electrode 3. .
  • each electrode surface of the first external electrode 2 and the second external electrode 3 is formed so as to coincide with a vertical surface with respect to the propagation direction of the current flowing through the conductor 14.
  • the capacitance (capacitance C2) formed between the lowermost electrode 4b among the electrodes and the lowermost electrode 5b among the second internal electrodes adjacent to the electrode 4b, the first external electrode 2 and the second An electrical circulation path including the external electrode 3 is formed.
  • the resonator 100 includes a first internal electrode 4 and a second internal electrode 5 which are a plurality of plate electrodes arranged in parallel to each other via a spacer 6 which is an insulator, and even-numbered first electrodes of the plurality of plate electrodes.
  • 1 is a first external electrode 2 that is a first connection electrode electrically connected to the internal electrode 4, and a second connection electrode that is electrically connected to odd-numbered second internal electrodes 5 of a plurality of plate electrodes.
  • the electrode surfaces of the first external electrode 2 and the second external electrode 3 are formed perpendicular to the electrode surfaces of the plurality of plate electrodes. Further, the electrode surfaces of the plurality of flat plate electrodes are arranged so as to be substantially parallel to the magnetic field lines generated when a current flows through the conductor 14.
  • the resonator 100 includes a first comb electrode composed of a plurality of first internal electrodes 4 and a first external electrode 2 parallel to each other, a plurality of second internal electrodes 5 and a second external electrode 3 parallel to each other. And a second comb-type electrode.
  • the electrode surface of the uppermost layer electrode 4a of the first comb-shaped electrode and the electrode surface of the uppermost layer electrode 5a of the second comb-shaped electrode are formed so as to face each other in parallel at a predetermined interval. Thereby, an electrostatic capacitance (capacitance C1) is formed between the two.
  • the electrode surface of the lowermost electrode 4b of the first comb-shaped electrode and the electrode surface of the lowermost electrode 5b of the second comb-shaped electrode are formed so as to face each other in parallel with a predetermined interval. Thereby, electrostatic capacitance (capacitance C2) is formed between both.
  • the electrode surfaces of the first comb-type electrode and the second comb-type electrode are arranged so as to be substantially parallel to the lines of magnetic force generated when a current flows through the conductor 14.
  • the resonance circuit mainly composed of the capacitance (capacitance) generated between the stacked electrodes since the resonance circuit mainly composed of the capacitance (capacitance) generated between the stacked electrodes is used, the capacitance included in the resonance circuit can be made relatively large. Therefore, the device size for obtaining the necessary resonance characteristics can be reduced as compared with the configuration in which the ring pattern is periodically arranged as in the split ring resonator. As a result, a negative dielectric constant can be realized with a smaller device.
  • Embodiment 1 of the present invention since a resonator can be configured using a commercially available multilayer capacitor, a negative dielectric constant can be realized more easily.
  • FIG. 6 is a schematic external view of resonator-embedded substrate 210 according to the second embodiment of the present invention.
  • resonator built-in substrate 210 is obtained by periodically arranging a plurality of resonators 100 (five in FIG. 6) along conductor 14.
  • the electrode surfaces of the first internal electrode 4 (FIG. 2) and the second internal electrode 5 (FIG. 2) constituting each resonator 100 are substantially parallel to the magnetic field lines of the magnetic field. Placed in.
  • the electrode surfaces of the first external electrode 2 (FIG. 2) and the second external electrode 3 (FIG. 2) are also arranged so as to be substantially parallel to the magnetic field lines of the magnetic field.
  • each resonator 100 Since the configuration of each resonator 100 is the same as that of the first embodiment described above, detailed description will not be repeated.
  • FIG. 7 is a diagram showing an example of frequency characteristics of the attenuation amount of the current flowing through the conductor 14 in the resonator-embedded substrate 210 according to the second embodiment of the present invention. Note that the change characteristics shown in FIG. 7 are calculated by simulation.
  • resonator built-in substrate 210 has a resonance point in the vicinity of 6.5 GHz to 7.0 GHz, and the passing wave is greatly attenuated in this frequency region.
  • a necessary number of resonators can be arranged according to required characteristics (typically, necessary attenuation), an optimum value is obtained according to the application to which the application is applied.
  • a substrate that realizes a negative dielectric constant can be easily configured.
  • FIG. 8 is a schematic external view of resonator 200 according to the third embodiment of the present invention.
  • resonator 200 according to the present embodiment includes a plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 arranged alternately facing each other via spacers, and first internal electrodes 4.
  • First external electrode 2 # electrically connected to each other and second external electrode 3 # electrically connected to each of second internal electrodes 5 are included.
  • the width of the first external electrode 2 # is narrower than the width of the first internal electrode 4, and the second internal electrode 5 and the first external electrode 2 #
  • the width of the second external electrode 3 # is narrower than the width of the second internal electrode 5 at the connection surface with the 2 external electrode 3 #.
  • the inductance generated in the first external electrode 2 # and the second external electrode 3 # can be increased by narrowing the line width of the first external electrode 2 # and the second external electrode 3 #. Therefore, in the resonance circuit as shown in FIG. 3, since the capacitance (C1 + C2) necessary for generating the same resonance frequency is small, the internal electrode can be made smaller, and as a result, the entire multilayer capacitor can be reduced in size. Can be
  • the same effect as in the first embodiment can be obtained, and the size can be further reduced as compared with the resonator according to the first embodiment.
  • FIG. 9A is a schematic external view of substrate 310 according to the fourth embodiment of the present invention
  • FIG. 9B is a schematic external view of substrate 410 according to another embodiment of the fourth embodiment of the present invention. It is.
  • the substrate 310 is a substrate in which the above-described plurality of resonators 100 are periodically and two-dimensionally arranged with the conductor 14 as the center.
  • the substrate 410 is a substrate in which the above-described resonators 100 are periodically and three-dimensionally arranged with the conductor 14 as the center.
  • the electrode surfaces (FIG. 2) of the first internal electrode 4 and the second internal electrode 5 constituting each resonator 100 are substantially parallel to the magnetic field lines of the magnetic field.
  • the electrode surfaces (FIG. 2) of the first external electrode 2 and the second external electrode 3 are also arranged so as to be substantially parallel to the magnetic field lines of the magnetic field.
  • the internal electrodes are drawn so as to be intentionally visible for easy understanding.
  • Such substrates 310 and 410 can function as an electromagnetic shield by being mounted on, for example, an electronic device that generates high-frequency electromagnetic waves or an electronic device that is easily affected by disturbance noise.
  • the electromagnetic wave generation source is arranged in a shape other than a straight line
  • the electromagnetic wave is appropriately absorbed or suppressed by arranging the resonator in an arbitrary shape. Can be done.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 共振器(100)を構成する第1内部電極および第2内部電極の各電極面が磁界の磁力線に対して実質的に平行となるように配置される。それとともに、第1外部電極および第2外部電極の各電極面が、第1外部電極および第2外部電極の各電極面とは異なる面において、磁界の磁力線に対して実質的に平行となるように配置される。

Description

共振器およびそれを備える基板、ならびに共振を生じさせる方法
 この発明は、電流が流れる導体に近接させることで共振を生じ得る共振器およびそれを備える基板、ならびに共振を生じさせる方法に関し、特に負の透磁率を発現させて利用する構成に関する。
 近年、メタマテリアル(metamaterial)と称されるデバイスが注目されている。このメタマテリアルとは、自然界に存在する物質が有さないような電磁気的あるいは光学的な特性をもつ人工物質である。このようなメタマテリアルの代表的な特性として、負の透磁率(μ<0)、負の誘電率(ε<0)、あるいは負の屈折率(透磁率および誘電率がいずれも負の場合)が挙げられる。なお、μ<0かつε>0の領域、またはμ>0かつε<0の領域は「エバネッセント解領域」とも称され、μ<0かつε<0の領域は「左手系領域」とも称される。
 図10は、透磁率μおよび誘電率εの符号別に媒質への入射波に対して表れる特性を示す4象限図である。自然界に存在する物質の大部分は、図10に示す第1象限に位置する右手系媒質に相当し、当該媒質に入射する波は、透磁率および誘電率によって定まる屈折率だけ屈折された後、入射方向に伝搬する。これに対して、図10に示す第2象限および第4象限(エバネッセント解領域)では、入射波は伝播することができない。また、図10に示す第3領域(左手系領域)では、屈折率が負となるため、当該媒質に入射した波は入射方向と逆方向に伝搬する。
 このようなメタマテリアルの実現例として、“「左手系メタマテリアル」、日経エレクトロニクス1月2日号、日経BP社、2006年1月2日、p.75-81”には、マイクロ波向けのスプリット・リング共振器(SRR:Split Ring Resonator)が開示されている。このスプリット・リング共振器は、円周の一部を切り欠いた大小2つのリングパターンからなる単位セルを周期的に配置したものである。このスプリット・リング共振器では、特定の周波数領域において共振(共鳴)が生じて、μ<0が発現する。このスプリット・リング共振器と金属棒(ε<0)とを近接配置することでμ<0かつε<0が発現し、左手系媒質を実現できる。
 ところで、負の透磁率を発現させることで電子機器などから放射される不要な電磁波を抑制することができる。すなわち、負の透磁率が発現する媒質に磁束が入射すると、電子機器などから放射される不要な電磁波を反射あるいは抑制することができる。
「左手系メタマテリアル」、日経エレクトロニクス1月2日号、日経BP社、2006年1月2日、p.75-81
 しかしながら、上述の先行文献に開示されるようなスプリット・リング共振器では、平面的に導体が形成されているため、キャパシタンスを十分に大きくとることができず、所望の特性を実現するためには、比較的大型化するという課題があった。
 そこで、この発明は、かかる課題を解決するためになされたものであり、その目的は、外部からの電磁波を受けて共振を生じることで負の透磁率を発現させることが可能な、より小型な共振器を提供することである。
 この発明のある局面に従えば、所定の周波数成分を含む電流が流れる導体に近接して配置されることで、当該電流が発生する電磁波を受けて共振を生じる共振器を提供する。共振器は、各々が絶縁物を介して互いに対向する第1および第2電極からなる複数の電極対と、第1電極の各々と電気的に接続される第3電極と、第2電極の各々と電気的に接続される第4電極とを含む。第1および第2電極の各電極面は、導体に電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成されるとともに、第3および第4電極の各電極面は、第1および第2電極の各電極面とは異なる面において磁力線に対して実質的に平行となる配置を可能に構成される。
 この発明の別の局面に従えば、所定の周波数成分を含む電流が流れる導体に近接して配置されることで、当該電流が発生する電磁波を受けて共振を生じる共振器を提供する。共振器は、平行に対向して形成された2つの外部電極からなる外部電極対と、外部電極対の一方と電気的に接続された複数の第1内部電極と、外部電極対の他方と電気的に接続された複数の第2内部電極とからなる内部電極群とを含む。内部電極群の各電極面は、外部電極の電極面に対して垂直に形成される。外部電極対の各電極面は、導体を流れる電流の伝搬方向に対する垂直面と平行に形成される。1つの第1内部電極と当該第1内部電極に隣接する第2内部電極との間で形成される第1静電容量と、別の第1内部電極と当該第1内部電極に隣接する別の第2内部電極との間で形成される第2静電容量と、外部電極対とを含む電気的な循環経路が形成される。
 好ましくは、内部電極群の各電極と外部電極との接続面において、外部電極の幅は内部電極群の各電極の幅より狭い。
 この発明のさらに別の局面に従えば、所定の周波数成分を含む電流が流れる導体に近接して配置されることで、当該電流が発生する電磁波を受けて共振を生じる共振器を提供する。共振器は、絶縁物を介して互いに平行に配列された複数の平板電極と、複数の平板電極の偶数番目の平板電極と電気的に接続された第1接続電極と、複数の平板電極の奇数番目の平板電極と電気的に接続された第2接続電極とを含む。共振器は、第1および第2電極の各電極面が、導体に電流が流れた場合に生じる磁力線に対して実質的に平行となり、かつ第3および第4電極の各電極面が、第1および第2電極の各電極面とは異なる面において磁力線に対して実質的に平行となるように配置される。
 好ましくは、導体としてストリップ状導体が複数の平板電極の最上面から所定距離だけ離れた位置に配置され、複数の平板電極の最下面から所定距離だけ離れた位置にグランド電極がさらに配置される。
 この発明のさらに別の局面に従えば、所定の周波数成分を含む電流が流れる導体に近接して配置されることで、当該電流が発生する電磁波を受けて共振を生じる共振器を提供する。共振器は、各々が互いに平行する複数の電極面を有する第1および第2くし型電極を含む。第1くし型電極の最上層の電極面と第2くし型電極の最上層の電極面とが所定の間隔をもって平行に対向するように形成され、かつ第1くし型電極の最下層の電極面と第2くし型電極の最下層の電極面とが所定の間隔をもって平行に対向するように形成される。第1および第2くし型電極の各電極面は、導体に電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成される。
 好ましくは、共振器の導体に沿った長さは、所定の周波数成分に相当する1波長の1/4より短くなるように形成される。
 この発明のさらに別の局面に従う基板は、上述の共振器を複数個含む。さらに、基板は、所定の周波数成分を含む電流が流れるストリップ状導体を含み、複数の共振器は、ストリップ状導体に沿って周期的に配置される。
 この発明のさらに別の局面に従えば、導体に流れる電流の所定の周波数成分との間で共振を生じさせる方法を提供する。共振を生じさせる方法は、導体に近接して共振器を配置するステップを含む。共振器は、各々が絶縁物を介して互いに対向する第1および第2電極からなる複数の電極対と、第1電極の各々と電気的に接続される第3電極と、第2電極の各々と電気的に接続される第4電極とを含む。配置するステップは、第1および第2電極の各電極面が、導体に電流が流れた場合に生じる磁力線に対して実質的に平行となるように配置するステップと、第3および第4電極の各電極面が、第1および第2電極の各電極面とは異なる面において磁力線に対して実質的に平行となるように配置するステップとを含む。
 この発明によれば、外部からの電磁波を受けて共振を生じることで負の透磁率を発現させることが可能なより小型化した共振器を実現できる。
この発明の実施の形態1に従う共振器内蔵基板の概略の外観図である。 図1に示すII-II線断面図である。 共振周波数において共振器で形成される共振回路を説明するための図である。 この発明の実施の形態1に従う共振器内蔵基板で生じる比透磁率の周波数特性の一例を示す図である。 この発明の実施の形態1に従う共振器で生じる比透磁率の周波数特性を積層コンデンサの配向別にシミュレーションした結果を示す図である。 この発明の実施の形態2に従う共振器内蔵基板の概略の外観図である。 この発明の実施の形態2に従う共振器内蔵基板において、導体を流れる電流の減衰量の周波数特性の一例を示す図である。 この発明の実施の形態3に従う共振器の概略の外観図である。 この発明の実施の形態4に従う基板の概略の外観図である。 透磁率μおよび誘電率εの符号別に媒質への入射波に対して表れる特性を示す4象限図である。
符号の説明
 2,2# 第1外部電極、3,3# 第2外部電極、4 第1内部電極、4a,4b,5a,5b 電極、5 第2内部電極、6 スペーサ、12 外装部、14 ストリップ状導体(導体)、16 グランド電極、100,200 共振器、110,210 共振器内蔵基板、310,410 基板、C1,C2 キャパシタンス、L1~L6 インダクタンス。
 この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
 [概要]
 本発明に係る実施形態は、メタマテリアルに分類される共振器またはこの共振器を複数含む基板を提供する。具体的には、これらの共振器および基板では、互いに所定間隔だけ離れて配置された複数の電極を含むデバイス(代表的に、積層コンデンサ)を用いて、当該電極間に生じる静電容量(キャパシタンス)を主体とした共振回路が形成される。この共振回路は、導体に交流電流が流れることで発生する電磁波の特定の周波数成分に感受性をもち、この周波数成分の電磁波を受けて電気的な共振現象を生じ得る。この共振現象によって、負の透磁率が発現し、導体から放射される電磁波を反射あるいは抑制することができる。
 ここで、メタマテリアルとしての機能である負の透磁率を発現させるため、すなわち共振を生じさせるためには、各共振器の電流の伝搬方向における長さが、対象とすべき周波数における電磁波の波長λに対して、少なくともλ/4より短い必要がある。さらに、各共振器の電流の伝搬方向における長さは、λ/20以下であることが好ましい。
 以下の実施の形態1~4では、複数の平板電極を絶縁物(誘電体)を積層して形成された積層コンデンサなどを用いることで、より容易に本発明に係る共振器あるいは基板を実現する構成について例示する。
 [実施の形態1]
 この発明の実施の形態1では、一般的な積層コンデンサを用いて共振器を実現する構成について例示する。
 図1は、この発明の実施の形態1に従う共振器内蔵基板110の概略の外観図である。
 図1を参照して、共振器内蔵基板110は、共振器100と、共振器100の周辺を覆う非磁性体である外装部12とを含む。なお、外装部12としては、テフロン(登録商標)などの樹脂材料が適している。この共振器100は、所定の周波数成分を含む電流が流れるストリップ状導体14(以下単に「導体14」とも記す。)に近接して配置されることで、当該電流が発生する電磁波の特定の周波数成分(共振周波数)を受けて共振を生じる。また、共振器100の導体14に接する面とは反対側の面には、グランド電極16(図示せず)が配置される。
 共振器100内での共振によって、共振器100の内部から外部に向けて磁束が発生し、この発生する磁束によって誘導される電界によって、当該電流が発生する電磁波が妨げられる。この結果、導体14では、共振器100における共振周波数成分の交流電流の流れが妨げられ、共振器内蔵基板110は一種の帯域遮断フィルタのように機能する。
 なお、本実施の形態に従う共振器内蔵基板110は、外部電源などからの電気エネルギーを必要とせず、導体14から放射される電磁波(特に磁束)だけで共振を生じる、パッシブなデバイスである。すなわち、共振器100は、ストリップ状導体14やグランド電極16に電気的に接続されておらず、浮いた状態となっている。そして、共振器100は、このような共振を生じさせることによって、負の透磁率を発現させる。
 なお、共振器100が負の透磁率を発現する、すなわちメタマテリアルとしての機能を発揮するためには、共振器100の導体14における電流の伝搬方向における長さlが、共振周波数における電磁波の波長λに対して、少なくともλ/4より短い必要がある。さらに、共振器100の長さlは、λ/20以下であることが好ましい。
 以下では、共振器100の一例として、長さl’=1.6mm、幅W=0.8mm、高さH=0.8mmの8層の内部電極を有する積層コンデンサを用いる場合について例示する。なお、導体14と積層コンデンサとの距離h=0.2mm、積層コンデンサとグランドの距離h’=0.2mmとする。
 ここで、λ/4=長さl’=1.6mmとすると、λ=6.4mmとなり、これは、空気中では周波数fmax=46.875GHzに相当する。従って、この共振器100をλ/4以下のピッチで並べると、ギガヘルツ帯においてメタマテリアルとして用いることができる。当然のことながら、適用すべき周波数領域に応じて、共振器の長さlを適宜設計することができる。
 次に、図1および図2を参照して、共振器100の構造について説明する。図2は、図1に示すII-II線断面図である。
 図1を参照して、導体14に電流が流れることによって、導体14を中心とした円周方向に交流の磁界が発生する。すなわち、磁界の磁力線は、導体14を中心とする同心円となる。また、導体14には電流が流れる際に電位が発生するので、導体14とグランド電極16との間には交流の電界が発生する。
 図2を参照して、共振器100は、各々が比誘電率の高い絶縁物であるスペーサ6を介して互いに対向する第1内部電極4および第2内部電極5をそれぞれ複数含む。複数の第1内部電極4は、第1外部電極2と電気的に接続されており、複数の第2内部電極5は、第2外部電極3と電気的に接続されている。このように、共振器100では、平板状の複数の内部電極4と内部電極5とが交互に積層されている。隣接する第1内部電極4と第2内部電極5との間には、その電極の面積、電極間の距離、スペーサ6の比誘電率などによってその値が定まる静電容量(キャパシタンス)が生じる。
 特に、本実施の形態に従う共振器内蔵基板110では、積層コンデンサを構成する第1内部電極4および第2内部電極5の各電極面が磁界の磁力線に対して実質的に平行となるように配置される。それとともに、第1外部電極2および第2外部電極3の各電極面が、第1外部電極2および第2外部電極3の各電極面とは異なる面において、磁界の磁力線に対して実質的に平行となるように配置される。すなわち、図2に示すように、導体14を流れる電流によって生じる磁界の磁力線が紙面前後方向に発生している場合において、共振器100は、第1内部電極4および第2内部電極5の電極断面長手方向が紙面左右方向と一致し、かつ第1外部電極2および第2外部電極3の電極断面長手方向が紙面上下方向と一致するように配置される。
 共振器100が図2に示すような位置関係を保って配置されることで、所定の周波数成分に対して図3に示すような共振回路が形成され、この共振回路によって、負の透磁率が発現する。
 図3は、共振周波数において共振器100で形成される共振回路を説明するための図である。
 図3を参照して、その電極面が磁界の磁力線に対して実質的に平行となるように配置される第1内部電極4および第2内部電極5、ならびに第1外部電極2および第2外部電極3は、その経路長さに応じたコイル(インダクタ)として作用する。
 共振器100では、第1内部電極のうち最上層の電極4aと、第1外部電極2と、第1内部電極のうち最下層の電極4bとは互いに電気的に接続されており、これらを含む電流経路が形成される。同様に、第2内部電極のうち最上層の電極5aと、第2外部電極3と、第2内部電極のうち最下層の電極5bとは互いに電気的に接続されており、これらを含む電流経路が形成される。ここで、電極4aと電極5aとの間の静電容量(キャパシタンスC1)と、電極4bと電極5bとの間の静電容量(キャパシタンスC2)とを介して、両電流経路は互いに電気的に接続され、キャパシタンスC1,C2と各電極によって生じるインダクタンスL1~L6とを含む共振回路が形成される。したがって、本実施の形態に従う共振器100は、キャパシタンス(C1+C2)と、インダクタンス(L1+L2+L3+L4+L5+L6)とによって定まる共振周波数をもち、この共振周波数の電磁波が入射することで、透磁率共振が発現する。
 なお、積層コンデンサでは、隣接する内部電極の間の各々で静電容量が発生するが、最上層の静電容量および最下層の静電容量を除いた他の静電容量は、この共振回路の形成への影響は小さい。これは、共振を起こす循環経路の最外層に電流が集中するためである。
 図4は、この発明の実施の形態1に従う共振器内蔵基板110で生じる比透磁率の周波数特性の一例を示す図である。なお、図4に示す変化特性は、シミュレーションによって算出されたものである。ここで、比透磁率とは、真空の透磁率に対する透磁率の比を表す。
 図4を参照して、本実施の形態に従う共振器内蔵基板110は、その1つの共振周波数として約4.9GHzをもち、その前後で比透磁率が大きく変動していることが分かる。これによりインピーダンスも大きく変動して不整合がおこり、この周波数領域において導体14を流れる電流に対して、帯域遮断フィルタとして機能する。
 上述の説明では、第1内部電極4および第2内部電極5、ならびに第1外部電極2および第2外部電極3の各電極面が磁界の磁力線に対して実質的に平行となるように配置されることで、メタマテリアルとしての機能である負の透磁率を発現させることができるとことについて述べた。ここで、「実質的に平行」とは、各電極面が磁界の磁力線と直交する状態を除外する意味であり、各電極面が磁界の磁力線とまったく平行である状態に加えて、磁力線に対して所定角度をもつ状態をも含む。実用上は、共振器100で発現する負の透磁率の大きさが適用アプリケーションなどの要求を満足できる値であれば、「実質的に平行」とみなすことができる。
 図5は、この発明の実施の形態1に従う共振器100で生じる比透磁率の周波数特性を積層コンデンサの配向別にシミュレーションした結果を示す図である。
 図5を参照して、配置(a)および配置(b)は、第1内部電極4および第2内部電極5、ならびに第1外部電極2および第2外部電極3の各電極面が磁界の磁力線に対して平行に配置された場合を示す。また、配置(c)は、第1内部電極4および第2内部電極5の各電極面が磁界の磁力線に対して45°の角度をもって配置された場合を示す。配置(d)は、第1外部電極2および第2外部電極3の各電極面が磁界の磁力線に対して直交するように配置された場合を示し、配置(e)は、第1内部電極4および第2内部電極5の各電極面が磁界の磁力線に対して直交するように配置された場合を示す。
 配置(a)および配置(b)では、共振周波数に僅かな違いがあるものの、比透磁率の周波数特性が示すように、十分に大きな負の透磁率が発現していることがわかる。また、配置(c)では、負の透磁率が発現しているものの、その大きさは配置(a)や配置(b)において発現する負の透磁率の大きさに比較して小さくなっていることがわかる。
 一方、配置(d)および配置(e)では、比透磁率の周波数特性が示すように、共振も生じておらず、負の透磁率も発現していない。
 以上のように、第1内部電極4および第2内部電極5、ならびに第1外部電極2および第2外部電極3のうち、いずれかの電極面が磁界の磁力線に対して直交して配置される場合には、負の透磁率が発現しないが、それ以外の配置であれば、各電極面が磁界の磁力線に対してまったくの平行でなくとも、負の透磁率が発現することがわかる。
 なお、上述の説明では、導体14と共振器100との位置関係が予め定まっている共振器内蔵基板110の構成について例示したが、共振器100を導体14に対して所定の位置に配置することで、負の透磁率を発現させてもよい。
 この場合の手順としては、まず、第1内部電極4および第2内部電極5の各電極面が導体14に電流が流れた場合に生じる磁力線に対して実質的に平行となるように配置する。具体的には、共振器100の上下の電極面を導体14の延伸方向に対して平行となるように配置する。次に、第1外部電極2および第2外部電極3の各電極面が、導体14に電流が流れた場合に生じる磁力線に対して実質的に平行となるように配置する。具体的には、共振器100の外部電極面が導体14の延伸方向に対する垂直面と一致するように、共振器100の向きを調整する。このような手順に従って共振器100を配置することで、負の透磁率を発現させることができる。
 なお、上述の2つの手順は、その順序を入れ替えてもよい。
 再度、図1~図3を参照して、本実施の形態に従う共振器100の構成については、以下のように表現することもできる。
 共振器100は、平行に対向して形成された第1外部電極2および第2外部電極3からなる外部電極対と、この外部電極対の一方である第1外部電極2と電気的に接続された複数の第1内部電極4と、この外部電極対の他方である第2外部電極3と電気的に接続された複数の第2内部電極5とを含む。そして、第1内部電極4および第2内部電極5からなる内部電極群の各電極面は、第1外部電極2および第2外部電極3の電極面に対して垂直となるように形成されている。また、第1外部電極2および第2外部電極3の各電極面は、導体14を流れる電流の伝搬方向に対する垂直面と一致するように形成される。さらに、第1内部電極のうち最上層の電極4aと、電極4aに隣接する第2内部電極のうち最上層の電極5aとの間で形成される静電容量(キャパシタンスC1)と、第1内部電極のうち最下層の電極4bと、電極4bに隣接する第2内部電極のうち最下層の電極5bとの間で形成される静電容量(キャパシタンスC2)と、第1外部電極2および第2外部電極3とを含む電気的な循環経路が形成される。
 また、共振器100は、絶縁物であるスペーサ6を介して互いに平行に配列された複数の平板電極である第1内部電極4および第2内部電極5と、複数の平板電極の偶数番目の第1内部電極4と電気的に接続された第1接続電極である第1外部電極2と、複数の平板電極の奇数番目の第2内部電極5と電気的に接続された第2接続電極である第2外部電極3とを含む。第1外部電極2および第2外部電極3の各電極面は、複数の平板電極の電極面に対して垂直に形成されている。また、複数の平板電極の電極面は、導体14に電流が流れた場合に生じる磁力線に対して実質的に平行となるように配置されている。
 また、共振器100は、互いに平行する複数の第1内部電極4と第1外部電極2とからなる第1くし型電極と、互いに平行する複数の第2内部電極5と第2外部電極3とからなる第2くし型電極とを含む。第1くし型電極の最上層の電極4aの電極面と、第2くし型電極の最上層の電極5aの電極面とが所定の間隔をもって平行に対向するように形成される。これにより、両者の間には静電容量(キャパシタンスC1)が形成される。また、第1くし型電極の最下層の電極4bの電極面と、第2くし型電極の最下層の電極5bの電極面とが所定の間隔をもって平行に対向するように形成される。これにより、両者の間には静電容量(キャパシタンスC2)が形成される。そして、第1くし型電極および第2くし型電極の各電極面は、導体14に電流が流れた場合に生じる磁力線に対して実質的に平行となるように配置されている。
 この発明の実施の形態1によれば、積層された電極間に生じる静電容量(キャパシタンス)を主体とした共振回路を用いるので、共振回路に含まれるキャパシタンスを比較的大きくすることができる。そのため、スプリット・リング共振器のようにリングパターンを周期的に配置する構成に比較して、必要な共振特性を得るためのデバイスサイズを小さくできる。これによって、より小型化したデバイスで、負の誘電率を実現できる。
 また、この発明の実施の形態1によれば、市販の積層コンデンサを用いて、共振器を構成できるので、より容易に負の誘電率を実現できる。
 [実施の形態2]
 上述の実施の形態1では、1つの共振器について説明したが、より大きな効果を得るためには、複数の共振器を用いることが好ましい。そこで、この発明の実施の形態2では、複数の共振器から構成される基板について説明する。
 図6は、この発明の実施の形態2に従う共振器内蔵基板210の概略の外観図である。
 図6を参照して、共振器内蔵基板210は、上述した共振器100を導体14に沿って周期的に複数個(図6では5個)配置したものである。このとき、各共振器100を構成する第1内部電極4(図2)および第2内部電極5(図2)の各電極面は、いずれも磁界の磁力線に対して実質的に平行となるように配置される。また、第1外部電極2(図2)および第2外部電極3(図2)の各電極面についても、磁界の磁力線に対して実質的に平行となるように配置される。
 なお、各共振器100の構成については上述した実施の形態1と同様であるので、詳細な説明は繰返さない。
 図7は、この発明の実施の形態2に従う共振器内蔵基板210において、導体14を流れる電流の減衰量の周波数特性の一例を示す図である。なお、図7に示す変化特性は、シミュレーションによって算出されたものである。
 図7を参照して、本実施の形態に従う共振器内蔵基板210は、6.5GHz~7.0GHz付近に共振点を有し、この周波数領域において通過波が大きく減衰されることがわかる。
 この発明の実施の形態2によれば、要求される特性(代表的に、必要な減衰量)に応じて、必要な個数の共振器を配置できるので、適用先のアプリケーションに応じて、最適な負の誘電率を実現する基板を容易に構成できる。
 [実施の形態3]
 上述の実施の形態1では、内部電極と外部電極との接続面における両者の幅が等しい積層コンデンサの構成について例示したが、外部電極で生じるインダクタンスを大きくするために、外部電極の幅をより狭くしてもよい。
 図8は、この発明の実施の形態3に従う共振器200の概略の外観図である。
 図8を参照して、本実施の形態に従う共振器200は、スペーサを介して交互に対向配置された複数の第1内部電極4および複数の第2内部電極5と、第1内部電極4の各々と電気的に接続される第1外部電極2#と、第2内部電極5の各々と電気的に接続される第2外部電極3#とを含む。
 ここで、第1内部電極4と第1外部電極2#との接続面において、第1外部電極2#の幅は第1内部電極4の幅より狭くなっており、第2内部電極5と第2外部電極3#との接続面において、第2外部電極3#の幅は第2内部電極5の幅より狭くなっている。
 第1外部電極2#および第2外部電極3#の線幅を狭くすることで、第1外部電極2#および第2外部電極3#で生じるインダクタンスを大きくできる。そのため、図3に示すような共振回路において、同一の共振周波数を生じるために必要なキャパシタンス(C1+C2)が小さくて済むので、内部電極をより小さくすることができ、その結果、積層コンデンサ全体を小型化できる。
 その他の構成については、上述した実施の形態1と同様であるので、詳細な説明は繰返さない。
 この発明の実施の形態3によれば、上述の実施の形態1と同様の効果を得られるとともに、実施の形態1に従う共振器に比較して、より小型化を図ることができる。
 [実施の形態4]
 上述の実施の形態2では、導体14に沿って共振器100を周期的に一列に配置した構成について例示したが、複数列、あるいは複数段にわたって複数の共振器100を配置してもよい。
 図9(a)は、この発明の実施の形態4に従う基板310の概略の外観図であり、図9(b)は、この発明の実施の形態4の別形態に従う基板410の概略の外観図である。
 図9(a)を参照して、基板310は、導体14を中心にして、上述した複数の共振器100を周期的に2次元的に配置したものである。また、図9(b)を参照して、基板410は、導体14を中心にして、上述した複数の共振器100を周期的に3次元的に配置したものである。
 この基板310および410においても、各共振器100を構成する第1内部電極4および第2内部電極5の各電極面(図2)は、いずれも磁界の磁力線に対して実質的に平行となるように配置される。また、第1外部電極2および第2外部電極3の各電極面(図2)についても、磁界の磁力線に対して実質的に平行となるように配置される。なお、図9(a)および図9(b)においては、理解を容易にするために内部電極を意図的に見える様に描いている。
 このような基板310,410は、例えば、高周波の電磁波を発生するような電子装置や、外乱ノイズによる影響を受けやすい電子装置に装着することで、電磁シールドとしても機能させることができる。
 この発明の実施の形態4によれば、電磁波の発生源が直線以外の形状に配置されている場合であっても、任意の形状に共振器を配置することで、電磁波の吸収あるいは抑制を適切に行なうことができる。
 [その他の形態]
 なお、上述の実施の形態1~4においては、一般的な積層コンデンサを用いて、負の誘電率を発現させる構成について例示したが、本発明に係る共振器あるいは基板を構成するための専用に設計された電極部材を用いてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (9)

  1.  所定の周波数成分を含む電流が流れる導体(14)に近接して配置されることで、当該電流が発生する電磁波を受けて共振を生じる共振器(100,200)であって、
     各々が絶縁物(6)を介して互いに対向する第1および第2電極(4,5)からなる複数の電極対と、
     前記第1電極(4)の各々と電気的に接続される第3電極(2;2#)と、
     前記第2電極(5)の各々と電気的に接続される第4電極(3;3#)とを備え、
     前記共振器は、
      前記第1および第2電極の各電極面が、前記導体に電流が流れた場合に生じる磁力線に対して実質的に平行となり、かつ
      前記第3および第4電極の各電極面が、前記第1および第2電極の各電極面とは異なる面において前記磁力線に対して実質的に平行となる、ように配置される、共振器。
  2.  所定の周波数成分を含む電流が流れる導体(14)に近接して配置されることで、当該電流が発生する電磁波を受けて共振を生じる共振器(100,200)であって、
     平行に対向して形成された2つの外部電極(2,3;2#,3#)からなる外部電極対と、
     前記外部電極対の一方と電気的に接続された複数の第1内部電極(4)と、前記外部電極対の他方と電気的に接続された複数の第2内部電極(5)とからなる内部電極群とを備え、
     前記内部電極群の各電極面は、前記外部電極の電極面に対して垂直に形成され、
     前記外部電極対の各電極面は、前記導体を流れる電流の伝搬方向に対する垂直面と平行に形成され、
     1つの前記第1内部電極と当該第1内部電極に隣接する第2内部電極との間で形成される第1静電容量(C1)と、別の前記第1内部電極と当該第1内部電極に隣接する別の第2内部電極との間で形成される第2静電容量(C2)と、前記外部電極対とを含む電気的な循環経路が形成される、共振器。
  3.  前記内部電極群の各電極と前記外部電極との接続面において、前記外部電極(2#,3#)の幅は前記内部電極群の各電極の幅より狭い、請求の範囲第2項に記載の共振器。
  4.  所定の周波数成分を含む電流が流れる導体(14)に近接して配置されることで、当該電流が発生する電磁波を受けて共振を生じる共振器(100,200)であって、
     絶縁物(6)を介して互いに平行に配列された複数の平板電極(4,5)と、
     前記複数の平板電極の偶数番目の平板電極と電気的に接続された第1接続電極(2;2#)と、
     前記複数の平板電極の奇数番目の平板電極と電気的に接続された第2接続電極(3;3#)とを備え、
     前記第1および第2接続電極の各電極面は、前記複数の平板電極の電極面に対して垂直に形成され、
     前記複数の平板電極の各電極面は、前記導体に電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成される、共振器。
  5.  前記導体(14)としてストリップ状導体が前記複数の平板電極の最上面から所定距離だけ離れた位置に配置され、
     前記複数の平板電極の最下面から所定距離だけ離れた位置にグランド電極(16)がさらに配置される、請求の範囲第4項に記載の共振器。
  6.  所定の周波数成分を含む電流が流れる導体(14)に近接して配置されることで、当該電流が発生する電磁波を受けて共振を生じる共振器(100,200)であって、
     各々が互いに平行する複数の電極面を有する第1および第2くし型電極(4,5)を備え、
     前記第1くし型電極の最上層の電極面と前記第2くし型電極の最上層の電極面とが所定の間隔をもって平行に対向するように形成され、かつ前記第1くし型電極の最下層の電極面と前記第2くし型電極の最下層の電極面とが所定の間隔をもって平行に対向するように形成され、
     前記第1および第2くし型電極の各電極面は、前記導体に電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成される、共振器。
  7.  前記共振器の前記導体に沿った長さは、前記所定の周波数成分に相当する1波長の1/4より短くなるように形成される、請求の範囲第1項~第6項のいずれか1項に記載の共振器。
  8.  複数の請求の範囲第1項~第7項のいずれか1項に記載の共振器(100,200)と、
     所定の周波数成分を含む電流が流れるストリップ状導体(14)とを備え、
     前記複数の共振器は、前記ストリップ状導体に沿って周期的に配置される、基板。
  9.  導体(14)に流れる電流の所定の周波数成分との間で共振を生じさせる方法であって、
     前記導体に近接して共振器(100,200)を配置するステップを備え、
     前記共振器は、
     各々が絶縁物を介して互いに対向する第1および第2電極からなる複数の電極対(4,5)と、
     前記第1電極の各々と電気的に接続される第3電極(2,2#)と、
     前記第2電極の各々と電気的に接続される第4電極(3,3#)とを含み、
     前記配置するステップは、
     前記第1および第2電極の各電極面が、前記導体に電流が流れた場合に生じる磁力線に対して実質的に平行となるように配置するステップと、
     前記第3および第4電極の各電極面が、前記第1および第2電極の各電極面とは異なる面において前記磁力線に対して実質的に平行となるように配置するステップとを含む、共振を生じさせる方法。
PCT/JP2008/070407 2007-12-21 2008-11-10 共振器およびそれを備える基板、ならびに共振を生じさせる方法 WO2009081662A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009546985A JP5104879B2 (ja) 2007-12-21 2008-11-10 共振器およびそれを備える基板、ならびに共振を生じさせる方法
US12/815,668 US8264305B2 (en) 2007-12-21 2010-06-15 Resonator, substrate having the same, and method of generating resonance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007330512 2007-12-21
JP2007-330512 2007-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/815,668 Continuation US8264305B2 (en) 2007-12-21 2010-06-15 Resonator, substrate having the same, and method of generating resonance

Publications (1)

Publication Number Publication Date
WO2009081662A1 true WO2009081662A1 (ja) 2009-07-02

Family

ID=40800978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070407 WO2009081662A1 (ja) 2007-12-21 2008-11-10 共振器およびそれを備える基板、ならびに共振を生じさせる方法

Country Status (3)

Country Link
US (1) US8264305B2 (ja)
JP (1) JP5104879B2 (ja)
WO (1) WO2009081662A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453520A2 (en) * 2009-07-06 2012-05-16 Samsung Electronics Co., Ltd. Wireless power transmission system and resonator for the system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128310A1 (ja) * 2008-04-18 2009-10-22 株式会社村田製作所 機能基板
KR102046102B1 (ko) * 2012-03-16 2019-12-02 삼성전자주식회사 메타물질의 코일 기반 인공원자, 이를 포함하는 메타물질 및 소자
US11575205B2 (en) * 2020-05-29 2023-02-07 Kazuyuki Ouchi Electromagnetic wave transmission/reception device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033579A (ja) * 2003-07-07 2005-02-03 Yamaguchi Technology Licensing Organization Ltd 人工誘電体及び誘電体共振器、並びに誘電体フィルター
WO2006023195A2 (en) * 2004-07-23 2006-03-02 The Regents Of The University Of California Metamaterials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892415A (en) * 1995-11-20 1999-04-06 Murata Manufacturing Co., Ltd. Laminated resonator and laminated band pass filter using same
JP3417340B2 (ja) * 1999-05-20 2003-06-16 株式会社村田製作所 バンドパスフィルタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033579A (ja) * 2003-07-07 2005-02-03 Yamaguchi Technology Licensing Organization Ltd 人工誘電体及び誘電体共振器、並びに誘電体フィルター
WO2006023195A2 (en) * 2004-07-23 2006-03-02 The Regents Of The University Of California Metamaterials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the 36th European Microwave Conference", September 2006, HORIZON HOUSE PUBLICATIONS LTD., article NEETHLING M. ET AL.: "A Composite Right/Left-Handed Transmission Line Implementing Quasi-Exponential Inductive Stubs", pages: 431 - 434, XP031005593 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453520A2 (en) * 2009-07-06 2012-05-16 Samsung Electronics Co., Ltd. Wireless power transmission system and resonator for the system
EP2453520A4 (en) * 2009-07-06 2013-01-16 Samsung Electronics Co Ltd WIRELESS POWER TRANSMISSION SYSTEM AND RESONATOR FOR THE SYSTEM
US8994225B2 (en) 2009-07-06 2015-03-31 Samsung Electronics Co., Ltd. Wireless power transmission system and resonator for the system

Also Published As

Publication number Publication date
US20100259343A1 (en) 2010-10-14
JPWO2009081662A1 (ja) 2011-05-06
JP5104879B2 (ja) 2012-12-19
US8264305B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
US8860631B2 (en) Metamaterial
JP5287862B2 (ja) メタマテリアル
JP2006245926A (ja) メタマテリアルでなる正負誘電率媒質あるいは正負透磁率媒質とそれらを用いた表面波を伝播する導波路
JP5104879B2 (ja) 共振器およびそれを備える基板、ならびに共振を生じさせる方法
JP5218428B2 (ja) 帯域除去フィルタおよび帯域除去フィルタ付きコネクタ
JP2010028534A (ja) 右手・左手系複合線路素子
JP2015534760A (ja) 電磁吸収体
JP6211835B2 (ja) 高周波伝送線路
WO2010026908A1 (ja) メタマテリアルおよびその製造方法
US8576027B2 (en) Differential-common mode resonant filters
JP5218551B2 (ja) 機能基板
JP2015111784A (ja) 積層帯域除去フィルタ
Ding et al. Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence
JP2017225086A (ja) 誘電体フィルタ
JP6082938B2 (ja) 3次元メタマテリアル
JP6911932B2 (ja) 偏波制御板
JP2017225087A (ja) 誘電体共振器およびその製造方法
WO2019082230A1 (ja) 位相制御板
JP2015002455A (ja) 高周波伝送線路
JP5304883B2 (ja) 電気部品、および、電気回路の部分構造
WO2013023423A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
JP2012010150A (ja) 電気部品、電気回路基板、インピーダンス整合方法、および、電気回路の部分構造
JP2015002454A (ja) 高周波伝送線路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009546985

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08865679

Country of ref document: EP

Kind code of ref document: A1