WO2009050169A2 - Verfahren zur herstellung von melamin - Google Patents

Verfahren zur herstellung von melamin Download PDF

Info

Publication number
WO2009050169A2
WO2009050169A2 PCT/EP2008/063804 EP2008063804W WO2009050169A2 WO 2009050169 A2 WO2009050169 A2 WO 2009050169A2 EP 2008063804 W EP2008063804 W EP 2008063804W WO 2009050169 A2 WO2009050169 A2 WO 2009050169A2
Authority
WO
WIPO (PCT)
Prior art keywords
melamine
gas
urea
reactor
range
Prior art date
Application number
PCT/EP2008/063804
Other languages
English (en)
French (fr)
Other versions
WO2009050169A3 (de
Inventor
Andreas Kern
Hans-Ulrich PRÖBSTLE
Tilo John
Wolfgang Steiner
Heiko Maas
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EA201000476A priority Critical patent/EA201000476A1/ru
Priority to BRPI0818422-4A priority patent/BRPI0818422A2/pt
Priority to AU2008313759A priority patent/AU2008313759B2/en
Priority to JP2010529355A priority patent/JP5721435B2/ja
Application filed by Basf Se filed Critical Basf Se
Priority to US12/738,049 priority patent/US9598379B2/en
Priority to UAA201005864A priority patent/UA103755C2/ru
Priority to CA2701977A priority patent/CA2701977C/en
Priority to CN2008801116953A priority patent/CN101827829B/zh
Priority to EP08838802.0A priority patent/EP2212302B1/de
Publication of WO2009050169A2 publication Critical patent/WO2009050169A2/de
Publication of WO2009050169A3 publication Critical patent/WO2009050169A3/de
Priority to EG2010040589A priority patent/EG26253A/en
Priority to TN2010000159A priority patent/TN2010000159A1/fr
Priority to MA32767A priority patent/MA31829B1/fr
Priority to ZA2010/03378A priority patent/ZA201003378B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/40Nitrogen atoms
    • C07D251/54Three nitrogen atoms
    • C07D251/56Preparation of melamine
    • C07D251/60Preparation of melamine from urea or from carbon dioxide and ammonia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/40Nitrogen atoms
    • C07D251/54Three nitrogen atoms
    • C07D251/62Purification of melamine

Definitions

  • the invention relates to an improved process for the preparation of melamine (2,4,6-triamino-1, 3,5-triazine) by thermal reaction of urea in the presence of a catalyst.
  • Melamine is used for the preparation of melamine resins by reaction with carbonyl-containing compounds.
  • the resins are used inter alia as plastics and in paints and varnishes.
  • the high-pressure process is usually carried out at pressures of more than about 80 bar (abs.) And temperatures above 370 0 C, wherein the melamine synthesis takes place in a non-catalytic manner in a melt.
  • the low-pressure process is generally carried out at pressures of about 1 bar (abs.) To about 10 bar (abs.) And temperatures of 370 to 430 0 C in a heterogeneous catalysis.
  • the reaction in the catalytic low-pressure process takes place in two steps.
  • urea decomposes into ammonia and isocyanic acid, which in the second, exothermic step trimerizes to melamine with liberation of carbon dioxide.
  • the overall reaction (first plus second step) is endothermic.
  • urea melt is decomposed at 350 0 C and 3.5 bar (abs.)
  • Isocyanic acid at 450 0 C and atmospheric pressure, is then catalytically MEI in a fixed bed reactor reacted amine.
  • the catalyst is generally an alumina catalyst.
  • the gaseous melamine-containing reaction gas is quenched with water to remove the melamine from the reactor gas, and the aqueous melamine suspension is further worked up relatively finely in solid / liquid separation stages.
  • the DSM Stamicarbon process is a one-step process that is carried out at about 7 bar (abs.).
  • the catalysts used are aluminum silicates or zeolite-containing catalysts which are used in a fluidized bed.
  • the fluidizing gas is pure ammonia, which is recovered from the workup stage.
  • the gaseous MeI- amine containing reaction gas is cooled with water and the melamine so removed from the reactor gas.
  • the aqueous melamine suspension is further worked up relatively expensively in FesWllüssigtrenntracn.
  • Gas stream is transported to a cyclone and separated there from the gas.
  • the gas which may contain other impurities in addition to ammonia and carbon dioxide, is then fed to a so-called urea scrubber in which it is then freed at about 135 0 C of the impurities and cooled.
  • Part of the gas is then fed to the reactor as gas for the fluidized bed ("fluidizing gas") and thus re-enters the circuit, another part of the gas is fed into the crystallizer for cooling and a last part of the gas leaves the circuit exhaust.
  • the high-pressure processes of melamine synthesis have relatively low single-strand capacities of about 30,000 t / year.
  • the single-strand capacity is the maximum amount of melamine that can be obtained per year from a reaction and processing unit.
  • BASF's low-pressure process still has a relatively low single-strand capacity of approx. 40,000 t / year.
  • the method of DSM at slightly higher pressures probably has a larger single-strand capacity of about 80,000 t / year. Disadvantage of this method is but, especially in terms of apparatus and energy, complicated separation of the melamine by quenching with water (wet work-up).
  • ammeiin, ammelide or cyanuric acid (formal replacement of one, two or three -Nhb groups of melamine, also mentioned in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition 1990, Vol. A 16, pages 171 to 185) through -OH). It is not clear whether these products are made up of smaller molecules under the conditions prevailing in the melamine process and / or produced by (partial) hydrolysis of ready-formed melamine.
  • the object of the invention is to provide a more economically attractive process for the production of melamine from urea, without the product properties, for example morphology and purity, of the melamine deteriorating.
  • the process gas of melamine synthesis consisting of ammonia and CO 2 in a mass ratio of about 1: 1, is formed in the melamine synthesis from urea.
  • the gas is usually compressed by about 0.5 to 2 bar and then heated to 370 0 C to 430 0 C before it is fed into the fluidized bed reactor as fluidizing gas.
  • This gas stream comes from the urea scrubber and, in a preferred embodiment of the invention, directly from the gas loop after the melamine separation, as described in more detail below.
  • the reaction urea to melamine can be carried out in one or more reactors connected in series.
  • the reaction is carried out in one reactor or in two reactors connected in series.
  • the catalyst may be present in the form of a fluidized bed in both the first and second reactor, but preferably the catalyst is in the form of a fixed bed in the second reactor.
  • Two reactors connected in series also speak of main reactor and secondary reactor.
  • the melamine production is carried out in a reactor.
  • the melamine production is carried out in a reactor in a fluidized bed.
  • the hot fluidizing gas consisting of ammonia and carbon dioxide in a mass ratio of about 1: 1 is fed to the catalyst-filled reactor and fluidizes the solid.
  • the catalyst used in the fluidized bed reactor is a conventional catalyst for the catalytic melamine synthesis based on inorganic Lewis acids, preferably Lewis acidic metal oxides, such as aluminum oxides or silicon-aluminum oxides.
  • a urea melt is sprayed into the reactor together with ammonia as a sputtering gas.
  • the reactor temperature is in the range of 370 0 C to 430 0 C, preferably in the range of 390 0 C to 420 0 C
  • the reactor pressure is in the range of 4 bar (abs.) To 10 bar (abs.) Preferably in the range of bar (abs.) up to 8 bar (abs.).
  • the reaction gas leaves the reactor via a built-cyclone separator, which separates entrained fines on catalyst and recycled to the fluidized bed.
  • the process gas consists of melamine, by-products, unreacted isocyanic acid and ammonia and carbon dioxide.
  • the conversion of urea to melamine is in the range of 70% to 97% by weight, based on urea; Preferably, the conversion of urea to melamine in the range of 80 wt .-% to 97 wt .-%, based on urea, in particular is the Conversion of urea to melamine in the range of 90 wt .-% to 97 wt .-%, based on urea.
  • the 370 0 C to 430 0 C hot reaction gas from the melamine reactor or optionally post-reactor flows through a gas cooler, the melamine-containing reaction gas to a temperature in the range of 320 0 C to 380 0 C, preferably in the range of 330 0 C to 370 0 C cools down.
  • a gas cooler determines the temperature in the gas cooler.
  • the temperature in the gas cooler determined according to current knowledge, the melamine content in the melamine and the melamine content in the by-product catalyst dust.
  • the total amount of further gaseous secondary components (based on melamine) in the reaction gas is surprisingly not higher than in the hitherto conventional process.
  • the reaction gas is then fed into the hot gas filter.
  • the catalyst dust not retained by the cyclones in the fluidized-bed reactor and the by-products desublimated in the gas cooler are separated off.
  • the gas emerging from the hot gas filter usually has a temperature in the range from 320 ° C. to 380 ° C. and, in addition to melamine, generally contains only traces of high-boiling by-products, such as melam, Meiern and, furthermore, unreacted isocyanic acid.
  • the catalyst dust is discharged from the filter, usually via a pressure lock, and disposed of.
  • Gas coolers and hot gas filters can be redundant and operated in A-B circuit.
  • the reaction gas coming from the hot gas filter is in the crystallizer at a pressure in the range of 4 bar (abs.) To 7 bar (abs.), Preferably in the range of 5 bar (abs.) To 6 bar (abs.)
  • With the urea scrubber to a temperature in the range of 130 0 C to 150 0 C, preferably 135 0 C to 150 0 C cooled and washed gas (so-called "cooling gas.”
  • the crystal morphology of melamine is that of current commercial products.
  • the SEM measurement is known per se.
  • the melamine can be treated as follows. The melamine powder is scattered onto a conductive carbon adhesive pad and sputtered with 2.5 nm platinum to increase conductivity and then the surface imaged in the SEM. The acceleration voltage is 3 kV, the images are taken with the secondary electron detector at a tilt angle of 13 degrees.
  • the particle size distribution corresponds to the usual standard.
  • the particle size distribution of the melamine can be determined by laser diffraction (method according to ISO 13320).
  • the melamine powder is dry-dispersed at a dispersion pressure of 2 bar and analyzed, for example, in a Mastersizer S analyzer (Messrs. MaIvern) with the following measuring parameters: gas velocity 157 m / s; Scattering model 3 $$ A (Fraunhofer); Focal length 300 mm; Beam length 10.00 mm.
  • the desublimated melamine is generally pneumatically conveyed in cyclones, deposited there, discharged and further promoted for bottling.
  • the emerging from the melamine cyclone reaction gas (“cycle gas”) has a temperature in the range of 200 0 C to 250 0 C, preferably 210 0 C to 230 0 C and contains ammonia and carbon dioxide nor residues of melamine dust, isocyanic acid, and other byproducts.
  • the amount of isocyanic acid is in the range of 0.1 vol .-% 0 to 2.0 vol .-% o, preferably 0.1 vol .-% o to 1, 0 vol .-% o.
  • this hot cycle gas preferably a gas amount in the range of 5% to 50%, more preferably in the range of 10% to 20%, each based on the total amount of gas from the cyclone - after melamine separation, without passage through the urea scrubber, fed again as a fluidizing gas in the melamine synthesis reactor ("warm fluidizing gas").
  • This warm fluidizing gas can be diverted at any point of the cycle gas path after the melamine separation and before the cycle gas scrubbing in the urea scrubber.
  • the warm fluidizing gas in the flow direction directly after the cooling gas blower which usually promotes the cycle gas to the urea scrubber, diverted and conveyed into the melamine synthesis reactor.
  • the hot fluidizing gas is preferably branched off in the flow direction upstream of the cooling gas blower, which usually conveys the cycle gas to the urea scrubber, and conveyed into the melamine synthesis reactor.
  • the cycle gas residue ie the amount of the circulating gas after the melamine separation which was not diverted according to the invention, is usually conveyed to the urea scrubber via a cooling gas blower. There, the cycle gas residue is finally cooled in a operated with urea circulation scrubber to a temperature in the range of 130 0 C to 150 0 C, preferably 135 0 C to 140 0 C.
  • the cooled circulating gas residue leaving the urea scrubber is then, after customary purification, for example separation of urea droplets in urea separation cyclones, partly recycled as cooling gas into the crystallizer and partly removed as waste gas of the overall process.
  • the method according to the invention is distinguished, inter alia, by the following advantages:
  • the operation in the higher pressure range according to the invention allows a significant reduction of the specific apparatus volumes and thus allows the construction of a single-line plant for capacities of usually at least 60,000 t / a.
  • the operating volume flows and thus the specific energy consumption (energy consumption per tonne of melamine) of the fluidizing gas and refrigerant gas compressor drop while the pressure losses in the system remain constant.
  • the cycle gas quantity which is currently passed over the cooling gas blower, the urea scrubber and the urea separation cyclones, reduced by a substantial amount.
  • the urea circulation through the urea scrubber is reduced to the same extent, so that in addition to the aforementioned apparatus, the urea pump (s) and urea heat exchanger can be smaller.
  • the reduction of investment costs and the savings in electricity consumption (cooling gas blower and urea pump (s)) as well as the natural gas consumption of salt heating represent the advantages of the modified gas path.
  • the melamine obtainable by the process according to the invention is distinguished by high purity and can be further processed directly.
  • the purity of the melamine achieved by the method according to the invention is less than 15 NTU (Nephelometry Turbidity Unit).
  • the turbidity measurement of a melamine sample can be carried out, for example, in a HACH turbidimeter as follows. 14 g melamine; 20.4 ml of 30% formalin and 2 ml of distilled water are introduced. The sample is heated electrically (hotplate or heating hood) and boiled for exactly 30 seconds. Then the sample is cooled in a thermostat set at 35 0 C in exactly 3 minutes with occasional stirring to about 50 0 C, filled into a round cuvette and measured in the turbidimeter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Abstract

Verfahren zur Herstellung von Melamin durch Umsetzung von Harnstoff in Gegenwart eines Feststoff-Katalysators in einem oder in mehreren in Reihe geschalteten Reaktoren im Temperaturbereich von 370 °C bis 430 °C, Kühlen und Filtern des bei der Harnstoffumsetzung entstandenen Gases, Abtrennen des Melamins durch Desublimation und Rückführung eines Teiles des nach der Melaminabtrennung vorhandenen Gases ("Kreisgas") in den Reaktor oder die Reaktoren, dadurch gekennzeichnet, dass alle voranstehenden Schritte bei einem Druck im Bereich von 4 bar abs. bis 10 bar abs. durchgeführt werden.

Description

Verfahren zur Herstellung von Melamin
Beschreibung
Die Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Melamin (2,4,6- Triamino-1 ,3,5-triazin) durch thermische Umsetzung von Harnstoff in Gegenwart eines Katalysators.
Melamin findet Verwendung zur Herstellung von Melamin-Harzen durch Umsetzung mit carbonylhaltigen Verbindungen. Die Harze werden unter anderem als Kunststoffe sowie in Farben und Lacken eingesetzt.
Die Herstellung von Melamin durch Zersetzung von Harnstoff ist eine bekannte Reaktion, die von der chemischen Industrie in mehreren Varianten benutzt wird. Einen Über- blick findet man in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition 1990, Vol. A 16, Seiten 171 bis 185.
Prinzipiell wird zwischen dem Hochdruck- und dem Niederdruckverfahren unterschieden. Im folgenden sind die Druckangaben in bar (abs.).
Das Hochdruckverfahren wird üblicherweise bei Drücken von mehr als ca. 80 bar (abs.) und Temperaturen von über 370 0C durchgeführt, wobei die Melaminsynthese auf nicht katalytische Weise in einer Schmelze erfolgt.
Das Niederdruckverfahren wird in der Regel bei Drücken von ca. 1 bar (abs.) bis ca. 10 bar (abs.) und Temperaturen von 370 bis 430 0C in einer heterogenen Katalyse durchgeführt.
Nach bisherigem Kenntnisstand läuft die Reaktion im katalytischen Niederdruckverfah- ren dabei in zwei Schritten ab. Im ersten, endothermen Schritt zerfällt Harnstoff zu Ammoniak und Isocyansäure, die im zweiten, exothermen Schritt zu Melamin unter Freisetzung von Kohlendioxid trimerisiert. Die Gesamtreaktion (erster plus zweiter Schritt) ist endotherm.
Es existieren im Wesentlichen drei Varianten des Niederdruckverfahrens, auf die nachfolgend kurz eingegangen wird. Näheres entnehme man Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition 1990, Vol. A 16, Seiten 171 bis 185.
Bei dem Verfahren der Linz-Chemie wird die Umsetzung in zwei Stufen durchgeführt. In der ersten Stufe wird Harnstoffschmelze bei 350 0C und 3,5 bar (abs.) in einer Sand- Wirbelschicht zu Ammoniak und Isocyansäure zersetzt. Anschließend wird in einem Festbettreaktor Isocyansäure bei 450 0C und Atmosphärendruck katalytisch zu MeI- amin umgesetzt. Der Katalysator ist dabei generell ein Aluminiumoxid-Katalysator. Das gasförmiges Melamin enthaltende Reaktionsgas wird mit Wasser abgekühlt („ge- quencht") und so das Melamin aus dem Reaktorgas entfernt. Die wässrige Melamin- Suspension wird weiter relativ aufwändig in Fest-/Flüssigtrennstufen aufgearbeitet.
Das DSM-Stamicarbon-Verfahren ist ein einstufiges Verfahren, das bei ca. 7 bar (abs.) durchgeführt wird. Als Katalysatoren dienen Aluminiumsilicate oder zeolithhaltige Katalysatoren, die in einer Wirbelschicht eingesetzt werden. Als Wirbelgas dient reines Ammoniak, das aus der Aufarbeitungsstufe rückgewonnen wird. Das gasförmige MeI- amin enthaltende Reaktionsgas wird mit Wasser abgekühlt und das Melamin so aus dem Reaktorgas entfernt. Die wässrige Melamin-Suspension wird weiter relativ aufwändig in FesWFlüssigtrennstufen aufgearbeitet.
Bei dem bisherigen BASF-Verfahren schließlich wird bei niedrigem Druck (ca. 2 bar (abs.)) ebenfalls in der Wirbelschicht gearbeitet, wobei Aluminiumoxid- oder Alumi- niumoxid-Siliciumdioxid-Katalysatoren, eingesetzt werden und Ammoniak und Kohlendioxid als Wirbelgas (auch Prozeßgas genannt) fungiert. Das heiße, gasförmige Melamin wird im Gegegensatz zum Linz-Chemie und DSM-Stamicarbon-Verfahren in einem sogenannten Kristallisierapparat (auch „Kristaller" genannt) durch Abkühlung auf ca. 200 0C desublimiert und fällt als ein feinkristallines Pulver an, welches dann im
Gasstrom in einen Zyklon transportiert wird und dort vom Gas getrennt wird. Das Gas, welches neben Ammoniak und Kohlendioxid weitere Verunreinigungen enthalten kann, wird dann einem sogenannten Harnstoffwäscher zugeführt in dem es dann bei ca. 135 0C von den Verunreinigungen befreit und gekühlt wird. Ein Teil des Gases wird dann dem Reaktor als Gas für die Wirbelschicht („Wirbelgas") zugeführt und tritt somit wieder in den Kreislauf ein. Ein anderer Teil des Gases wird in den Kristaller zum Kühlen eingespeist und ein letzter Teil des Gases verläßt den Kreislauf als Abgas.
Obwohl die bestehenden Verfahren großtechnisch eingesetzt werden, besteht doch noch Raum für Verbesserungen.
Die Hochdruckverfahren der Melaminsynthese haben verhältnismäßig geringe Einstrangkapazitäten von ca. 30.000 t/Jahr.
Die Einstrangkapazität ist die maximale Menge Melamin, die man pro Jahr aus einer Reaktions- und Aufarbeitungseinheit erhalten kann.
Auch das Niederdruckverfahren der BASF zum Beispiel hat noch eine relativ geringe Einstrangkapazität von ca. 40.000 t/Jahr.
Das Verfahren der DSM bei etwas höheren Drücken hat wohl eine größere Einstrangkapazität von ca. 80.000 t/Jahr. Nachteil dieses Verfahrens ist aber die, besonders apparativ und energetisch, aufwändige Abtrennung des Melamins durch Quenchen mit Wasser (nasse Aufarbeitung).
Nach wie vor sind noch nicht alle Vorgänge bei der Melaminsynthese nach den Verfah- ren des Standes der Technik verstanden. Viel Raum für Spekulationen bleibt zum Beispiel will man Ort, Natur und Reaktionsbedingungen für die Entstehung von Nebenprodukten und Folgeprodukten des Melamins erklären. Folgeprodukte des Melamins können, je nach Reaktionsbedingungen, beispielsweise die in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition 1990, Vol. A 16, Seiten 171 bis 185 genannten Meiern, Melone und Melam sein, die vermutlich durch Reaktion von Melamin-Molekülen entstehen.
Weitere Nebenprodukte oder Folgeprodukte sind die ebenfalls in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition 1990, Vol. A 16, Seiten 171 bis 185 genann- ten Ammeiin, Ammelid oder Cyanursäure (formaler Ersatz von einer, zwei oder drei -Nhb-Gruppen des Melamins durch -OH). Es ist nicht klar, ob sich diese Produkte aus kleineren Molekülen aufbauen, unter den Bedingungen, die im Melaminverfahren herrschen, und/oder durch (partielle) Hydrolyse fertig gebildeten Melamins entstehen.
Eine große Herausforderung ist es also, die geringe Menge Neben- und Folgeprodukte des Melamins von dem gewünschten Hauptprodukt Melamin abzutrennen oder die Neben- und Folgeprodukte erst gar nicht in nennenswerter Menge entstehen zu lassen, und dies alles bei hoher Jahreskapazität der großtechnischen Melaminsynthese.
Es besteht die Gefahr, dass sich Ausbeute und weitere Charakteristik (zum Beispiel Morphologie, Reinheit) des Melamins ändern, wenn man einen oder mehrere wesentliche Parameter (zum Beispiel Druck und Temperatur), im Melaminverfahren bei Synthese und/oder bei der Aufarbeitung ändert.
Die Aufgabe der Erfindung besteht darin, ein wirtschaftlich attraktiveres Verfahren zur Herstellung von Melamin aus Harnstoff bereitzustellen, ohne, dass sich die Produkteigenschaften, zum Beispiel Morphologie und Reinheit, des Melamins verschlechtern.
Die Aufgabe wurde gelöst mit dem Verfahren wie in den Ansprüchen definiert.
Das erfindungsgemäße Verfahren wird im folgenden näher beschrieben. In Grundzügen ist das erfindungsgemäße Verfahren analog dem in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition 1990, Vol. A 16, Seiten 171 bis 185 beschriebenen Verfahren der BASF.
Das Prozessgas der Melaminsynthese, bestehend aus Ammoniak und Cθ2 im Massenverhältnis von ca. 1 :1 , entsteht bei der Melaminsynthese aus Harnstoff. Das Gas wird in der Regel um ca. 0,5 bis 2 bar verdichtet und anschließend auf 370 0C bis 430 0C erhitzt, bevor es in den Wirbelschichtreaktor als Wirbelgas eingespeist wird. Dieser Gasstrom kommt aus dem Harnstoffwäscher und, in einer bevorzugten Ausführungsform der Erfindung, direkt aus dem Gaskreislauf nach der Melaminabscheidung, wie unten näher beschrieben.
Die Reaktion Harnstoff zu Melamin kann in einem Reaktor oder in mehreren in Reihe geschalteten Reaktoren durchgeführt werden. Vorzugsweise wird die Reaktion in einem Reaktor oder in zwei in Reihe geschalteten Reaktoren durchgeführt. Wird die Re- aktion in zwei in Reihe geschalteten Reaktoren durchgeführt, so kann sowohl im ersten als auch zweiten Reaktor der Katalysator in Form eines Wirbelbetts vorliegen, vorzugsweise liegt aber im zweiten Reaktor der Katalysator in Form eines Festbetts vor. Bei zwei in Reihe geschalteten Reaktoren spricht man auch von Hauptreaktor und Nebenreaktor.
Bevorzugt wird die Melaminherstellung in einem Reaktor durchgeführt.
Besonders bevorzugt wird die Melaminherstellung in einem Reaktor in einer Wirbelschicht durchgeführt.
Das heiße Wirbelgas bestehend aus Ammoniak und Kohlendioxid im Massenverhältnis von ca. 1 :1 wird dem mit Katalysator gefüllten Reaktor zugeführt und fluidisiert den Feststoff.
Der im Wirbelschichtreaktor eingesetzte Katalysator ist ein üblicher Katalysator für die katalytische Melaminsynthese auf Basis von anorganischen Lewis-Säuren, vorzugsweise Lewis-saure Metalloxide, wie Aluminiumoxide oder Silizium-Aluminiumoxide.
Eine Harnstoffschmelze wird zusammen mit Ammoniak als Zerstäubungsgas in den Reaktor versprüht. Die Reaktortemperatur liegt im Bereich von 370 0C bis 430 0C, vorzugsweise im Bereich von 390 0C bis 420 0C, der Reaktordruck liegt im Bereich von 4 bar (abs.) bis 10 bar (abs.) vorzugsweise im Bereich von 5 bar (abs.) bis 8 bar (abs.).
Das Reaktionsgas verlässt den Reaktor über einen eingebauten Zyklonabscheider, der mitgerissene Feinanteile an Katalysator abtrennt und in die Wirbelschicht zurückführt. Am Reaktorausgang besteht das Prozessgas aus Melamin, Nebenprodukten, nicht umgesetzter Isocyansäure sowie Ammoniak und Kohlendioxid.
Der Umsatz von Harnstoff zu Melamin liegt im Bereich von 70 Gew.-% bis 97 Gew.-%, bezogen auf Harnstoff; vorzugsweise liegt der Umsatz von Harnstoff zu Melamin im Bereich von 80 Gew.-% bis 97 Gew.-%, bezogen auf Harnstoff, insbesondere liegt der Umsatz von Harnstoff zu Melamin im Bereich von 90 Gew.-% bis 97 Gew.-%, bezogen auf Harnstoff.
Das 370 0C bis 430 0C heiße Reaktionsgas aus dem Melaminreaktor oder gegebenen- falls Nachreaktor strömt durch einen Gaskühler, der das melaminhaltige Reaktionsgas auf eine Temperatur im Bereich von 320 0C bis 380 0C, vorzugsweise im Bereich von 330 0C bis 370 0C abkühlt. Bei diesen Temperaturen beginnen hochsiedende Nebenprodukte zu desublimieren und/oder sich auf dem von den Zyklonen im Wirbelschichtreaktor nicht zurückgehaltenen Katalysatorstaub niederzuschlagen. Das weiterhin gas- förmige Melamin wird somit weitgehend von den höhersiedenden Nebenkomponenten gereinigt. Die Temperatur im Gaskühler bestimmt nach derzeitigem Kenntnisstand den Melemgehalt im Melamin und den Melamingehalt im nebenprodukthaltigen Katalysatorstaub. Die Gesamtmenge an weiterhin gasförmigen Nebenkomponenten (bezogen auf Melamin) im Reaktionsgas ist hierbei überraschenderweise nicht höher als in dem bis- her üblichen Verfahren.
Das Reaktionsgas wird dann in Heißgasfilter eingespeist. Dort wird der von den Zyklonen im Wirbelschichtreaktor nicht zurückgehaltene Katalysatorstaub sowie die im Gaskühler desublimierten Nebenprodukte abgeschieden. Das aus dem Heißgasfilter aus- tretende Gas hat üblicherweise eine Temperatur im Bereich von 320 0C bis 380 0C und enthält in der Regel neben Melamin nur noch Spuren der hochsiedenden Nebenprodukte wie Melam, Meiern und weiterhin nicht umgesetzte Isocyansäure. Der Katalysatorstaub wird aus dem Filter, üblicherweise über eine Druckschleuse, ausgeschleust und entsorgt.
Gaskühler und Heißgasfilter können redundant vorliegen und in A-B-Schaltung betrieben werden.
Das aus dem Heißgasfilter kommende Reaktionsgas wird im Kristaller bei einem Druck im Bereich von 4 bar (abs.) bis 7 bar (abs.), vorzugsweise im Bereich von 5 bar (abs.) bis 6 bar (abs.) mit dem im Harnstoffwäscher auf eine Temperatur im Bereich von 130 0C bis 150 0C, vorzugsweise 135 0C bis 150 0C abgekühltem und gewaschenem Gas (sogenanntes „Kühlgas". Zusammensetzung wie das Wirbelgas) gemischt und dadurch auf eine Temperatur im Bereich von 150 0C bis 250 0C, bevorzugt im Bereich von
200 0C bis 250 0C, besonders bevorzugt im Bereich von 210 0C bis 230 0C abgekühlt. Dabei desublimiert Melamin üblicherweise fast vollständig und fällt in der Regel als feines, weißes Pulver an.
So ist zum Beispiel die Kristallmorphologie des Melamins, gemessen mit der Methode der Rasterelektronenmikroskopie (REM), wie jene von derzeitigen kommerziellen Produkten. Die REM-Messung ist an sich bekannt. Zur Kristallmorphologiebestimmung des Melamins kann wie folgt vorgegangen werden. Das Melaminpulver wird auf ein leitfähiges Kohleklebepad gestreut und zur Erhöhung der Leitfähigkeit mit 2,5 nm Platin besputtert und dann die Oberfläche im REM abgebildet. Die Beschleunigungsspannung ist 3 kV, die Aufnahmen erfolgen mit dem Sekundärelektronendetektor unter ei- nem Neigungswinkel von 13 Grad.
Auch die Partikelgrößenverteilung entspricht dem üblichen Standard. Die Partikelgrößenverteilung des Melamins kann durch Laserbeugung bestimmt werden (Methode nach ISO 13320). Hierzu wird das Melaminpulver mit einem Dispergierdruck von 2 bar trockendispergiert und beispielsweise in einem Analysegerät Mastersizer S (Firma MaI- vern) mit folgenden Meßparametern untersucht: Gasgeschwindigkeit 157 m/s; Streumodell 3$$A (Fraunhofer); Brennweite 300 mm; Strahllänge 10,00 mm.
So liegt z. B. der d-50-Wert (mittlerer Partikeldurchmesser) des mit dem erfindungsge- mäßen Verfahren erhältlichen Melaminpulvers im Bereich von 10 μm bis 30 μm und der d-90-Wert im Bereich von 30 μm bis 50 μm.
Das desublimierte Melamin wird im allgemeinen pneumatisch in Zyklone gefördert, dort abgeschieden, ausgeschleust und zur Abfüllung weitergefördert.
Das aus dem Melaminzyklon austretende Reaktionsgas („Kreisgas") hat eine Temperatur im Bereich von 200 0C bis 250 0C, vorzugsweise 210 0C bis 230 0C und enthält neben Ammoniak und Kohlendioxid noch Reste von Melaminstaub, Isocyansäure, und andere Nebenprodukte. Die Menge der Isocyansäure liegt im Bereich von 0,1 Vol.-%0 bis 2,0 Vol.-%o, vorzugsweise 0,1 Vol.-%o bis 1 ,0 Vol.-%o.
In einer bevorzugten Ausführungsform wird ein Teil dieses heißen Kreisgases - vorzugsweise eine Gasmenge im Bereich von 5 % bis 50 %, besonders bevorzugt im Bereich von 10 % bis 20 %, jeweils bezogen auf die Gesamtgasmenge aus dem Zyklon - nach der Melaminabscheidung, ohne Durchgang durch den Harnstoffwäscher, wieder als Wirbelgas in den Melaminsynthesereaktor eingespeist („warmes Wirbelgas").
Dieses warme Wirbelgas kann an jeder Stelle des Kreisgaswegs nach der Melaminabscheidung und vor der Kreisgaswäsche im Harnstoffwäscher abgezweigt werden. So kann das warme Wirbelgas in Strömungsrichtung direkt nach dem Kühlgasgebläse, welches üblicherweise das Kreisgas zum Harnstoffwäscher fördert, abgezweigt und in den Melaminsynthesereaktor gefördert werden. Bevorzugt wird das warme Wirbelgas allerdings in Strömungsrichtung vor dem Kühlgasgebläse, welches üblicherweise das Kreisgas zum Harnstoffwäscher fördert, abgezweigt und in den Melaminsynthesereak- tor gefördert. Der Kreisgasrest, also die Menge des Kreisgases nach der Melaminabscheidung die nicht erfindungsgemäß abgezweigt wurde, wird üblicherweise über ein Kühlgasgebläse zum Harnstoffwäscher gefördert. Dort wird der Kreisgasrest schließlich in einem mit Harnstoffumlauf betriebenen Wäscher auf eine Temperatur im Bereich von 130 0C bis 150 0C, vorzugsweise 135 0C bis 140 0C abgekühlt.
In diesem Apparat rekombiniert üblicherweise die verbliebene Isocyansäure mit Ammoniak zu Harnstoff, der wieder in den Melaminsynthesereaktor eingespeist wird.
Der aus dem Hamstoffwäscher austretende abgekühlte Kreisgasrest wird dann nach üblicher Reinigung, zum Beispiel Abtrennung von Harnstoff-Tröpfchen in Harnstoffab- scheidungszyklonen, zum Teil als Kühlgas in den Kristallisierapparat rezykliert und zum Teil als Abgas des Gesamtprozesses entfernt.
Das erfindungsgemäße Verfahren zeichnet sich unter anderem durch folgende Vorteile aus:
Der Betrieb im erfindungsgemäßen höheren Druckbereich erlaubt eine deutliche Verringerung der spezifischen Apparatevolumina und ermöglicht damit erst den Bau einer Einstranganlage für Kapazitäten von üblicherweise mindestens 60.000 t/a. Durch die Anhebung des Druckniveaus sinken die Betriebsvolumenströme und damit der spezifische Energieverbrauch (Energieverbrauch pro Tonne Melamin) von Wirbelgas- und Kühlgasverdichter bei konstant gehaltenen Druckverlusten im System.
Durch eine bevorzugte Ausführungsform der Erfindung, nämlich durch den oben beschriebenen modifizierten Kreisgasweg, wird im Vergleich zum Stand der Technik die Kreisgasmenge, die bisher über das Kühlgasgebläse, den Harnstoffwäscher und die Harnstoffabscheidungszyklone geführt wird, um eine substantielle Menge reduziert.
Der Harnstoffumlauf über den Harnstoffwäscher wird in gleichem Maße reduziert, so dass neben den genannten Apparaten auch die Harnstoffpumpe(n) und Harnstoffwärmetauscher kleiner werden können.
Des weiteren verringert sich die Heizleistung des Wirbelgaserhitzers, da die Gasein- trittstemperatur im Bereich von 140 0C bis 200 0C auf im Bereich von 210 0C bis 250 0C erhöht wird.
Die Reduzierung der Investitionskosten und die Einsparungen im Stromverbrauch (Kühlgasgebläse und Harnstoffpumpe(n)) sowie im Erdgasverbrauch der Salzheizung stellen die Vorteile des modifizierten Gaswegs dar. Das nach dem erfindungsgemäßen Verfahren erhältliche Melamin zeichnet sich durch hohe Reinheit aus und läßt sich unmittelbar weiterverarbeiten.
Die mit dem erfindungsgemäßen Verfahren erzielte Reinheit des Melamins, bestimmt mit der Methode der Trübungsmessung angelehnt an (DIN) EN ISO 7027, ist kleiner als 15 NTU (Nephelometrie Turbitidy Unit). Die Trübungsmessung einer Melaminprobe kann zum Beispiel in einem HACH-Turbidimeter wie folgt durchgeführt werden. 14 g Melamin; 20,4 ml Formalin 30 %ig und 2 ml destilliertes Wasser werden vorgelegt. Die Probe wird elektrisch (Heizplatte oder Heizhaube) aufgeheizt und genau 30 Sekunden lang kochen lassen. Dann wird die Probe in einem auf 35 0C eingestellten Thermostat in genau 3 Minuten unter gelegentlichem Rühren auf ca. 50 0C abgekühlt, in eine Rundküvette gefüllt und im Turbidimeter gemessen.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Melamin durch Umsetzung von Harnstoff in Gegenwart eines Feststoff-Katalysators in einem oder in mehreren in Reihe ge- schalteten Reaktoren im Temperaturbereich von 370 0C bis 430 0C, Kühlen und
Filtern des bei der Harnstoffumsetzung entstandenen Gases, Abtrennen des Melamins durch Desublimation und Rückführung eines Teiles des nach der MeI- aminabtrennung vorhandenen Gases („Kreisgas") in den Reaktor oder die Reaktoren, dadurch gekennzeichnet, dass alle voranstehenden Schritte bei einem Druck im Bereich von 4 bar abs. bis 10 bar abs. durchgeführt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die katalytische Harnstoffzersetzung und Melaminsynthese nur in einem Reaktor in der Wirbelschicht stattfindet.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man nach der Melaminabtrennung ein Teil des Rückgases abzweigt und ohne Durchgang durch den Harnstoffwäscher in den Reaktor als „Wirbelgas" einspeist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man das Rückgas in Strömungsrichtung vor dem Kühlgasgebläse abzweigt.
5. Verfahren nach den Ansprüchen 1 bis 4 dadurch gekennzeichnet, dass man die
Desublimation bei einer Temperatur im Bereich von 150 0C bis 250 0C durch- führt.
PCT/EP2008/063804 2007-10-15 2008-10-14 Verfahren zur herstellung von melamin WO2009050169A2 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
UAA201005864A UA103755C2 (ru) 2007-10-15 2008-10-14 Способ получения меламина
AU2008313759A AU2008313759B2 (en) 2007-10-15 2008-10-14 Method for the production of melamine
JP2010529355A JP5721435B2 (ja) 2007-10-15 2008-10-14 メラミンの製造方法
CN2008801116953A CN101827829B (zh) 2007-10-15 2008-10-14 制备三聚氰胺的方法
US12/738,049 US9598379B2 (en) 2007-10-15 2008-10-14 Process for preparing melamine
BRPI0818422-4A BRPI0818422A2 (pt) 2007-10-15 2008-10-14 Processo para a preparação de melamina.
CA2701977A CA2701977C (en) 2007-10-15 2008-10-14 Process for preparing melamine
EA201000476A EA201000476A1 (ru) 2007-10-15 2008-10-14 Способ получения меламина
EP08838802.0A EP2212302B1 (de) 2007-10-15 2008-10-14 Verfahren zur herstellung von melamin
EG2010040589A EG26253A (en) 2007-10-15 2010-04-12 Melamine preparation process
TN2010000159A TN2010000159A1 (fr) 2007-10-15 2010-04-13 Procede de preparation de melamine
MA32767A MA31829B1 (fr) 2007-10-15 2010-04-14 Procédé de production de mélamine
ZA2010/03378A ZA201003378B (en) 2007-10-15 2010-05-13 Method for the production of melamine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07118498A EP2050740A1 (de) 2007-10-15 2007-10-15 Verfahren zur Herstellung von Melamin
EP07118498.0 2007-10-15

Publications (2)

Publication Number Publication Date
WO2009050169A2 true WO2009050169A2 (de) 2009-04-23
WO2009050169A3 WO2009050169A3 (de) 2009-07-16

Family

ID=39201606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/063804 WO2009050169A2 (de) 2007-10-15 2008-10-14 Verfahren zur herstellung von melamin

Country Status (19)

Country Link
US (1) US9598379B2 (de)
EP (2) EP2050740A1 (de)
JP (1) JP5721435B2 (de)
KR (1) KR101563021B1 (de)
CN (1) CN101827829B (de)
AR (1) AR068868A1 (de)
AU (1) AU2008313759B2 (de)
BR (1) BRPI0818422A2 (de)
CA (1) CA2701977C (de)
CL (1) CL2008003049A1 (de)
EA (1) EA201000476A1 (de)
EG (1) EG26253A (de)
MA (1) MA31829B1 (de)
MY (1) MY152284A (de)
PL (1) PL2212302T3 (de)
TN (1) TN2010000159A1 (de)
UA (1) UA103755C2 (de)
WO (1) WO2009050169A2 (de)
ZA (1) ZA201003378B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052420C5 (de) * 2009-11-10 2014-05-22 Lurgi Gmbh Verfahren zur kontinuierlichen Herstellung von Melamin
US9114371B2 (en) 2011-04-28 2015-08-25 Beijing Edgein Technology Co., Ltd. System and process for melamine production by gas-phase quenching method of energy efficient and cost saving type

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012142084A1 (en) 2011-04-11 2012-10-18 ADA-ES, Inc. Fluidized bed method and system for gas component capture
CA2884778C (en) 2012-09-20 2019-06-11 ADA-ES, Inc. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts
CN110028460A (zh) * 2018-01-12 2019-07-19 郗运柱 一种三聚氰胺的生产系统及其生产工艺
KR102293767B1 (ko) * 2019-11-26 2021-08-26 한국과학기술연구원 금속 단일원자 촉매의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2060929A1 (de) * 1969-12-11 1971-06-16 Stamicarbon Verfahren zur Abtrennung von Melamin aus einer heissen Synthesemischung,die Melamindampf enthaelt
EP0018695A1 (de) * 1979-05-03 1980-11-12 Stamicarbon B.V. Verfahren zur Herstellung von Melamin
DE3302833A1 (de) * 1983-01-28 1984-08-02 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von melamin
WO2004065371A1 (de) * 2003-01-17 2004-08-05 Basf Aktiengesellschaft Zweistufiger reaktor für die melaminsynthese

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6919152A (de) * 1969-12-20 1971-06-22

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2060929A1 (de) * 1969-12-11 1971-06-16 Stamicarbon Verfahren zur Abtrennung von Melamin aus einer heissen Synthesemischung,die Melamindampf enthaelt
EP0018695A1 (de) * 1979-05-03 1980-11-12 Stamicarbon B.V. Verfahren zur Herstellung von Melamin
DE3302833A1 (de) * 1983-01-28 1984-08-02 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von melamin
WO2004065371A1 (de) * 2003-01-17 2004-08-05 Basf Aktiengesellschaft Zweistufiger reaktor für die melaminsynthese

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIPPERGER, W.: "THE WORLD MELAMINE INDUSTRY" NITROGEN, BRITISH SULPHUR CO, LONDON, GB, Nr. 228, 1. Juli 1997 (1997-07-01), Seiten 43-51, XP000693900 ISSN: 0029-0777 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052420C5 (de) * 2009-11-10 2014-05-22 Lurgi Gmbh Verfahren zur kontinuierlichen Herstellung von Melamin
US9114371B2 (en) 2011-04-28 2015-08-25 Beijing Edgein Technology Co., Ltd. System and process for melamine production by gas-phase quenching method of energy efficient and cost saving type

Also Published As

Publication number Publication date
EP2212302A2 (de) 2010-08-04
MA31829B1 (fr) 2010-11-01
US9598379B2 (en) 2017-03-21
AR068868A1 (es) 2009-12-09
ZA201003378B (en) 2011-07-27
CL2008003049A1 (es) 2010-06-11
EP2212302B1 (de) 2016-04-27
WO2009050169A3 (de) 2009-07-16
CA2701977A1 (en) 2009-04-23
CA2701977C (en) 2016-05-17
EA201000476A1 (ru) 2010-10-29
AU2008313759B2 (en) 2013-01-24
AU2008313759A1 (en) 2009-04-23
US20100222582A1 (en) 2010-09-02
KR20100091968A (ko) 2010-08-19
CN101827829B (zh) 2012-07-25
TN2010000159A1 (fr) 2011-11-11
CN101827829A (zh) 2010-09-08
EG26253A (en) 2013-06-02
JP5721435B2 (ja) 2015-05-20
KR101563021B1 (ko) 2015-10-23
UA103755C2 (ru) 2013-11-25
BRPI0818422A2 (pt) 2015-04-22
MY152284A (en) 2014-09-15
JP2011500622A (ja) 2011-01-06
EP2050740A1 (de) 2009-04-22
PL2212302T3 (pl) 2016-11-30

Similar Documents

Publication Publication Date Title
EP2212302B1 (de) Verfahren zur herstellung von melamin
AT403579B (de) Verfahren zur herstellung von hochreinem melamin
US4348520A (en) Method for the preparation of melamine
EP1888540B1 (de) Verfahren zum herstellen von melamin mit wärmerückgewinnung
EP1566382B1 (de) Verfahren zur schonenden Abkühlung und Kristallisation von Melamin aus einer Melaminschmelze oder aus der Gasphase
DE1670286A1 (de) Verfahren zur Aufarbeitung der bei der Melaminsynthese anfallenden Abgase
AT393124B (de) Verfahren zur herstellung von melamin
EP1891023B1 (de) Verfahren zur herstellung von melamin
EP2158187A2 (de) Verfahren zur herstellung von melamin
EP1453814B1 (de) Verfahren zur reinigung einer melaminschmelze
DE69917768T2 (de) Kristallines melamin
EP0075819B1 (de) Verfahren zur Verbesserung der Melaminqualität durch Reaktivierung von bei der Melaminsynthese eingesetzten Katalysatoren
DE69915286T2 (de) Verfahren zur herstellung von melamin
DE2060929A1 (de) Verfahren zur Abtrennung von Melamin aus einer heissen Synthesemischung,die Melamindampf enthaelt
EP1981857A2 (de) Verfahren zur herstellung von alkylmelaminen
DE69813545T2 (de) Verfahren zur herstellung von melamin
EP2499119B1 (de) Verfahren zur kontinuierlichen herstellung von melamin
AT283377B (de) Verfahren zur Aufarbeitung der bei Melaminsynthese durch Umsetzung von Harnstoff bei erhöhten Temperaturen in Gegenwart von zugesetztem Ammoniak und Katalysatoren anfallenden Abgase
AT500297A1 (de) Verfahren zur reinigung von melaminhältigen ammoniak
DE10342566A1 (de) Konische Wirbelschicht für ein Melamin-Niederdruckverfahren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880111695.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08838802

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008838802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2701977

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010040589

Country of ref document: EG

Ref document number: DZP2010000208

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 201000476

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2008313759

Country of ref document: AU

Ref document number: 12738049

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010529355

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2657/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008313759

Country of ref document: AU

Date of ref document: 20081014

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107010298

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010001583

Country of ref document: MY

ENP Entry into the national phase

Ref document number: PI0818422

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100414