WO2009078290A1 - 酵素法による連続式バイオディーゼル燃料の生産 - Google Patents

酵素法による連続式バイオディーゼル燃料の生産 Download PDF

Info

Publication number
WO2009078290A1
WO2009078290A1 PCT/JP2008/072111 JP2008072111W WO2009078290A1 WO 2009078290 A1 WO2009078290 A1 WO 2009078290A1 JP 2008072111 W JP2008072111 W JP 2008072111W WO 2009078290 A1 WO2009078290 A1 WO 2009078290A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tube
glycerin
lower alcohol
catalytic reaction
fatty acid
Prior art date
Application number
PCT/JP2008/072111
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Kuratani
Shinji Hama
Hideo Noda
Hideki Fukuda
Original Assignee
Kansai Chemical Engineering Co., Ltd.
Bio-Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Chemical Engineering Co., Ltd., Bio-Energy Corporation filed Critical Kansai Chemical Engineering Co., Ltd.
Priority to JP2009546217A priority Critical patent/JP5558831B2/ja
Priority to CN2008801209252A priority patent/CN101896614A/zh
Priority to US12/745,962 priority patent/US20100261235A1/en
Priority to BRPI0820588-4A2A priority patent/BRPI0820588A2/pt
Priority to EP08862369.9A priority patent/EP2241631B1/en
Publication of WO2009078290A1 publication Critical patent/WO2009078290A1/ja
Priority to US14/741,755 priority patent/US9879291B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6458Glycerides by transesterification, e.g. interesterification, ester interchange, alcoholysis or acidolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for continuously producing a fatty acid ester useful as a biodiesel fuel by an enzymatic method and an apparatus therefor.
  • fossil fuels typified by petroleum opi light oil are generally used. These fossil fuels, especially diesel oil used in diesel vehicles, contain a large amount of nitrogen compounds and sulfur compounds, so automobiles such as diesel vehicles have C 0 2 , NO x, SO x, etc. A large amount of gas is discharged. These emissions cause global warming and environmental pollution, and reducing their emissions is an urgent solution.
  • biodiesel fuels that use oils and fats produced by naturally occurring plants, animals, fish or microorganisms are expected as fuels to replace fossil fuels such as light oil.
  • the fats and oils used for food production are often discarded in the environment, causing environmental problems. Therefore, the production of biodiesel fuel from waste oil is particularly expected from the viewpoint of air pollution prevention and effective use of waste oil.
  • fatty acid esters obtained by transesterification of fats and oils and lower alcohols are preferably used.
  • various studies on enzyme catalysis using lipase have been conducted (WO 0 1/0 3 8 5 5 3 Oppi International Publication No. 0 0 / 1 2 7 4 3).
  • post-treatment of glycerin as a by-product is easy. It has many advantages such as ease of reaction, mild reaction conditions, and the ability to esterify free fatty acids in the raw material (H. Fukuda et al., Journal of Bioscience and Bioengineering, 2001, 92 ⁇ ). Pp. 405-416).
  • An object of the present invention is to provide a process capable of strictly controlling the concentration of lower alcohol and automatically removing by-product glycerin when producing fatty acid esters from fats and oils using lipase.
  • the present invention provides a method for continuously producing a fatty acid ester, the method comprising: a reactor having a plurality of stages of catalytic reaction tubes filled with lipase;
  • Step (e) Step (b) Repeating steps (b) to (d) until feeding to the final stage catalyst reaction tube;
  • the liquid flow rate in the reactor is at least 2. 15 c ⁇ . / Min.
  • the supply amount of the lower alcohol to each of the catalyst reaction tubes is 0.5 to 1.0 molar equivalent with respect to the raw material fat.
  • the catalyst reaction tube stage is from 2 to 10 stages.
  • the raw material fats and oils are vegetable oils, animal fats and oils, fish oils, fats and oils produced by microorganisms, mixed fats and oils thereof, or waste oils thereof.
  • the lower alcohol is methanol, ethanol, n-propanol, or n-butanol.
  • the method comprises the step (f) above,
  • the present invention also provides an apparatus for continuously producing fatty acid esters, the apparatus comprising:
  • a multi-stage catalytic reaction tube filled with lipase A multi-stage catalytic reaction tube filled with lipase
  • a glycerin separation tank provided downstream of each of the catalyst reaction tubes, and separating an effluent from the catalyst reaction tubes into glycerin and a separation liquid;
  • a lower alcohol supply port provided upstream of the respective catalytic reaction tube
  • Mixing means provided between the respective lower alcohol supply ports and the respective catalyst reaction tubes in order to mix the raw oil or fat or the separated liquid and the lower alcohol;
  • the raw oil or fat or the mixture of the separated liquid and lower alcohol is supplied from the upper part of the catalyst reaction pipe, and the effluent from the lower part of the catalyst reaction pipe is supplied to the glycerol separation tank. It is configured to be introduced.
  • the liquid flow rate in the device is adjusted to at least 2.15 cm / min.
  • the above-mentioned respective catalyst reaction tubes are The supply amount of the lower alcohol is adjusted to 0.5 to 1.0 molar equivalent with respect to the raw material fat.
  • the stage of the catalytic reaction tube is from 2 stages to 10 stages.
  • a fatty acid ester can be produced efficiently and continuously while automatically removing glycerin as a by-product in the transesterification reaction between fats and oils using lipase as a catalyst and a lower alcohol.
  • FIG. 1 is a schematic diagram showing a configuration of a reactor (packed bed reactor) 100 of the present invention and a continuous production flow of biodiesel fuel using the same.
  • FIG. 2 is a schematic diagram showing how the fatty acid ester and glycerin are separated in the glycerin separation tank 40.
  • Figure 3 shows the fatty acid ester in the liquid flowing out from the catalytic reaction tube 10 at each stage at a volumetric flow rate of 25 0 to 10 80 ml / h (liquid flow rate 2.1 5-9.30 c inZni in). It is a graph which shows a density
  • FIG. 4 is a graph showing the weight of glycerin separated in the glycerin separation tank 40 after the catalyst reaction tube 10 in each stage.
  • Figure 5 shows a mixture of 0.33 molar equivalents of methanol to the feed oil and fat mixed with the liquid supplied to the catalyst reaction tube 10 at each stage, and a volume flow rate of 540 ml (liquid flow rate 4.65 5 cm / min). ) Is a graph showing the methyl ester concentration and the effluent glycerin amount when the solution was passed through.
  • Figure 6 shows the case where the methanolysis reaction was repeated using a two-stage catalytic reaction tube. It is a graph which shows the methyl ester density
  • lipase has the ability to act on glyceride (also called acyl acylglycerol) to decompose the glyceride into glycerin or partial glyceride and fatty acid, and in the presence of a linear lower alcohol. It means an enzyme having the ability to produce a fatty acid ester by ester exchange.
  • glyceride also called acyl acylglycerol
  • the lipase used in the present invention may be 1,3_specific or nonspecific. From the viewpoint of production of a straight chain lower alcohol ester of a fatty acid, non-specificity is preferred.
  • lipases include lipases derived from filamentous fungi belonging to the genus Rhizomu cormiehei, mucor genus, aspenoreginoles genus, lysopus genus, penicillium genus, Candidaantarctica, Lipase derived from yeasts belonging to the genus Anaidarugosa, C andidacylindracea), and chicks (Picnia); lipases derived from bacteria belonging to the genus Pseudomonas and Serratia; and lipases derived from animals such as pig knees Can be mentioned.
  • lipases are also used. For example, lipase derived from Rhizomu cormiehei (Lipozyme I M60: manufactured by Novo Nordisk), lipase derived from C andidaantarctica (Novozym 435: manufactured by Novozym), lipase derived from Rhizopusdel ema r (produced by Tanabe Pharmaceutical Co., Ltd.) ), C andidarugosa (Lipase OF: manufactured by Meika Sangyo Co., Ltd.) and Pseudomonas lipase (Lipase PS, Lipase AK: manufactured by Amano Pharmaceutical Co., Ltd.).
  • the immobilized lipase is a lipase immobilized on an arbitrary carrier.
  • it may be an immobilized enzyme immobilized on a general carrier such as a resin, or may be a cell that produces and retains a lipase. Further, as described later, the cells may be further immobilized on an arbitrary carrier. It is also effective to use different types of immobilized lipase in each catalytic reaction tube.
  • a purified enzyme or a crude enzyme isolated or extracted from a natural product or a recombinant is used as the lipase immobilized on the carrier.
  • Examples of the carrier on which the purified enzyme or the crudely purified enzyme is immobilized include a carrier usually used for immobilizing the enzyme. Examples thereof include organic polymer compounds such as various ion exchange resins and inorganic porous materials such as ceramics.
  • a carrier binding method for example, methods commonly used by those skilled in the art, such as a carrier binding method, a crosslinking method, and a comprehensive method, can be applied.
  • the carrier binding method includes a chemical adsorption method or a physical adsorption method in which it is adsorbed on an ion exchange resin.
  • cells that produce and retain lipase are bacteria, fungi, plant cells, etc., and are not particularly limited. Yeast and filamentous fungi are preferably used. Recombinants into which various lipase genes have been introduced can also be used.
  • the lipase-producing cell used in the present invention may be immobilized on a carrier.
  • the carrier material that can be used in the present invention include foams such as polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, polyvinyl formal resin porous body, silicon foam, and cellulose porous body. Resins are preferred.
  • a porous carrier is preferable in consideration of dropping of cells with reduced growth activity or dead cells.
  • the size of the opening of the porous material varies depending on the cell, but it is appropriate to allow the cell to sufficiently enter and grow. 5 0 ju n! ⁇ 1 0 0 0 is preferable, but not limited thereto.
  • the shape of the carrier is not limited.
  • the shape is spherical or cubic. If the size is spherical, the diameter is l mn! ⁇ 50 mm, for cubes, 2 mm ⁇ 50 mm square is preferred. (Raw material of fatty acid ester)
  • the raw materials for fatty acid esters are fats and oils and lower alcohols.
  • vegetable fats and oils examples include soybean oil, rapeseed oil, palm oil, olive oil and the like.
  • animal fats and oils include beef tallow, pork tallow, whale oil, and sheep fat.
  • Fish oils include sardine oil, tuna oil, squid oil and the like.
  • fats and oils produced by microorganisms include fats and oils produced by the genus Mortierella and the genus Schizotrichy.
  • Waste oil means used plant and animal fats and oils, such as tempura waste oil.
  • waste oils are exposed to high temperatures, they contain oils that have been hydrogenated, oxidized, or peroxidized, but these can also be raw materials. It may contain water. Alternatively, a reaction liquid after these raw material fats and oils are treated with lipase can also be used as a raw material.
  • Lower alcohol means an alcohol having 1 to 8 carbon atoms. Straight chain lower alcohols are preferred, with methanol, ethanol, n-propanol and n-butanol being particularly preferred.
  • the reaction apparatus means an apparatus in which a plurality of stages of catalytic reaction tubes filled with immobilized lipase or lipase-producing cells are connected to a tube such as a stainless steel pipe.
  • FIG. 1 schematically shows the configuration of an embodiment of a typical reactor 100 of the present invention, taking as an example the case where the reactor is a packed bed reactor, but is not limited thereto.
  • This typical reaction apparatus 100 includes a plurality of stages of catalyst reaction tubes 10, a glycerol separation tank 40, a lower alcohol supply port, and a mixing means 50.
  • the catalytic reaction tube 10 in FIG. 1 can be extended depending on the reaction efficiency.
  • Catalytic reaction tube 10 The length is preferably 1 to 2 m per step and the inner diameter is 1 to 5 cm, but is not limited thereto.
  • the number of stages of the catalyst reaction tube 10 is preferably 2 to 10 stages, more preferably 3 to 7 stages, but is not limited thereto.
  • the catalyst reaction tube 10 is preferably made of a material that takes into account the viscosity of the oil and fat, as well as deterioration due to raw materials and products. An example of such a material is stainless steel.
  • the catalytic reaction tube 10 is filled with the above lipase and fixed by any means.
  • Each catalytic reaction tube 10 is connected by, for example, a tube.
  • the tube feeds the raw material oil or the separated liquid obtained from the preceding catalyst reaction tube 10 via the glycerol separation tank 40 to the catalyst reaction tube 10 from the upper part, and from the lower part of the catalyst reaction tube 10.
  • the tube is also preferably made of a material that takes into account the viscosity of the oil and fat, and deterioration due to raw materials and products.
  • a silicone tube and a Teflon (registered trademark) tube are more preferably used.
  • a pressure gauge 20 is provided for the purpose of measuring the pressure in the catalyst reaction tube 10. Those capable of displaying pressures up to I M Pa are preferred.
  • a glycerin separation tank 40 is provided between the catalyst reaction tubes 10.
  • the separation method of glycerin there is no particular limitation on the separation method of glycerin.
  • the devicesserin separation tank 40 is used for retaining the effluent (containing fatty acid ester, unreacted oil and glycerin) from the catalytic reaction tube 10 for a certain period of time. It has a space (for example, a certain space in a site glass). Glycerin separation tank By retaining the effluent, the fatty acid ester and unreacted oil and glycerin contained in the effluent are separated into layers.
  • the separation liquid containing the fatty acid ester and the unreacted oil overflows and is supplied to the next-stage catalytic reaction tube 10.
  • the glycerin present in the lower layer is released downwards according to the opening and closing of the solenoid valve after a certain period of time, and is collected by the receiver. In this separation, as described in detail below, it is important to adjust the liquid flow rate (or volume flow rate) in the reactor 100.
  • a lower alcohol supply port is provided upstream of the catalyst reaction tube 10 of each stage, and the lower alcohol is added to the separation liquid from this supply port. Since the lower alcohol inhibits the activity of lipase and the solubility of the lower alcohol in fats and oils is very low, it is necessary to maintain a uniform state so that alcohol droplets are not generated in the fats and oils. Therefore, the mixing means 50 is provided between the lower alcohol supply port and the next stage catalyst reaction tube in order to sufficiently mix the lower alcohol supplied immediately before each stage and the raw oil or fat or effluent. Be prepared. Examples of the mixing means 50 include a filler in a tube and a stationary mixer.
  • the catalyst reaction tube 10 by filling the catalyst reaction tube 10 with a filler such as beads in the tube for supplying the oil or separation liquid to the catalyst reaction tube 10, the fat and oil passing through the tube and the lower alcohol are mixed. Mixing of the mixture can be facilitated.
  • a filler such as beads in the tube for supplying the oil or separation liquid to the catalyst reaction tube 10
  • a constant temperature water circulation device is further provided around the catalyst reaction tube 10.
  • a device capable of maintaining the temperature of the reactor 100, particularly the catalyst reaction tube 10 at 25 ° C. to 45 ° C. at which the enzyme reaction is more preferably carried out is preferable.
  • the entire reaction apparatus 100 or the mixing means 50 and the catalyst reaction tube 10 may be installed in a temperature-controlled room.
  • lipase is filled.
  • a reactor having a plurality of catalytic reaction tubes having a plurality of catalytic reaction tubes
  • a reaction apparatus 100 as shown in FIG. 1 is used as a reaction apparatus having a plurality of stages of catalytic reaction tubes filled with lipase.
  • Esters can be produced. That is, in the reactor 100 described above, the raw oil and fat and the lower alcohol are sufficiently stirred and supplied to the catalyst reaction tube 10, and lipase is allowed to act in the catalyst reaction tube 10 to produce a fatty acid ester.
  • the effluent from the catalyst reaction tube 10 is introduced into a glycerin separation tank 40 to collect glycerin, and the separated solution is further supplied to the subsequent catalyst reaction tube 10 together with lower alcohol. By repeating this, the fatty acid ester can be recovered from the separated liquid from the catalyst reaction tube at the final stage.
  • the reaction in this reaction apparatus may be repeated several times by using the separated liquid from the final stage of the catalyst reaction tubes as the raw oil.
  • a separation liquid containing a fatty acid ester having a concentration equivalent to that of a reaction apparatus equipped with a nine-stage catalyst reaction tube can be passed through the reaction apparatus three times. It is possible to obtain In this reactor 100, it is important to adjust the liquid flow rate (or volume flow rate) in the reactor 100. When the liquid flow rate is low, the glycerin separation efficiency from the effluent in the glycerin separation tank 40 is poor.
  • the liquid flow rate is appropriately determined according to the type of alcohol, the diameter and number of stages of the catalyst reaction tube 10, the type of raw oil and fat, and the like. In the present invention, it is usually at least 2.15 cmZmin, preferably at least 4.65 cm / min, more preferably at least 6.03 cm / min, more preferably at least 6.90 cm. / min, more preferably at a liquid flow rate of at least 7.76 cm / min, most preferably at least 8.62 cm / min.
  • the supply amount of the lower alcohol in each stage is preferably maintained at 0.5 to 1.0 molar equivalent with respect to the raw material fat.
  • the amount of lower alcohol supplied is small, methyl ester productivity and glycerin separation efficiency deteriorate.
  • the amount of lower alcohol supplied is large, the activity of lipase in the catalytic reaction tube 10 may be inhibited.
  • the lower alcohol supply rate for example, when triolein as a raw material is passed through the catalytic reaction tube 10 at 100 Om 1 Zh, the methanol supply rate is 19.9-3. 9.9 m 1 is preferred.
  • Lower alcohol can promote mixing with fats and oils by passing it through a mixing means 50 such as a filling in a tube or a stationary mixer.
  • the transesterification reaction between fat and lower alcohol catalyzed by lipase is Generally, it is carried out at 5 ° C to 80 ° C, preferably 15 ° C to 50 ° C, more preferably 25 ° C to 45 ° C.
  • the reaction temperature may be determined depending on the microorganism or enzyme used. For example, a heat-resistant microorganism or enzyme can be reacted at a relatively high temperature.
  • the fatty acid ester is separated and recovered from the reaction solution containing unreacted glyceride and lower alcohol by a separation operation usually used by those skilled in the art such as distillation.
  • the fatty acid ester thus recovered can be used as a biodiesel fuel.
  • FIG. 1 A schematic diagram showing the configuration of the packed bed reactor 100 used in the examples is shown in FIG.
  • a stainless steel pipe (length lm, inner diameter 15.7 mm, volume 193.6 ml) was used for the catalyst reaction tube 10.
  • This stainless steel pipe was filled with Novozym 435 (manufactured by Novozym) so as to have an enzyme filling rate of 60% (v / v) to prepare a catalytic reaction tube 10.
  • the temperature of the catalyst reaction tube 10 was kept at 30 ° C, and a pressure gauge 20 was installed at the top of the tube to check the pressure loss. Feeding fats and oils into the upper part of the catalytic reaction tube 10 using the metering pump 30 and charging the inside of the supply tube to the catalytic reaction tube 10 facilitates mixing of the fats and oils with the lower alcohol. .
  • a glycerin separation tank 40 was installed at the bottom of the catalyst reaction tube 10, and glycerin produced as a by-product in the reaction process was collected at each stage.
  • the fatty acid ester, unreacted oil and glycerin contained in the effluent from the catalytic reaction tube 10 are retained in a certain space in the sight glass, and The separated liquid (containing fatty acid ester and unreacted oil and fat) separated here and the newly added lower alcohol are mixed into the mixing means 50. Therefore, the mixture was supplied to the catalyst reaction tube 10 in the next stage while being sufficiently mixed.
  • Fatty acid methyl ester concentration (content) (weight 0/0) was determined by gas chromatographic analysis to internal standard Torikapuri phosphorus. The analysis conditions are as follows:
  • Carrier gas Helium gas (1. y em iz min)
  • Fig. 3 shows the fatty acid methyl ester content in the separation liquid obtained at each stage. Step It rose methyl ester content in the effluent as a number to ⁇ , Oite respectively 93.3 wt% to 9 stage (volume flow rate 250 m 1 / h), 90. 6 mass 0/0 (540m l / h), and 84.8 mass. /. The concentrations of (1080 ml / h) and 10th stage were 95.3% by mass (540 ml /) and 88.9% by weight (1080 ml /), respectively.
  • the methyl ester concentration in the separation liquid obtained at each stage was affected by the change in volumetric flow rate, in other words, the residence time in the catalytic reaction tube 10, but a relatively short residence time (1 at 108 Om 1 / h It was found that a sufficiently high methyl ester concentration can be obtained even at about 10.8 minutes per step).
  • Figure 4 shows the weight (cumulative amount) of glycerin collected in the separation tank 40 of each stage.
  • the total amount of by-produced glycerin is approximately 52.04 g.
  • the volume flow rate was 250 ml Z h, glycerin could hardly be recovered even at the 6th stage where the methyl ester content exceeded 68 mass%. This indicates that the glycerin layer remains in the vicinity of the enzyme in the catalytic reaction tube 10 because the flow rate of the effluent is low.
  • the weight of separated glycerin increases as the number of stages increases, and the 10th stage of the catalyst reaction tube 10 reaches the methyl ester content of 95.3% by mass. 8 g of glycerin could be separated. This corresponds to 89.9% of the amount of glycerin that can be theoretically separated. Furthermore, when the volume flow rate was 108 OmlZh, 51.75 g of glycerin (99.4% of the theoretical amount) could be separated by the 10th stage catalytic reaction tube 10.
  • Table shows the number of packed bed reactors used in this example, the concentration of fatty acid ester after 10-stage reaction, the productivity per unit reaction time and unit volume, the weight of separated glycerin, and the ratio of the amount of glycerin to the theoretical amount. Put it together. table 1
  • the theoretical amount is obtained by passing raw oil or fat at a volume flow rate of 540 m 1 Zh or more and a liquid flow rate of 4.65 cm / min or more through the catalyst reaction tube. It is found that about 90% of glycerin can be separated, and that at 10 Om 1 / h (liquid flow rate 9.30 cm / min), 99% or more of glycerin can be separated from the theoretical amount. It was.
  • the 10-stage catalyst reaction tube is regarded as one reactor, the methyl ester productivity per unit reaction time and unit reactor volume is 106.7 g / h / L (250 m 1 /), respectively.
  • Figure 5 shows the methyl ester content and the effluent glycerin amount (cumulative amount) in this case.
  • the productivity of methyl ester and the separation efficiency of glycerin were inferior to the case where 0.5 molar equivalent of methanol was mixed with the raw material fat. This indicates that the adjustment of the amount of methanol supplied to the catalyst reaction tube has a significant effect on the capacity of the system.
  • the number of stages of the catalyst reaction tube 10 was two.
  • the liquid was passed in the same way (second cycle). The same operation was repeated twice more.
  • Figure 6 shows the fatty acid methyl ester content in the separation liquid obtained at each stage.
  • fatty acid esters can be produced by a series of flows in which lower alcohol is added without stopping the reaction and glycerin produced as a by-product is automatically separated, so that the production efficiency is high and the production cost is reduced. Can be achieved. Also minutes The released glycerin does not require any special cleaning treatment and therefore has a low environmental impact.
  • the produced fatty acid ester is provided as a biodiesel fuel with low environmental pollution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Fats And Perfumes (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明の脂肪酸エステルを連続的に生産する方法は、(a)リパーゼが充填されている触媒反応管に、原料油脂および低級アルコールを混合および撹拌して供給する工程;(b)該触媒反応管において、脂肪酸エステルおよびグリセリンを生成させる工程;(c)該触媒反応管からの流出液を、グリセリン分離槽に導入し、グリセリンを回収する工程;(d)該流出液からグリセリンが分離された分離液に、低級アルコールを追加して混合および撹拌し、次段の触媒反応管へ供給する工程;(e)該工程(b)から(d)を最終段の触媒反応管への供給まで繰り返す工程;および(f)最終段の触媒反応管からの分離液から、脂肪酸エステルを回収する工程;を含む。本発明の方法によれば、低級アルコールの濃度を厳密に制御し、副生するグリセリンを自動的に除去することができる。

Description

明 細 書 酵素法による連続式バイォディーゼル燃料の生産 技術分野
本発明は、 バイオディーゼル燃料として有用な脂肪酸エステルを、 酵素法 により連続的に生産する方法およびそのための装置に関する。
'冃 技術
自動車の燃料として、 一般に石油おょぴ軽油に代表される化石燃料が用い られている。 これらの化石燃料、 特にディーゼル自動車に用いられている軽 油には、 窒素化合物、 硫黄化合物が多く含まれているため、 ディーゼル自動 車などの自動車からは、 C 0 2、 N O x 、 S O xなどのガスが多量に排出さ れている。 これらの排出ガスは、 地球温暖化および環境汚染の原因となって おり、 その排出量の削減が緊急の解決課題である。
軽油などの化石燃料に代わる燃料として、 天然に存在する植物、 動物、 魚 あるいは微生物が生産する油脂を用いる、 いわゆるバイオディーゼル燃料が 期待されている。 これらの油脂のうち、 食品製造のために用いられた油脂は 環境中に廃棄される場合が多く、 環境問題を引き起こす。 そのため、 廃油か らのバイオディーゼル燃料の製造は、 大気汚染の防止と廃油の有効利用の点 から、 特に期待されている。
バイオディーゼル燃料としては、 油脂と低級アルコールとをエステル交換 反応させて得られる脂肪酸エステルが好ましく用いられている。 脂肪酸エス テルを製造する方法の 1つとして、 リパーゼを用いる酵素触媒法に関する研 究が種々行われている (国際公開第 0 1 / 0 3 8 5 5 3号おょぴ国際公開第 0 0 / 1 2 7 4 3号) 。 この製造方法は、 副生するグリセリンの後処理が容 易であること、 反応条件が温和であること、 原料中の遊離脂肪酸のエステル 化が可能であることなど、 多くの利点を有する (H. Fukudaら, Journal of Bioscience and Bioengineering, 2001年, 92卷, 405- 416頁) 。
リパーゼを用いる脂肪酸エステルの生産に関して、 酵素、 油脂、 および低 級アルコールをネジロ瓶あるいは反応槽内にて撹拌/混合することによる、 パッチ式によるエステル交換反応の研究が積極的に行われている (Y. Shima daら, Journal of the American Oil Chemists Society, 1999年, 76 , 7 89-793頁および E. Y. Parkら、 Bioresource Technology, 2008年, 99卷, 8号, 3130-3135頁) 。 この方式では、 反応液の撹拌による酵素の物理的損傷に留 意する必要がある。 また、 反応後の生産物を回収するためには、 撹拌を停止 して反応液を静置した後、 生産物、 酵素、 および副産物をそれぞれ層分離さ せる過程が必要となる。
一方、 リパーゼを充填した管内に油脂と低級アルコールとを通液させるパ ックドベッドリアクターを用いた脂肪酸エステル生産も報告されている (Y. Watanabeら、 Journal of the American Oil Chemists society, 2000年,
77卷, 355 - 360頁および K. Nieら、 Journal of Molecular Catalysis B: Enz ymatic, 2006年, 43卷, 142-147頁) 。 この場合、 酵素は管内に固定されて いるため、 酵素に対する物理的損傷の程度が少なく、 長時間の運転が可能と なる。 さらには、 多量の酵素を反応器内に充填できるため、 反応器単位体積 当たりならびに反応時間当たりの目的物質の生産量が大幅に増加するという 特 ikを有する。 Y. Watanabeら、 Journal of the American Oil Chemists S ociety, 2000年, 77卷, 355- 360頁おょぴ K. Nieら、 Journal of Molecular Catalysis B : Enzymatic, 2006年, 43卷, 142- 147頁に代表されるパックド べッドリアクターを用いた研究では、 油脂と低級アルコールとを反応管上部 より供給し、 下部から流出した反応液を一旦静置して層分離させた後、 上層 の脂肪酸エステル (未反応の油脂も含む) を回収する方式を採用している。 一般に、 低級アルコールはリパーゼの活性を阻害するため、 反応液中に占 める低級アルコールの割合は厳密に制御されなければならない。 また、 低級 アルコールの油脂に対する溶解度は非常に低いため、 油脂中にアルコールの 液滴が生じないように均一な状態を保つ必要がある (Y. Shimadaら、 Journa 1 of Molecular Catalysis B : Enzymatic, 2002年, 17卷, 133- 142頁) 。 反 応液をへキサンなど疎水性有機溶媒に溶解させてアルコールの阻害を緩和さ せる方法もあるが、 生産物の回収が困難となり、 製造プロセスが複雑となる。 脂肪酸エステルの生成過程で副生するグリセリンは、 一定量蓄積すると酵 素の周囲に層を形成する。 グリセリンから成るこの層は親水性であるため、 未反応油脂と酵素との接触効率に多大な影響を及ぼす。 さらには、 反応過程' で残存する低級アルコールの一部がグリセリン層に拡散し、 酵素近傍のアル コール濃度を局所的に増加させる結果、 酵素活性の低下が引き起こざれる (Y. Watanabeら、 Journal or the American Oil Chemists Society, 2000 年, 77卷, 355- 360頁) 。 従来、 透析やイソプロパノールなどの有機溶媒の 使用によってグリセリンを除去する試みが報告されているが (K. B. Bakoち、 Biocatalysis and Biotransformation, 2002年, 20卷, 437- 439頁および Y. Xuら、 Biocatalysis and Biotransformation, 2004年, 22巻, 45- 48頁) 、 プロセスの工業化の観点から、 より簡便なグリセリンの除去方法が望まれる。 リパーゼを用いる工業的なバイオディーゼル燃料の製造には、 原料を供給 しながら生産物を長期間連続的に回収する方式が望ましく、 パックドべッド リアクターの使用が有利である。 しかしながら、 上述のように、 反応管への 油脂おょぴ低級アルコールの供給や、 副生グリセリンの除去の効率によって、 望ましい脂肪酸エステルの収率が得られない点に留意しなければならない。 したがって、 これらの 2点を同時に考慮しつつ、 連続的にバイオディーゼル 燃料を製造する方法の確立が必要である。 発明の開示
本発明は、 リパーゼを用いて油脂から脂肪酸エステルを製造するに際して、 低級アルコールの濃度を厳密に制御し、 副生するグリセリンも自動的に除去 可能なプロセスを提供することを目的とする。
本発明は、 脂肪酸エステルを連続的に生産する方法を提供し、 該方法は、 リパーゼが充填されている複数段の触媒反応管を有する反応装置において、
(a) 該触媒反応管に、 原料油脂および低級アルコールを混合および撹拌 して供給する工程;
( b ) 該原料油脂およぴ該低級アルコールが供給された触媒反応管におい て、 脂肪酸エステルおよびグリセリンを生成させる工程;
(c) 該触媒反応管からの流出液を、 グリセリン分離槽に導入し、 グリセ リンを回収する工程;
(d) 該流出液からグリセリンが分離された分離液に、 低級アルコールを 追加して混合および撹拌し、 次段の触媒反応管へ供給する工程;
(e) 該工程 (b) 力 ら (d) を最終段の触媒反応管への供給まで繰り返 す工程;
( f ) 該最終段の触媒反応管からの流出液を、 該最終段の触媒反応管の下 流に備えられたグリセリン分離槽に導入してグリセリンを回収し、 該流出液 力 らグリセリンが分離された分離液を得る工程;および
(g) 該工程 (f ) で得られた分離液から、 脂肪酸エステルを回収するェ 程;
を含む。
1つの実施態様では、 上記反応装置中の液流速は、 少なくとも 2. 1 5 c τα./ m i nである。
ある実施態様では、 上記それぞれの触媒反応管への上記低級アルコールの 供給量は、 上記原料油脂に対して、 0. 5〜1. 0モル当量である。 さらなる実施態様では、 上記触媒反応管の段は、 2段から 1 0段である。 1つの実施態様では、 上記原料油脂は、 植物油脂、 動物油脂、 魚油、 微生 物が生産する油脂、 これらの混合油脂、 またはこれらの廃油である。
ある実施態様では、 上記低級アルコールは、 メタノール、 エタノール、 n 一プロパノール、 または n—ブタノールである。
さらなる実施態様では、 上記方法は、 上記工程 (f ) に続いて、
( f ' ) 上記工程 ( f ) で得られた分離液を原料油脂として、 上記工程 ( a ) から (f ) を繰り返す工程;
をさらに含む。
本発明はまた、 脂肪酸エステルを連続的に生産するための装置を提供し、 該装置は、
リパーゼが充填されている複数段の触媒反応管;
該それぞれの触媒反応管の下流に備えられ、 そして該触媒反応管からの流 出液をグリセリンと分離液とに分離する、 グリセリン分離槽;
該それぞれの触媒反応管の上流に備えられた、 低級アルコールの供給口 ; および
原料油脂または該分離液と低級アルコールとを混合するために、 該それぞ れの低級アルコールの供給口と該それぞれの触媒反応管との間に備えられた、 混合手段;
を含み、
該各段の触媒反応管において、 原料油脂または該分離液と低級アルコール との混合物が該触媒反応管の上部から供給され、 そして該触媒反応管の下部 からの流出液が、 該グリセリン分離槽に導入されるように構成されている。
1つの実施態様では、 上記装置中の液流速は、 少なくとも 2 . 1 5 c m/ m i nに調節されている。
ある実施態様では、 上記装置において、 上記それぞれの触媒反応管への上 記低級アルコールの供給量は、 上記原料油脂に対して、 0. 5〜1. 0モル 当量に調節されている。
さらなる実施態様では、 上記装置において、 上記触媒反応管の段は、 2段 から 1 0段である。
本発明によれば、 リパーゼを触媒として用いる油脂類と低級アルコールと のエステル交換反応において、 副生物のグリセリンを自動的に除去しながら、 効率的かつ連続的に脂肪酸エステルを製造することができる。 本発明の装置 を用いれば、 原料の供給から脂肪酸エステル回収の一連の工程を、 効率的か つ連続して行うことが可能となる。 図面の簡単な説明
図 1は、 本発明の反応装置 (パックドベッドリアクター) 1 00の構成お よびこれを用いた連続的なバイオデイーゼル燃料の製造フローを示す模式図 である。
図 2は、 グリセリン分離槽 40における脂肪酸エステルとグリセリンの分 離の様子を示す模式図である。
図 3は、 各段の触媒反応管 1 0から体積流量 2 5 0〜1 0 8 0m l /h (液流速 2. 1 5-9. 30 c inZni i n) で流出した液中の脂肪酸エステ ル濃度を示すグラフである。
図 4は、 各段の触媒反応管 1 0の後のグリセリン分離槽 40で分離された グリセリンの重量を示すグラフである。
図 5は、 原料油脂に対して 0. 33モル当量ずつのメタノールを各段の触 媒反応管 1 0に供給する液に混合させて、 体積流量 540m l (液流速 4. 6 5 cm/m i n) で通液したときのメチルエステル濃度おょぴ流出グ リセリン量を示すグラフである。
図 6は、 2段の触媒反応管によるメタノリシス反応を繰り返して行った場 合の各段における、 メチルエステル濃度を示すグラフである。 発明を実施するための最良の形態
(リパーゼ)
本発明においてリパーゼとは、 グリセリ ド (ァシルグリセロールともい う) に作用して、 該グリセリ ドをグリセリンまたは部分グリセリ ドと脂肪酸 とに分解する能力を有し、 かつ直鎖低級アルコールの存在下ではエステル交 換により脂肪酸エステルを生成する能力を有する酵素を意味する。
本発明に用いるリパーゼは、 1, 3 _特異的であっても、 非特異的であつ てもよい。 脂肪酸の直鎖低級アルコールエステルの製造の面からは、 非特異 的である方が好ましい。 リパーゼとしては、 例えば、 リゾムコール属 (Rh i z omu c o r m i e h e i) 、 ムコール属、 ァスぺノレギノレス属、. リゾ プス属、 ぺニシリゥム属などに属する糸状菌に由来するリパーゼ; キャンデ ィダ厲 、 C a n d i d a a n t a r c t i c a, し a n a i d a r u g o s a, C a n d i d a c y l i n d r a c e a) 、 ヒ ア (P i c n i a) などに属する酵母に由来するリパーゼ;シユードモナス属、 セラチア属 などに属する細菌に由来するリパーゼ;および、 豚膝臓などの動物に由来す るリパーゼが挙げられる。 市販のリパーゼも用いられる。 例えば、 Rh i z omu c o r m i e h e i由来のリパーゼ (リポザィム I M60 : ノボノ ルディスク社製) 、 C a n d i d a a n t a r c t i c a由来のリパーゼ (ノボザィム 435 : ノボザィム社製) 、 Rh i z o p u s d e l ema r由来のリパーゼ (タリパーゼ: 田辺製薬株式会社製) 、 C a n d i d a r u g o s a (リパーゼ OF :名糖産業株式会社製) および P s e u d o m o n a s属のリパーゼ (リパーゼ P S、 リパーゼ AK:天野製薬株式会社 製) が挙げられる。
本発明において、 固定化リパーゼとは、 任意の担体に固定化されたリパー ゼをいう。 樹脂などの一般的な担体に固定化された固定化酵素であってもよ く、 あるいはリパーゼを産生かつ保持する細胞であってもよい。 また、 後述 するように、 細胞がさらに任意の担体に固定化されていてもよい。 また、 各 触媒反応管で異なる種類の固定化リパーゼを使用することも有効である。 担体に固定化されるリパーゼは、 一般的には、 天然物または組換え体から 単離または抽出された精製酵素または粗精製酵素が用いられる。 精製酵素ま たは粗精製酵素が固定化される担体としては、 通常、 酵素の固定化に用いら れる担体が挙げられる。 例えば、 種々のイオン交換樹脂などの有機高分子化 合物、 セラミックなどの無機多孔質などが挙げられる。 固定化には、 例えば、 担体結合法、 架橋法および包括法などの当業者が通常用いる方法が適用でき る。 担体結合法には、 イオン交換性の樹脂に吸着させる化学的吸着法あるい は物理的吸着法が含まれる。
本発明において、 リパーゼを産生かつ保持する細胞は、 細菌、 真菌、 植物 細胞などであり、 特に限定されない。 好適には、 酵母および糸状菌が使用さ れる。 種々のリパーゼ遺伝子が導入された組換え体も用いられ得る。
本発明で用いられるリパーゼ産生細胞は、 担体に固定化されていてもよい。 本発明に用い得る担体の材質としては、 例えば、 ポリビエルアルコール、 ポ リウレタンフォーム、 ポリスチレンフォーム、 ポリアクリルアミ ド、 ポリビ ニルフォルマール樹脂多孔質体、 シリコンフォーム、 セルロース多孔質体な どの発泡体あるいは樹脂が好ましい。 増殖おょぴ活性が低下した細胞あるい は死滅した細胞の脱落などを考慮すると、 多孔質の担体が好ましい。 多孔質 体の開口部の大きさは細胞によっても異なるが、 細胞が十分に入り込めて、 増殖できる大きさが適当である。 5 0 ju n!〜 1 0 0 0 が好適であるが、 これに限定されない。 また、 担体の形状は問わない。 担体の強度、 培養効率 などを考慮すると、 球状あるいは立方体状であり、 大きさは、 球状の場合、 直径が l mn!〜 5 0 mm、 立方体状の場合、 2 mm〜 5 0 mm角が好ましレ、。 (脂肪酸エステルの原料)
脂肪酸エステルの原料は、 油脂および低級アルコールである。
原料油脂としては、 植物油脂、 動物油脂、 魚油、 微生物が生産する油脂、 これらの混合油脂、 あるいはこれらの廃油が好ましく用いられる。 植物油脂 としては、 大豆油、 菜種油、 パーム油、 ォリーブ油などが挙げられる。 動物 油脂としては、 牛脂、 豚脂、 鯨油、 羊脂などが挙げられる。 魚油としては、 イワシ油、 マグロ油、 イカ油などが挙げられる。 微生物が生産する油脂とし ては、 モルティエレラ属 (Mo r t i e r e l l a) やシゾキトリゥム属 (S c h i z o c h y t r i urn) などによって生産される油脂が挙げられ る。 廃油とは、 使用済みの植物および動物油脂をいい、 例えば、 天ぷら廃油 などを意味する。 廃油は、 高温にさらされているので、 水素化され、 酸化さ れ、 あるいは過酸化された油を含んでいるが、 これらも原料となり得る。 水 分を含んでいてもよい。 あるいは、 これらの原料油脂が、 ー且リパーゼで処 理された後の反応液も、 原料として用いられ得る。
低級アルコールは、 炭素数 1〜8のアルコールを意味する。 直鎖低級アル コールが好ましく、 メタノール、 エタノール、 n—プロパノーノレ、 および n ーブタノールが特に好ましい。
(反応装置)
本発明において、 反応装置とは、 ステンレスパイプなどの管に固定化リバ ーゼあるいはリパーゼ産生細胞を充填した触媒反応管が複数段連結された装 置を意味する。 図 1に、 本発明の代表的な反応装置 100の実施態様の構成 を、 該反応装置がパックドべッドリアクターである場合を例に挙げて模式的 に示すが、 これに限定されない。 この代表的な反応装置 100は、 複数段の 触媒反応管 10、 グリセリン分離槽 40、 低級アルコールの供給口、 および 混合手段 50を含む。
図 1の触媒反応管 10は、 反応効率に応じて延長し得る。 触媒反応管 10 の長さは 1段当たり l〜2 m、 内径は 1〜5 c mが好適であるが、 これに限 定されない。 触媒反応管 1 0の段数は、 2〜1 0段が好ましく、 3〜7段が より好ましいが、 これに限定されない。 また、 触媒反応管 1 0は、 油脂の粘 性、 ならぴに原料および生産物による劣化に考慮した材質のものが好ましい。 このような材質として、 ステンレスなどが挙げられる。
この触媒反応管 1 0には、 上記のリパーゼが充填されており、 任意の手段 によって固定されている。
それぞれの触媒反応管 1 0は、 例えば、 チューブによって連結されている。 チューブは、 触媒反応管 1 0に、 原料油脂または前段の触媒反応管 1 0から グリセリン分離槽 4 0を経由して得られた分離液を上部から供給し、 該触媒 反応管 1 0の下部から流出液を流出させるように、 各段の触媒反応管 1 0を 連結する。 チューブもまた、 油脂の粘性、 ならびに原料および生産物による 劣化に考慮した材質のものが好ましい。 例えば、 シリコーンチューブ、 テフ ロン (登録商標) チューブがより好ましく用いられる。
本実施態様において、 圧力計 2 0が、 触媒反応管 1 0内の圧力を測定する 目的で設けられる。 I M P aまでの圧力を表示し得るものが好ましい。
本実施態様において、 ポンプ 3 0力 原料 (油脂および低級アルコール) および分離液の触媒反応管 1 0への供給またはグリセリン分離槽 4 0への流 出液の供給を一定の圧力または速度で行うために備えられる。 触媒反応管 1 0内の圧力損失を考慮すると、 0 . 4〜1 . O M P a程度の最高吐出圧力を 有する定量ポンプが好適である。
グリセリン分離槽 4 0は、 各触媒反応管 1 0の間に備えられる。 グリセリ ンの分離方法に特に制限はない。 好適には、 例えば図 2に示すように、 ダリ セリン分離槽 4 0は、 触媒反応管 1 0からの流出液 (脂肪酸エステル、 未反 応油脂、 およびグリセリンを含む) を一定時間滞留させるための空間 (例え ば、 サイ トグラス内の一定の空間) を有する。 グリセリン分離槽 4 0中に流 出液を滞留させることにより、 流出液中に含まれる脂肪酸エステルおよび未 反応油脂とグリセリンとが層分離する。 脂肪酸エステルおよび未反応油脂を 含む分離液はオーバーフローして、 次段の触媒反応管 1 0へと供給される。 下層に存在するグリセリンは、 一定時間が経過すると電磁弁の開閉に応じて 下方へ放出され、 受器にて回収される。 この分離においては、 以下で詳述す るように、 反応装置 1 0 0中の液流速 (または体積流量) の調節が重要であ る。
本発明の装置 1 0 0では、 各段の触媒反応管 1 0の上流に低級アルコール 供給口が備えられており、 この供給口から低級アルコールが分離液に追加さ れる。 低級アルコールがリパーゼの活性を阻害するため、 および低級アルコ ールの油脂に対する溶解度が非常に低いため、 油脂中にアルコールの液滴が 生じないように均一な状態を保つ必要がある。 したがって、 混合手段 5 0は、 各段の直前に供給される低級アルコールと、 原料油脂または流出液とを十分 に混合するために、 低級アルコールの供給口と次段の触媒反応管との間に備 えられる。 混合手段 5 0としては、 例えば、 チューブ内の充填物、 静置型混 合器が挙げられる。 より具体的には、 例えば、 触媒反応管 1 0に油脂または 分離液を供給するためのチューブの内部に、 ビーズなどの充填物を仕込むこ とによって、 チューブ内を通過する油脂と低級アルコールとの混合物の混合 が促進され得る。
触媒反応管 1 0の周囲には、 さらに、 恒温水循環装置が備えられているこ とが好ましい。 恒温水循環装置としては、 反応装置 1 0 0、 特に触媒反応管 1 0の温度を、 酵素反応がより好適に実施される 2 5 °C〜4 5 °Cに維持し得 るものが好ましい。 あるいは、 反応装置 1 0 0全体または混合手段 5 0と触 媒反応管 1 0とを恒温室に設置してもよい。
(脂肪酸エステルの生産方法)
本発明の脂肪酸エステルを連続的に生産する方法は、 リパーゼが充填され ている複数段の触媒反応管を有する反応装置において、
( a ) 該触媒反応管に、 原料油脂および低級アルコールを混合および撹拌 して供給する工程;
( b ) 該原料油脂およぴ該低級アルコールが供給された触媒反応管におい て、 脂肪酸エステルおよびグリセリンを生成させる工程;
( c ) 該触媒反応管からの流出液を、 グリセリン分離槽に導入し、 グリセ リンを回収する工程;
( d ) 該流出液からグリセリンが分離された分離液に、 低級アルコールを 追加して混合および撹拌し、 次段の触媒反応管へ供給する工程;
( e ) 該工程 (b ) から (d ) を最終段の触媒反応管への供給まで繰り返 す工程;
( f ) 該最終段の触媒反応管からの流出液を、 該最終段の触媒反応管の下 流に備えられたグリセリン分離槽に導入してグリセリンを回収し、 該流出液 からグリセリンが分離された分離液を得る工程;および
( g ) 該工程 (f ) で得られた分離液から、 脂肪酸エステルを回収するェ 程;
を含む。
本発明においては、 リパーゼが充填されている複数段の触媒反応管を有す る反応装置として、 例えば、 図 1に示すような反応装置 1 0 0を用いて、 効 率的かつ連続的に脂肪酸エステルを製造することができる。 すなわち、 上記 の反応装置 1 0 0において、 原料油脂および低級アルコールを十分に撹拌し て触媒反応管 1 0に供給し、 該触媒反応管 1 0中でリパーゼを作用させて脂 肪酸エステルを生成させ、 該触媒反応管 1 0からの流出液をグリセリン分離 槽 4 0に導入してグリセリンを回収し、 分離液をさらに次段の触媒反応管 1 0へ低級アルコールとともに供給する。 これを繰り返すことにより、 最終段 の触媒反応管からの分離液から、 脂肪酸エステルを回収することができる。 あるいは、 触媒反応管の段数が少ない場合には、 最終段の触媒反応管から の分離液を原料油脂として用いて、 この反応装置での反応を数回繰り返して もよい。 例えば、 3段の触媒反応管を備える反応装置において、 この反応装 置に 3回繰り返して通液することによって、 9段の触媒反応管を備える反応 装置と同等の濃度の脂肪酸エステルを含む分離液を得ることが可能である。 この反応装置 1 0 0において、 反応装置 1 0 0中の液流速 (または体積流 量) の調節が重要である。 液流速が少ないと、 グリセリン分離槽 4 0におけ る流出液からのグリセリンの分離効率が悪い。 液流速は、 アルコールの種類、 触媒反応管 1 0の直径や段数、 原料油脂の種類などに応じて適宜決定される。 本発明においては、 通常、 少なくとも 2 . 1 5 c mZm i n、 好ましくは少 なくとも 4 . 6 5 c m/m i n , より好ましくは少なくとも 6 . 0 3 c m/ m i n、 さらに好ましくは少なくとも 6 . 9 0 c m/m i n、 よりさらに好 ましくは少なくとも 7 . 7 6 c m/m i n、 最も好ましくは少なくとも 8 . 6 2 c m/m i nの液流速で行われる。
低級アルコールの供給量ならぴに速度は、 アルコールの種類、 触媒反応管
1 0の段数、 原料油脂の種類、 流量などに応じて決定される。 各段における 低級アルコールの供給量は、 原料油脂に対して、 0 . 5〜1 . 0モル当量に 維持することが好ましい。 低級アルコールの供給量が少ないと、 メチルエス テルの生産性およびグリセリンの分離効率が悪くなる。 一方、 低級アルコー ルの供給量が多いと、 触媒反応管 1 0中のリパーゼの活性が阻害される恐れ がある。 また、 低級アルコールの供給速度については、 例えば、 原料のトリ ォレインを 1 0 0 O m 1 Z hで触媒反応管 1 0へ通液させた場合、 メタノー ルの供給速度は 1 9 . 9〜3 9 . 9 m 1 が好適である。 低級アルコール は、 チューブ内の充填物、 あるいは静置型混合器などの混合手段 5 0に通液 することにより、 油脂との混合を促進できる。
リパーゼにより触媒される油脂と低級アルコールとのエステル交換反応は、 一般的には、 5°C~80°C、 好ましくは、 15°C〜50°C、 より好ましくは、 25°C〜45°Cで行われる。 反応温度は、 用いる微生物または酵素により決 定すればよく、 例えば、 耐熱性の微生物または酵素であれば、 比較的高温で 反応できる。
反応終了後の脂肪酸エステルは、 蒸留などの当業者が通常用いる分離操作 により、 未反応のグリセリ ドおよび低級アルコールを含む反応液から分離さ れ、 回収される。 こうして回収された脂肪酸エステルは、 バイオディーゼル 燃料として利用され得る。 実施例
(実施例 1 :反応装置)
実施例において使用したパックドべッドリアクター 100の構成を示す模 式図を、 図 1に示す。 触媒反応管 10には、 ステンレスパイプ (長さ lm、 内径 15. 7mm、 体積 193. 6m l) を使用した。 このステンレスパイ プに、 ノボザィム 435 (ノボザィム社製) を酵素充填率 60% (v/v) になるように充填して、 触媒反応管 10を作製した。 触媒反応管 10は 3 0°Cで保温し、 管の上部に圧力計 20を設置して圧力損失を確認した。 原料 油脂を、 定量ポンプ 30を用いて触媒反応管 10の上部へ供給し、 触媒反応 管 10への供給用チューブ内部に充填物を仕込むことにより、 油脂と低級ァ ルコールとの混合を促進させた。
また、 触媒反応管 10の下部にグリセリン分離槽 40を設置し、 反応過程 で副生したグリセリンをそれぞれの段毎に回収した。 図 2に示すように、 グ リセリン分離槽 40において、 触媒反応管 10からの流出液に含まれる脂肪 酸エステル、 未反応油脂、 およびグリセリンを、 サイ トグラス内の一定の空 間で滞留させ、 また、 ここで分離された分離液 (脂肪酸エステルおよび未反 応油脂を含む) と、 新たに追加された低級アルコールとを、 混合手段 50に よって十分に混合しながら、 次段の触媒反応管 10へと供給した。
(実施例 2 :エステル交換反応)
白絞油 500 gを原料油脂とし、 それぞれの段毎にメタノール 9. 07 g (油脂に対して 0. 5モル当量) を添加して触媒反応管 10に通液した。 な お、 触媒反応管 10における体積流量を、 250m l Zh、 540m l /h, または 108 Om lZhに設定した。 この触媒反応管 10における体積流量 は、 それぞれ 2. 15 c m/m i n. 4. 65 c mZm i n、 および 9. 3 0 cmZm i nの液流速に相当する。 原料油脂を通液した後、 グリセリン分 離槽 40の下部の弁を開いて各段で副生するグリセリンの重量を測定した。 各段でオーバーフローする分離液から 200 1採取し、 脂肪酸メチルエス テル濃度 (含有率) を分析した。
脂肪酸メチルエステル濃度 (含有率) (質量0 /0) は、 トリカプリ リンを内 部標準とするガスクロマトグラフィー分析によって決定した。 分析条件は以 下の通りである :
カラム: Z B— 5HT (フエノメネクス社製、 内径 0. 25mm、 長さ 1
5 m)
カラム温度:
初期: 130°C、 2分
昇温: 350 、 10で Z分
380°C、 7°CZ分
最終温度: 380°C、 10分
インジェクター温度: 320°C
ディテクター温度: 380°C
キャリアガス :ヘリウムガス (1. y em iz分)
スプリット比: 1Z50。
各段で得られる分離液中の脂肪酸メチルエステル含有率を図 3に示す。 段 数を增加するにつれて流出液中のメチルエステル含有率が上昇し、 9段目に おいてそれぞれ 93. 3質量% (体積流量 250 m 1 /h) 、 90. 6質 量0 /0 (540m l /h) 、 および 84. 8質量。 /。 (1080m l /h) 、 1 0段目ではそれぞれ 95. 3質量% (540m l / ) 、 88. 9質量% (1080m l / ) の濃度が得られた。 各段で得られる分離液中のメチル エステル濃度は、 体積流量の変化、 言い換えれば、 触媒反応管 10内の滞留 時間に影響を受けたが、 比較的短い滞留時間 (108 Om 1/hで 1段当た りおよそ 10. 8分) でも、 十分に高いメチルエステル濃度を得られること が分かった。
各段の分離槽 40にて回収されたグリセリンの重量 (累積量) を図 4に示 す。 500 gの油脂を完全に脂肪酸メチルエステルへ変換した場合、 副生す るグリセリンの総量はおよそ 52. 04 gとなる。 体積流量が 250m l Z hの場合では、 メチルエステル含有率が 68質量%を超える 6段目でもほと んどグリセリンを回収できなかった。 これは、 流出液の流速が低いため、 グ リセリン層が触媒反応管 10内の酵素近傍に留まった状態であることを示す。 体積流量が 540 m 1 Z hの場合は、 段数の増加とともに分離されたグリセ リン重量が増加し、 メチルエステル含有率が 95. 3質量%に達する 10段 目の触媒反応管 10までに、 46. 8 gのグリセリンを分離できた。 これは、 理論的に分離し得るグリセリン量の 89. 9%に相当する。 さらに体積流量 が 108 OmlZhの場合には、 10段目の触媒反応管 10までに 51. 7 5 gのグリセリン (理論量に対して 99. 4%) を分離することができた。
(実施例 3 :反応条件の検討)
本実施例で用いたパックドべッドリアクターの段数、 10段反応後の脂肪 酸エステル濃度、 単位反応時間および単位反応器容積当たりの生産性、 分離 したグリセリン重量、 ならびにグリセリン量の理論量に対する割合を表 1に まとめる。 表 1
Figure imgf000019_0001
実施例 2と同様の条件では、 体積流量で 540 m 1 Z h以上、 液流速にし て 4. 65 c m/m i n以上の原料油脂または分離液を触媒反応管に通液す ることで、 理論量の 90%程度のグリセリンを分離可能であること、 また 1 08 Om 1 /h (液流速で 9. 30 c m/m i n) では理論量に対して 9 9%以上のグリセリンの分離が達成できることが分かった。 10段の触媒反 応管を 1つの反応器とみなした場合、 単位反応時間および単位反応器容積当 たりのメチルエステルの生産性はそれぞれ、 106. 7 g/h/L (250 m 1 / ) 、 231. 3 g/h/L (540m l / ) 、 431. 4 g/h ZL (1080m l /h.) であった。 Y. Shimadaら、 Journal of Molecular Catalysis B: Enzymatic, 2002年, 17卷, 133- 142頁に記載のように、 同酵 素を用いたバッチ式の反応条件下で反応器容積と等しい容量の油脂を処理し、 反応時間 48時間、 最終メチルエステル濃度 97. 3質量%の生産物が得ら れた場合、 1 7. 6 gZh/Lと概算される。 したがって、 本発明における 脂肪酸エステルの製造プロセスは、 生産物と副産物との分離の点、 ならびに 単位反応時間および単位反応器容積当たりの脂肪酸エステルの生産性の点か ら、 極めて有利であることを示している。
次に、 各段で、 油脂に对して 0. 33モル当量のメタノールを混合させて 体積流量 540m 1 Zhで通液した。 この場合のメチルエステル含有率およ び流出グリセリン量 (累積量) を、 図 5に示す。 この実施条件では、 各段に おけるメチルエステルの生産性およびグリセリンの分離効率が、 原料油脂に 対して 0 . 5モル当量の割合のメタノールを混合させた場合よりも劣ってい た。 このことから、 触媒反応管へ供給するメタノール量の調節が、 装置の能 力に大きな影響を及ぼすことが示される。
(実施例 4 : 2段の触媒反応管による連続生産の検討)
本実施例においては、 図 1に示すパックドべッドリアクター 1 0 0におい て、 触媒反応管 1 0の段数を 2段とした。 まず、 1段目および 2段目の触媒 反応管 1 0において、 油脂に対してそれぞれ 0 . 5モル当量のメタノールを 混合して、 油脂を体積流量 5 4 O m 1 で通液した (1サイクル目) 。 2 段目の触媒反応管 1 0から流出した油脂からグリセリンを分離した後、 油脂 に対して 0 . 5モル当量のメタノールを混合して、 再度 1段目の触媒反応管 1 0に 1サイクル目と同様に通液した (2サイクノレ目) 。 同様の操作を、 さ らに 2回繰り返した。 各段で得られる分離液中の脂肪酸メチルエステル含有 率を、 図 6に示す。
図 6から明らかなように、 2段の触媒反応管でメタノリシス反応を 4回繰 り すことにより、 純度の高い脂肪酸エステルが得られた。 このように、 2 段の触媒反応管を備えるリアクターで連続的に繰り返して通液することによ り、 多段の触媒反応管を備えるリアクターを用いた場合と同様に、 純度の高 い脂肪酸エステルを得られることがわかった。 したがって、 触媒反応管の段 数を少なくして、 装置に对する費用を抑えることが可能であることがわかつ た。 産業上の利用可能性
本発明の方法によれば、 反応を停止することなく低級アルコールを添加し、 副生するグリセリンを自動分離する一連の流れで脂肪酸エステルを生産でき るため、 生産効率が高く、 製造コス トの低減を図ることができる。 また、 分 離されたグリセリンは特別な洗浄処理を必要としないため環境負荷が少なく、 生産した脂肪酸エステルは環境汚染の少ないバイオディーゼル燃料として提 供される。

Claims

請求の範囲
1. 脂肪酸エステルを連続的に生産する方法であって、
リパーゼが充填されている複数段の触媒反応管を有する反応装置において、 (a) 該触媒反応管に、 原料油脂および低級アルコールを混合および撹拌 して供給する工程;
(b) 該原料油脂および該低級アルコールが供給された触媒反応管におい て、 脂肪酸エステルおよびグリセリンを生成させる工程;
(c) 該触媒反応管からの流出液を、 グリセリン分離槽に導入し、 グリセ リンを回収する工程;
(d) 該流出液からグリセリンが分離された分離液に、 低級アルコールを 追加して混合および撹拌し、 次段の触媒反応管へ供給する工程;
(e) 該工程 (b) から (d) を最終段の触媒反応管への供給まで繰り返 す工程;
( f ) 該最終段の触媒反応管からの流出液を、 該最終段の触媒反応管の下 流に備えられたグリセリン分離槽に導入してグリセリンを回収し、 該流出液 からグリセリンが分離された分離液を得る工程;および
(g) 該工程 (f ) で得られた分離液から、 脂肪酸エステルを回収するェ 程;
を含む、 方法。
2. 前記反応装置中の液流速が、 少なくとも 2. 1 5 cmZm i nである、 請求項 1に記載の方法。
3. 前記それぞれの触媒反応管への前記低級アルコールの供給量が、 前記原 料油脂に対して、 0. 5〜1. 0モル当量である、 請求項 1または 2に記載 の方法。
4 . 前記触媒反応管の段が、 2段から 1 0段である、 請求項 1から 3のいず れかの項に記載の方法。
5 . 前記原料油脂が、 植物油脂、 動物油脂、 魚油、 微生物が生産する油脂、 これらの混合油脂、 またはこれらの廃油である、 請求項 1から 4のいずれか の項に記載の方法。
6 . 前記低級アルコールが、 メタノール、 エタノール、 n—プロパノール、 または n—ブタノールである、 請求項 1から 5のいずれかの項に記載の方法。
7 . 前記工程 (f ) に続いて、
( f ' ) 前記工程 ( f ) で得られた分離液を原料油脂として、 前記工程 ( a ) から (f ) を繰り返す工程;
をさらに含む、 請求項 1カゝら 6のいずれかの項に記載の方法。
8 . 脂肪酸エステルを連続的に生産するための装置であって、
リパーゼが充填されている複数段の触媒反応管;
該それぞれの触媒反応管の下流に備えられ、 そして該触媒反応管からの流 出液をグリセリンと分離液とに分離する、 グリセリン分離槽;
該それぞれの触媒反応管の上流に備えられた、 低級アルコールの供給口 ; および
原料油脂または該分離液と低級アルコールとを混合するために、 該それぞ れの低級アルコールの供給口と該それぞれの触媒反応管との間に備えられた、 混合手段; を含み、
該各段の触媒反応管において、 原料油脂または該グリセリン分離槽からの 該分離液と低級アルコールとの混合物が該触媒反応管の上部から供給され、 そして該触媒反応管の下部からの流出液が、 該グリセリン分離槽に導入され るように構成されている、
装置。
9. 前記装置中の液流速が、 少なくとも 2. 1 5 cmZm i nに調節されて いる、 請求項 8に記載の装置。
10. 前記それぞれの触媒反応管への前記低級アルコールの供給量が、 前記 原料油脂に対して、 0. 5〜1. 0モル当量に調節されている、 請求項 8ま たは 9に記載の装置。
1 1. 前記触媒反応管の段が、 2段から 10段である、 請求項 8から 10の レ、ずれかの項に記載の装置。
PCT/JP2008/072111 2007-12-14 2008-11-28 酵素法による連続式バイオディーゼル燃料の生産 WO2009078290A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009546217A JP5558831B2 (ja) 2007-12-14 2008-11-28 酵素法による連続式バイオディーゼル燃料の生産
CN2008801209252A CN101896614A (zh) 2007-12-14 2008-11-28 利用酶法的连续式生物柴油燃料的生产
US12/745,962 US20100261235A1 (en) 2007-12-14 2008-11-28 Continuous production of biodiesel fuel by enzymatic method
BRPI0820588-4A2A BRPI0820588A2 (pt) 2007-12-14 2008-11-28 Método para produção de forma contínua de um éster de ácido graxo e aparelho para produção de forma contínua do dito éster de ácido graxo
EP08862369.9A EP2241631B1 (en) 2007-12-14 2008-11-28 Continuous production of biodiesel fuel by enzymatic method
US14/741,755 US9879291B2 (en) 2007-12-14 2015-06-17 Continuous production of biodiesel fuel by enzymatic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007323381 2007-12-14
JP2007-323381 2007-12-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/745,962 A-371-Of-International US20100261235A1 (en) 2007-12-14 2008-11-28 Continuous production of biodiesel fuel by enzymatic method
US14/741,755 Division US9879291B2 (en) 2007-12-14 2015-06-17 Continuous production of biodiesel fuel by enzymatic method

Publications (1)

Publication Number Publication Date
WO2009078290A1 true WO2009078290A1 (ja) 2009-06-25

Family

ID=40795406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072111 WO2009078290A1 (ja) 2007-12-14 2008-11-28 酵素法による連続式バイオディーゼル燃料の生産

Country Status (7)

Country Link
US (2) US20100261235A1 (ja)
EP (1) EP2241631B1 (ja)
JP (1) JP5558831B2 (ja)
CN (1) CN101896614A (ja)
BR (1) BRPI0820588A2 (ja)
MY (1) MY153124A (ja)
WO (1) WO2009078290A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050304A (ja) * 2009-09-01 2011-03-17 Kansai Chemical Engineering Co Ltd 酵素法による連続式バイオディーゼル燃料の生産方法
JP2013153734A (ja) * 2012-01-31 2013-08-15 Kansai Chemical Engineering Co Ltd 酵素法による連続式バイオディーゼル燃料の生産方法
JP2014514264A (ja) * 2011-03-08 2014-06-19 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 脂肪酸エステルの蒸留のための方法
KR101534260B1 (ko) * 2015-02-16 2015-07-06 호남바이오영농조합법인 친환경 효소 에너지 조성물 및 이의 제조 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305559B (zh) * 2012-03-12 2015-07-22 广州市名花香料有限公司 一种天然风味脂肪酸酯的制备方法
CN104651060B (zh) * 2015-02-03 2017-08-15 江苏卡特环保科技有限公司 生物柴油连续酯交换工艺
CN115106024B (zh) * 2022-07-04 2024-04-16 山东飞扬化工有限公司 一种混流反应器和混流反应设备及其用于生产碳酸酯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012743A1 (fr) 1998-09-01 2000-03-09 Kansai Chemical Engineering Co., Ltd. Procede de production d'ester d'alcool inferieur
WO2001038553A1 (fr) 1999-11-26 2001-05-31 Kansai Chemical Engineering Co., Ltd. Fabrication d'alcool ester inferieur d'acide gras
JP2005350632A (ja) * 2004-06-14 2005-12-22 Electric Power Dev Co Ltd バイオディーゼル燃料の製造方法
JP2007169443A (ja) * 2005-12-21 2007-07-05 Nippon Shokubai Co Ltd 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359896A (ja) * 1986-09-01 1988-03-15 Agency Of Ind Science & Technol 固定化リパ−ゼによる油脂加水分解法
US7473539B2 (en) * 2004-09-20 2009-01-06 Sunho Biodiesel Corporation Methods for producing alkyl esters
CA2596105A1 (en) * 2005-02-21 2006-08-24 Nippon Shokubai Co., Ltd. Method for producing fatty acid alkyl esters and/or glycerin
WO2007043552A1 (en) * 2005-10-05 2007-04-19 Kao Corporation Method for producing a useful substance by use of an immobilized enzyme
US20070232818A1 (en) * 2005-11-15 2007-10-04 Domestic Energy Leasing, Llc Transesterification of oil to form biodiesels
US7420072B2 (en) * 2006-05-05 2008-09-02 Orbitek, Inc. Apparatus and method for producing biodiesel fuel
CN200967808Y (zh) * 2006-10-26 2007-10-31 冯善茂 环保型生产生物柴油的酯化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012743A1 (fr) 1998-09-01 2000-03-09 Kansai Chemical Engineering Co., Ltd. Procede de production d'ester d'alcool inferieur
WO2001038553A1 (fr) 1999-11-26 2001-05-31 Kansai Chemical Engineering Co., Ltd. Fabrication d'alcool ester inferieur d'acide gras
JP2005350632A (ja) * 2004-06-14 2005-12-22 Electric Power Dev Co Ltd バイオディーゼル燃料の製造方法
JP2007169443A (ja) * 2005-12-21 2007-07-05 Nippon Shokubai Co Ltd 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
E. Y. PARK ET AL., BIORESOURCE TECHNOLOGY, vol. 99, no. 8, 2008, pages 3130 - 3135
H. FUKUDA ET AL., JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 92, 2001, pages 405 - 416
HAMA S. ET AL.: "Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles.", BIOCHEMICAL ENGINEERING JOURNAL, vol. 34, June 2007 (2007-06-01), pages 273 - 278, XP022004469, DOI: doi:10.1016/j.bej.2006.12.013 *
K. B. BAKO ET AL., BIOCATALYSIS AND BIOTRANSFORMATION, vol. 20, 2002, pages 437 - 439
K. NIE ET AL., JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC, vol. 43, 2006, pages 142 - 147
NIE K. ET AL.: "Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production.", JOURNAL OF MOLECULAR CATALYSISB: ENZYMATIC, vol. 43, 2006, pages 142 - 147, XP028015940, DOI: doi:10.1016/j.molcatb.2006.07.016 *
See also references of EP2241631A4
SHIMADA Y. ET AL.: "Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing.", JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC, vol. 17, 2002, pages 133 - 142, XP002521445, DOI: doi:10.1016/S1381-1177(02)00020-6 *
Y. SHIMADA ET AL., JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC, vol. 17, 2002, pages 133 - 142
Y. SHIMADA ET AL., JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 76, 1999, pages 789 - 793
Y. WATANABE ET AL., JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 77, 2000, pages 355 - 360
Y. XU ET AL., BIOCATALYSIS AND BIOTRANSFORMATION, vol. 22, 2004, pages 45 - 48

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050304A (ja) * 2009-09-01 2011-03-17 Kansai Chemical Engineering Co Ltd 酵素法による連続式バイオディーゼル燃料の生産方法
JP2014514264A (ja) * 2011-03-08 2014-06-19 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 脂肪酸エステルの蒸留のための方法
JP2013153734A (ja) * 2012-01-31 2013-08-15 Kansai Chemical Engineering Co Ltd 酵素法による連続式バイオディーゼル燃料の生産方法
KR101534260B1 (ko) * 2015-02-16 2015-07-06 호남바이오영농조합법인 친환경 효소 에너지 조성물 및 이의 제조 방법

Also Published As

Publication number Publication date
US9879291B2 (en) 2018-01-30
JP5558831B2 (ja) 2014-07-23
CN101896614A (zh) 2010-11-24
JPWO2009078290A1 (ja) 2011-04-28
EP2241631B1 (en) 2015-04-15
US20100261235A1 (en) 2010-10-14
EP2241631A1 (en) 2010-10-20
US20150284748A1 (en) 2015-10-08
EP2241631A4 (en) 2011-04-27
MY153124A (en) 2014-12-31
BRPI0820588A2 (pt) 2014-11-04

Similar Documents

Publication Publication Date Title
Bhatia et al. An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies
US9879291B2 (en) Continuous production of biodiesel fuel by enzymatic method
EP1111064B1 (en) Process for the enzymative preparation of diglycerides
RU2769130C2 (ru) Реакторы, системы и процессы ферментации с подачей газа, использующие емкости разделения газа/жидкости
Jegannathan et al. Production of biodiesel using immobilized lipase—a critical review
RU2639542C2 (ru) Системы ферментации с подачей газа
WO2001038553A1 (fr) Fabrication d'alcool ester inferieur d'acide gras
WO2006133437A1 (en) Systems and methods for esterification and transesterification of fats and oils
Baena et al. Enzymatic hydrolysis of waste fats, oils and greases (FOGs): Status, prospective, and process intensification alternatives
MX2011001343A (es) Cultivacion continua, recoleccion y estraccion de aciete de cultivos fotosinteticos.
AU2013368822B2 (en) Enzymatic transesterification/esterification processing systems and processes employing lipases immobilized on hydrophobic resins
Arcos et al. Continuous enzymatic esterification of glycerol with (poly) unsaturated fatty acids in a packed‐bed reactor
JP5607329B2 (ja) 酵素法による連続式バイオディーゼル燃料の生産方法
JP3764855B2 (ja) 油脂類の加水分解方法
JP5986753B2 (ja) 酵素法による連続式バイオディーゼル燃料の生産方法
GB2423525A (en) Photobioreactor solvent extraction process unit
JP2007125009A (ja) 固定化酵素を用いた有用物質の製造方法
JP2007029085A (ja) 脂肪酸類の製造方法
EP3110930A1 (en) Process for the recovery of lipids or hydrocarbons
CN217895629U (zh) 一种连续合成磷脂酰丝氨酸的装置
US20180223236A1 (en) Horizontally inclined trough reactor and uses therefor
WO2022227123A1 (zh) 一种联产l-抗坏血酸棕榈酸酯和生物柴油的工艺方法
JP2000325069A (ja) アルコール製造装置
CN118059683A (en) Preparation method of high-concentration ethyl caproate solution
anNush Karemore et al. Recent Inventions and Trends in Algal Biofuels Research

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120925.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08862369

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009546217

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12010501244

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2016/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12745962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008862369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PI 2010002699

Country of ref document: MY

ENP Entry into the national phase

Ref document number: PI0820588

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100608