WO2009081575A1 - 電子チューナおよびこれを用いた高周波受信装置 - Google Patents

電子チューナおよびこれを用いた高周波受信装置 Download PDF

Info

Publication number
WO2009081575A1
WO2009081575A1 PCT/JP2008/003910 JP2008003910W WO2009081575A1 WO 2009081575 A1 WO2009081575 A1 WO 2009081575A1 JP 2008003910 W JP2008003910 W JP 2008003910W WO 2009081575 A1 WO2009081575 A1 WO 2009081575A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
circuit
signal
output
reception quality
Prior art date
Application number
PCT/JP2008/003910
Other languages
English (en)
French (fr)
Inventor
Takashi Umeda
Hiroaki Ozeki
Akira Fujishima
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/808,461 priority Critical patent/US8311155B2/en
Priority to JP2009546947A priority patent/JP5120383B2/ja
Priority to CN2008801228183A priority patent/CN101911513A/zh
Publication of WO2009081575A1 publication Critical patent/WO2009081575A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0038Correction of carrier offset using an equaliser
    • H04L2027/004Correction of carrier offset using an equaliser the equaliser providing control signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present invention relates to a high frequency receiver using a direct conversion electronic tuner used for a battery-powered portable television receiver or the like.
  • FIG. 17 is a circuit block diagram of the conventional high frequency receiver 1.
  • the conventional high frequency receiving apparatus 1 includes an input terminal 3 connected to an antenna, an electronic tuner 5 for selecting a desired channel from a received signal input from the input terminal 3, and an output from the electronic tuner 5 And a demodulator 7 for demodulating the I and Q signals.
  • the electronic tuner 5 includes a filter 13 for passing a received signal from the input terminal 3, an amplifier 15 to which the output of the filter 13 is supplied, and a mixer 17 for which the output of the amplifier is supplied to one input, 25 and an oscillator 33 connected via the phase shifter 35 to the other input of the mixer 17, 25, and a combiner 19, 27 the output of the mixer 17, 25 is respectively supplied to one input.
  • the output terminals 9 and 11 supplied respectively, the DC offset detection circuit 45 for detecting a DC offset voltage, and the output of the DC offset detection circuit 45 are connected.
  • a DC offset determination circuit 46 connected between the DC offset detection circuit 45 and the DC offset correction circuit 47 and determining the DC offset voltage. .
  • the first and second cancel signals output from the DC offset correction circuit 47 are supplied to the other input of the synthesizers 19 and 27, respectively.
  • the demodulator 7 includes A / D converters 37 and 39 respectively connected to the output terminals 9 and 11, a demodulation circuit 41 to which outputs from the A / D converters 37 and 39 are respectively connected, and the demodulation An output terminal 43 is provided to which the demodulated signal from the circuit 41 is output.
  • the outputs of the A / D converters 37 and 39 are input to the input of the DC offset detection circuit 45, respectively.
  • the mixing circuit 49 is a mixing circuit of a direct conversion system by the mixers 17 and 25, the oscillator 33, and the 90 ° phase shifter 35. Due to this mixing circuit 49, the mixers 17 and 25 output I and Q signals whose phases are different from each other by 90 degrees.
  • I and Q signals are output from the output terminals 9 and 11 through the low pass filters 21 and 29, respectively. Further, these I and Q signals are converted to digital signals by A / D converters 37 and 39. Further, the demodulation circuit 41 generates a demodulation signal, which is output from the output terminal 43.
  • the mixers 17 and 25 respectively generate first and second DC offset voltages. These first and second DC offset voltages generate a DC voltage in the received signal, which degrades the reception quality.
  • the outputs of the A / D converters 37 and 39 are input to the DC offset detection circuit 45, and the DC offset detection circuit 45 detects and determines the DC offset voltage.
  • the present invention provides a low power consumption high frequency receiver.
  • the demodulation unit determines the quality of the received signal by comparing it with the first reference value and determines the quality of the received signal and outputs the determination signal;
  • the power supply to the DC offset control loop is stopped by the drive circuit when the reception quality judgment circuit judges that the quality of the reception signal is good.
  • the demodulation unit is a reception quality detection circuit for detecting the quality of the reception signal, a first fading detection circuit for detecting a fading frequency due to movement, and a reception quality signal from the reception quality detection circuit
  • the reception quality judgment circuit to which the fading frequency from the first fading detection circuit is input, and the reception quality judgment signal output from the reception quality judgment circuit are supplied and power is supplied to the DC offset control loop or A drive circuit to stop is provided, and the quality judgment reference value of the reception quality judgment circuit is set according to the fading frequency from the first fading detection circuit, and the reception quality judgment circuit judges that the quality of the reception signal is good.
  • the drive circuit shuts off the power to the DC offset control loop. As a result, it is possible to realize a high frequency receiving apparatus with reduced power consumption.
  • the electronic tuner of the present invention is provided with a drive circuit to which the first determination signal output from the DC offset determination circuit is input, and the first drive voltage output from the drive circuit is connected to the DC offset correction circuit In the DC offset determination circuit, when the first and second DC offset voltages are smaller than the reference value, the power supply to the DC offset correction circuit is stopped by the drive circuit.
  • FIG. 1 is a circuit block diagram of a high frequency receiver according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a general correction method of the DC offset voltage of the high frequency receiver.
  • FIG. 3 is a flowchart showing a method of correcting the DC offset of the high frequency receiver according to the first embodiment of the present invention.
  • FIG. 4 is a circuit block diagram of a high frequency receiver according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart showing a general correction method of the DC offset voltage of the high frequency receiver.
  • FIG. 6 is a flowchart showing a method of correcting the DC offset voltage of the high frequency receiver according to the second embodiment of the present invention.
  • FIG. 1 is a circuit block diagram of a high frequency receiver according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a general correction method of the DC offset voltage of the high frequency receiver.
  • FIG. 3 is a flowchart showing a method
  • FIG. 7 is a circuit block diagram of the high frequency receiver according to the third embodiment.
  • FIG. 8A is a spectrum configuration diagram of an input signal at a certain moment in the high-frequency receiver according to the third embodiment of the present invention.
  • FIG. 8B is a spectrum configuration diagram of an input signal at another moment of the high-frequency receiver according to the third embodiment of the present invention.
  • FIG. 9 is a symbol configuration diagram output from the FFT of the high frequency receiver according to the third embodiment of the present invention.
  • FIG. 10 is a characteristic diagram of C / N with respect to the fading frequency of the high frequency receiver according to the third embodiment of the present invention.
  • FIG. 11 is a flowchart showing a method of correcting the DC offset voltage of the high frequency reception device according to the third embodiment of the present invention.
  • FIG. 12 is a circuit block diagram of the high frequency receiver according to the fourth embodiment.
  • FIG. 13A is a spectrum configuration diagram of an input signal at a certain moment in the high frequency reception device according to the fourth embodiment of the present invention.
  • FIG. 13B is a spectrum diagram of an input signal at another moment of the high-frequency receiver according to the fourth embodiment of the present invention.
  • FIG. 14 is a circuit block diagram of a high frequency receiver according to a fifth embodiment of the present invention.
  • FIG. 15 is a flowchart showing a general correction method of the DC offset voltage.
  • FIG. 16 is a flowchart showing a method of correcting the DC offset voltage of the high frequency reception device according to the fifth embodiment of the present invention.
  • FIG. 17 is a circuit block diagram of a conventional high frequency receiver.
  • Embodiment 1 the high frequency receiver according to the first embodiment will be described below with reference to the drawings.
  • FIG. 1 is a circuit block diagram of a high frequency receiver according to a first embodiment of the present invention.
  • the same components as those in FIG. 17 shown in the conventional example use the same reference numerals.
  • the high frequency receiving apparatus 101 includes an input terminal 3 connected to an antenna, an electronic tuner 103 for selecting a desired channel (channel) from a received signal input from the input terminal 3, and an I output from the electronic tuner 103. , And the demodulation unit 105 that demodulates the Q signal.
  • the electronic tuner 103 includes a filter 13 for passing a received signal from the input terminal 3, an amplifier 15 to which the output of the filter 13 is supplied, and a mixer 17 for which the output of the amplifier is supplied to one input, 25 and an oscillator 33 connected via a phase shifter 35 to the other input of the mixer 17, 25 and a combiner 19, 27 whose output from the mixer 17, 25 is respectively supplied to one input
  • the low pass filters 21 and 29 to which the outputs of the combiners 19 and 27 are respectively supplied, the amplifiers 23 and 31 to which the outputs of the low pass filters 21 and 29 are respectively supplied, and the outputs of the amplifiers 23 and 31 are respectively
  • the output terminals 9 and 11 to be supplied, the DC offset detection circuit 45 for detecting a DC offset voltage, and the output of the DC offset detection circuit 45 are connected.
  • a DC offset correction circuit 47 for correcting the DC offset voltage, and a DC offset determination circuit 46 connected between the DC offset detection circuit 45 and the DC offset correction circuit 47 and determining the DC offset voltage. ing.
  • the first and second cancel signals output from the DC offset correction circuit 47 are supplied to the other input of the synthesizers 19 and 27, respectively. Further, a DC offset control loop 106 is configured by the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47.
  • the demodulation unit 105 includes A / D converters 37 and 39 respectively connected to the output terminals 9 and 11, a demodulation circuit 107 to which outputs from these A / D converters 37 and 39 are respectively connected, and the demodulation circuit 107.
  • An output terminal 113 is provided to which the demodulated signal from the signal is output.
  • the demodulation circuit 107 is provided with a reception quality detection circuit 108 for detecting the quality of the reception signal, and a reception quality determination circuit 109 for receiving the reception quality signal from the reception quality detection circuit 108 and determining the reception quality. There is.
  • the reception quality judgment circuit 109 is provided with an external terminal 109a to which the first reference value can be inputted.
  • control signal output from the reception quality determination circuit 109 is connected to the drive circuit 111.
  • the drive voltage output from the drive circuit 111 is connected to the power supply input terminal 106 a provided in the DC offset control loop 106.
  • the outputs of the A / D converters 37 and 39 are input to the input of the DC offset detection circuit 45, respectively.
  • the driver circuit 111 may be incorporated in the demodulator 105 or the electronic tuner 103.
  • the high frequency signal input from the input terminal 3 is, for example, digital modulated digital television broadcasting, and a frequency of about 470 MHz (CH13) to about 770 MHz (CH62) can be used in UHF.
  • the high frequency signal input to the input terminal 3 is suppressed by the filter 13 as an interference signal.
  • the output of this filter 13 is gain controlled by an amplifier 15.
  • the output of this amplifier 15 is supplied to the mixing circuit 49.
  • the mixing circuit 49 is configured as a direct conversion type mixer by the mixers 17 and 25, the oscillator 33, and the 90 ° phase shifter 35. Due to this mixing circuit 49, the mixers 17 and 25 output I and Q signals whose phases are different from each other by 90 degrees. These I and Q signals are input to the low pass filters 21 and 29. The outputs of the low pass filters 21 and 29 are input to the amplifiers 23 and 31, respectively. The outputs of these amplifiers 23 and 31 respectively output I and Q signals via output terminals 9 and 11, respectively.
  • these I and Q signals are input to A / D converters 37 and 39. Digital signals are output from the outputs of the A / D converters 37 and 39, respectively. Further, the demodulation circuit 107 generates a demodulation signal, which is output from the output terminal 113.
  • the oscillation signal of the oscillator 33 leaks to one input of the mixer 17 or one input of the mixer 25.
  • the leaked oscillation signal and the original oscillation signal input from the oscillator 33 are self-mixed in the mixer 17 or 25, whereby a DC offset voltage is generated from the mixer 17 or 25.
  • the interference signal leaks to one input of the mixer 17 or to one input of the mixer 25.
  • the leaked interference signal and the original oscillation signal input from the oscillator 33 are self-mixed in the mixer 17 or 25, whereby a DC offset voltage is generated from the mixer 17 or 25.
  • the mixers 17 and 25 respectively generate the first and second DC offset voltages, and the reception quality is degraded.
  • the DC offset control loop 106 includes a DC offset detection circuit 45, a DC offset determination circuit 46, and a DC offset correction circuit 47.
  • the DC offset detection circuit 45 detects the first and second DC offset voltages from the I and Q signals respectively output from the A / D converters 37 and 39, and inputs this detection signal to the DC offset determination circuit 46. Do.
  • the DC offset correction circuit 47 when the first and second DC offset voltages are smaller than the second reference value, the DC offset correction circuit 47 does not supply the first and second cancel signals. The same effect can be obtained even if the first and second cancel signals are held by the synthesizers 19 and 27 without supplying the first and second cancel signals from the DC offset correction circuit 47.
  • the DC offset correction circuit 47 cancels the first and second DC offset voltages, and cancels the first and second DC offset voltages.
  • the signals are supplied to combiners 19 and 27, respectively.
  • the second reference value can be input from the external terminal 103a.
  • the first and second DC offset voltages and the first and second cancel signals are respectively combined in the combiners 19 and 27, and the first and second DC offset voltages can be suppressed. .
  • the DC offset determination circuit 46 can be provided with a memory 115 (not shown).
  • the memory 115 stores a reference value.
  • the DC offset determination circuit 46 can compare the detected first and second DC offset voltages with the reference value stored in the memory 115.
  • FIG. 2 is a flowchart showing a general correction method of the DC offset voltage of the high frequency receiver.
  • the power from the drive circuit 111 is supplied via the power input terminal 106 a of the DC offset control loop 106 in the reception step S 151. Further, the process proceeds to the reception step S152, and the DC offset detection circuit 45 detects the first and second DC offset voltages. Further, the process proceeds to a reception step S153, and the DC offset determination circuit 46 determines whether the first and second DC offset voltages and the second reference value are compared.
  • the process proceeds to reception step S154, and the first and second cancels from the DC offset correction circuit 47.
  • the signals are supplied to the first and second synthesizers 19 and 27, respectively, to perform DC offset correction, and then the process proceeds to the reception step S152.
  • the process returns to the reception step S152 without performing the DC offset correction.
  • FIG. 3 is a flowchart showing a method of correcting the first and second DC offset voltages of the high-frequency receiver according to the first embodiment of the present invention.
  • power is supplied to the DC offset control loop 106 in a reception step S161.
  • the DC offset detection circuit 45 detects the first and second DC offset voltages.
  • the process proceeds to reception step S163, and the DC offset determination circuit 46 determines whether the first and second DC offset voltages and the second reference value are compared.
  • the process proceeds to reception step S164, and DC offset correction is performed by the DC offset correction circuit 47.
  • the first and second DC offset voltages are smaller than the second reference value (OK)
  • the DC offset correction is not performed, and the process proceeds to the reception step S165.
  • this reception step S165 the power supply to the DC offset control loop 106 by the drive circuit 111 is stopped.
  • step S166 the reception quality judgment circuit 109 judges by comparing the reception quality signal with the first reference value. If the reception quality signal is smaller than the first reference value, that is, if the reception quality is good (OK), the process returns to the reception step S166 to determine the reception quality. On the other hand, if the reception quality signal is larger than the first reference value, that is, if the reception quality is poor (NG), the process returns to the reception step S161, and the reception step S162 and subsequent steps are repeated.
  • reception quality signal for example, C / N, bit error rate (BER), packet error rate (PER) or the like can be used.
  • C / N can detect reception quality in the shortest time in the order of C / N, BER, and PER.
  • PER requires the detection time of reception quality most in the order of PER, BER, and C / N, the detection accuracy of reception quality is the highest. Therefore, for example, when stopping power supply to the DC offset control loop 106, PER with high determination accuracy of reception quality can be used.
  • BER or C / N in which priority is given to the reception quality detection time can be used.
  • the DC offset control loop 106 when the DC offset control loop 106 is supplied with power and operated, it is necessary to ensure sufficient reception quality. For example, when C / N is used, detection accuracy is low but detection can be performed in a short time, and when PER is used, time is required but detection can be performed with high accuracy. Therefore, when the reception quality detection circuit 108 detects at least one of the three PER, BER, and C / N reception quality, the DC offset control loop 106 is supplied with power and operated. As a result, it is possible to minimize the deterioration of reception quality due to the operation delay of the DC offset correction.
  • the power supply to the DC offset control loop 106 is stopped by the drive circuit 111. be able to. As a result, since the power supply to the DC offset control loop 106 can be stopped, it is possible to realize a high frequency receiving apparatus with reduced power consumption.
  • the power supply from the drive circuit 111 is stopped for the DC offset control loop 106.
  • the power may be stopped for at least one of the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47.
  • the synthesizer 19 is inserted between the mixer 17 and the low pass filter 21, and the synthesizer 27 is inserted between the mixer 25 and the low pass filter 29. May be provided between the low pass filter 21 and the output terminal 9, and the combiner 27 may be provided between the low pass filter 29 and the output terminal 11.
  • the second reference value at the time of 12 segments reception can be relaxed by being larger than the second reference value at the time of one segment reception.
  • power supply to at least one of the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47 can be stopped.
  • the oscillation frequency of the oscillator 33 is set apart from the center frequency of one segment by 1/2 (about 214 KHz) or more of the bandwidth (about 428.5 KHz) of one segment.
  • the mixing circuit 49 it is possible to use the mixing circuit 49 as heterodyne reception and to convert the intermediate frequency signal of one segment away from the DC component by a half (about 214 KHz) or more of the band of one segment. , DC offset problem does not occur.
  • the power supply to the DC offset control loop 106 can be stopped.
  • the power may be stopped for at least one of the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47 that constitute the DC offset control loop 106.
  • FIG. 4 is a circuit block diagram of the high frequency receiver 141 according to the second embodiment.
  • the circuit block configuration of high frequency receiving apparatus 141 is basically the same as that of high frequency receiving apparatus 101 in the first embodiment.
  • the difference between the high frequency receiving apparatus 141 in the second embodiment and the high frequency receiving apparatus 101 described in the first embodiment is the first and second DC offset voltage correction methods. This will be described below.
  • the high frequency receiving apparatus 141 includes an input terminal 3 connected to an antenna, an electronic tuner 103 for selecting a desired channel from a received signal input from the input terminal 3, and I and Q signals output from the electronic tuner 103. And a demodulation unit 105 that demodulates the signal.
  • the electronic tuner 103 includes a filter 13 for passing a received signal from the input terminal 3, an amplifier 15 to which the output of the filter 13 is supplied, and a mixer 17 for which the output of the amplifier is supplied to one input, 25 and an oscillator 33 connected via a phase shifter 35 to the other input of the mixer 17, 25 and a combiner 19, 27 whose output from the mixer 17, 25 is respectively supplied to one input
  • the low pass filters 21 and 29 to which the outputs of the combiners 19 and 27 are respectively supplied, the amplifiers 23 and 31 to which the outputs of the low pass filters 21 and 29 are respectively supplied, and the outputs of the amplifiers 23 and 31 are respectively
  • the output terminals 9 and 11 to be supplied, the DC offset detection circuit 45 for detecting a DC offset voltage, and the output of the DC offset detection circuit 45 are connected.
  • a DC offset correction circuit 47 for correcting the DC offset voltage, and a DC offset determination circuit 46 connected between the DC offset detection circuit 45 and the DC offset correction circuit 47 and determining the DC offset voltage. ing.
  • the first and second cancel signals output from the DC offset correction circuit 47 are supplied to the other input of the synthesizers 19 and 27, respectively. Further, a DC offset control loop 106 is configured by the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47.
  • the demodulation unit 105 includes A / D converters 37 and 39 respectively connected to the output terminals 9 and 11, a demodulation circuit 107 to which outputs from these A / D converters 37 and 39 are respectively connected, and the demodulation circuit 107.
  • An output terminal 113 is provided to which the demodulated signal from the signal is output.
  • the demodulation circuit 107 is provided with a reception quality detection circuit 108 for detecting the quality of the reception signal, and a reception quality determination circuit 109 for receiving the reception quality signal from the reception quality detection circuit 108 and determining the reception quality. There is.
  • the reception quality judgment circuit 109 is provided with an external terminal 109a to which a quality judgment reference value can be inputted.
  • control signal output from the reception quality determination circuit 109 is connected to the drive circuit 111.
  • the drive voltage output from the drive circuit 111 is connected to the power supply input terminal 106 a provided in the DC offset control loop 106.
  • the outputs of the A / D converters 37 and 39 are input to the input of the DC offset detection circuit 45, respectively.
  • the driver circuit 111 may be incorporated in the demodulator 105 or the electronic tuner 103.
  • the high frequency receiver 141 configured as described above will be described below.
  • the high frequency signal input from the input terminal 3 is, for example, digital modulated digital television broadcasting, and a frequency of about 470 MHz (CH13) to about 770 MHz (CH62) can be used in UHF.
  • the high frequency signal input to the input terminal 3 is suppressed by the filter 13 as an interference signal.
  • the output of this filter 13 is gain controlled by an amplifier 15.
  • the output of this amplifier 15 is supplied to the mixing circuit 49.
  • a mixer of direct conversion system is configured by the mixers 17, 25, the oscillator 33, and the 90-degree phase shifter 35. Due to this mixing circuit 49, the mixers 17 and 25 output I and Q signals whose phases are different from each other by 90 degrees. These I and Q signals are input to the low pass filters 21 and 29. The outputs of the low pass filters 21 and 29 are input to the amplifiers 23 and 31, respectively. The outputs of these amplifiers 23 and 31 respectively output I and Q signals via output terminals 9 and 11, respectively.
  • these I and Q signals are input to A / D converters 37 and 39. Digital signals are output from the outputs of the A / D converters 37 and 39, respectively. Further, the demodulation circuit 107 generates a demodulation signal, which is output from the output terminal 113.
  • the oscillation signal of the oscillator 33 leaks to one input of the mixer 17 or one input of the mixer 25.
  • the leaked oscillation signal and the original oscillation signal input from the oscillator 33 are self-mixed in the mixer 17 or 25, whereby a DC offset voltage is generated from the mixer 17 or 25.
  • the interference signal leaks to one input of the mixer 17 or to one input of the mixer 25.
  • the leaked interference signal and the original oscillation signal input from the oscillator 33 are self-mixed in the mixer 17 or 25, whereby a DC offset voltage is generated from the mixer 17 or 25.
  • the mixers 17 and 25 respectively generate the first and second DC offset voltages, and the reception quality is degraded.
  • the DC offset control loop 106 includes a DC offset detection circuit 45, a DC offset determination circuit 46, and a DC offset correction circuit 47.
  • the DC offset detection circuit 45 detects the first and second DC offset voltages from the I and Q signals respectively output from the A / D converters 37 and 39, and inputs this detection signal to the DC offset determination circuit 46. Do.
  • the DC offset correction circuit 47 when the first and second DC offset voltages are smaller than the offset reference value, the DC offset correction circuit 47 does not supply the first and second cancel signals. The same effect can be obtained even if the first and second cancel signals are held by the synthesizers 19 and 27 without supplying the first and second cancel signals from the DC offset correction circuit 47.
  • the DC offset correction circuit 47 when the first and second DC offset voltages are larger than the offset reference value, the DC offset correction circuit 47 generates the first and second cancel signals for canceling the first and second DC offset voltages.
  • the signal is supplied to the synthesizers 19 and 27, respectively.
  • This offset reference value can be input from the external terminal 103a.
  • the first and second DC offset voltages and the first and second cancel signals are respectively combined in the combiners 19 and 27, and the first and second DC offset voltages can be suppressed. .
  • the DC offset determination circuit 46 can be provided with a memory (not shown). An offset reference value is stored in this memory. Thus, the DC offset determination circuit 46 can compare the detected first and second DC offset voltages with the offset reference value stored in the memory.
  • FIG. 5 is a flowchart showing a general correction method of the DC offset voltage of the high frequency receiver.
  • the power from the drive circuit 111 is supplied via the power input terminal 106a of the DC offset control loop 106 in the reception step S151. Further, the process proceeds to the reception step S152, and the DC offset detection circuit 45 detects the first and second DC offset voltages. Further, the process proceeds to the reception step S153, and the DC offset determination circuit 46 compares and determines the first and second DC offset voltages with the offset reference value.
  • the process proceeds to reception step S154, and the first and second cancel signals from the DC offset correction circuit 47 are output.
  • the signal is supplied to the first and second synthesizers 19 and 27 to perform DC offset correction, and the process proceeds to the reception step S152.
  • the process returns to the reception step S152 without performing the DC offset correction.
  • FIG. 6 is a flowchart showing a method of correcting the first and second DC offset voltages of the high frequency receiver according to the second embodiment of the present invention.
  • power is supplied to the DC offset control loop 106 in the reception step S1161. Further, the process proceeds to reception step S1162, and the DC offset detection circuit 45 detects the first and second DC offset voltages. Further, the process proceeds to reception step S1163, and the DC offset determination circuit 46 determines whether the first and second DC offset voltages and the offset reference value are compared.
  • the process proceeds to reception step S1164, and DC offset correction is performed by the DC offset correction circuit 47.
  • the DC offset correction based on the first and second cancel signals can be held by the synthesizers 19 and 27, respectively.
  • the DC offset correction is not performed, and the process proceeds to reception step S1165.
  • the power supply to the DC offset control loop 106 by the drive circuit 111 is stopped.
  • the process goes to step S1166, and the reception quality judgment circuit 109 judges by comparing the reception quality signal with the quality judgment reference value. For example, if the BER is used as the reception quality signal and this BER is smaller than the quality judgment reference value, that is, if the reception quality is good (OK), the process returns to the reception step S1166 to determine the reception quality. On the other hand, if the BER which is the reception quality signal is larger than the quality judgment reference value, that is, if the reception quality is poor (NG1), the process returns to the reception step S1161, and the reception step S1162 and subsequent steps are repeated.
  • reception quality signal BER is significantly larger than the quality judgment reference value, that is, if the reception quality is extremely bad (NG2), the process returns to the reception step S1166 and the reception quality judgment 166 is repeated.
  • reception quality signal for example, C / N, BER (bit error rate), PER (packet error rate) or the like can be used.
  • C / N can detect reception quality in the shortest time in the order of C / N, BER, and PER.
  • PER requires the detection time of reception quality most in the order of PER, BER, and C / N, the detection accuracy of reception quality is the highest. Therefore, for example, when stopping power supply to the DC offset control loop 106, PER with high determination accuracy of reception quality can be used. As a result, since the stop can be performed with high accuracy, it is possible to minimize the deterioration of the reception quality.
  • the DC offset control loop 106 is supplied with power and operated, BER or C / N in which priority is given to the reception quality detection time can be used.
  • the reception quality detection circuit 108 detects at least one of the three PER, BER, and C / N reception quality, the DC offset control loop 106 is supplied with power and operated. As a result, it is possible to minimize the deterioration of reception quality due to the operation delay of the DC offset correction.
  • the power supply to the DC offset control loop 106 is stopped by the drive circuit 111. be able to. As a result, since the power supply to the DC offset control loop 106 can be stopped, it is possible to realize the high frequency receiving apparatus 201 with reduced power consumption.
  • the power supply from the drive circuit 111 is stopped for the DC offset control loop 106.
  • the DC offset detection circuit 45 The power may be stopped for at least one of the DC offset determination circuit 46 and the DC offset correction circuit 47.
  • the synthesizer 19 is inserted between the mixer 17 and the low pass filter 21, and the synthesizer 27 is inserted between the mixer 25 and the low pass filter 29. May be provided between the low pass filter 21 and the output terminal 9, and the combiner 27 may be provided between the low pass filter 29 and the output terminal 11.
  • the offset reference value at the time of 12 segment reception can be relaxed by being larger than the offset reference value at the time of one segment reception.
  • power supply to at least one of the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47 can be stopped.
  • the oscillation frequency of the oscillator 33 is set apart from the center frequency of one segment by 1/2 (about 214 KHz) or more of the bandwidth (about 428.5 KHz) of one segment.
  • the mixing circuit 49 it is possible to use the mixing circuit 49 as heterodyne reception and to convert the intermediate frequency signal of one segment away from the DC component by a half (about 214 KHz) or more of the band of one segment. , DC offset problem does not occur.
  • the power supply to the DC offset control loop 106 can be stopped.
  • the power may be stopped for at least one of the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47 that constitute the DC offset control loop 106.
  • the drive circuit 111 can perform control to stop the power supply to the DC offset correction circuit 47.
  • FIG. 7 is a circuit block diagram of the high frequency receiver 201 according to the third embodiment.
  • demodulation section 202 of high frequency receiving apparatus 201 of the present embodiment performs fading between fast Fourier transformer (FFT) 205 forming detection circuit and detection circuit 207.
  • FFT fast Fourier transformer
  • This embodiment is different in that a waveform equivalent circuit unit 208 for correcting signal degradation due to the above is provided, and a fading detection circuit 211 is connected between the waveform equivalent circuit unit 208 and the reception quality determination circuit 210.
  • the synthesizers 19 and 27 instead of continuously supplying cancel signals without changing the values from the DC offset correction circuit 47 to the synthesizers 19 and 27, the synthesizers 19 and 27 respectively hold the first and second cancel signals. It is also good.
  • the high frequency receiving apparatus 201 includes an electronic tuner 103 for receiving a high frequency signal from the input terminal 3, a demodulator 202 for receiving the I and Q signals output from the electronic tuner 103, and the demodulator 202. And an output terminal 213 for outputting a demodulated signal of
  • a signal is input and an FFT 205 for fast Fourier transform of the signal, a waveform equivalent circuit 209 for connecting the output of the FFT 205 to one input 209a and correcting signal deterioration in a transmission path such as fading, and the waveform equivalent
  • a detection circuit 207 connected to the output of the circuit 209 and detecting a signal, an output terminal 213 to which the output of the detection circuit 207 is connected, a reception quality detection circuit 108 for detecting reception quality, and the reception quality detection circuit Reception quality determination circuit 210 that determines the reception quality in which the output of 108 is connected to one input , It is provided.
  • the demodulation unit 202 includes an SP scattered pilot (SP) extraction circuit 214 connected to the output of the FFT 205, a comparison circuit 217 the output of the SP extraction circuit 214 is connected to one input, and the comparison. And a reference pilot 215 connected to the other input of the circuit 217.
  • the output of the comparison circuit 217 is connected to the other input 209 b of the waveform equivalent circuit 209.
  • a waveform equivalent circuit unit 208 is configured by the SP extraction circuit 214, the reference pilot 215, the comparison circuit 217, and the waveform equivalent circuit 209.
  • a fading detection circuit 211 which receives the waveform equivalent signal to the waveform equivalent circuit 209 and detects the fading frequency.
  • the output of the fading detection circuit 211 is connected to the other input of the reception quality judgment circuit 210.
  • the output of the reception quality determination circuit 210 is input to the drive circuit 111.
  • the output of the drive circuit 111 is connected to the power supply input terminal 106 a of the DC offset control loop 106.
  • the fading frequency due to mobile reception is detected, the quality of the received signal is determined in consideration of the reception quality deterioration due to the fading frequency, and the DC offset is determined using this reception quality determination signal.
  • the operation of controlling the power supply to the control loop 106 will be described below.
  • the digital signal input to the high frequency receiver 201 is an OFDM modulated signal.
  • OFDM modulated signal For example, in mode 3 of ISDB-T which is digital broadcasting in Japan, one channel is configured by 5617 subcarriers.
  • the OFDM modulation signal is subjected to phase modulation (QPSK), amplitude phase modulation (QAM), or amplitude modulation (BPSK) on 5617 subcarriers.
  • QPSK phase modulation
  • QAM amplitude phase modulation
  • BPSK amplitude modulation
  • FIG. 8A is a spectrum configuration diagram which is input from the input terminal 3 at a certain moment ta in the high frequency receiver according to the third embodiment of the present invention.
  • FIG. 8B is a spectrum configuration diagram which is input from the input terminal 3 at a certain moment tb of the high-frequency receiver according to the third embodiment of the present invention.
  • the horizontal axis is frequency 301, and the vertical axis is amplitude 303.
  • the amplitude 303a of the subcarrier 305a at the frequency 301a in FIG. 8A and the amplitude 303b of the subcarrier 307a at the same frequency 301a in FIG. 8B are different. This is because the high frequency receiver 201 moves to cause fading, and the subcarrier amplitude fluctuates. The same applies to subcarriers other than the subcarriers 305a and 307a.
  • FIG. 9 is a symbol configuration diagram for the time 311 output from the FFT 205 of the high frequency reception device according to the third embodiment of the present invention.
  • FFT 205 fast Fourier transform is performed on each modulation signal which is an input signal, and symbol configurations S1, S2, S3,... Corresponding to times t1, t2, t3,-,-,-. -,-Are output.
  • each data symbol S21, S22, S23,-,-,- is arranged in the frequency direction.
  • one SP signal is inserted across 11 data symbols. Then, for example, when the data symbol S13 is an SP signal, the data symbol S26 is an SP signal, and the data symbol S39 is also an SP signal.
  • the SP signal is sent according to the rules defined in the symbol configuration.
  • This SP signal can estimate a transmission path in OFDM transmission and correct the phase and amplitude at the reception side.
  • This SP signal can be extracted by the SP extraction circuit 214. That is, the waveform equivalent signal can be output from the comparison circuit 217 by comparing the amplitude level of the SP signal and the reference signal from the reference pilot 215 by the comparison circuit 217. With this waveform equivalent signal, the waveform equivalent circuit 209 can correct the signal degradation of the subcarrier phase and amplitude due to fading.
  • a waveform equivalent signal is input to the fading detection circuit 211.
  • the fading frequency can be detected by sequentially comparing the amplitude change or the phase change of the data symbols S13, S53, S93,-,-,-in the fading detection circuit 211.
  • FIG. 10 is a characteristic diagram of C / N with respect to the fading frequency of the high frequency reception device according to the third embodiment of the present invention.
  • this fading frequency differs in required C / N depending on the fading frequency. For this reason, it is necessary to change the quality judgment reference value for the judgment in the reception quality judgment circuit 210.
  • the required C / N characteristic 330 is the C / N 333 when the bit error rate of the Viterbi-decoded signal after detection corresponding to the fading frequency 331 (or moving speed) is 0.0002.
  • the required C / N characteristic 330 requires a large C / N ratio in the low-speed moving area 335 (low moving speed) with low fading frequency and the high-speed moving area 337 (high moving speed) with high fading frequency. .
  • the required C / N may be a C / N smaller than the low-speed movement area 335 and the high-speed movement area 337 Are known.
  • the fading frequency 339a is about 20 Hz (corresponding to about 45 km / H at 13 ch reception) and about 60 Hz (corresponding to about 140 km / H at 13 ch reception) fading frequency 339b.
  • the required C / N is, for example, 6 dB and is stable.
  • the required C / N increases as the moving speed decreases.
  • the high-speed moving area 337 having the fading frequency 339 b or higher the required C / N increases as the moving speed increases.
  • the required C / N 341 in the stationary state 340 is, for example, 4 dB because there is no fading.
  • C / N which is the quality judgment reference value of the reception quality judgment circuit 210 can be set according to the fading frequency.
  • the reception quality judgment circuit 210 can judge the reception quality by C / N set according to the fading frequency. Therefore, when there is no deterioration in reception quality based on this determination, the power supply to the DC offset control loop 106 can be stopped by the drive circuit 111.
  • FIG. 11 is a flowchart showing a method of correcting the first and second DC offset voltages of the high-frequency receiver according to the third embodiment of the present invention.
  • reception steps S1161 to S1165 and reception step S1166 are the same as the reception steps in the second embodiment. Further, in the third embodiment, reception steps S1171 to S1174 are added between the reception steps S1165 and S1166 of the second embodiment.
  • the process proceeds to receiving step S1171.
  • the fading detection circuit 211 detects the fading frequency. Further, the fading detection circuit 211 determines whether the fading frequency is the stop state 340, the low speed movement area 335, the medium speed movement area 339, or the high speed movement area 337.
  • the process proceeds to the reception step S1172, and the quality determination reference value is set to the smallest.
  • the process proceeds to the reception step S1173, and the quality determination reference value is set small.
  • the process proceeds to the reception step S1174, and the quality judgment reference value is set large. Note that this quality judgment reference value can be input from the external terminal 210a, so it can be optimally set from the outside according to the reception state.
  • the process goes to step S1166, and the reception quality judgment circuit 210 judges by comparing the reception quality signal with the quality judgment reference value. For example, if the BER is used as the reception quality signal and this BER is smaller than the quality judgment reference value, that is, if the reception quality is good (OK), the process returns to the reception step S1166 to determine the reception quality. On the other hand, if the BER, which is the reception quality signal, is larger than the quality judgment reference value, that is, if the reception quality is poor (NG1), the process returns to the reception step S1161 and repeats the reception step S1162 and subsequent steps.
  • the process returns to the reception step S1166 and the reception quality judgment 1166 is performed.
  • reception quality signal for example, C / N, BER (bit error rate), PER (packet error rate) or the like can be used.
  • C / N can detect reception quality in the shortest time in the order of C / N, BER, and PER.
  • PER requires the detection time of reception quality most in the order of PER, BER, and C / N, the detection accuracy of reception quality is the highest.
  • the DC offset control loop 106 When the DC offset control loop 106 is supplied with power and operated, it is necessary to ensure sufficient reception quality. For example, when C / N is used, detection accuracy is low but detection can be performed in a short time, and when PER is used, time is required but detection can be performed with high accuracy. Therefore, when the reception quality detection circuit 108 detects at least one of the three PER, BER, and C / N reception quality, the DC offset control loop 106 is supplied with power and operated. As a result, it is possible to minimize the deterioration of reception quality due to the operation delay of the DC offset correction.
  • the power supply from the drive circuit 111 is stopped for the DC offset control loop 106.
  • the power may be stopped for at least one of the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47.
  • the fading detection circuit 211 optimizes the quality judgment reference value according to the fading frequency, and the reception quality judgment circuit 210 judges the reception quality based on the quality judgment reference value. As a result, if the reception quality is good, the power supply to the DC offset control loop 106 is stopped by the drive circuit 111, so that it is possible to realize the high frequency reception device 201 with reduced power consumption.
  • Embodiment 4 The high frequency receiver 401 according to the fourth embodiment will be described below with reference to the drawings.
  • FIG. 12 is a circuit block diagram of the high frequency receiver according to the fourth embodiment. 12, in the high frequency receiver 201 of the third embodiment, the fading detection circuit 211 is connected between the waveform equivalent circuit 209 and the reception quality judgment circuit 109, while the high frequency receiver of the fourth embodiment is different.
  • the demodulation unit 403 of the reception apparatus 401 is different in that the fading detection circuit 405 is connected between the FFT 205 and the reception quality determination circuit 210.
  • the operation and effects of the high frequency receiver 201 of the second embodiment are the same as the operation of the high frequency receiver 401 of the fourth embodiment.
  • the parts used in FIG. 13 that are the same as those in FIG. 8 are given the same reference numerals to simplify the description.
  • the high frequency receiving apparatus 401 includes an electronic tuner 103 for receiving a high frequency signal from the input terminal 3, a demodulator 403 for receiving the I and Q signals output from the electronic tuner 103, and a demodulated signal from the demodulator 403. It comprises the output terminal 213 to be output.
  • the demodulation unit 403 is provided with a fading detection circuit 405 which receives the output signal of the FFT 205 and detects the fading frequency.
  • the output of the fading detection circuit 405 is connected to the other input of the reception quality judgment circuit 210.
  • FIG. 13A is a spectrum configuration diagram of an input signal at a certain moment in the high frequency reception device according to the fourth embodiment of the present invention.
  • FIG. 13B is a spectrum diagram of an input signal at another moment of the high-frequency receiver according to the fourth embodiment of the present invention.
  • the output signal from the FFT 205 input to the fading detection circuit 405 is represented by a spectrum configuration.
  • the spectrum configuration of a certain moment ta changes constantly with the spectrum configuration of the next certain moment tb. A method of detecting the fading frequency will be described using this change.
  • the amplitude 1303a of the subcarrier 1305a changes little as the amplitude 1303b of the subcarrier 1307a.
  • the amplitude 1303 c of the subcarrier 1305 b largely changes as the amplitude 1303 d of the subcarrier 1307 b.
  • the fading frequency can be detected by the difference in the direction of the change in amplitude with time of at least two subcarriers. Further, by increasing the number of subcarriers to be compared, it is possible to enhance the accuracy of detecting the fading frequency.
  • the fading frequency is detected by the fading detection circuit 405, the quality judgment reference value is changed according to the fading frequency, and the reception quality is judged by the reception quality judgment circuit 210 based on the changed quality judgment reference value.
  • the power to the DC offset control loop 106 can be supplied or stopped based on this determination signal. Therefore, even while moving, the reception quality can be determined with high accuracy, and if it is not necessary according to the determination result, the power supply to the DC offset control loop 106 can be stopped, so high frequency power consumption can be reduced.
  • a receiver can be realized.
  • the fading frequency is detected by detecting a change in the amplitude of the subcarrier in the fourth embodiment, the fading frequency can also be detected when C / N (carrier / noise) of the subcarrier is used. .
  • FIG. 14 is a circuit block diagram of a high frequency receiver 501 according to a fifth embodiment of the present invention.
  • the same reference numerals as in FIG. 4 shown in the conventional example are used to simplify the description.
  • the drive circuit 145 is connected between the output 46a of the DC offset determination circuit 46 and the input 47a of the DC offset correction circuit 47. The point is different.
  • a DC offset control loop 147 is configured by the DC offset detection circuit 45, the DC offset determination circuit 46, the drive circuit 145, and the DC offset correction circuit 47.
  • the operation of the high frequency receiver 501 configured as described above will be described below.
  • the high frequency signal input from the antenna is received by the electronic tuner 102.
  • the signal selected by the electronic tuner 102 is demodulated by the demodulator 7 and output from the output terminal 43.
  • the high frequency signal is, for example, digital modulated digital television broadcasting, and in UHF, a frequency of about 470 MHz (CH13) to about 770 MHz (CH62) can be used.
  • the filter 13 suppresses the interference signal of the high frequency signal input to the input terminal 3.
  • the output of this filter 13 is gain controlled by an amplifier 15.
  • the output of this amplifier 15 is supplied to the mixing circuit 49.
  • a mixer of direct conversion system is configured by the mixers 17, 25, the oscillator 33, and the 90-degree phase shifter 35. Due to this mixing circuit 49, the mixers 17 and 25 output I and Q signals whose phases are different from each other by 90 degrees. These I and Q signals are input to the low pass filters 21 and 29. The outputs of the low pass filters 21 and 29 are input to the amplifiers 23 and 31, respectively. The outputs of these amplifiers 23 and 31 respectively output I and Q signals via output terminals 9 and 11, respectively. The I and Q signals are also input to the demodulator 7. The signals are converted into digital signals by A / D converters 37 and 39 provided in the demodulator 7, respectively. Further, the demodulation circuit 41 generates a demodulation signal, which is output from the output terminal 43.
  • the oscillation signal of the oscillator 33 leaks to one input of the mixer 17 or one input of the mixer 25.
  • the leaked oscillation signal and the original oscillation signal input from the oscillator 33 are self-mixed in the mixer 17 or 25, whereby a DC offset voltage is generated from the mixer 17 or 25.
  • the interference signal leaks to one input of the mixer 17 or to one input of the mixer 25.
  • the leaked interference signal and the original oscillation signal input from the oscillator 33 are self-mixed in the mixer 17 or 25, whereby a DC offset voltage is generated from the mixer 17 or 25.
  • the mixers 17 and 25 respectively generate the first and second DC offset voltages, and the reception quality is degraded.
  • the DC offset control loop 147 includes a DC offset detection circuit 45, a DC offset determination circuit 46, a drive circuit 145, and a DC offset correction circuit 47.
  • the DC offset detection circuit 45 detects the first and second DC offset voltages from the I and Q signals respectively output from the A / D converters 37 and 39, and supplies the DC offset determination circuit 46 with the DC offset detection circuit 46.
  • the DC offset determination circuit 46 compares the detected first and second DC offset voltages with a reference value to make a determination. Note that this reference value can be input from the external terminal 103a.
  • the drive circuit 145 supplies power to the DC offset correction circuit 47 according to the determination signal from the DC offset determination circuit 46.
  • the DC offset correction circuit 47 supplies the first and second cancel signals for canceling the first and second DC offset voltages detected by the DC offset detection circuit 45 to the synthesizers 19 and 27, respectively. .
  • the synthesizers 19 and 27 By supplying the first and second cancel signals to the synthesizers 19 and 27, respectively, the first and second DC offset voltages and the first and second cancel signals in the synthesizers 19 and 27, respectively. The first and second DC offset voltages are suppressed.
  • the power to the DC offset correction circuit 47 is stopped by the drive circuit 145 to which the determination signal from the DC offset determination circuit 46 is input. .
  • the first and second cancel signals for canceling the first and second DC offset voltages supplied to the other input of the synthesizers 19 and 27. Will supply. The same effect can be obtained even when the first and second cancel signals are held by the synthesizers 19 and 27, respectively, without supplying the first and second cancel signals.
  • the DC offset determination circuit 46 can be provided with a memory 104 (not shown).
  • the memory 104 stores a reference value.
  • the DC offset determination circuit 46 can compare the detected first and second DC offset voltages with the reference value stored in the memory 104.
  • FIG. 15 is a flowchart showing a general correction method of the DC offset voltage of the high frequency receiver.
  • power is supplied to the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47 in the reception step S151.
  • the process proceeds to the reception step S152, and the DC offset detection circuit 45 detects the first and second DC offset voltages.
  • the DC offset determination circuit 46 determines whether the first and second DC offset voltages and the reference value are compared.
  • the process proceeds to the reception step S154, the DC offset correction circuit 47 performs DC offset correction, and the reception step S152. Transition.
  • the process returns to the reception step S152.
  • FIG. 16 is a flow chart showing a method of correcting the first and second DC offset voltages of the high frequency reception device according to the fifth embodiment of the present invention.
  • power is supplied to the DC offset detection circuit 45 and the DC offset determination circuit 46 in the reception step S2161. Further, the process proceeds to reception step S2162, and the DC offset detection circuit 45 detects the first and second DC offset voltages. Further, the process proceeds to reception step S2163, and the DC offset determination circuit 46 determines whether the first and second DC offset voltages are compared with the reference value.
  • the process returns to the reception step S2162.
  • the process proceeds to a reception step S2164, and the drive circuit 145 supplies power to the DC offset correction circuit 47.
  • step S2165 the flow proceeds to reception step S2165, and the DC offset correction circuit 47 corrects the first and second DC offset voltages.
  • step S2166 the drive circuit 145 stops the power supply to the DC offset correction circuit 47. Furthermore, it returns to receiving step S2162.
  • the mixers 17 and 25 generate the first and second DC offset voltages.
  • the first and second DC offset voltages are detected by the DC offset detection circuit 45 from the output signals of the A / D converters 37 and 39.
  • the detected first and second DC offset voltages are input to the DC offset determination circuit 46 and compared with a reference value to be determined.
  • the DC offset determination circuit 46 supplies a control signal to the drive circuit 145 when the detected first and second DC offset voltages are smaller than the reference value.
  • the drive circuit 145 stops the power supply to the DC offset correction circuit 47 by this control signal.
  • the drive circuit 145 when the drive circuit 145 is provided between the DC offset determination circuit 46 and the DC offset correction circuit 47 and the first and second DC offset voltages are small, the drive circuit 145 sends the DC offset correction circuit 47 Turn off the power. Therefore, it is possible to realize the electronic tuner 102 with low power consumption.
  • the synthesizer 19 is inserted between the mixer 17 and the low pass filter 21, and the synthesizer 27 is inserted between the mixer 25 and the low pass filter 29. May be provided between the low pass filter 21 and the output terminal 9, and the combiner 27 may be provided between the low pass filter 29 and the output terminal 11.
  • the reference value at the time of 12-segment reception can be relaxed by being larger than the reference value at the time of one-segment reception.
  • power supply to at least one of the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47 can be stopped.
  • the oscillation frequency of the oscillator 33 is set apart from the center frequency of one segment by 1/2 (about 214 KHz) or more of the bandwidth (about 428.5 KHz) of one segment.
  • the mixing circuit 49 it is possible to use the mixing circuit 49 as heterodyne reception and to convert the intermediate frequency signal of one segment away from the DC component by a half (about 214 KHz) or more of the band of one segment. , DC offset problem does not occur.
  • the power supply can be stopped for the DC offset control loop 147.
  • the power may be stopped for at least one of the DC offset detection circuit 45, the DC offset determination circuit 46, and the DC offset correction circuit 47 that constitute the DC offset control loop 147.
  • the control for stopping the power supply to the DC offset correction circuit 47 can be performed by the drive circuit 145.
  • the high frequency receiver according to the present invention is useful when used for a portable television receiver or the like which requires low power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Circuits Of Receivers In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

 復調部(105)には受信信号の品質を第1の基準値と比較し判定するとともに判定信号が出力される受信品質判定回路(109)と、判定信号が入力される駆動回路(111)とが設けられ、受信品質判定回路(109)において受信信号の品質が良好と判定された場合に、駆動回路(111)により、DCオフセット制御ループ(106)への電源を停止して、消費電力を低減させる高周波受信装置を提供する。

Description

電子チューナおよびこれを用いた高周波受信装置
 本発明は、バッテリー駆動される携帯用テレビ受信装置などに用いられるダイレクトコンバージョン方式の電子チューナを用いた高周波受信装置に関する。
 以下、従来の高周波受信装置について図面を用いて説明する。
 図17は従来の高周波受信装置1の回路ブロック図である。図17において、従来の高周波受信装置1は、アンテナに接続される入力端子3と、この入力端子3から入力される受信信号から希望chを選局する電子チューナ5と、この電子チューナ5から出力されるI、Q信号を復調する復調部7を有している。
 この電子チューナ5には、入力端子3からの受信信号を通過させるフィルタ13と、このフィルタ13の出力が供給される増幅器15と、この増幅器の出力が一方の入力に供給される混合器17、25と、この混合器17、25の他方の入力に移相器35を介して接続される発振器33と、この混合器17、25の出力が一方の入力にそれぞれ供給される合成器19、27と、これらの合成器19、27の出力がそれぞれ供給されるローパスフィルタ21、29と、このローパスフィルタ21、29の出力がそれぞれ供給される増幅器23、31と、これら増幅器23、31の出力がそれぞれ供給される出力端子9、11と、DCオフセット電圧を検出するDCオフセット検出回路45と、このDCオフセット検出回路45の出力が接続されるとともにDCオフセット電圧を補正するDCオフセット補正回路47と、DCオフセット検出回路45とDCオフセット補正回路47との間に接続されるとともにDCオフセット電圧を判定するDCオフセット判定回路46が設けられている。
 また、DCオフセット補正回路47からそれぞれ出力される第1、第2のキャンセル信号は、合成器19、27の他方の入力にそれぞれ供給されている。
 さらに、復調部7には、出力端子9、11にそれぞれ接続されたA/Dコンバータ37、39と、これらA/Dコンバータ37、39からの出力がそれぞれ接続された復調回路41と、この復調回路41からの復調信号が出力される出力端子43が設けられている。そして、A/Dコンバータ37、39の出力は、DCオフセット検出回路45の入力にそれぞれ入力されている。
 このように構成された高周波受信装置1の動作について以下説明する。混合回路49は、混合器17、25、発振器33、90度の移相器35により、ダイレクトコンバージョン方式の混合回路とされている。この混合回路49により、混合器17、25からは、位相が互いに90度異なったI、Q信号が出力される。
 これらI、Q信号は、ローパスフィルタ21、29をそれぞれ介して出力端子9、11からそれぞれ出力される。さらに、これらI、Q信号は、A/Dコンバータ37、39によりデジタル信号とされる。さらに復調回路41により復調信号とされて出力端子43から出力される。
 このようなダイレクトコンバージョン方式を用いた混合回路49では、混合器17、25で第1、第2のDCオフセット電圧がそれぞれ発生する。これら第1、第2のDCオフセット電圧により、受信信号内にDC電圧が発生し、このため受信品質を劣化させる。
 このDCオフセット電圧を小さくするために、DCオフセット電圧の補正を行う必要がある。このため、A/Dコンバータ37、39の出力をDCオフセット検出回路45へそれぞれ入力し、このDCオフセット検出回路45はDCオフセット電圧を検出し判定する。
 この判定結果に基づいて、DCオフセット補正回路47から出力されるとともに第1、第2のDCオフセット電圧をそれぞれ打ち消すための第1、第2のキャンセル信号が、合成器19、27に入力され、第1、第2のDCオフセット電圧がキャンセルされる。なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
 ここで、携帯用テレビのようなバッテリー駆動の装置に用いる高周波受信装置では、特に消費電力が小さいことが重要である。しかしながら、従来の高周波受信装置では、DCオフセット補正回路47への電源を常に供給した状態でDCオフセット電圧の補正を行う。従って、消費電力が大きくなってしまう。
特開2003-134183号公報
 本発明は、低消費電力の高周波受信装置を提供する。
 本発明の高周波受信装置は、復調部には受信信号の品質を第1の基準値と比較し判定するとともに判定信号が出力される受信品質判定回路と、この判定信号が入力される駆動回路が設けられ、受信品質判定回路において受信信号の品質が良好と判定された場合に、駆動回路によりDCオフセット制御ループへの電源を停止する。これにより、低消費電力化とした高周波受信装置を実現できる。
 また、本発明の電子チューナは、復調部は、受信信号の品質を検出する受信品質検出回路と、移動によるフェージング周波数を検出する第1のフェージング検出回路と、受信品質検出回路からの受信品質信号と第1のフェージング検出回路からのフェージング周波数とが入力される受信品質判定回路と、この受信品質判定回路から出力される受信品質判定信号が入力されるとともにDCオフセット制御ループへの電源の供給あるいは停止する駆動回路が設けられ、第1のフェージング検出回路からのフェージング周波数に応じて受信品質判定回路の品質判定基準値を設定し、受信品質判定回路が受信信号の品質を良好と判定した場合に、駆動回路によりDCオフセット制御ループへの電源を停止する。これにより、低消費電力化とした高周波受信装置を実現できる。
 さらに、本発明の電子チューナは、DCオフセット判定回路から出力される第1の判定信号が入力される駆動回路を設け、この駆動回路から出力される第1の駆動電圧がDCオフセット補正回路に接続され、DCオフセット判定回路において、第1、第2のDCオフセット電圧が基準値より小さい場合に、駆動回路によりDCオフセット補正回路への電源を停止する。これにより、低消費電力化とした電子チューナを実現できる。
図1は本発明の実施の形態1における高周波受信装置の回路ブロック図である。 図2は高周波受信装置のDCオフセット電圧の一般的な補正方法を示すフローチャートである。 図3は本発明の実施の形態1における高周波受信装置のDCオフセットの補正方法を示すフローチャートである。 図4は本発明の実施の形態2における高周波受信装置の回路ブロック図である。 図5は高周波受信装置のDCオフセット電圧の一般的な補正方法を示すフローチャートである。 図6は本発明の本実施の形態2における高周波受信装置のDCオフセット電圧の補正方法を示すフローチャートである。 図7は本実施の形態3における高周波受信装置の回路ブロック図である。 図8Aは本発明の実施の形態3における高周波受信装置のある瞬間における入力信号のスペクトラム構成図である。 図8Bは本発明の実施の形態3における高周波受信装置の別の瞬間における入力信号のスペクトラム構成図である。 図9は本発明の実施の形態3における高周波受信装置のFFTから出力されるシンボル構成図である。 図10は本発明の実施の形態3における高周波受信装置のフェージング周波数に対するC/Nの特性図である。 図11は本発明の実施の形態3における高周波受信装置のDCオフセット電圧の補正方法を示すフローチャートである。 図12は本実施の形態4における高周波受信装置の回路ブロック図である。 図13Aは本発明の実施の形態4における高周波受信装置のある瞬間における入力信号のスペクトラム構成図である。 図13Bは本発明の実施の形態4における高周波受信装置の別の瞬間における入力信号のスペクトラム構成図である。 図14は本発明の実施の形態5における高周波受信装置の回路ブロック図である。 図15はDCオフセット電圧の一般的な補正方法を示すフローチャートである。 図16は本発明の実施の形態5における高周波受信装置のDCオフセット電圧の補正方法を示すフローチャートである。 図17は従来の高周波受信装置の回路ブロック図である。
符号の説明
3  入力端子
9,43,113,213  出力端子
11  出力端子
17  混合器
19  合成器
25  混合器
27  合成器
33  発振器
35  移相器
45  DCオフセット検出回路
46  DCオフセット判定回路
47  DCオフセット補正回路
101,141,201,401,501  高周波受信装置
102,103  電子チューナ
105,202,403  復調部
106,147  DCオフセット制御ループ
106a  電源入力端子
109,210  受信品質判定回路
111,145  駆動回路
 (実施の形態1)
 以下、本実施の形態1における高周波受信装置について図面を用いて以下説明する。
 図1は本発明の実施の形態1における高周波受信装置の回路ブロック図である。図1において、従来例で示した図17と同じものは同じ番号を用いている。
 高周波受信装置101は、アンテナに接続される入力端子3と、この入力端子3から入力される受信信号から希望ch(チャンネル)を選局する電子チューナ103と、この電子チューナ103から出力されるI、Q信号を復調する復調部105と、を有している。
 この電子チューナ103には、入力端子3からの受信信号を通過させるフィルタ13と、このフィルタ13の出力が供給される増幅器15と、この増幅器の出力が一方の入力に供給される混合器17、25と、この混合器17、25の他方の入力に移相器35を介して接続される発振器33と、混合器17、25の出力が一方の入力にそれぞれ供給される合成器19、27と、これらの合成器19、27の出力がそれぞれ供給されるローパスフィルタ21、29と、このローパスフィルタ21、29の出力がそれぞれ供給される増幅器23、31と、これら増幅器23、31の出力がそれぞれ供給される出力端子9、11と、DCオフセット電圧を検出するDCオフセット検出回路45と、このDCオフセット検出回路45の出力が接続されるとともにDCオフセット電圧を補正するDCオフセット補正回路47と、DCオフセット検出回路45とDCオフセット補正回路47との間に接続されるとともにDCオフセット電圧を判定するDCオフセット判定回路46と、が設けられている。
 また、DCオフセット補正回路47からそれぞれ出力される第1、第2のキャンセル信号は、合成器19、27の他方の入力にそれぞれ供給されている。また、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47によりDCオフセット制御ループ106が構成されている。
 復調部105には、出力端子9、11にそれぞれ接続されたA/Dコンバータ37、39と、これらA/Dコンバータ37、39からの出力がそれぞれ接続された復調回路107と、この復調回路107からの復調信号が出力される出力端子113が設けられている。
 復調回路107には、受信信号の品質を検出する受信品質検出回路108と、この受信品質検出回路108からの受信品質信号が入力されるとともに受信品質を判定する受信品質判定回路109が設けられている。また、この受信品質判定回路109には、第1の基準値を入力できる外部端子109aが設けられている。
 また、受信品質判定回路109から出力される制御信号は、駆動回路111に接続されている。この駆動回路111から出力される駆動電圧は、DCオフセット制御ループ106に設けられた電源入力端子106aに接続されている。そして、A/Dコンバータ37、39の出力は、DCオフセット検出回路45の入力にそれぞれ入力されている。なお、駆動回路111は、復調部105あるいは電子チューナ103に内蔵してもよい。
 このように構成された高周波受信装置101の動作について以下説明する。なお、入力端子3から入力される高周波信号は、例えば、デジタル変調されたデジタルテレビ放送であり、UHFでは約470MHz(CH13)から約770MHz(CH62)までの周波数を用いることができる。
 電子チューナ103において、入力端子3に入力された高周波信号は、フィルタ13によって妨害信号が抑圧される。このフィルタ13の出力は、増幅器15により、利得制御される。この増幅器15の出力は、混合回路49に供給される。
 混合回路49は、混合器17、25、発振器33、90度の移相器35により、ダイレクトコンバージョン方式の混合器として構成されている。この混合回路49により、混合器17、25からは、位相が互いに90度異なったI、Q信号が出力される。これらI、Q信号は、ローパスフィルタ21、29に入力される。これらローパスフィルタ21、29の出力は、増幅器23、31に入力される。これら増幅器23、31の出力は、出力端子9、11を介してI、Q信号がそれぞれ出力される。
 復調部105において、これらI、Q信号が、A/Dコンバータ37、39に入力される。このA/Dコンバータ37、39の出力からデジタル信号がそれぞれ出力される。さらに復調回路107により復調信号とされて出力端子113から出力される。
 ところが、このようにダイレクトコンバージョン方式を用いた混合回路49では、発振器33の発振信号が、混合器17の一方の入力あるいは混合器25の一方の入力に漏洩する。この漏洩した発振信号と発振器33から入力される本来の発振信号とが混合器17あるいは25において自己ミキシングされ、これにより混合器17あるいは混合器25からDCオフセット電圧が発生する。
 あるいは、入力端子3に大きな妨害信号が入力された場合に、この妨害信号が混合器17の一方の入力あるいは混合器25の一方の入力に漏洩する。この漏洩した妨害信号と発振器33から入力される本来の発振信号とが混合器17あるいは25において自己ミキシングされ、これにより混合器17あるいは混合器25からDCオフセット電圧が発生する。
 このようにして、混合器17、25からは第1、第2のDCオフセット電圧がそれぞれ発生することになり、受信品質が劣化する。
 そこで、これら第1、第2のDCオフセット電圧を、DCオフセット制御ループ106により改善する方法を、以下説明する。
 DCオフセット制御ループ106は、DCオフセット検出回路45と、DCオフセット判定回路46と、DCオフセット補正回路47とから構成されている。
 DCオフセット検出回路45では、A/Dコンバータ37、39からそれぞれ出力されたI、Q信号により、第1、第2のDCオフセット電圧をそれぞれ検出し、この検出信号をDCオフセット判定回路46に入力する。
 このDCオフセット判定回路46において、第1、第2のDCオフセット電圧が第2の基準値より小さい場合には、DCオフセット補正回路47からは第1、第2のキャンセル信号を供給しない。なお、DCオフセット補正回路47から第1、第2のキャンセル信号の供給を行わないで、第1、第2のキャンセル信号を合成器19、27でそれぞれ保持するようにしても同様の効果が得られる。
 一方、第1、第2のDCオフセット電圧が第2の基準値より大きい場合には、DCオフセット補正回路47は、第1、第2のDCオフセット電圧を打ち消すための第1、第2のキャンセル信号を合成器19、27にそれぞれ供給する。なお、この第2の基準値は、外部端子103aから入力することができる。
 このようにして、合成器19、27において第1、第2のDCオフセット電圧と第1、第2のキャンセル信号とがそれぞれ合成され、第1、第2のDCオフセット電圧を抑圧することができる。
 また、DCオフセット判定回路46には、メモリ115(図示せず)を設けることができる。このメモリ115には、基準値が記憶されている。これによってDCオフセット判定回路46は、検出された第1、第2のDCオフセット電圧とメモリ115に記憶された基準値とを比較することができる。
 次に、駆動回路111によるDCオフセット制御ループ106への電源を供給し、あるいは停止する方法について、以下説明する。
 図2は、高周波受信装置のDCオフセット電圧の一般的な補正方法を示すフローチャートである。図2において、受信開始時に、受信ステップS151において、駆動回路111からの電源はDCオフセット制御ループ106の電源入力端子106aを介して供給される。さらに、受信ステップS152に移行し、DCオフセット検出回路45により第1、第2のDCオフセット電圧を検出する。さらに、受信ステップS153に移行し、DCオフセット判定回路46により、第1、第2のDCオフセット電圧と第2の基準値との比較判定をする。
 この検出結果として、第1、第2のDCオフセット電圧が第2の基準値より大きい場合(NG)には、受信ステップS154に移行し、DCオフセット補正回路47からの第1、第2のキャンセル信号を第1、第2の合成器19、27にそれぞれ供給してDCオフセット補正を行い、さらに受信ステップS152に移行する。
 一方、第1、第2のDCオフセット電圧が第2の基準値より小さい場合(OK)には、DCオフセット補正を行うことなく受信ステップS152に戻る。
 前述した一般的な補正方法に対して、本実施の形態1における第1、第2のDCオフセット電圧の補正方法について、以下に説明する。
 図3は、本発明の本実施の形態1における高周波受信装置の第1、第2のDCオフセット電圧の補正方法を示すフローチャートである。図3において、受信開始時には、受信ステップS161により、DCオフセット制御ループ106への電源を供給する。さらに、受信ステップS162に移行し、DCオフセット検出回路45により、第1、第2のDCオフセット電圧を検出する。さらに、受信ステップS163に移行し、DCオフセット判定回路46により、第1、第2のDCオフセット電圧と第2の基準値との比較判定をする。
 この検出結果として、第1、第2のDCオフセット電圧が第2の基準値より大きい場合(NG)には、受信ステップS164に移行し、DCオフセット補正回路47によりDCオフセット補正を行う。一方、第1、第2のDCオフセット電圧が第2の基準値より小さい場合(OK)には、DCオフセット補正を行わず、受信ステップS165に移行する。この受信ステップS165では、駆動回路111によるDCオフセット制御ループ106への電源供給を停止する。
 さらに、ステップS166に移行し、受信品質判定回路109により、受信品質信号を第1の基準値と比較し判定する。この受信品質信号が第1の基準値より小さい場合、つまり受信品質が良好な場合(OK)には、受信ステップS166に戻り受信品質を判定する。一方、受信品質信号が第1の基準値より大きい場合、つまり受信品質が悪い場合(NG)には、受信ステップS161に戻り、受信ステップS162以降を繰り返す。
 なお、受信品質信号として、例えばC/N、ビットエラーレート(BER)、パケットエラーレート(PER)等を用いることができる。これらの受信品質信号として、C/N、BER、PERの順で、C/Nが最も短時間で受信品質を検出できる。また、PER、BER、C/Nの順で、PERが最も受信品質の検出時間を要するが、受信品質の検出精度は最も優れている。このため、例えば、DCオフセット制御ループ106への電源を停止する場合に、受信品質の判定精度の高いPERを用いることができる。一方、DCオフセット制御ループ106への電源を供給して動作させる場合には、受信品質の検出時間を優先したBERまたはC/Nを用いることができる。
 さらに、DCオフセット制御ループ106への電源を供給して動作させる場合には、受信品質を十分に確保することが必要となる。例えば、C/Nを用いた場合には検出精度は低いが短時間で検出でき、PERを用いた場合には時間を要するが高精度で検出できる。従って、これら3つのPER、BER、C/Nの少なくとも1つの受信品質が受信品質検出回路108で検出された場合に、DCオフセット制御ループ106への電源を供給して動作させる。これにより、DCオフセットの補正の動作遅れによる受信品質の劣化を最小限度に抑えることができる。
 このようにして、DCオフセット制御ループ106への電源の供給あるいは停止を、精度よくあるいは最適に制御できるので、低消費電力化とした高周波受信装置101を実現することが可能となる。
 以上のようにして、高周波受信装置101により希望chを受信する場合において、受信品質判定回路109により判定した受信品質が良好であれば、駆動回路111によりDCオフセット制御ループ106への電源を停止することができる。これにより、DCオフセット制御ループ106への電源供給を停止できるので、低消費電力化とした高周波受信装置の実現が可能となる。
 なお、受信品質信号が第1の基準値より良好な場合に、DCオフセット制御ループ106に対して駆動回路111からの電源の停止が行われることになる。しかし、この場合に、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47のうち少なくともひとつに対して電源を停止してもよい。
 また、本実施の形態1では、混合器17とローパスフィルタ21との間に合成器19を挿入し、混合器25とローパスフィルタ29との間に合成器27を挿入したが、この合成器19はローパスフィルタ21と出力端子9との間に、合成器27はローパスフィルタ29と出力端子11との間にそれぞれ設けても良い。
 さらに、ISDB-Tのデジタルテレビ放送を受信する場合に、例えば13セグメントのうちの12セグメント、あるいは1セグメントの受信ができる。この1セグメント受信では、本実施の形態1で説明したように、DCオフセット電圧の補正が必要とされる。これに対して、12セグメントを受信する場合には、中心位置に1セグメントが存在し、またこの1セグメントを必要としないため、DCオフセット電圧の許容値を緩和することができる。
 すなわち、DCオフセット判定回路46において、12セグメント受信時の第2の基準値は、1セグメント受信時の第2の基準値に対して、大きくして緩和することができる。あるいは、12セグメント受信時には、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47の少なくともひとつに対して電源を停止することができる。
 さらにまた、1セグメントを受信する場合において、発振器33の発振周波数を、1セグメントの中心周波数から1セグメントの帯域幅(約428.5KHz)の1/2(約214KHz)以上離して設定する。これにより、混合回路49をヘテロダイン受信として使用し、1セグメントの中間周波信号をDC成分から1セグメントの帯域の1/2(約214KHz)以上離して変換することが可能であり、この場合には、DCオフセットの問題は発生しない。
 従って、混合回路49により1セグメント受信の時は、DCオフセット制御ループ106に対して電源を停止することができる。この場合に、DCオフセット制御ループ106を構成するDCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47の少なくともひとつに対して電源を停止してもよい。
 なお、1セグメントと12セグメントを別々に受信する場合は以上のように受信を行い、また、一括して13セグメント受信する場合は、第1、第2のDCオフセット電圧が第2の基準値より小さい場合に、駆動回路111によりDCオフセット補正回路47への電源を停止する制御を行うことができる。
 (実施の形態2)
 以下、本実施の形態2における高周波受信装置について図面を用いて以下説明する。
 図4は実施の形態2における高周波受信装置141の回路ブロック図である。図4において、高周波受信装置141の回路ブロック構成は、実施の形態1における高周波受信装置101と基本的に同一である。本実施の形態2における高周波受信装置141と実施の形態1で説明した高周波受信装置101との違いは、第1、第2のDCオフセット電圧の補正方法である。以下、説明する。
 高周波受信装置141は、アンテナに接続される入力端子3と、この入力端子3から入力される受信信号から希望chを選局する電子チューナ103と、この電子チューナ103から出力されるI、Q信号を復調する復調部105と、を有している。
 この電子チューナ103には、入力端子3からの受信信号を通過させるフィルタ13と、このフィルタ13の出力が供給される増幅器15と、この増幅器の出力が一方の入力に供給される混合器17、25と、この混合器17、25の他方の入力に移相器35を介して接続される発振器33と、混合器17、25の出力が一方の入力にそれぞれ供給される合成器19、27と、これらの合成器19、27の出力がそれぞれ供給されるローパスフィルタ21、29と、このローパスフィルタ21、29の出力がそれぞれ供給される増幅器23、31と、これら増幅器23、31の出力がそれぞれ供給される出力端子9、11と、DCオフセット電圧を検出するDCオフセット検出回路45と、このDCオフセット検出回路45の出力が接続されるとともにDCオフセット電圧を補正するDCオフセット補正回路47と、DCオフセット検出回路45とDCオフセット補正回路47との間に接続されるとともにDCオフセット電圧を判定するDCオフセット判定回路46と、が設けられている。
 また、DCオフセット補正回路47からそれぞれ出力される第1、第2のキャンセル信号は、合成器19、27の他方の入力にそれぞれ供給されている。また、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47によりDCオフセット制御ループ106が構成されている。
 復調部105には、出力端子9、11にそれぞれ接続されたA/Dコンバータ37、39と、これらA/Dコンバータ37、39からの出力がそれぞれ接続された復調回路107と、この復調回路107からの復調信号が出力される出力端子113が設けられている。
 復調回路107には、受信信号の品質を検出する受信品質検出回路108と、この受信品質検出回路108からの受信品質信号が入力されるとともに受信品質を判定する受信品質判定回路109が設けられている。また、この受信品質判定回路109には、品質判定基準値を入力できる外部端子109aが設けられている。
 また、受信品質判定回路109から出力される制御信号は、駆動回路111に接続されている。この駆動回路111から出力される駆動電圧は、DCオフセット制御ループ106に設けられた電源入力端子106aに接続されている。
 そして、A/Dコンバータ37、39の出力は、DCオフセット検出回路45の入力にそれぞれ入力されている。なお、駆動回路111は、復調部105あるいは電子チューナ103に内蔵してもよい。
 このように構成された高周波受信装置141において、受信品質判定回路109により受信信号の品質を判定し、この受信品質の判定信号によりDCオフセット制御ループ106への電源を制御する動作について以下説明する。
 このように構成された高周波受信装置141の動作について以下説明する。なお、入力端子3から入力される高周波信号は、例えば、デジタル変調されたデジタルテレビ放送であり、UHFでは約470MHz(CH13)から約770MHz(CH62)までの周波数を用いることができる。
 電子チューナ103において、入力端子3に入力された高周波信号は、フィルタ13によって妨害信号が抑圧される。このフィルタ13の出力は、増幅器15により、利得制御される。この増幅器15の出力は、混合回路49に供給される。
 混合回路49は、混合器17、25、発振器33、90度の移相器35により、ダイレクトコンバージョン方式の混合器が構成されている。この混合回路49により、混合器17、25からは、位相が互いに90度異なったI、Q信号が出力される。これらI、Q信号は、ローパスフィルタ21、29に入力される。これらローパスフィルタ21、29の出力は、増幅器23、31に入力される。これら増幅器23、31の出力は、出力端子9、11を介してI、Q信号がそれぞれ出力される。
 復調部105において、これらI、Q信号が、A/Dコンバータ37、39に入力される。このA/Dコンバータ37、39の出力からデジタル信号がそれぞれ出力される。さらに復調回路107により復調信号とされて出力端子113から出力される。
 ところが、このようにダイレクトコンバージョン方式を用いた混合回路49では、発振器33の発振信号が、混合器17の一方の入力あるいは混合器25の一方の入力に漏洩する。この漏洩した発振信号と発振器33から入力される本来の発振信号とが混合器17あるいは25において自己ミキシングされ、これにより混合器17あるいは混合器25からDCオフセット電圧が発生する。
 あるいは、入力端子3に大きな妨害信号が入力された場合に、この妨害信号が混合器17の一方の入力あるいは混合器25の一方の入力に漏洩する。この漏洩した妨害信号と発振器33から入力される本来の発振信号とが混合器17あるいは25において自己ミキシングされ、これにより混合器17あるいは混合器25からDCオフセット電圧が発生する。
 このようにして、混合器17、25からは第1、第2のDCオフセット電圧がそれぞれ発生することになり、受信品質が劣化する。
 そこで、第1、第2のDCオフセット電圧を、DCオフセット制御ループ106により改善する方法を、以下説明する。
 このDCオフセット制御ループ106は、DCオフセット検出回路45と、DCオフセット判定回路46と、DCオフセット補正回路47とから構成されている。DCオフセット検出回路45では、A/Dコンバータ37、39からそれぞれ出力されたI、Q信号により、第1、第2のDCオフセット電圧をそれぞれ検出し、この検出信号をDCオフセット判定回路46に入力する。
 このDCオフセット判定回路46において、第1、第2のDCオフセット電圧がオフセット基準値より小さい場合には、DCオフセット補正回路47からは第1、第2のキャンセル信号を供給しない。なお、DCオフセット補正回路47から第1、第2のキャンセル信号の供給を行わないで、第1、第2のキャンセル信号を合成器19、27でそれぞれ保持するようにしても同様の効果が得られる。
 一方、第1、第2のDCオフセット電圧がオフセット基準値より大きい場合には、DCオフセット補正回路47は、第1、第2のDCオフセット電圧を打ち消すための第1、第2のキャンセル信号を合成器19、27にそれぞれ供給する。なお、このオフセット基準値は、外部端子103aから入力することができる。
 このようにして、合成器19、27において第1、第2のDCオフセット電圧と第1、第2のキャンセル信号とがそれぞれ合成され、第1、第2のDCオフセット電圧を抑圧することができる。
 また、DCオフセット判定回路46には、メモリ(図示せず)を設けることができる。このメモリには、オフセット基準値が記憶されている。これによってDCオフセット判定回路46は、検出された第1、第2のDCオフセット電圧とメモリに記憶されたオフセット基準値とを比較することができる。
 次に、駆動回路111によるDCオフセット制御ループ106への電源を供給し、あるいは停止する方法について、以下説明する。
 図5は、高周波受信装置のDCオフセット電圧の一般的な補正方法を示すフローチャートである。図5において、受信開始時に、受信ステップS151において、駆動回路111からの電源はDCオフセット制御ループ106の電源入力端子106aを介して供給される。さらに、受信ステップS152に移行し、DCオフセット検出回路45により第1、第2のDCオフセット電圧を検出する。さらに、受信ステップS153に移行し、DCオフセット判定回路46により、第1、第2のDCオフセット電圧とオフセット基準値との比較判定をする。
 この検出結果として、第1、第2のDCオフセット電圧がオフセット基準値より大きい場合(NG)には、受信ステップS154に移行し、DCオフセット補正回路47からの第1、第2のキャンセル信号を第1、第2の合成器19、27にそれぞれ供給してDCオフセット補正を行い、さらに受信ステップS152に移行する。
 一方、第1、第2のDCオフセット電圧がオフセット基準値より小さい場合(OK)には、DCオフセット補正を行うことなく受信ステップS152に戻る。
 この一般的な補正方法に対して、本実施の形態2における第1、第2のDCオフセット電圧の補正方法について、以下に説明する。
 図6は、本発明の本実施の形態2における高周波受信装置の第1、第2のDCオフセット電圧の補正方法を示すフローチャートである。図6において、受信開始時には、受信ステップS1161により、DCオフセット制御ループ106への電源を供給する。さらに、受信ステップS1162に移行し、DCオフセット検出回路45により、第1、第2のDCオフセット電圧を検出する。さらに、受信ステップS1163に移行し、DCオフセット判定回路46により、第1、第2のDCオフセット電圧とオフセット基準値との比較判定をする。
 この検出結果として、第1、第2のDCオフセット電圧がオフセット基準値より大きい場合(NG)には、受信ステップS1164に移行し、DCオフセット補正回路47によりDCオフセット補正を行う。なお、この第1、第2のキャンセル信号によるDCオフセット補正は、合成器19、27においてそれぞれ保持を行うことができる。一方、第1、第2のDCオフセット電圧がオフセット基準値より小さい場合(OK)には、DCオフセット補正を行わず、受信ステップS1165に移行する。この受信ステップS1165では、駆動回路111によるDCオフセット制御ループ106への電源供給を停止する。
 さらに、ステップS1166に移行し、受信品質判定回路109により、受信品質信号を品質判定基準値と比較し判定する。例えば、受信品質信号としてBERを用い、このBERが品質判定基準値より小さい場合、つまり受信品質が良好な場合(OK)には、受信ステップS1166に戻り受信品質を判定する。一方、受信品質信号であるBERが品質判定基準値より大きい場合、つまり受信品質が悪い場合(NG1)には、受信ステップS1161に戻り、受信ステップS1162以降を繰り返す。
 また、受信品質信号であるBERが品質判定基準値より著しく大きい場合、つまり受信品質が著しく悪い場合(NG2)には、受信ステップS1166に戻り受信品質の判定166を繰り返す。
 なお、受信品質信号として、例えばC/N、BER(ビットエラーレート)、PER(パケットエラーレート)等を用いることができる。これらの受信品質信号として、C/N、BER、PERの順で、C/Nが最も短時間で受信品質を検出できる。また、PER、BER、C/Nの順で、PERが最も受信品質の検出時間を要するが、受信品質の検出精度は最も優れている。このため、例えば、DCオフセット制御ループ106への電源を停止する場合に、受信品質の判定精度の高いPERを用いることができる。これにより精度高く停止できるため、受信品質の劣化を最小限に抑えることができる。一方、DCオフセット制御ループ106への電源を供給して動作させる場合には、受信品質の検出時間を優先したBERまたはC/Nを用いることができる。
 このように、DCオフセット制御ループ106への電源を供給して動作させる場合には、受信品質を十分に確保することが必要となる。例えば、C/Nを用いた場合には検出精度は低いが短時間で検出でき、PERを用いた場合には時間を要するが高精度で検出できる。従って、これら3つのPER、BER、C/Nの少なくとも1つの受信品質が受信品質検出回路108で検出された場合に、DCオフセット制御ループ106への電源を供給して動作させる。これにより、DCオフセットの補正の動作遅れによる受信品質の劣化を最小限度に抑えることができる。
 このようにして、DCオフセット制御ループ106への電源の供給あるいは停止を、精度よくあるいは最適に制御できるので、低消費電力化とした高周波受信装置141を実現することが可能となる。
 以上のようにして、高周波受信装置141により希望chを受信する場合において、受信品質判定回路109により判定した受信品質が良好であれば、駆動回路111によりDCオフセット制御ループ106への電源を停止することができる。これにより、DCオフセット制御ループ106への電源供給を停止できるので、低消費電力化とした高周波受信装置201の実現が可能となる。
 なお、受信品質信号が品質判定基準値より良好な場合に、DCオフセット制御ループ106に対して駆動回路111からの電源の停止が行われることになるが、この場合に、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47のうち少なくともひとつに対して電源を停止してもよい。
 また、本実施の形態2では、混合器17とローパスフィルタ21との間に合成器19を挿入し、混合器25とローパスフィルタ29との間に合成器27を挿入したが、この合成器19はローパスフィルタ21と出力端子9との間に、合成器27はローパスフィルタ29と出力端子11との間にそれぞれ設けても良い。
 さらに、ISDB-Tのデジタルテレビ放送を受信する場合に、例えば13セグメントのうちの12セグメント、あるいは1セグメントの受信ができる。この1セグメント受信では、本実施の形態で説明したように、DCオフセット電圧の補正が必要とされる。これに対して、12セグメントを受信する場合には、中心位置に1セグメントが存在し、またこの1セグメントを必要としないため、DCオフセット電圧の許容値を緩和することができる。
 すなわち、DCオフセット判定回路46において、12セグメント受信時のオフセット基準値は、1セグメント受信時のオフセット基準値に対して、大きくして緩和することができる。あるいは、12セグメント受信時には、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47の少なくともひとつに対して電源を停止することができる。
 さらにまた、1セグメントを受信する場合において、発振器33の発振周波数を、1セグメントの中心周波数から1セグメントの帯域幅(約428.5KHz)の1/2(約214KHz)以上離して設定する。これにより、混合回路49をヘテロダイン受信として使用し、1セグメントの中間周波信号をDC成分から1セグメントの帯域の1/2(約214KHz)以上離して変換することが可能であり、この場合には、DCオフセットの問題は発生しない。
 従って、混合回路49により1セグメント受信の時は、DCオフセット制御ループ106に対して電源を停止することができる。この場合に、DCオフセット制御ループ106を構成するDCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47の少なくともひとつに対して電源を停止してもよい。
 なお、1セグメントと12セグメントを別々に受信する場合は以上のように受信を行い、また、一括して13セグメント受信する場合は、第1、第2のDCオフセット電圧がオフセット基準値より小さい場合に、駆動回路111によりDCオフセット補正回路47への電源を停止する制御を行うことができる。
 (実施の形態3)
 以下、実施の形態3における高周波受信装置201について図面を用いて説明する。
 図7は、本実施の形態3における高周波受信装置201の回路ブロック図である。実施の形態1の高周波受信装置101に対して、本実施の形態の高周波受信装置201の復調部202では、復調回路を形成する高速フーリエ変換器(FFT)205と検波回路207との間にフェージングによる信号劣化を補正するための波形等価回路部208を設け、さらにこの波形等価回路部208と受信品質判定回路210間にフェージング検出回路211を接続している点で異なる。また、DCオフセット補正回路47から合成器19、27に値を変えずに連続してキャンセル信号を供給する代わりに合成器19、27において第1、第2のキャンセル信号をそれぞれ保持するようにしてもよい。
 図7において、高周波受信装置201は、入力端子3より高周波信号を受信する電子チューナ103と、この電子チューナ103から出力されたI、Q信号が入力される復調部202と、この復調部202からの復調信号が出力される出力端子213とから構成される。
 復調部202には、電子チューナ103の出力端子9、11からそれぞれ出力されたI、Q信号がそれぞれ供給されるA/Dコンバータ37、39と、これらA/Dコンバータ37、39から出力される信号がそれぞれ入力されるとともに信号を高速フーリエ変換するFFT205と、このFFT205の出力が一方の入力209aに接続されるとともにフェージングなどの伝送路における信号劣化を補正する波形等価回路209と、この波形等価回路209の出力に接続されるとともに信号を検波する検波回路207と、この検波回路207の出力が接続される出力端子213と、受信品質を検出する受信品質検出回路108と、この受信品質検出回路108の出力が一方の入力に接続される受信品質を判定する受信品質判定回路210と、が設けられている。
 さらに、この復調部202には、FFT205の出力に接続されるSPスキャタードパイロット(SP)抽出回路214と、このSP抽出回路214の出力が一方の入力に接続される比較回路217と、この比較回路217の他方の入力に接続される基準パイロット215と、が設けられている。この比較回路217の出力は波形等価回路209の他方の入力209bに接続されている。なお、SP抽出回路214と、基準パイロット215と、比較回路217と、波形等価回路209により波形等価回路部208を構成している。
 また、波形等価回路209への波形等価信号が入力されるとともにフェージング周波数を検出するフェージング検出回路211が設けられている。このフェージング検出回路211の出力は受信品質判定回路210の他方の入力に接続されている。
 この受信品質判定回路210の出力は、駆動回路111に入力される。この駆動回路111の出力は、DCオフセット制御ループ106の電源入力端子106aに接続されている。
 このように構成された高周波受信装置201において、移動受信によるフェージング周波数を検出し、このフェージング周波数による受信品質劣化を考慮した受信信号の品質を判定し、この受信品質の判定信号を用いてDCオフセット制御ループ106への電源を制御する動作について以下説明する。
 この高周波受信装置201に入力されるデジタル信号は、OFDM変調信号であり、例えば、日本のデジタル放送であるISDB-Tのモード3では、5617本のサブキャリアにより1チャンネルが構成されている。このOFDM変調信号は、5617本のサブキャリアに対して位相変調(QPSK)、振幅位相変調(QAM)、あるいは振幅変調(BPSK)を行っている。このため、このOFDM変調信号は、FFTの信号処理をすることにより、スペクトラム構成を観測することができる。従って、FFT205の出力からはスペクトラム構成が出力されている。
 次に、波形等価回路部208の動作について、説明する。
 図8Aは、本発明の実施の形態3における高周波受信装置のある瞬間taにおいて、入力端子3から入力されるスペクトラム構成図である。図8Bは、本発明の実施の形態3における高周波受信装置のある瞬間tbにおいて、入力端子3から入力されるスペクトラム構成図である。なお、横軸は周波数301であり、縦軸は振幅303である。
 図8Aにおける周波数301aにあるサブキャリア305aの振幅303aと、図8Bにおける同じ周波数301aにあるサブキャリア307aの振幅303bとの大きさが異なっている。これは、高周波受信装置201が移動してフェージングが発生し、サブキャリアの振幅が変動するためである。これは、サブキャリア305a、307a以外のサブキャリアにおいても同様である。
 図9は、本発明の実施の形態3における高周波受信装置のFFT205から出力される時間311に対するシンボル構成図である。図9において、このFFT205からは、入力信号である各変調信号に対して、高速フーリエ変換が行われ、時間t1、t2、t3、-、-、-に対応したシンボル構成S1、S2、S3、-、-が出力される。
 また、時間t1におけるシンボル構成S1は、周波数312方向に各データシンボルS11、S12、S13、-、-、-が配置されている。同様に、時間t2におけるシンボル構成S2は、周波数方向に各データシンボルS21、S22、S23、-、-、-が配置されている。同様に、時間t3、t4、t5、-、-におけるシンボル構成S3、S4、S5、-、-も同様にそれぞれ配列されている。
 これらデータシンボルS1、S2、S3、-、-、-には、11のデータシンボルを挟んで1つのSP信号が挿入されている。そして、例えば、データシンボルS13がSP信号であれば、データシンボルS26がSP信号となり、さらにデータシンボルS39もSP信号となる。
 このように、SP信号は、シンボル構成の中に決められた規則に従って送られてくる。このSP信号は、OFDM伝送において、伝送路を推定し、受信側で位相および振幅を補正することができるものである。
 このSP信号は、SP抽出回路214により抽出することができる。すなわち、SP信号の振幅レベルと基準パイロット215からの基準信号を比較回路217により比較することにより、比較回路217から波形等価信号を出力することができる。この波形等価信号により、波形等価回路209ではフェージングによるサブキャリアの位相および振幅の信号劣化を補正することができる。
 次に、図9を用いて、波形等価信号が入力されるフェージング検出回路211によるフェージング周波数を検出する動作について説明する。フェージング検出回路211には波形等価信号が入力されている。
 図9において、波形等価信号として、時間t1のデータシンボルS13と、時間t5のキャリア番号S53と、時間t9のキャリア番号S93とは、すべて同じ周波数を有している。従って、フェージング検出回路211において、データシンボルS13、S53、S93、-、-、-の振幅変化あるいは位相変化を順次比較することにより、フェージング周波数を検出することができる。
 図10は、本発明の実施の形態3における高周波受信装置のフェージング周波数に対するC/Nの特性図である。図10において、このフェージング周波数は、フェージング周波数によって所要C/Nが異なってくる。このため、受信品質判定回路210における判定のための品質判定基準値を変えることが必要となる。
 次に、このフェージング周波数に対応して受信品質判定回路210の第2の基準値を変える動作について、以下説明する。
 この所要C/N特性330は、フェージング周波数331(あるいは移動速度)に対応した検波後にビタビ復号した信号のビット誤り率が0.0002となる場合のC/N333である。所要C/N特性330は、フェージング周波数が低い低速移動領域335(移動速度が遅い)と、フェージング周波数が高い高速移動領域337(移動速度が高速)では、大きい値のC/Nが必要となる。一方、フェージング周波数が中間の中速移動領域339(移動速度が中速)では、所要C/Nは、低速移動領域335、高速移動領域337に比較して小さな値のC/Nでよいことが知られている。
 例えば、フェージング周波数339aが約20Hz(13ch受信時において移動速度で約45km/H相当)からフェージング周波数339bが約60Hz(13ch受信時に移動速度で約140km/H相当)の中速移動領域339での所要C/Nは、例えば6dBとなり、安定している。これに対して、フェージング周波数339a以下の低速移動領域335では、移動速度が遅くなるにつれて所要C/Nが大きくなる。また、フェージング周波数339b以上の高速移動領域337では、移動速度が速くなるにつれて所要C/Nが大きくなる。さらに、静止状態340における所要C/N341は、フェージングが無いので、例えば4dBとなる。
 このように、フェージング周波数によって所要C/Nが異なるので、このフェージング周波数に応じて、受信品質判定回路210の品質判定基準値であるC/Nをそれぞれ設定することができる。この受信品質判定回路210では、フェージング周波数に応じて設定したC/Nにより受信品質を判定できる。従って、この判定に基づいて受信品質の劣化のない場合には、駆動回路111によりDCオフセット制御ループ106への電源の供給を停止することができる。
 図11は、本発明の実施の形態3における高周波受信装置の第1、第2のDCオフセット電圧の補正方法を示すフローチャートである。図11において、受信ステップS1161~受信ステップS1165、および受信ステップS1166は、実施の形態2における受信ステップと同じである。また、本実施の形態3では、実施の形態2の受信ステップS1165、S1166の間に対して、受信ステップS1171~S1174を追加している。
 受信ステップS1165のあとで、受信ステップS1171に移行する。この受信ステップS1171では、フェージング検出回路211によりフェージング周波数を検出する。さらに、このフェージング検出回路211により、フェージング周波数が停止状態340、低速移動領域335、中速移動領域339、高速移動領域337かどうかの判定を行う。
 この判定結果として、静止状態340の場合には受信ステップS1172に移行し、品質判定基準値を最も小さく設定する。また、判定結果として、中速移動領域339の場合には受信ステップS1173に移行し、品質判定基準値を小さく設定する。さらに、判定結果として、低速移動領域335あるいは高速移動領域337の場合には受信ステップS1174に移行し、品質判定基準値を大きく設定する。なお、この品質判定基準値は、外部端子210aから入力することができるので、受信状態により外部から最適に設定することができる。
 さらに、ステップS1166に移行し、受信品質判定回路210により、受信品質信号を品質判定基準値と比較し判定する。例えば、受信品質信号としてBERを用い、このBERが品質判定基準値より小さい場合、つまり受信品質が良好な場合(OK)には、受信ステップS1166に戻り受信品質を判定する。一方、受信品質信号であるBERが品質判定基準値より大きい場合、つまり受信品質が悪い場合(NG1)には、受信ステップS1161に戻り、さらに受信ステップS1162以降を繰り返す。
 また、受信品質信号であるBERが品質判定基準値より著しく大きい場合、つまり受信品質が著しく悪い場合(NG2)には、受信ステップS1166に戻り受信品質の判定1166を行う。
 なお、受信品質信号として、例えばC/N、BER(ビットエラーレート)、PER(パケットエラーレート)等を用いることができる。これらの受信品質信号として、C/N、BER、PERの順で、C/Nが最も短時間で受信品質を検出できる。また、PER、BER、C/Nの順で、PERが最も受信品質の検出時間を要するが、受信品質の検出精度は最も優れている。
 このため、例えば、DCオフセット制御ループ106への電源を供給して動作させる場合には、受信品質の検出時間を優先したBERまたはC/Nを用いることができる。
 DCオフセット制御ループ106への電源を供給して動作させる場合には、受信品質を十分に確保することが必要となる。例えば、C/Nを用いた場合には検出精度は低いが短時間で検出でき、PERを用いた場合には時間を要するが高精度で検出できる。従って、これら3つのPER、BER、C/Nの少なくとも1つの受信品質が受信品質検出回路108で検出された場合に、DCオフセット制御ループ106への電源を供給して動作させる。これにより、DCオフセットの補正の動作遅れによる受信品質の劣化を最小限度に抑えることができる。
 このようにして、DCオフセット制御ループ106への電源の供給あるいは停止を、精度よくあるいは最適に制御できるので、低消費電力化とした高周波受信装置201を実現することが可能となる。
 なお、受信品質信号が品質判定基準値より良好な場合に、DCオフセット制御ループ106に対して駆動回路111からの電源の停止が行われることになる。しかし、この場合に、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47のうち少なくともひとつに対して電源を停止してもよい。
 以上のようにして、フェージング検出回路211によりフェージング周波数に応じて品質判定基準値を最適化し、この品質判定基準値により受信品質判定回路210において受信品質を判定する。これにより、受信品質が良好であれば、駆動回路111によりDCオフセット制御ループ106への電源を停止するので、低消費電力化とした高周波受信装置201の実現が可能となる。
 (実施の形態4)
 以下、実施の形態4における高周波受信装置401について図面を用いて説明する。
 図12は、本実施の形態4における高周波受信装置の回路ブロック図である。図12において、実施の形態3の高周波受信装置201では、フェージング検出回路211が波形等価回路209と受信品質判定回路109との間に接続されているのに対して、本実施の形態4の高周波受信装置401の復調部403では、フェージング検出回路405がFFT205と受信品質判定回路210との間に接続されている点で異なる。
 このため、本実施の形態4の高周波受信装置401の動作は、フェージング検出回路405を除いて、実施の形態2の高周波受信装置201の動作および効果は同じである。なお、図13で使用した部品について、図8と同じものについては同一の番号を付して説明を簡略化している。
 高周波受信装置401は、入力端子3より高周波信号を受信する電子チューナ103と、この電子チューナ103から出力されたI、Q信号が入力される復調部403と、この復調部403からの復調信号が出力される出力端子213とから構成される。
 復調部403には、FFT205の出力信号が入力されるとともにフェージング周波数を検出するフェージング検出回路405が設けられている。このフェージング検出回路405の出力は受信品質判定回路210の他方の入力に接続されている。
 このように構成された高周波受信装置401のフェージング検出回路405の動作について説明する。
 図13Aは本発明の実施の形態4における高周波受信装置のある瞬間における入力信号のスペクトラム構成図である。図13Bは本発明の実施の形態4における高周波受信装置の別の瞬間における入力信号のスペクトラム構成図である。図13A、13Bにおいて、フェージング検出回路405に入力されるFFT205からの出力信号は、スペクトラム構成で表される。このように、ある瞬間taのスペクトラム構成が、次のある瞬間tbのスペクトラム構成と刻々と変化している。この変化を用いて、フェージング周波数を検出する方法を説明する。
 例えば、周波数1301aにおいて、サブキャリア1305aの振幅1303aは、サブキャリア1307aの振幅1303bとなって小さく変化している。また、周波数1301bにおいて、サブキャリア1305bの振幅1303cは、サブキャリア1307bの振幅1303dとなって大きく変化している。
 このように、少なくとも2本のサブキャリアの時間による振幅の変化の方向が異なることにより、フェージング周波数を検出することができる。また、比較するサブキャリアの本数を増やすことにより、フェージング周波数を検出する精度を高めることができる。
 以上のように、フェージング検出回路405によりフェージング周波数を検出し、このフェージング周波数に応じて品質判定基準値を変更し、この変更した品質判定基準値に基づいて受信品質判定回路210により受信品質を判定し、この判定信号に基づいてDCオフセット制御ループ106への電源を供給あるいは停止することができる。従って、移動中であっても、受信品質を精度よく判定でき、この判定結果により必要のない場合には、DCオフセット制御ループ106への電源を停止できるので、低消費電力化を可能とした高周波受信装置を実現できる。
 なお、本実施の形態4では、サブキャリアの振幅の変化を検出してフェージング周波数を検出したが、サブキャリアのC/N(キャリア/ノイズ)を用いた場合もフェージング周波数の検出は可能である。
 (実施の形態5)
 以下、本実施の形態5における高周波受信装置について図面を用いて説明する。
 図14は本発明の実施の形態5における高周波受信装置501の回路ブロック図である。図14において、従来例で示した図4と同じものは同じ番号を用いて、その説明は簡略化している。また、従来例の電子チューナ5に対して、実施の形態5の電子チューナ102では、DCオフセット判定回路46の出力46aとDCオフセット補正回路47の入力47aとの間に、駆動回路145が接続されている点が異なる。
 これらDCオフセット検出回路45、DCオフセット判定回路46、駆動回路145、DCオフセット補正回路47によりDCオフセット制御ループ147が構成されている。
 このように構成された高周波受信装置501の動作について以下説明する。アンテナから入力された高周波信号は、電子チューナ102で受信される。この電子チューナ102で選局された信号は、復調部7で復調されて出力端子43から出力される。なお、この高周波信号は、例えば、デジタル変調されたデジタルテレビ放送であり、UHFでは約470MHz(CH13)から約770MHz(CH62)までの周波数を用いることができる。
 次に、電子チューナ102における動作について説明する。入力端子3に入力された高周波信号は、フィルタ13によって妨害信号が抑圧される。このフィルタ13の出力は、増幅器15により、利得制御される。この増幅器15の出力は、混合回路49に供給される。
 この混合回路49は、混合器17、25、発振器33、90度の移相器35により、ダイレクトコンバージョン方式の混合器が構成されている。この混合回路49により、混合器17、25からは、位相が互いに90度異なったI、Q信号が出力される。これらI、Q信号は、ローパスフィルタ21、29に入力される。これらローパスフィルタ21、29の出力は、増幅器23、31に入力される。これら増幅器23、31の出力は、出力端子9、11を介してI、Q信号がそれぞれ出力される。また、これらI、Q信号は、復調部7に入力される。この復調部7に設けられたA/Dコンバータ37、39によりそれぞれデジタル信号とされる。さらに復調回路41により復調信号とされて出力端子43から出力される。
 ところが、このようにダイレクトコンバージョン方式を用いた混合回路49では、発振器33の発振信号が、混合器17の一方の入力あるいは混合器25の一方の入力に漏洩する。この漏洩した発振信号と発振器33から入力される本来の発振信号とが混合器17あるいは25において自己ミキシングされ、これにより混合器17あるいは混合器25からDCオフセット電圧が発生する。
 あるいは、入力端子3に大きな妨害信号が入力された場合に、この妨害信号が混合器17の一方の入力あるいは混合器25の一方の入力に漏洩する。この漏洩した妨害信号と発振器33から入力される本来の発振信号とが混合器17あるいは25において自己ミキシングされ、これにより混合器17あるいは混合器25からDCオフセット電圧が発生する。
 このようにして、混合器17、25からは第1、第2のDCオフセット電圧がそれぞれ発生することになり、受信品質が劣化する。
 そこで、これら第1、第2のDCオフセット電圧を、DCオフセット制御ループ147により改善する方法を、以下説明する。このDCオフセット制御ループ147は、DCオフセット検出回路45と、DCオフセット判定回路46と、駆動回路145、DCオフセット補正回路47とから構成されている。
 このDCオフセット検出回路45では、A/Dコンバータ37、39からそれぞれ出力されるI、Q信号から第1、第2のDCオフセット電圧をそれぞれ検出し、DCオフセット判定回路46に供給する。このDCオフセット判定回路46は、検出された第1、第2のDCオフセット電圧を基準値と比較し判定する。なお、この基準値は、外部端子103aから入力することができる。
 検出された第1、第2のDCオフセット電圧が基準値より大きい場合には、DCオフセット判定回路46からの判定信号により、駆動回路145は、DCオフセット補正回路47への電源を供給する。これにより、DCオフセット補正回路47は、DCオフセット検出回路45により検出された第1、第2のDCオフセット電圧を打ち消すための第1、第2のキャンセル信号を合成器19、27にそれぞれ供給する。これらの合成器19、27に第1、第2のキャンセル信号をそれぞれ供給することにより、合成器19、27において第1、第2のDCオフセット電圧と第1、第2のキャンセル信号とがそれぞれ合成され、第1、第2のDCオフセット電圧が抑圧される。
 検出された第1、第2のDCオフセット電圧が基準値より小さい場合には、DCオフセット判定回路46からの判定信号が入力される駆動回路145により、DCオフセット補正回路47への電源を停止する。ただし、DCオフセット補正回路47への電源を停止するが、合成器19、27の他方の入力に供給している第1、第2のDCオフセット電圧を打ち消すための第1、第2のキャンセル信号は供給するものとしている。なお、このように第1、第2のキャンセル信号の供給を行なわないで、第1、第2のキャンセル信号を合成器19、27でそれぞれ保持するようにしても同様の効果が得られる。
 また、DCオフセット判定回路46には、メモリ104(図示せず)を設けることができる。このメモリ104には、基準値が記憶されている。これによってDCオフセット判定回路46は、検出された第1、第2のDCオフセット電圧とメモリ104に記憶された基準値とを比較することができる。
 図15は、高周波受信装置のDCオフセット電圧の一般的な補正方法を示すフローチャートである。図15において、受信開始時には、受信ステップS151により、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47に対して電源を供給する。さらに、受信ステップS152に移行し、DCオフセット検出回路45により第1、第2のDCオフセット電圧を検出する。さらに、受信ステップS153に移行し、DCオフセット判定回路46により、第1、第2のDCオフセット電圧と基準値との比較判定をする。
 この検出結果として、第1、第2のDCオフセット電圧が基準値より大きい場合(NG)には、受信ステップS154に移行し、DCオフセット補正回路47でDCオフセット補正を行い、さらに受信ステップS152に移行する。一方、第1、第2のDCオフセット電圧が基準値より小さい場合(OK)には、受信ステップS152に戻る。
 これに対して、本発明の実施の形態5における第1、第2のDCオフセット電圧の補正方法について、以下に説明する。
 図16は、本発明の実施の形態5における高周波受信装置の第1、第2のDCオフセット電圧の補正方法を示すフローチャートである。図16において、受信開始時には、受信ステップS2161により、DCオフセット検出回路45、DCオフセット判定回路46への電源を供給する。さらに、受信ステップS2162に移行し、DCオフセット検出回路45により、第1、第2のDCオフセット電圧を検出する。さらに、受信ステップS2163に移行し、DCオフセット判定回路46により、第1、第2のDCオフセット電圧と基準値との比較判定をする。
 この検出結果として、第1、第2のDCオフセット電圧が基準値より小さい場合(OK)には、受信ステップS2162に戻る。一方、第1、第2のDCオフセット電圧が基準値より大きい場合(NG)には、受信ステップS2164に移行し、駆動回路145によりDCオフセット補正回路47への電源を供給する。
 さらに、受信ステップS2165に移行し、DCオフセット補正回路47により第1、第2のDCオフセット電圧の補正を行う。さらに、ステップS2166に移行して、駆動回路145によりDCオフセット補正回路47への電源を停止する。さらに、受信ステップS2162に戻る。
 以上のように、ダイレクトコンバージョン方式を用いた混合回路49では、混合器17、25で第1、第2のDCオフセット電圧が発生する。この第1、第2のDCオフセット電圧は、A/Dコンバータ37、39の出力信号よりDCオフセット検出回路45で検出する。
 この検出された第1、第2のDCオフセット電圧は、DCオフセット判定回路46に入力されて基準値と比較し判定される。この検出された第1、第2のDCオフセット電圧が基準値より小さい場合に、DCオフセット判定回路46は、駆動回路145に制御信号を供給する。この制御信号により、駆動回路145は、DCオフセット補正回路47への電源を停止する。
 このように、DCオフセット判定回路46とDCオフセット補正回路47との間に駆動回路145を設け、第1、第2のDCオフセット電圧が小さい場合には、駆動回路145によりDCオフセット補正回路47への電源を停止する。従って、低消費電力化とした電子チューナ102の実現が可能となる。
 なお、本実施の形態5では、混合器17とローパスフィルタ21との間に合成器19を挿入し、混合器25とローパスフィルタ29との間に合成器27を挿入したが、この合成器19はローパスフィルタ21と出力端子9との間に、合成器27はローパスフィルタ29と出力端子11との間にそれぞれ設けても良い。
 さらに、ISDB-Tのデジタルテレビ放送を受信する場合に、例えば13セグメントのうちの12セグメント、あるいは1セグメントの受信ができる。この1セグメント受信では、本実施の形態で説明したように、DCオフセット電圧の補正が必要とされる。これに対して、12セグメントを受信する場合には、中心位置に1セグメントが存在し、またこの1セグメントを必要としないため、DCオフセット電圧の許容値を緩和することができる。
 すなわち、DCオフセット判定回路46において、12セグメント受信時の基準値は、1セグメント受信時の基準値に対して、大きくして緩和することができる。あるいは、12セグメント受信時には、DCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47の少なくともひとつに対して電源を停止することができる。
 また、1セグメントを受信する場合において、発振器33の発振周波数を、1セグメントの中心周波数から1セグメントの帯域幅(約428.5KHz)の1/2(約214KHz)以上離して設定する。これにより、混合回路49をヘテロダイン受信として使用し、1セグメントの中間周波信号をDC成分から1セグメントの帯域の1/2(約214KHz)以上離して変換することが可能であり、この場合には、DCオフセットの問題は発生しない。
 従って、混合回路49により1セグメント受信の時は、DCオフセット制御ループ147に対して電源を停止することができる。この場合に、DCオフセット制御ループ147を構成するDCオフセット検出回路45、DCオフセット判定回路46、DCオフセット補正回路47の少なくともひとつに対して電源を停止してもよい。
 なお、1セグメントと12セグメントを別々に受信する場合は以上のように受信を行い、また、一括して13セグメントを受信する場合は、第1、第2のDCオフセット電圧が基準値より小さい場合に、駆動回路145によりDCオフセット補正回路47への電源を停止する制御を行うことができる。
 本発明にかかる高周波受信装置は、低消費電力が必要となる携帯用テレビ受信装置等に用いると有用である。

Claims (26)

  1. デジタル放送信号を受信する電子チューナと、
    前記電子チューナからの出力信号を復調する復調部と、を備えた
    高周波受信装置であって、
    前記電子チューナは、
    前記デジタル放送信号が入力される入力端子と、
    前記デジタル放送信号が一方の入力に供給されるとともに、他方の入力に発振器の発振信号が移相器を介して供給されて互いに位相が異なる出力信号を出力するダイレクトコンバージョン方式の第1および第2の混合器と、
    前記第1および第2の混合器の出力がそれぞれ供給される第1および第2の出力端子と、
    前記第1および第2の混合器の出力信号に含まれる第1および第2のDCオフセット電圧を検出するとともに、前記第1および第2のDCオフセット電圧をそれぞれ打ち消すための第1および第2のキャンセル信号をそれぞれ出力するDCオフセット制御ループと、
    前記第1の混合器と前記第1の出力端子の間に接続されるとともに前記第1のキャンセル信号が入力される第1の合成器と、
    前記第2の混合器と前記第2の出力端子の間に接続されるとともに前記第2のキャンセル信号が入力される第2の合成器と、を備え、
    前記復調部は、
    受信信号の品質を検出する受信品質検出回路と、
    前記受信品質検出回路から出力される検出信号を第1の基準値と比較し判定する受信品質判定回路と、
    前記受信品質判定回路から出力される判定信号が入力される駆動回路と、を備え、
    前記受信品質判定回路において受信信号の品質が良好と判定された場合に、前記駆動回路により前記DCオフセット制御ループへの電源を停止することを特徴とする
    高周波受信装置。
  2. 前記DCオフセット制御ループは、
    前記第1および第2の混合器から出力される信号が供給されるとともに前記第1および第2のDCオフセット電圧をそれぞれ検出するDCオフセット検出回路と、
    前記DCオフセット検出回路から出力される前記第1および第2のDCオフセット電圧を第2の基準値と比較判定するDCオフセット判定回路と、
    前記DCオフセット判定回路の判定に基づいて前記第1および第2のDCオフセット電圧をそれぞれ打ち消すための第1および第2のキャンセル信号をそれぞれ出力するDCオフセット補正回路と、を備えた
    請求項1に記載の高周波受信装置。
  3. 前記駆動回路が前記DCオフセット制御ループへの電源を停止する場合に、前記DCオフセット制御ループを構成する前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路のうち少なくともひとつに対して電源を停止する
    請求項2に記載の高周波受信装置。
  4. 前記受信品質判定回路には、前記第1の基準値を入力するための外部端子が設けられた
    請求項1に記載の高周波受信装置。
  5. 前記受信品質判定回路の前記第1の基準値として、ビットエラーレートまたはC/Nが用いられる
    請求項1に記載の高周波受信装置。
  6. 前記受信品質判定回路の前記第1の基準値として、パケットエラーレートが用いられる
    請求項1に記載の高周波受信装置。
  7. 前記DCオフセット制御ループへの電源を供給する場合に、
    前記受信品質判定回路への受信品質信号としてパケットエラーレート、ビットエラーレート、C/Nのうち少なくとも1つが用いられる
    請求項1に記載の高周波受信装置。
  8. 前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路のうち少なくともひとつに対して電源を停止する場合に、
    前記受信品質判定回路への受信品質信号としてパケットエラーレートが用いられる
    請求項2に記載の高周波受信装置。
  9. 前記DCオフセット判定回路において受信信号を判定する場合に、12セグメント受信時の前記第2の基準値は、1セグメント受信時の前記第2の基準値より大きく設定する
    請求項2に記載の高周波受信装置。
  10. デジタル放送信号のうちの1セグメント受信時には、
    前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路に対して電源を供給し、
    デジタル放送信号のうちの12セグメント受信時には、
    前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路のうちの少なくともひとつに対して電源を停止する
    請求項2に記載の高周波受信装置。
  11. デジタル放送信号のうちの1セグメント受信の場合に、
    前記第1および第2の混合器は、発振器の周波数が前記1セグメントの中心周波数より前記1セグメントの帯域の1/2以上離して設定されることにより、ヘテロダイン方式として用いられ、前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路のうち少なくともひとつに対して電源を停止する
    請求項2に記載の高周波受信装置。
  12. デジタル放送信号を受信する電子チューナと、
    前記電子チューナからの出力信号を復調する復調部と、を備えた
    高周波受信装置であって、
    前記電子チューナは、
    前記デジタル放送信号が入力される入力端子と、
    前記デジタル放送信号が一方の入力に供給されるとともに、他方の入力に発振器の発振信号が移相器を介して供給されて互いに位相が異なる出力信号を出力するダイレクトコンバージョン方式の第1および第2の混合器と、
    前記第1および第2の混合器の出力がそれぞれ供給される第1および第2の出力端子と、
    前記第1および第2の混合器の出力信号に含まれる第1および第2のDCオフセット電圧を検出するとともに、前記第1および第2のDCオフセット電圧をそれぞれ打ち消すための第1および第2のキャンセル信号をそれぞれ出力するDCオフセット制御ループと、
    前記第1の混合器と前記第1の出力端子の間に接続されるとともに前記第1のキャンセル信号が入力される第1の合成器と、
    前記第2の混合器と前記第2の出力端子の間に接続されるとともに前記第2のキャンセル信号が入力される第2の合成器と、を備え、
    前記復調部は、
    受信信号の品質を検出する受信品質検出回路と、
    移動によるフェージング周波数を検出する第1のフェージング検出回路と、
    前記受信品質検出回路からの受信品質信号と前記第1のフェージング検出回路からのフェージング周波数とが入力される受信品質判定回路と、
    前記受信品質判定回路から出力される受信品質判定信号が入力されるとともに前記DCオフセット制御ループへの電源を供給あるいは停止する駆動回路と、を備え、
    前記第1のフェージング検出回路からのフェージング周波数に応じて前記受信品質判定回路の品質判定基準値を設定し、前記受信品質判定回路が受信信号の品質を良好と判定した場合に、前記駆動回路により前記DCオフセット制御ループへの電源を停止することを特徴とする
    高周波受信装置。
  13. 前記復調部は、
    入力端子から入力されたアナログ信号をデジタル信号に変換するA/Dコンバータと、
    入力信号を高速フーリエ変換する高速フーリエ変換器と、
    信号波形を元の信号に戻す波形等価回路と、
    信号を検波する検波回路が接続され、前記高速フーリエ変換器の出力が入力されるとともにスキャタードパイロット信号を抽出するSP抽出回路と、
    前記SP抽出回路からのSP信号を一方の入力に接続し他方の入力に基準パイロット信号を接続する比較回路と、を備え、
    前記比較回路から出力される前記SP信号と前記基準パイロット信号とを比較することによって得られる波形等価信号が、前記波形等価回路の他方の入力に接続され、
    前記波形等価信号が前記第1のフェージング検出回路に入力される
    請求項12に記載の高周波受信装置。
  14. 前記高速フーリエ変換器の出力信号が入力されるとともに少なくとも2本のサブキャリアの時間による振幅の変化によりフェージング周波数を検出する第2のフェージング検出回路を第1のフェージング検出回路に代わって設け、
    前記第2のフェージング検出回路の入力には、前記波形等価回路に入力される波形等価信号の代わりに前記高速フーリエ変換器の出力信号が入力される
    請求項13に記載の高周波受信装置。
  15. 前記高速フーリエ変換器の出力信号が入力されるとともに少なくとも2本のサブキャリアの時間によるC/Nの変化によりフェージング周波数を検出する第3のフェージング検出回路が、前記第2のフェージング検出回路に代わって設けられる
    請求項14に記載の高周波受信装置。
  16. 前記DCオフセット制御ループは、
    前記第1および第2の混合器から出力される信号が供給されるとともに前記第1および第2のDCオフセット電圧をそれぞれ検出するDCオフセット検出回路と、
    前記DCオフセット検出回路から出力される前記第1および第2のDCオフセット電圧をオフセット基準値と比較判定するDCオフセット判定回路と、
    前記DCオフセット判定回路の判定に基づいて前記第1および第2のDCオフセット電圧をそれぞれ打ち消すための第1および第2のキャンセル信号をそれぞれ出力するDCオフセット補正回路と、を備えた
    請求項12に記載の高周波受信装置。 
  17. 前記駆動回路が前記DCオフセット制御ループへの電源を停止する場合に、
    前記DCオフセット制御ループを構成する前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路のうち少なくともひとつに対して電源を停止する
    請求項16に記載の高周波受信装置。
  18. 前記受信品質判定回路には、前記品質判定基準値を入力するための外部端子が設けられた
    請求項12に記載の高周波受信装置。
  19. 前記DCオフセット制御ループへの電源を供給する場合に、前記受信品質判定回路への前記受信品質信号としてパケットエラーレート、ビットエラーレート、C/Nのうち少なくとも1つが用いられる
    請求項12に記載の高周波受信装置。
  20. 前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路のうち少なくともひとつに対して電源を停止する場合に、
    前記受信品質判定回路への前記受信品質信号としてパケットエラーレートが用いられる
    請求項16に記載の高周波受信装置。
  21. 入力端子と、
    前記入力端子からのデジタル放送信号が一方の入力に供給されるとともに、他方の入力に局部発振器の発振信号が移相器を介して供給されて互いに位相が異なる出力信号を出力するダイレクトコンバージョン方式の第1および第2の混合器と、
    前記第1および第2の混合器の出力がそれぞれ供給される第1および第2の出力端子と、
    前記第1および第2の混合器の出力信号が供給されるとともにDCオフセット電圧を検出するDCオフセット検出回路と、
    前記DCオフセット検出回路から出力される前記第1および第2のDCオフセット電圧を基準値と比較判定するDCオフセット判定回路と、
    前記DCオフセット判定回路の判定に基づいて前記第1および第2のDCオフセット電圧をそれぞれ打ち消すための第1および第2のキャンセル信号をそれぞれ出力するDCオフセット補正回路と、
    前記第1の混合器と前記第1の出力端子の間に接続されるとともに前記第1のキャンセル信号が入力される第1の合成器と、
    前記第2の混合器と前記第2の出力端子の間に接続されるとともに前記第2のキャンセル信号が入力される第2の合成器と、を有し、
    前記DCオフセット判定回路から出力される第1の判定信号が入力される駆動回路を、さらに備え、
    前記駆動回路から出力される第1の駆動電圧が前記DCオフセット補正回路に接続され、
    前記DCオフセット判定回路において、前記第1および第2のDCオフセット電圧が前記基準値より小さい場合に、前記駆動回路により前記DCオフセット補正回路への電源を停止することを特徴とする
    電子チューナ。
  22. 前記DCオフセット判定回路には、基準値を入力するための第1の外部端子が設けられた
    請求項21に記載の電子チューナ。
  23. デジタル放送信号のうちの12セグメント受信時に、
    前記基準値は、1セグメント受信時の基準値より大きく設定する
    請求項22に記載の電子チューナ。
  24. デジタル放送信号のうちの1セグメント受信時には、
    前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路に対して電源を供給し、
    デジタル放送信号のうちの12セグメント受信時には、
    前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路のうち少なくともひとつに対して電源を停止する
    請求項21に記載の電子チューナ。
  25. デジタル放送信号のうちの1セグメント受信の場合に、
    前記第1および第2の混合器は、局部発振器の周波数が前記1セグメントの中心周波数より前記1セグメントの帯域の1/2以上離して設定されることにより、ヘテロダイン方式として用いられ、前記DCオフセット検出回路、前記DCオフセット判定回路、前記DCオフセット補正回路のうち少なくともひとつに対して電源を停止する
    請求項21に記載の電子チューナ。
  26. 請求項21に記載の電子チューナの第1および第2の出力端子に復調部が接続される高周波受信装置であって、
    前記復調部は、
    前記第1および第2の出力端子からの信号が供給されるとともにアナログ信号をデジタル信号にそれぞれ変換する第1および第2のA/Dコンバータを備え、
    前記第1および第2のA/Dコンバータから出力される信号が前記DCオフセット検出回路にそれぞれ接続されることを特徴とする
    高周波受信装置。
PCT/JP2008/003910 2007-12-26 2008-12-24 電子チューナおよびこれを用いた高周波受信装置 WO2009081575A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/808,461 US8311155B2 (en) 2007-12-26 2008-12-24 Electronic tuner and high frequency receiving device using the same
JP2009546947A JP5120383B2 (ja) 2007-12-26 2008-12-24 電子チューナおよびこれを用いた高周波受信装置
CN2008801228183A CN101911513A (zh) 2007-12-26 2008-12-24 电子调谐器及利用该设备的高频接收装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-333776 2007-12-26
JP2007-333777 2007-12-26
JP2007333776 2007-12-26
JP2007333777 2007-12-26
JP2008003989 2008-01-11
JP2008-003989 2008-01-11

Publications (1)

Publication Number Publication Date
WO2009081575A1 true WO2009081575A1 (ja) 2009-07-02

Family

ID=40800892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003910 WO2009081575A1 (ja) 2007-12-26 2008-12-24 電子チューナおよびこれを用いた高周波受信装置

Country Status (4)

Country Link
US (1) US8311155B2 (ja)
JP (1) JP5120383B2 (ja)
CN (1) CN101911513A (ja)
WO (1) WO2009081575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081529A (ja) * 2009-10-06 2011-04-21 National Institute Of Advanced Industrial Science & Technology 低消費電力無線センサ端末およびセンサネットワークシステム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5603647B2 (ja) * 2009-05-13 2014-10-08 キヤノン株式会社 給電装置、給電装置の制御方法及び給電通信システム
US9112508B2 (en) 2010-06-09 2015-08-18 Broadcom Corporation Adaptive powered local oscillator generator circuit and related method
US8452253B2 (en) * 2010-07-20 2013-05-28 Broadcom Corporation Compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter
US8862064B2 (en) 2010-09-24 2014-10-14 Broadcom Corporation Self-testing transceiver architecture and related method
US8744011B2 (en) * 2011-10-04 2014-06-03 Broadcom Corporation Wireless communication device having reduced power consumption
EP2712136B1 (en) * 2012-09-20 2015-02-25 Nxp B.V. Channel frequency response estimation and tracking for time- and frequency varying communication channels
TWI542220B (zh) * 2013-12-25 2016-07-11 Digital TV signal receiving method and system thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108844A (ja) * 2004-10-01 2006-04-20 Matsushita Electric Ind Co Ltd Dcオフセットキャリブレーションシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833924B2 (ja) 2001-10-26 2006-10-18 株式会社日立国際電気 ダイレクトコンバージョン受信機
JP4470847B2 (ja) * 2005-09-14 2010-06-02 パナソニック株式会社 高周波受信装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108844A (ja) * 2004-10-01 2006-04-20 Matsushita Electric Ind Co Ltd Dcオフセットキャリブレーションシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081529A (ja) * 2009-10-06 2011-04-21 National Institute Of Advanced Industrial Science & Technology 低消費電力無線センサ端末およびセンサネットワークシステム

Also Published As

Publication number Publication date
CN101911513A (zh) 2010-12-08
US8311155B2 (en) 2012-11-13
US20110122975A1 (en) 2011-05-26
JP5120383B2 (ja) 2013-01-16
JPWO2009081575A1 (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
WO2009081575A1 (ja) 電子チューナおよびこれを用いた高周波受信装置
US7233629B2 (en) Adjusting a receiver
US20090131006A1 (en) Apparatus, integrated circuit, and method of compensating iq phase mismatch
JP2004320528A (ja) ダイバーシチ受信装置
US7848726B2 (en) High-frequency receiver and adjacent interference wave reducing method
US7570933B2 (en) Automatic volume control for amplitude modulated signals
JP5395368B2 (ja) Ofdm受信装置
JP4859108B2 (ja) Ofdm受信装置
JP4965268B2 (ja) ダイバーシチを備える受信器のキャリア対雑音比を向上させる装置及び方法
JP4554505B2 (ja) デジタル信号受信装置
JP2003188754A (ja) 局部発振周波信号出力回路及びこれを用いた携帯端末
JP4926878B2 (ja) 中継装置
US7130593B2 (en) Space diversity receiver, operation controll method thereof, and program
JP2009016912A (ja) 利得制御回路、受信機および受信機に用いられる利得制御方法
JPH1141196A (ja) 直交周波数分割多重信号のダイバーシティ受信装置
WO2004084432A1 (ja) デジタル放送受信装置
JP4926879B2 (ja) 中継装置
JP4378263B2 (ja) 受信装置
JP4769182B2 (ja) ダイバーシティ受信装置
JP4818229B2 (ja) チューナ回路及び受信装置
JP2004312562A (ja) ダイバーシティ受信装置
JP6375670B2 (ja) 複数チャンネル同時受信装置
JP4313225B2 (ja) Ofdm信号受信装置
JP5257457B2 (ja) 受信装置およびそれを用いた電子機器
JP2008294514A (ja) 高周波受信装置と、これを用いた電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122818.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009546947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12808461

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08865508

Country of ref document: EP

Kind code of ref document: A1