WO2009017258A1 - 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法 - Google Patents

耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法 Download PDF

Info

Publication number
WO2009017258A1
WO2009017258A1 PCT/JP2008/064260 JP2008064260W WO2009017258A1 WO 2009017258 A1 WO2009017258 A1 WO 2009017258A1 JP 2008064260 W JP2008064260 W JP 2008064260W WO 2009017258 A1 WO2009017258 A1 WO 2009017258A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
phase
ferritic
workability
Prior art date
Application number
PCT/JP2008/064260
Other languages
English (en)
French (fr)
Inventor
Masaharu Hatano
Akihiko Takahashi
Eiichiro Ishimaru
Ken Kimura
Original Assignee
Nippon Steel & Sumikin Stainless Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007202016A external-priority patent/JP5156293B2/ja
Priority claimed from JP2007222259A external-priority patent/JP5213386B2/ja
Application filed by Nippon Steel & Sumikin Stainless Steel Corporation filed Critical Nippon Steel & Sumikin Stainless Steel Corporation
Priority to EP18188353.9A priority Critical patent/EP3434802B1/en
Priority to KR1020097026935A priority patent/KR101185978B1/ko
Priority to US12/452,918 priority patent/US20100126644A1/en
Priority to KR1020127001606A priority patent/KR101253326B1/ko
Priority to CN2008801006756A priority patent/CN101765671B/zh
Priority to EP08792317.3A priority patent/EP2172574B1/en
Priority to ES08792317T priority patent/ES2717840T3/es
Publication of WO2009017258A1 publication Critical patent/WO2009017258A1/ja
Priority to US13/621,473 priority patent/US20130118650A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferri- and austenite-based stainless steel excellent in corrosion resistance and workability and a method for producing the same. According to the present invention, ferritic iron and stainless steel with excellent corrosion resistance and workability can be manufactured without containing a large amount of expensive and rare Ni, which is a rare base table. It can also contribute to environmental conservation. Background art
  • Stainless steel can be broadly classified as “Stainy”.
  • Ferrite ferrous stainless steel contains little Ni and generally has a much lower workability than austenitic ferritic stainless steel.
  • two-phase (ferrite-austenite) stainless steel has a relatively low Ni content, and has an intermediate position between austenitic stainless steel and ferritic stainless steel in terms of workability and corrosion resistance.
  • steel types There are many steel types.
  • ferritic stainless steel which has become capable of ultra-low carbon and nitrogenization due to improvements in refined technology and has improved corrosion resistance and workability by adding stabilizing elements such as Ti and Nb, has been applied to a wide range of fields. It's getting on. So This is because ferritic stainless steel is more economical than austenitic stainless steel containing a large amount of Ni.
  • ferritic stainless steels are significantly inferior to austenitic stainless steels in terms of workability, particularly material elongation and uniform elongation.
  • austenite-based and ferrite-based stainless steels which are in the middle of the above-mentioned austenitic and ferritic types, have been attracting attention in recent years.
  • Austenitic and fertile typically represented by SUS 3 29 J 4 L Since stainless steel contains more than 5% Ni and also contains a few percent of Mo, which is rarer and more expensive than N1, there are still problems in terms of diffusion and economy.
  • Mo is a selective additive element, and the amount of Ni is disclosed in Japanese Patent Laid-Open No. 1 1-0 7 1 6 4 3, more than 0.1% and less than 1%.
  • WOZ 0 2 Z 2 No. 7 0 5 6 discloses an austenitic and ferritic stainless steel constrained to 0.5% or more and 1.7% or less.
  • ⁇ Stenite ⁇ • Fey ⁇ Spunless steel is low N In order to aim at i conversion, it contains more than 0.1% N and the amount of Mn is substantially over 3.7%
  • No. 9 is intended to improve the total elongation and deep drawability, effectively limiting the amount of Ni to 3% or less, and adjusting the C + N and component balance in the austenite phase. • Ferai-base stainless steel is disclosed. Also, Japanese Patent Application Laid-Open No. 10-2 19 40 7
  • Ferritic stainless steels with excellent ductility contain N content of 0.06% end 13 ⁇ 4, ferritic phase as mother phase and residual austenite phase less than 20%.
  • Japanese Patent Application Laid-Open No. Hei 10-2 1 9 4 0 7 a technology in which the main constituent phase is a ferrite phase and stainless steel containing a residual austenite phase is used to increase the tensile elongation at break by the TRIP phenomenon.
  • Japanese Laid-Open Patent Publication No. 1 1-0 7 1 6 4 3 describes a method for increasing the tensile elongation by defining the stability of the austenite phase.
  • Japanese Laid-Open Patent Publication No. 20 0 6 — 1 6 9 6 2 2 discloses a technique for increasing the total elongation in a tensile test by defining the fraction of the austenite phase and the amount of CN in the austenite phase. .
  • the tensile elongation at break is 3 4 4 2% as shown in the examples, and the elongation at break is not necessarily high.
  • the forming process at the time of cutting it is often judged that processing is not possible when the thickness of the steel sheet is reduced (necking), even if the steel sheet is not broken and “cracked”. In other words, “elongation at break” in the tensile test
  • Japanese Patent Laid-Open No. 2 0 0 6 — 2 0 0 0 3 5 and Japanese Patent Laid-Open No. 2 0 0 6 — 2 3 3 3 0 8 include Japanese Patent Laid-Open No.
  • austenite and ferritic stainless steel with an Mn content of less than 2% and an Ni content of more than 0.5% is used in a coastal environment exposure test. It describes the suppression of crevice corrosion.
  • Japanese Laid-Open Patent Publication No. 2 0 06-2 3 3 3 0 8 discloses an austenite-ferrite system in which the Mn content is more than 2% and less than 4%, and the Ni content is substantially less than 0.6%. It describes the suppression of intergranular cracking in stainless steel after boiling in sulfuric acid / copper sulfate solution.
  • Japanese Laid-Open Patent Publication No. 5-2 4 7 5 9 4 discloses a duplex stainless steel with improved weather resistance in a coastal environment.
  • This duplex stainless steel contains substantially more than 4% Mn, or less than 4% Mn and more than 3% Ni.
  • the present invention is a ferritic / austenitic stainless steel aimed at lowering Ni, and is particularly suitable for corrosion resistance. It is an object of the present invention to provide a ferritic / austenitic stainless steel having a high “uniform elongation”, which is excellent in corrosion resistance in a basic chloride environment, and is a factor governing workability, and a method for producing the same.
  • the present inventors have intensively studied to solve the above-mentioned problems, and as a result, the steel composition and the metal structure, especially the phase balance between the ferrite phase and the austenite phase, are defined, and the manufacturing conditions such as annealing conditions are defined.
  • the manufacturing conditions such as annealing conditions.
  • the gist of the invention is as follows.
  • the pitting corrosion index (PI value) represented by the following formula (a) satisfies more than 18%, the balance is Fe and inevitable impurities, and the volume fraction of the austenite phase with the ferrite phase as the parent phase Ferrite ⁇ ⁇ ⁇ Austenitic stainless steel with excellent corrosion resistance and workability, characterized by a Ni content of 15 to 50%.
  • the steel further contains two kinds of Ni: 0.6 to 3% and Cu: 0.:! To 3% in terms of mass%. Ferrite / austenitic stainless steel s3 ⁇ 4 with excellent corrosion resistance and workability as described in). (3) The steel is further in mass%,
  • N b 0.5% or less
  • a stainless steel ingot having the steel composition described in any one of (1) to (3) is used as a hot-rolled steel material by hot forging or hot rolling, and after annealing the hot-rolled steel material, In a steel manufacturing method that repeats processing and annealing, finish annealing is heated and held at 9500 to 1150, and the average cooling rate from the heating temperature to 200 is set to 3 seconds or more.
  • Ferrite ⁇ ⁇ ⁇ austenite ⁇ type stainless steel with excellent corrosion resistance and workability characterized in that the volume fraction of the austenite phase is 15 to 50% with the phase as the parent phase.
  • a stainless steel ingot having the steel composition described in any one of (1) to (3) above is made into a hot rolled steel material by hot forging or hot rolling, and after annealing the hot rolled steel material,
  • the average cooling rate up to 600 is set to 3 / second or more, and after staying for 1 minute or more in the temperature range of 200 to 600, the average cooling rate from the staying temperature to room temperature is 3 seconds.
  • the ferritic phase is the parent phase, and the volume fraction of the austenite phase is 15 to 50%. Ferrite ⁇ ⁇ ⁇ Austenitic stainless steel with excellent workability and corrosion resistance Production method.
  • the volume fraction of the austenite phase is 15 to 50% with the ferritic phase as the parent phase, and the pitting corrosion potential V c 'in the 30%: 3.5% NaCl aqueous solution.
  • the volume fraction of the austenite phase is 10% or more and less than 50%, the M d value calculated from the chemical composition in the austenite phase satisfies the following formula (b), and the rolling width direction
  • N b 0.5% or less
  • the ferritic / austenitic stainless steel excellent in workability according to any one of (8) to (10), characterized by containing one or two of the following.
  • the ferritic / austenitic stainless steel excellent in workability according to any one of (8) to (11), characterized by containing one or two of the following.
  • (1 3) Continuously forging the steel of any of the components described in (8) to (1 2), and heating the obtained steel slab to 1 1 5 0 or more and less than 1 2 5 0 before hot rolling After heating at temperature T 1 (at), rolling with a reduction ratio of 100% or more and 30% or more and subsequent holding for 30 seconds or more was carried out for one or more passes.
  • the hot-rolled sheet obtained at a rolling rate of 96% or more is annealed at a temperature not lower than T 1 1 100 and not higher than T 1, and then cold-rolled and intermediate-annealed or performed.
  • Fig. 1 is a graph showing the relationship between the cooling rate of finish annealing of steel No. 1 and the pitting potential.
  • Fig. 2 is a diagram in which the E B SP measurement results are classified into B CC phase and F CC phase, where (a) shows B CC phase and (b) shows F CC phase in white display.
  • Figure 3 shows the relationship between the phase ratio and uniform elongation (U — E L).
  • Figure 4 shows the relationship between the M d value and the uniform elongation (u – E L).
  • Figure 5 shows the relationship between the ratio of the austenite grains with a crystal grain size of 15 m or less and a shape aspect ratio of less than 3 to the total austenite grains (XI) and uniform elongation (u-EL). .
  • Figure 6 shows the average distance between each austenite grain and the nearest grain (X 2
  • the present inventors are a ferrite austenite aimed at lowering Ni. We have intensively studied the effects of composition, phase balance and finish annealing conditions on the corrosion resistance and workability of austenitic stainless steels.
  • the pitting corrosion potential V in a 3.5% Na C 1 aqueous solution is 30, which is equal to or higher than SUS 3 0 4 in a neutral chloride environment.
  • c '1 0 0 has a corrosion resistance of 0.3 V (VV.s.AGCL) or more, excellent material elongation, especially uniform elongation in tensile test of 30% or more It was found that a ferritic / austenitic stainless steel excellent in corrosion resistance and workability can be obtained.
  • the conditions that austenite grains should have are: (1) The crystal grain size is small and the shape is close to a sphere (not stretched in the rolling direction). (2) The distance between the nearest austenite grains is narrow, and (3) the austenite ⁇ stability (Md value) calculated from the chemical composition in the austenite phase is in the proper range.
  • the present inventors have found that ferritic iron and austenitic stainless steel can be obtained.
  • the present inventors conducted intensive research on the effects of the composition and phase balance on the corrosion resistance and workability of ferritic austenitic stainless steels aimed at low Ni and the effect of finish annealing conditions on the corrosion resistance. was completed. The typical experimental results are described below.
  • Stainless steel ingots obtained by vacuum melting ferrite-austenitic stainless steels whose ingredients are listed in Table 1 were hot-rolled to produce hot-rolled sheets 5 mm thick.
  • the hot-rolled sheet was annealed at 100, 0, and cold-rolled after pickling to produce a 1 mm-thick cold-rolled sheet.
  • Cold-rolled sheet annealing was performed at 10:00, and cooling was performed by forced air cooling, and the average cooling rate from 10:00 to 20:00 Degrees ranged from 3 5 to 40 seconds.
  • the cold-rolled annealed plates were subjected to austenite (a) phase volume fraction measurement, pitting potential measurement, and JIS 13 B tensile test.
  • the volume fraction of the a phase (hereinafter referred to as the a phase fraction) was obtained by measuring the phase map that identifies the crystal structure of f c c and b e c by the E B SP method in the cross section of the plate.
  • V c '1 0 0 (V V .s.A G C L) was measured in an aqueous solution of 30% and 3.5% NaCl with the # 5 0 0 polished surface as an evaluation surface.
  • the measured value of pitting potential was the average value of n3.
  • J I S 1 3 B tensile test tensile specimens were taken from the rolling direction, and the uniform elongation was measured until the necking occurred at a tensile speed of 2 O mmZ (the range of the tensile speed specified by J I S Z 2 2 4 1).
  • Table 1 shows the measurement results of the above-mentioned phase ratio, V c '100, and uniform elongation in addition to the steel components.
  • steel No. 1 has a pitting potential of 0.38 V and a uniform elongation of 35%, and has a corrosion resistance equivalent to or better than that of SUS304 in a neutral chloride environment.
  • SUS 4 3 OLX which has improved workability due to the extremely low C and N content, the uniform elongation is greatly improved.
  • Steel Nos. 2 to 6 have uniform elongation sufficiently higher than SUS 4 30 LX, but the pitting potential is equal to or less than that of SUS 4 30 LX, which is significantly inferior to SUS 3 0 4. .
  • the components of the steel with deteriorated pitting corrosion potential are (i) Si content exceeding 1% and high (steel No. 2), (ii) Mn content being as high as 3.8% (steel No. 3), (iii) N content is as high as 0.15% (Steel No. 4), (i V) Pitting corrosion index (PI value) is less than 18% (Steel No. 5), ( V) N content is as high as 0.1 6% and phase ratio is 50 It is characterized by being over% (steel No. 6).
  • FIG. 1 shows the relationship between the cooling rate of finish annealing and the pitting potential in steel No. 1.
  • the cooling rate In order to obtain a pitting corrosion potential (0.3 V or more) equal to or higher than SUS304, the cooling rate must be limited to 3 seconds or more. Furthermore, as shown by the black circles in the figure, the pitting corrosion is higher when the cooling method that stays at 500 ° C for 1 minute is performed than when the cooling rate is 5 t: nosec. It has the characteristic of having a potential.
  • the cross section of the plate in a resin was etched with an erythrocyte salt solution (trade name: Murakami Reagent), further subjected to oxalic acid electrolytic etching, and subjected to observation with an optical microscope.
  • an erythrocyte salt solution trade name: Murakami Reagent
  • the ferrite phase can be identified as gray and the austenite phase as white.
  • oxalic acid electroetching is used, intergranular corrosion can be confirmed when sensitized.
  • the sample was analyzed by SEM-EDS analysis. The metal elements in the ferrite and austenite phases were analyzed. Finally, precipitates were identified from the sample by extraction replica TEM.
  • the volume fraction of the a phase is 3.5% NaCl aqueous solution with a detailed microstructure analysis by the phase map measurement method that identifies the crystal structure of fcc and bcc by EBSP method in the plate cross section and 30
  • the pitting potential is measured by measuring V c '1 0 0 (VV. S.
  • the amount of 1 ”amount is ⁇ 11 and the distribution is different between the ferritic phase and the austenite phase.
  • the Cr amount is 22 to 2 in the ferrite phase. 2 3%, austenite phase 18 ⁇ : L 9%, while Mn content was about 3% in ferrite phase and about 4% in single-stain phase Steel No. 4 and 6
  • the pitting corrosion potential of N o .6 is low despite the similar N content, and the decrease in these pitting corrosion potentials is due to the Cr content in addition to the sensitization described in (a) above. Is low, It is presumed that the high phase ratio of Mn is as high as more than 50%. That is, if a large amount of austenite phase with a low Cr content and a high Mn content is generated, the corrosion resistance may be inferior.
  • the tensile speed was 1 O mmZ.
  • the metal structure of the cross section (L cross section) perpendicular to the rolling width direction at the center of the rolling width direction of the thin steel sheet was examined by EBSP to identify the phases.
  • the data obtained from EBSP was classified into ferrite grains (BCC phase) and austenite grains (FCC phase) for each crystal grain, and the austenite phase ratio was measured first.
  • points where the crystal orientation difference at adjacent measurement points was 15 ° or more were considered as grain boundaries and indicated by black lines.
  • Figure 2 shows an example of measurement.
  • Fig. 2 (a) shows the BCC phase
  • Fig. 2 (b) shows the FCC phase in white.
  • each austenite grain (FCCC phase) were measured, and the distance between nearest grains was measured for austenite grains.
  • the nearest intergranular distance was the smallest distance between the center positions of each austenite grain.
  • the center position of each crystal grain was defined as 1 2 and 1 2 H when the length in the rolling direction of the grain was L and the length in the plate thickness direction was H.
  • the distance between the nearest grains was measured, and the average value was obtained.
  • EPMA was also used to investigate the chemical composition in the austenitic grains.
  • the Md value was calculated from the obtained chemical composition as an indicator of the stability of the austenite phase.
  • M d is an index that represents the degree of stability calculated by the following equation (2).
  • the coefficients of this calculation formula were based on Nohara et al.'S formula (see Iron and Steel 6 3 (1 9 7 7) p. 7 7 2). [] In the formula indicates the composition of each element measured by EPMA. However, for C, quantification in the austenite phase is difficult with EPMA, so the average composition ⁇ is shown.
  • the “average composition” here refers to the average composition contained in the steel regardless of the phase, and is described in JISG 1 2 1 1. Obtained by the combustion-infrared absorption method described.
  • the M d value is determined by the chemical composition within the austenite grains. Therefore, it is possible to adjust the Md value by changing the chemical composition in the austenite grains by, for example, annealing temperature or annealing time.
  • N, Cu, Ni, and Mn are concentrated in the austenite phase, that is, the concentration in the austenite phase is higher than the concentration in the ferrite phase. d value can be decreased.
  • the composition of the austenite phase is usually not an equilibrium composition determined by the annealing temperature. This is because it takes time to diffuse each element to distribute to the austenite phase and ferrite phase at a certain annealing temperature. Therefore, in the final annealing process, the holding time is lengthened to approach the equilibrium composition (the concentration of N, Cu, Ni, and Mn in the austenite phase increases), so the holding time is lengthened. This is also an effective way to lower the M d value. However, if the retention time is 30 minutes, the equilibrium composition is almost reached.
  • C is an element that lowers the M d value, and the M d value can be lowered by increasing the amount of addition.
  • C is also an element concentrated in the austenite phase, but it is difficult to measure the concentration in the austenite phase.
  • C uses the average composition in the formula for calculating the Md value. Therefore, the holding time during annealing does not affect the M d value of the present invention.
  • S i and C r have no clear effect on the M d value.
  • these elements work on the M d value with a negative coefficient, so when these elements are viewed alone, the Md value decreases as the amount added increases.
  • austenite such as M n, Ni and Cu Since the concentration in the liquid phase decreases, the M d value may increase on the contrary.
  • the degree of influence of C r and S i varies depending on the concentration of M n, N i, Cu and other elements, and annealing conditions.
  • the M d value is determined by the chemical composition in the austenite grains.
  • the chemical composition in the austenite grains also changes depending on the austenite phase ratio. In other words, when the austenite phase ratio is low, the concentration of austenite ⁇ forming elements in the austenite ⁇ phase increases, so the M d value tends to decrease. On the other hand, when the austenite phase ratio is low, the concentration of the austenite soot formation element in the austenite phase decreases, and the Md value increases.
  • the austenite phase ratio varies with temperature.
  • the components specified in the present invention have the highest austenite phase ratio in the range of 100 to 1 1550, and the austenite phase ratio decreases when the temperature is higher or lower than that.
  • ferritic stainless steel If it is 30 or more, it is higher than ferritic stainless steel. If it is 40% or more, it is possible to machine almost the same shape as austenitic stainless steel with good workability.
  • Figure 3 shows the relationship between the austenite phase and the uniform elongation during the tensile test.
  • Uniform elongation has a suitable range for the austenite phase ratio, and even if it is too high or too low, the uniform elongation decreases.
  • the austenite phase ratio In order to ensure a uniform elongation of 30% or more, the austenite phase ratio must be 10% or more and less than 50%. Preferably, it is 15 to 40%.
  • Fig. 4 shows the relationship between the Md value and uniform elongation for data with an austenite phase ratio of 10% or more and less than 50%.
  • the M d value also has an appropriate range as well as the austenitic phase ratio.
  • the uniform elongation is as high as 3 4 to 4 4% when the M d value is in the range of 1 10 to + 1 1 0, but such a high uniform elongation is not obtained in a range outside this range.
  • the M d value alone has a large variation in uniform elongation, and other tissue factors may affect the uniform elongation.
  • C is an element that increases the volume fraction of the austenite phase and concentrates in the austenite phase to increase the stability of the austenite phase. In order to acquire the said effect, it contains 0.001% or more. However, if it exceeds 0.1%, the heat treatment temperature for dissolving C is remarkable. In addition, the sensitization is likely to occur due to grain boundary precipitation of carbides. Therefore, 0.1% or less. Preferably it is 0.05% or less.
  • Cr is an essential element for ensuring corrosion resistance
  • the lower limit is set to 17% in order to develop the corrosion resistance that is the purpose of the first knowledge.
  • it shall be 25% or less. From the viewpoint of corrosion resistance, workability and manufacturability, it is preferably 19 to 23%. More preferably, it is 20 to 22%.
  • S i may be added as a deoxidizing element. In order to acquire the said effect, it contains 0.0 1% or more. However, if it exceeds 1%, it will be difficult to ensure the corrosion resistance that is the object of the first knowledge. Therefore, it should be 1% or less. Excessive addition also leads to an increase in scouring costs. From the viewpoint of corrosion resistance and manufacturability, it is preferably 0.02 to 0.6%. More preferably, it is 0.05 to 0.2%.
  • M n is an element that increases the volume fraction of the austenite phase and concentrates in the austenite phase to increase the stability of the austenite phase. It is also an effective element as a deoxidizer. In order to obtain the above effect, 0.5% or more is contained. However, if it exceeds 3.7%, it will be difficult to ensure the corrosion resistance targeted by the first knowledge. Therefore, it should be 3.7% or less. From the viewpoint of corrosion resistance, workability and manufacturability, it is preferably 2 to 3.5%. More preferably, it is 2.5 to 3.3%.
  • N is an element that increases the volume fraction of the austenite phase and concentrates in the austenite phase to stabilize the austenite phase. It is an element that improves the pitting corrosion resistance by dissolving in the austenite phase. In order to obtain the above effect, the lower limit is made 0.06%. Only However, when 0.15% or more is added, the chromium nitride contained in the steel material exceeds 0.1% by mass, and most of the chromium nitride is precipitated at the grain boundary, thereby forming a chromium-deficient layer. Therefore, it becomes difficult to ensure the corrosion resistance that is the purpose of the first knowledge.
  • N decreases the occurrence of a single-fall or hot workability during melting. From the viewpoint of corrosion resistance, workability and manufacturability, it is preferably 0.07 to 0.14%. More preferably, it is 0.08 to 0.12%.
  • the pitting corrosion index (PI value) in a neutral chloride environment is calculated using the following formula (1).
  • Cr, Mo, N, and Mn mean the mass% of each element, and 0 is not included for the element not contained.
  • Ni is an austenite-generating element and is an effective element for securing corrosion resistance and workability, which is the purpose of the first knowledge. If added, the content should be 0.6% or more to obtain the above effect. If it exceeds 3%, the cost of raw materials will increase, and it will be difficult to obtain the effects found in the cost. Therefore, if added, it should be 3% or less. Corrosion resistance and workability From the viewpoint of economy, it is preferably 0.7 to 2.8%. More preferably, it is 0.9 to 2.0%.
  • Cu is an austenite-generating element like Mn and Ni, and is an effective element for ensuring workability mainly with the corrosion resistance targeted by the first knowledge.
  • it is an effective element for improving the corrosion resistance by compound addition with Ni.
  • Ni and Ni should be combined at 0.1% or more in order to obtain the above effect. If it exceeds 3%, the cost of raw materials will increase, and it will be difficult to obtain the effects found in the cost. Therefore, if added, it should be 3% or less. From the viewpoint of corrosion resistance, workability and economy, it is preferably 0.3 to 1%. More preferably, it is 0.4 to 0.6%.
  • Mo can be added as appropriate in order to improve the corrosion resistance. In order to obtain the above effect, 0.2% or more is preferably added. However, if it exceeds 1%, economic efficiency may be impaired. Therefore, if added, it should be 1% or less. From the point of corrosion resistance and economy, it is preferably 0.2 to 0.8%.
  • Ti and Nb can be added as appropriate in order to suppress sensitization by C and N and improve corrosion resistance. In order to acquire the said effect, it is preferable to add 0.01% or more, respectively.
  • each content should be 0.5% or less. From the viewpoint of corrosion resistance and workability, it is more preferably 0.03 to 0.3%, respectively. More preferably, they are 0.05 to 0.1%, respectively.
  • a 1 is a strong deoxidizer and can be added as appropriate. In order to obtain the above effect, 0.001% or more is preferably added. However, if it exceeds 0.2%, nitride is formed and the surface has low corrosion resistance. The following factors may occur. Therefore, if added, the content should be 0.2% or less. From the viewpoint of manufacturability and corrosion resistance, it is more preferably 0.05 to 0.1%.
  • B, Ca, and Mg can be added in a timely manner to improve hot workability.
  • it is preferable to add 0.002% or more respectively.
  • the corrosion resistance may decrease significantly. Therefore, if added, the content should be not more than 0.0 1%. From the viewpoint of hot workability and corrosion resistance, it is more preferably 0.000% to 0.05% respectively.
  • the stainless steel according to the first finding may contain P and S in the following ranges as a part of inevitable impurities in addition to the above components.
  • P and S are elements harmful to hot workability and corrosion resistance.
  • P is preferably 0.1% or less. More preferably, it is 0.05% or less.
  • An excessive decrease leads to an increase in the cost of raw materials, so the lower limit is preferably 0.05%.
  • S is preferably not more than 0.01%. More preferably, it is 0.05% or less.
  • An excessive decrease leads to an increase in the cost of raw materials, so the lower limit is preferably 0.0 0 0 5%.
  • the ferritic / austenitic stainless steel according to the first finding has the above-mentioned components and defines the volume fraction of the austenite phase (hereinafter referred to as a phase ratio) in order to improve corrosion resistance and workability. It is a thing.
  • the phase ratio can be obtained by the EBSP method as described above.
  • the EBSP method uses, for example, a microscope; Seiichi Suzuki, Vol. 39, No. 2, 1 2 1 ⁇ : I 2 4 as described in the austenite phase (fee) and ferrite phase.
  • the sample was a plate cross section, the measurement was a magnification of 500, and the step interval was 10 m.
  • the upper limit of the phase ratio was 50% or less in order to ensure the corrosion resistance targeted by the first knowledge as described above.
  • the lower limit of the phase ratio is 15% or more in order to improve the uniform elongation of the material.
  • the dispersion state of the austenite phase is not particularly specified. However, from the viewpoint of improving the uniform elongation of the material, it is not a layered structure of ferrite ⁇ Z austenite phase, but the ferrite phase is the parent phase. A form in which a less than ellipse to circular austenite phase is dispersed is preferred. More preferably, an austenite phase of less than 5 Om is dispersed.
  • Ferrite or stenitic stainless steel with the first knowledge component and the above-mentioned metal structure has a pitting corrosion potential of 0.3 V or more, which is an index of corrosion resistance, and a uniform elongation of 3 which is an index of workability. It is possible to increase from 0% to 50%, and the corrosion resistance of the neutral chloride environment equal to or better than SUS 3 0 4 and the workability much higher than SUS 4 30 LX and close to SUS 3 0 4 Obtainable.
  • the measurement conditions for pitting potential and uniform elongation are the same as described above, and are as follows.
  • the pitting corrosion potential was 30 and Vc'100 (VV.s.AGCL) was measured in a 3.5% NaC1 aqueous solution with the # 500 polished surface as the evaluation surface.
  • the measured value of pitting potential was the average value of ⁇ 3.
  • JIS 13 B tensile test a tensile specimen is taken from the rolling direction until a necking occurs at a tensile speed of 2 O mm / min (the range of the tensile speed specified in JISZ 2 24 1). The uniform elongation of was measured.
  • Ferrite austenite with the components and metal structure described above In order to exhibit the corrosion resistance and workability that are the objectives of the first knowledge, the following manufacturing conditions are preferable.
  • the hot-rolled steel material used for the production is not particularly limited as long as it has the components described above. It is preferable that the finish annealing after the cold working is heated and held at 95.degree. If it is less than 9 5 O, recrystallization of the microstructure may be insufficient. In the case of more than 1 1 5 0, the crystal grain size becomes large, and not the lamellar structure of the ferrite ⁇ Z austenite phase, but the austenite phase that is circular from the ellipse of less than 100 m with the ferrite phase as the matrix May deviate significantly from the preferred organizational structure. In addition, the phase ratio may decrease and good elongation may not be obtained. In order to obtain a preferred tissue form for the expression of corrosion resistance and workability, the range of 98 0 to 1 100 is more preferable. More preferably, it is set to 98 0 to 1 0 50.
  • the average cooling rate from the heating temperature to 200 ° C. is 3 seconds or more. If it is less than 3 / sec, the corrosion resistance decreases due to sensitization based on grain boundary precipitation of Cr nitride.
  • the upper limit of the cooling rate is not particularly specified, but in the case of gas cooling, it is about 50 seconds. In the case of water cooling, it is 3 00 to 5 0 0 / sec. When using industrial continuous annealing equipment, it is preferably 10 to 40 and Z seconds. More preferably, 25 to 35 is the second.
  • the upper limit is 6 0 0. If it is less than 200, it takes a long time to diffuse N, and it becomes difficult to obtain the above effect. Therefore, the lower limit is 2 0 0. More preferably, it is in the range of 300-55. More preferably, it is set to 4 0 0 to 5 5 0.
  • the residence time is preferably 1 minute or longer in order to obtain the above effect.
  • the upper limit is not particularly specified, but when an industrial continuous annealing facility is used, a decrease in productivity will be caused if the residence time becomes long, so 5 minutes or less is preferable. More preferably, it is 3 minutes or less.
  • the volume fraction of the austenite phase is 15 to 50% with the ferritic phase as the parent phase, and pitting corrosion in 30% and 3.5% NaC1 aqueous solution.
  • Ferrite-austenitic stainless steel with excellent corrosion resistance and workability with a uniform elongation of 30% or more in the tensile test at a potential of V c '100 0 0.3 V (VV. S. AG CL) or higher Steel can be manufactured.
  • C is an element that greatly affects the stability of the austenite phase. If added over 0.100%, the uniform elongation may decrease. In order to promote the precipitation of Cr carbide, intergranular corrosion occurs, so the upper limit was made 0.1%. From the standpoint of corrosion resistance, it is preferable to lower C. However, considering the existing equipment capacity, lowering the C content to less than 0.02% causes a large cost increase, so this was made the lower limit. . Preferably, it is 0.02 to 0.8%.
  • S i may be used as a deoxidizing element or added to improve oxidation resistance. However, addition of over 2.0% causes the material to harden and the uniform elongation decreases, so this was made the upper limit. Like Or 1.6% or less. In addition, in order to reduce S i to the minimum, the lower cost was set to 0.05 because it would increase the cost of scouring. Preferably it is 0.08%.
  • M n concentrates in the austenite phase and plays an important role in changing the stability of the austenite phase.
  • the addition of a large amount not only reduces the uniform elongation, but also reduces the corrosion resistance and hot workability, so the upper limit was made 5.0%.
  • the cost increases in the scouring process, so this was made the lower limit.
  • a lower value is preferable, and the upper limit is more preferably 3.0%.
  • P is an element inevitably mixed in, and it is difficult to reduce because it is contained in raw materials such as Cr. However, if it is contained in a large amount, the workability is lowered, so the upper limit is set.
  • the content is less than 0.050%, it is preferably as low as possible and is preferably 0.035% or less.
  • S is an element that is inevitably mixed in, and forms an inclusion by combining with Mn, which may be the starting point of eruption, so the upper limit was made less than 0.010%.
  • a lower value is preferable from the viewpoint of corrosion resistance.
  • Cr is an element necessary for ensuring corrosion resistance, and must be added in an amount of 17% or more.
  • the upper limit was set to 25% because adding a large amount would cause hot working cracks and increase the cost of the scouring process.
  • it is 17 to 2 2%.
  • N is an element that greatly affects the stability of the austenite phase.
  • it when it exists as a solid solution, it has the effect of improving the corrosion resistance, so 0.010 or more is added.
  • 0.010 or more when 0.15% is added over 0.1%, uniform elongation may be reduced, and Cr nitride is likely to precipitate, and conversely, corrosion resistance is reduced. This was the upper limit. Preferably it is 0.03 to 0.13%.
  • the following elements can be selectively added.
  • 1 is an austenite stabilizing element and is an important element for adjusting the stability of the austenite phase. Further, since it has an effect of suppressing hot working cracking, 0.1% or more may be added when these effects are exhibited. Addition in excess of 5.0% causes an increase in raw material costs, and it may be difficult to obtain a two-phase structure of austenite and ferrite. Preferably it is 3.00% or less.
  • Cu like Ni, is an austenite stabilizing element and is an important element for adjusting the stability of the austenite phase. Further, in order to improve the corrosion resistance, 0.1% or more may be added. However, addition over 5.0% promotes cracking during hot working and lowers corrosion resistance, so this was made the upper limit.
  • Mo is an element that improves corrosion resistance, it may be added selectively. Addition of 0.1% or more exhibits an effect of improving corrosion resistance, so addition of more than this is preferable. However, if it exceeds 5.00%, the uniform elongation decreases and the raw material cost increases greatly, so this was set as the upper limit.
  • Nb has the effect of preventing the weld heat-affected zone from becoming coarse, so adding 0.03% or more is necessary to achieve a good effect. You may do it. However, addition over 0.50% lowers the uniform elongation, so this was made the upper limit.
  • Ti like Nb, may be added in an amount of 0.03% or more in order to prevent the weld heat-affected zone from becoming coarse and to further solidify the solidified structure.
  • addition over 0.5% reduces the uniform elongation, so this was made the upper limit.
  • Ca may be added a little for desulfurization and deoxidation. Since the effect is exerted by adding 0.02% or more, this may be added as the lower limit. However, adding more than 0.030% tends to cause hot working cracks and lowers the corrosion resistance.
  • Mg has the effect of not only deoxidizing but also refining the solidified structure and may be added. In order to exert these effects, it is necessary to add 0.02% or more, and this may be added as the lower limit. In addition, addition of over 0.030% causes an increase in cost in the steelmaking process, so this was made the upper limit.
  • the volume fraction of the austenite phase is not less than 10% and less than 50%: As shown in the above examination results, the proportion of the austenite phase needs to be 10% or more in order to obtain good uniform elongation. Was the lower limit. Also, the higher the austenite phase ratio, the higher the uniform elongation does not become, and when it exceeds 50%, the uniform elongation decreases, so this was made the upper limit.
  • a good method for measuring the austenite phase ratio is to classify the phases using E B SP and extract only austenite grains and then measure the area ratio. At this time, the measurement range shall be 20 m x 20 m or more.
  • the reason for this is considered as follows.
  • the austenite phase undergoes processing-induced martensitic transformation during processing, contributing to an increase in uniform elongation. At this time, if the amount of transformation is small, the uniform elongation is small. The reason why the uniform elongation is low when the austenite phase ratio exceeds 50% is not clear at this stage, but it is assumed that the deformation concentrates on the ferri cocoon phase, which is softer than the austenite phase.
  • M d value calculated from the chemical composition in the austenite phase is more than 110 Upper 110 or less:
  • the properties of the austenite phase are also defined. That is, the M d value calculated from the chemical composition in the austenite phase satisfies the following formula (1).
  • the chemical composition in the austenite phase from which M d is calculated is measured by E P MA.
  • [] In the above Md calculation formula indicates the composition (mass%) in the austenite phase measured by EPMA of each element. However, since it is difficult to measure with CPM for C, C shows the average composition (wt%), not the composition in the austenite phase.
  • the M d value is less than ⁇ 10 and more than +1 10, good uniform elongation cannot be obtained.
  • the reason that the M d value affects the uniform elongation is considered as follows.
  • the M d value is an index representing the stability of the austenite phase, that is, it can be said to represent the amount of strain necessary to cause the processing-induced martensitic transformation.
  • the proportion of austenite grains with a crystal grain size of 15 m or less and a shape aspect ratio of less than 3 is 90% or more of the total number of austenite grains: Metal of austenite grains when good uniform elongation is obtained Organizational characteristics and In other words, the proportion of austenite grains that are fine grains and not stretched in the rolling direction, specifically, the crystal grain size is 15 m or less and the shape aspect ratio is less than 3. Is 90% or more of the total number of grains, and when there are many grains with a TO crystal grain size exceeding 15 ⁇ m, the uniform elongation becomes low.
  • the lower limit need not be specified, but if it is less than 1 m, the cost in the manufacturing process will increase significantly.
  • the shape of the crystal grain is also an important factor.
  • the aspect ratio of each grain is measured by observation from (the plane observed in the width direction of the plane parallel to the rolling direction), and the proportion of crystal grains with an aspect ratio of less than 3 is important. At this time, if the aspect ratio is 3 or more, the uniform elongation tends to decrease. Therefore, the aspect ratio condition specified as an organizational factor was set to less than 3. The aspect ratio is measured by dividing the length of the longest side of each grain by the length perpendicular to it. Therefore, the lower limit of the aspect ratio is 1.
  • the number of crystal grains for measuring the crystal grain size and aspect ratio shall be 100 or more. In the present invention, it became clear for the first time that the austenite grain size and grain shape affect the uniform elongation, but the reason for this is unknown at this stage. However, it has an effect on the deformation form in the austenite grains (such as dislocation density, deformation bands, and the presence or absence of twins), which is thought to change the work-induced martensitic transformation behavior.
  • Average distance between nearest austenite grains 12 m or less: Since the distance between nearest austenite grains also affects uniform elongation, the average distance should be less than 12 m. When exceeding 1 2, the uniform elongation decreases, so this was made the upper limit. The lower limit is not particularly specified.
  • the distance between closest grains is the intersection of the length center line in the rolling direction and the length center line in the thickness direction of each austenite grain, and the center position of each grain is the same. The smallest value of the distance between the grains is taken as the distance between the nearest grains of the grains. This
  • the average value of the measurement results for 100 grains or more is defined as the “average distance between nearest austenite grains”.
  • the reason why the average distance between the nearest austenite grains affects the uniform elongation is considered as follows. In the deformation process, when a strain is introduced into a certain austenite grain and a processing-induced martensitic transformation occurs, and when a certain strain is reached, the deformation spreads to the surroundings. When the distance is shorter, the processing-induced martensitic transformation propagates to several crystal grains and continuously occurs, and an extremely high uniform elongation can be obtained. This can be seen from the fact that the uniform elongation of 30% or more in the first finding can be secured in comparison with the second finding.
  • Uniform elongation is an important index representing workability in the present invention. Uniform elongation is measured in accordance with J I S Z 2 2 4 1 by taking J I S 1 No. 3 B tensile specimens parallel to the rolling direction.
  • the state of ferrite grains is not specified.
  • the crystal grain size of the ferrite phase is coarse, the above-mentioned distance between austenite grains becomes large.
  • the average particle size is desirably 25 / _im or less on average, and when the shape aspect ratio is large, the distance between the austenite grains becomes large.
  • a steel piece obtained by continuous forging is used as a hot rolled material.
  • the heating temperature T 1 before hot rolling is 1 1 5 0 and is less than 1 2 5 0. If it is less than 1 1 5 0, ear cracks occur during hot rolling, so this was set as the lower limit. Also, if the heating temperature exceeds 1250, the austenite grain size after final annealing tends to be large, and the flakes are easily deformed in the heating furnace, and flaws are likely to occur during hot rolling. This was the upper limit.
  • both the rolling reduction and the time between passes have a great influence on the recrystallization behavior.
  • the rolling reduction during hot rolling can be achieved.
  • the rate must be 30% or more, and the subsequent holding time must be 30s or more.
  • the total rolling rate of hot rolling is 96% or more. If it is less than 96%, the crystal grains after cold rolling and annealing become coarse, and the distance between austenite grains becomes large, so the uniform elongation becomes insufficient.
  • the annealing temperature of the hot-rolled sheet is between the heating temperature T 1 1 100 before hot rolling and T i:. If T 1 is lower than 1 100, the aspect ratio of the crystal grain after cold rolling and annealing becomes large, and if it is T 1 or more, the crystal grain size after cold rolling and annealing becomes coarse and the purpose is increased. The metal structure cannot be obtained, and the uniform elongation during the tensile test decreases.
  • the intermediate annealing temperature at that time needs to be T 1-10 ot: or more and T l ⁇ or less as in the case of hot-rolled sheet annealing.
  • the final annealing temperature is 10 00 0 and is 1 1 0 0 0 or less. If it is less than 1 00 0 0, the shape and aspect ratio of the austenite and ferrite grains will increase, or the Md value will fall outside the proper range and the uniform elongation will decrease. On the other hand, if it is more than 1 100, the r phase ratio decreases, the M d value falls outside the proper range, or the crystal grain size becomes too large.
  • Ferrite and austenitic stainless steels with the components shown in Table 2 were melted and hot rolled into hot rolled steel sheets with a thickness of 5.0 mm.
  • Steel No. 1 to Steel No. 20 have the components defined in the present invention.
  • Steel No. 2 1-26 is a component that deviates from the definition of the present invention.
  • These hot-rolled steel sheets were annealed and pickled, then cold-rolled to a thickness of 1 mm and subjected to finish annealing. Final annealing was also performed under conditions that deviated from the provisions of the present invention for comparison.
  • phase ratio volume fraction
  • pitting potential volume fraction
  • uniform elongation of the phase A.
  • the phase ratio was determined by the EBSP method described in 0 0 46 6.
  • the pitting potential was 30, and V ′ c 100 (Vv.s.AGCL) of the # 5 0 0 polished surface was measured in a 3.5% NaCl aqueous solution.
  • the measured value of pitting potential was the average value of n 3.
  • the uniform elongation was a value measured by taking a JIS 13 B specimen from the rolling direction and measuring a tensile speed of 20 mm (range of tensile speed specified by JIS Z 2 24 1). [Table 2]
  • Table 3 shows the relationship between the manufacturing conditions, the phase ratio of the finish-annealed sheet, and the characteristics, meaning that the underlined values are outside the scope of the present invention.
  • the cooling rate 1 is the average cooling rate from the annealing temperature to 20 0 Indicates. However, when it is retained during cooling, it indicates the average cooling rate from the annealing temperature to the temperature at which it remains.
  • Cooling speed 2 indicates the average cooling rate from the staying temperature to room temperature when staying in the middle of cooling.
  • the pitting potential V c ′ 100 was a good value.
  • Nos. 1 2 to 14 have components specified in the present invention, but deviate from the finish annealing conditions specified in the present invention, and the pitting corrosion potential and uniform elongation targeted by the present invention are obtained. It was not.
  • No. 3 6 to 4 1 are components that are outside the scope of the present invention, and even if the finish annealing defined in the present invention is performed, the target pitting potential and uniform elongation can be obtained. It was not. [Table 3]
  • Cooling speed 2 If the product stays in the middle of cooling, the average cooling rate from the staying temperature to room temperature. 1: Does not stay in the middle of cooling. It means that it is continuously cooled. The underline is not within the scope of the present invention. means. [Example 2]
  • a 1.0 mm-thick thin steel plate was produced through the steps of hot rolling, hot-rolled sheet annealing, cold rolling, and final annealing.
  • the metal structure can be changed by changing the material thickness, hot rolling heating temperature, rolling pass schedule, rolling pass time, hot rolled sheet annealing temperature, final annealing temperature and time. This time, the final annealing temperature was changed, and the annealing time was 60 seconds. From the obtained product plate, a tensile test was performed and the uniform elongation was measured.
  • phase by EBSP, investigated the grain size and shape aspect ratio, and measured the distance between the nearest grains between austenite grains. Each condition is as described above.
  • the phase ratio, M d value, XI, and X 2 of the obtained metal structure were measured, and the relationship with the uniform elongation is shown in Table 5 together with the manufacturing conditions.
  • T 1 Heating temperature before hot rolling (in)
  • ⁇ ⁇ Number of times of rolling in which the rolling is maintained for 30 s or more following the rolling having a rolling reduction of 100% or more and 100% or more in the hot rolling process.
  • X I The proportion of austenite grains with a crystal grain size of 15 X m or less and a shape aspect ratio of less than 3 in the total austenite grains
  • X 2 Average distance of each austenite grain to the nearest grain
  • M d Value calculated from the following formula from the composition in the austenite phase (average composition of C only)
  • [] is the composition (mass%) in the austenite phase
  • is the average composition (mass%).
  • Condition 1a is an example of the present invention, and extremely good uniform elongation is obtained.
  • condition 1b since T 2 does not satisfy the scope of the present invention, X 1 and X 2 are excluded from the present invention.
  • condition 1c X1 is outside the scope of the present invention because T1 does not satisfy the scope of the present invention.
  • condition 2a since R does not satisfy the scope of the present invention, X 2 deviates from the present invention.
  • Condition 2b is an example of the present invention, and extremely good uniform elongation can be obtained.
  • condition 2c T 3 does not satisfy the scope of the present invention, so the phase ratio and X 2 are out of the present invention.
  • Condition 3a does not satisfy X 1 from the present invention because T 3 does not satisfy the scope of the present invention.
  • Condition 3b is an example of the present invention, and extremely good uniform elongation was obtained. It is done.
  • Condition 3c is that X does not satisfy the scope of the present invention, and therefore X 1 is out of the present invention.
  • Condition 4a does not satisfy X 1 because R 1 and R do not satisfy the scope of the present invention.
  • Condition 4b is an example of the present invention, and extremely good uniform elongation is obtained.
  • Condition 4 c is that X 2 is out of the present invention because T 2 does not satisfy the scope of the present invention.
  • Condition 5a is an example of the present invention, and an extremely good uniform elongation is obtained.
  • Condition 5b is that T 2 and T 3 do not satisfy the scope of the present invention, so the phase ratio and X 1 are out of the present invention.
  • Condition 5c T 1 does not satisfy the scope of the present invention, so X 1 is out of the present invention.
  • condition 6a X does not satisfy the scope of the present invention, so X 2 is out of the present invention.
  • Condition 6b is an example of the present invention, and extremely good uniform elongation can be obtained.
  • condition 6c T 2 and T 3 do not satisfy the scope of the present invention, so M d and X 2 are out of the present invention.
  • Condition 7a does not satisfy X 1 from the present invention because T 3 does not satisfy the scope of the present invention.
  • Condition 7b is an example of the present invention, and extremely good uniform elongation is obtained.
  • Condition 7 c is that X does not satisfy the scope of the present invention, and therefore X 1 is out of the present invention.
  • Condition 8a does not satisfy the scope of the present invention because T1, N, R and T3 do not satisfy the scope of the present invention, so 7 "phase ratio, Md and X2 deviate from the present invention.
  • Condition 8b is an example of the present invention and is extremely good.
  • condition 8c since T 2 does not satisfy the present invention range, X 1 and X 2 are out of the present invention.
  • Condition 9a is an example of the present invention, and an extremely good uniform elongation is obtained.
  • Condition 9b does not satisfy X 1 because T 2 does not satisfy the scope of the present invention.
  • condition 9c since T 1 does not satisfy the scope of the present invention, X 1 and X 2 are excluded from the present invention.
  • Condition 1 0 a is that R does not satisfy the scope of the present invention. Deviate. Condition 10 b is an example of the present invention, and extremely good uniform elongation is obtained. Condition 10 c does not satisfy the scope of the present invention because T 3 does not satisfy the scope of the present invention, so that M d and X 2 are excluded from the present invention.
  • condition 1 1 a T 3 does not satisfy the scope of the present invention, so the phase ratio and X 1 are outside the scope of the present invention.
  • Condition 11b is an example of the present invention, and an extremely good uniform elongation is obtained.
  • Condition 1 1 c is that X does not satisfy the scope of the present invention, and therefore, X I deviates from the present invention.
  • Condition 1 2 a is that X 1 is not included in the present invention because T 1 and N do not satisfy the scope of the present invention.
  • Condition 1 2 b is an example of the present invention, and a very good uniform elongation is obtained.
  • Condition 1 2 c does not satisfy X 1 and X 2 because T 2 does not satisfy the scope of the present invention.
  • Condition 13a is an example of the present invention, and extremely good uniform elongation is obtained.
  • Condition 1 3 b does not satisfy X 1 and X 2 because T 2 does not satisfy the scope of the present invention.
  • condition 13c T1 and N do not satisfy the scope of the present invention, so XI is not included in the present invention.
  • Condition 14a is an example of the present invention, and extremely good uniform elongation is obtained.
  • T1 does not satisfy the scope of the present invention, so XI and X2 are outside the scope of the present invention.
  • condition 14 c T 1 does not satisfy the scope of the present invention, and therefore X I falls outside the scope of the present invention.
  • any of the phase ratio, M d value, X I, or X 2 does not satisfy the condition, and the uniform elongation is low.
  • the steel composition and the phase ratio are defined, By controlling the finish annealing conditions, in a neutral chloride environment
  • Ferrite-austenitic stainless steel with corrosion resistance and workability superior to that of SUS304 can be manufactured.
  • a ferritic / austenitic stainless steel sheet excellent in workability, particularly uniform elongation can be obtained without containing a large amount of Ni.
  • Parts that previously used austenitic stainless steel sheets containing a large amount of Ni can be used for a wide range of Ni resources. This will greatly contribute to the global environment in terms of saving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、低Ni化を指向したフェライト・オーステナイト系ステンレス鋼において、耐食性、特に中性塩化物環境での耐食性に優れ、かつ加工性を支配する因子である「均一伸び」の高いフェライト・オーステナイト系ステンレス鋼およびその製造方法に関するものである。 中性塩化物環境での耐食性に対しては、PI値(=Cr+3Mo+10N-Mn)が18%超を満足し、均一伸び性に対しては、-10≦Md≦110(ここでMd=551-462({C}+[N])-9.2[Si]-8.1[Mn]-13.7[Cr]-29[Ni]―29[Cu]-18.5[Mo]、 [ ]はオーステナイト相中の組成(質量%)、{ }は平均組成(質量%))を満足するフェライト・オーステナイト系ステンレス鋼およびその製造方法を個別に提供する。

Description

明 細 書 耐食性と加工性に優れたフェライ ト · オーステナイ ト系ステンレス 鋼およびその製造方法 技術分野
本発明は、 耐食性と加工性に優れたフェライ 卜 . ォーステナイ 卜 系ステンレス 及びその製造方法に関する。 本発明によれば、 高価 かつ希少な元表である N i を多量に含有することなく耐食性と加工 性に優れたフェライ 卜 • ォ一ステナイ ト系ステンレス鋼を製造する ことができるため、 資源保護ならびに環境保全に貢献しうるものと 考えられる。 背景技術
ステンレス鋼を大きく分類するとォ —ステナイ 卜系ステンレス鋼
、 フェラィ 卜系ステンレス鋼、 2相 (フェライ 卜 · オーステナイ 卜 ) 系ステンレス鋼に分けられる。 ォ一ステナイ 卜系ステンレス鋼は
、 高価な N i を 7 %以上含有し、 加工性に優れた鋼種が多い。 フエ ライ 卜系ステンレス鋼は N i をほとんど含有せず、 一般的に加工性 はオーステナイ 卜系ステンレス鋼に比ベてかなり低い。 一方、 2相 (フェライ ト · オーステナイ ト) 系ステンレス鋼は、 N i 含有量が 比較的少なく、 加工性、 耐食性などにおいてオーステナイ ト系ステ ンレス鋼とフェライ ト系ステンレス鋼の中間的な位置づけを持つ鋼 種が多いとされている。
近年、 精鍊技術の向上により極低炭素 · 窒素化が可能となり、 T i や N bなどの安定化元素の添加により、 耐食性と加工性を高めた フェライ ト系ステンレス鋼は広範囲の分野へ適用されつつある。 そ の大きな要因は、 フェライ ト系ステンレス鋼が多量の N i を含有す るオーステナイ ト系ステンレス鋼より も経済性に優れるためである 。 しかしながら、 フェライ ト系ステンレス鋼は、 オーステナイ ト系 ステンレス鋼と比較して加工性、 特に材料の伸び、 均一伸びという 点で大きく劣る。
そ で、 上記オーステナイ 卜系とフエライ ト系の中間に位 する 才ーステナイ 卜 · フエライ 卜系ステンレス鋼が、 近年、 注目されて きた 従来、 S U S 3 2 9 J 4 Lに代表されるォーステナイ • フ ェラィ 卜系ステンレス鋼は、 5 %を超える N i を含有し、 更に N 1 より希少で高価な M oを数%含有するため、 普及性と経済性のハ占、ヽで 依然として問題がある。
この問題に対応するものとして、 M oを選択添加元素とし、 N i 量を、 特開平 1 1 — 0 7 1 6 4 3号公報には 0. 1 %超 1 %未満、 WOZ 0 2 Z 2 7 0 5 6号公報には 0. 5 %以上 1. 7 %以下に制 約するオーステナイ ト · フェライ ト系ステンレス鋼が開示されてい しれらォ ―ステナイ 卜 • フエフィ 卜糸スアンレス鋼は、 低 N i 化を指向するために、 0. 1 %を超える Nを含有し 、 かつ M n量を 実質的に 3. 7 %超としている
特開 2 0 0 6 - 1 6 9 6 2 2号公報と特開 2 0 0 6 - 1 8 3 1 2
9号公報には 、 全伸びや深絞り性の向上を意図して 、 実質的に N i 量を 3 %以下に制約し、 ォ一ステナイ 卜相中の C + Nや成分バラン スを調整したォーステナイ h • フェライ 卜系ステンレス鋼が開示さ れてい また 、 特開平 1 0 ― 2 1 9 4 0 7号公報には、 実質的に
N量を 0. 0 6 %末 1¾とし 、 フェライ ト相を母相として残留オース テナイ 卜相を 2 0 %未満含む延性に優れたフェライ 卜系ステンレス 鋼が開示されている。
加工性の観点から見てみると、 これらの特許文献には、 フェライ 卜 · オーステナイ ト系ステンレス鋼の延性を向上するための知見は 存在するが、 それらは、 いずれも引張破断伸びを向上させるための 手法である。 破断伸びは、 均一伸びと局部伸びからなるため、 局部 伸びを増加させることで破断伸びが増加する場合も考えられる。 し かし均一伸びが増加しなければ、 実際の加工性は向上しない。 上記 の技術においては実際の加工において重要な均一伸びを向上させる 手法については一切記載がない。
例えば、 特開平 1 0 — 2 1 9 4 0 7号公報では主構成相がフェラ イ ト相であり、 残留オーステナイ ト相を含有するステンレス鋼を用 いて、 T R I P現象によって引張破断伸びを高めた技術が記載され ている。 特開平 1 1 — 0 7 1 6 4 3号公報ではオーステナイ ト相の 安定性を規定し、 引張伸びを高める方法が述べられている。 特開 2 0 0 6 — 1 6 9 6 2 2号公報においてはオーステナイ ト相の分率な らびにオーステナイ ト相中の C N量を規定し、 引張試験における 全伸びを高める技術が示されている。
しかし、 特開平 1 0 — 2 1 9 4 0 7号公報では、 実施例に示され るように引張破断伸びの値が 3 4 4 2 %と必ずしも破断伸びが高 くはない。 また芙際の成形加工においては鋼板が破断して 「割れ」 が発生していな < とも板厚減少 (ネッキング) が生じた時点で加工 不可と判断する とが多い。 すなわち引張試験における 「破断伸び
」 より、 均一亦
久形限界である 「均一伸び」 が加工性を決めるが、 均 一伸びについてはどの程度のレベルにあるのか不明である。 特開平
1 1 - 0 7 1 6 4 3号公報においては引張破断伸びが最大 4 6 %ま で、 また特開 2 0 0 6 — 1 6 9 6 2 2号公報においては実施例で最 大 7 1 %までの破断伸びが記載されているが、 これらの文献におい ても実際の加工性を支配する均一伸びについては一切記載されてい ない。 次に、 耐食性の観点で見てみる。 特開 2 0 0 6 — 2 0 0 0 3 5号 公報と特開 2 0 0 6 — 2 3 3 3 0 8号公報には、 特開 2 0 0 6 — 1 6 9 6 2 2号公報および特開 2 0 0 6 - 1 8 3 1 2 9号公報と類似 のオーステナイ 卜 · フェライ 卜系ステンレス鋼の耐隙間部腐食性お よび耐粒界腐食性の改善について開示されている。 特開 2 0 0 6 -
2 0 0 0 3 5号公報には、 M n量を 2 %未満に制約し、 0. 5 %超 の N i 量を添加したオーステナイ ト · フェライ ト系ステンレス鋼の 、 海岸環境暴露試験での隙間部腐食の抑制について、 記載されてい る。
他方、 特開 2 0 0 6 — 2 3 3 3 0 8号公報には、 M n量を 2 %超 4 %未満として実質的に N i 量が 0. 6 %未満のオーステナイ ト · フェライ ト系ステンレス鋼で、 硫酸 · 硫酸銅溶液中で沸騰させた後 の粒界割れの抑制について記載されている。
特開平 5— 2 4 7 5 9 4号公報には、 臨海環境下での耐候性を改 善した二相ステンレス鋼が開示されている。 この二相ステンレス鋼 は、 実質的に 4 %を超える M n量、 あるいは 4 %未満の M n量で 3 %を超える N i 量を含むものである。
上述したいずれの公報にも、 最も一般的に使用される孔食電位な どに代表される中性塩化物環境における耐食性について、 何ら示唆 する記述がない。 言い換えると、 低 N i 化を指向したフェライ ト - オーステナイ 卜系ステンレス鋼において、 中性塩化物環境で S U S
3 0 4と同等以上の耐食性を具備し、 加工性に優れた鋼の成分なら びにその製造方法については明らかにされていないと言える。 発明の開示
本発明は、 上記従来技術の現状に鑑み、 低 N i 化を指向したフエ ライ ト · オーステナイ ト系ステンレス鋼において、 耐食性、 特に中 性塩化物環境での耐食性に優れ、 かつ加工性を支配する因子である 「均一伸び」 の高いフェライ 卜 · オーステナイ ト系ステンレス鋼お よびその製造方法を提供することを課題とするものである。
本発明者らは上記課題を解決すべく鋭意研究し、 その結果、 鋼の 成分と金属組織、 特にフェライ ト相とオーステナイ ト相の相バラン スを規定し、 そして焼鈍条件等の製造条件をコン トロールすること により、 中性塩化物環境で S U S 3 0 4と同等以上の耐食性を具備 し、 優れた均一伸び性を具備する、 耐食性と加工性に優れたフェラ ィ ト · オーステナイ ト系ステンレス鋼が得られることを見出して、 本発明を完成した。
その発明の要旨は、 以下の通りである。
( 1 ) 質量%にて、
C : 0. 0 0 1〜 0. 1 %、
C r : 1 7〜 2 5 %、
S i : 0. 0 1〜 : L %、
M n : 0. 5〜 3. 7 %、
N : 0. 0 6 %以上、 0. 1 5 %未満を含有し、
下記式 (a) で示される耐孔食指数 (P I値) が 1 8 %超を満足し 、 残部が F eおよび不可避的不純物からなり、 フェライ ト相を母相 としてオーステナイ ト相の体積分率が 1 5〜 5 0 %であることを特 徴とする耐食性と加工性に優れたフェライ 卜 · オーステナィ ト系ス テンレス鋼。
耐孔食指数 ( P I値) = C r + 3 M o + 1 0 N -M n - · ' (a)
( 2 ) 前記鋼が、 さ らに質量%にて、 N i : 0. 6〜 3 %、 C u : 0. :!〜 3 %の 2種を含有していることを特徴とする ( 1 ) に記 載の耐食性と加工性に優れたフェライ ト · オーステナイ ト系ステン レス s¾。 ( 3 ) 前記鋼が、 さ らに質量%にて、
M o : 1 %以下、
N b : 0. 5 %以下、
T 1 : 0. 5 %以下、
A 1 : 0. 1 %以下、
B : 0. 0 1 %以下、
C a : 0. 0 1 %以下、
M g : 0. 0 1 %以下
の 1種または 2種以上含有していることを特徴とする ( 1 ) または ( 2 ) に記載の耐食性と加工性に優れたフェライ ト · オーステナイ 卜系ステンレス鋼。
( 4 ) 3 0で、 3. 5 % N a C 1 水溶液中の孔食電位 V c ' 1 0 0が 0. 3 V ( V V . s . AG C L) 以上であることを特徴とする
( 1 ) から ( 3 ) のいずれかに記載の耐食性と加工性に優れたフエ ライ 卜 · オーステナイ 卜系ステンレス鋼。
( 5 ) ( 1 ) から ( 3 ) のいずれかに記載の鋼成分を有するステ ンレス鋼塊を熱間鍛造あるいは熱間圧延により熱延鋼材とし、 熱延 鋼材の焼鈍を行った後、 冷間加工と焼鈍を繰り返す鋼材の製造方法 において、 仕上げ焼鈍を 9 5 0〜 1 1 5 0でに加熱 · 保持し、 加熱 温度から 2 0 0 までの平均冷却速度を 3で 秒以上とし、 フェラ ィ ト相を母相としてオーステナイ ト相の体積分率を 1 5〜 5 0 %と することを特徴とする耐食性と加工性に優れたフェライ 卜 · オース テナイ 卜系ステンレス鋼の製造方法。
( 6 ) ( 1.) から ( 3 ) のいずれかに記載の鋼成分を有するステ ンレス鋼塊を熱間鍛造あるいは熱間圧延により熱延鋼材とし、 熱延 鋼材の焼鈍を行った後、 冷間加工と焼鈍を繰り返す鋼材の製造方法 において、 仕上げ焼鈍で 9 5 0〜 1 1 5 0でに加熱 · 保持した後、 6 0 0でまでの平均冷却速度を 3で/秒以上とし、 2 0 0〜 6 0 0 での温度域にて 1分以上滞留した後、 滞留した温度から室温までの 平均冷却速度を 3 秒以上とし、 フェライ ト相を母相としてォ一 ステナイ ト相の体積分率を 1 5〜 5 0 %とすることを特徴とする耐 食性と加工性に優れたフェライ 卜 · オーステナイ ト系ステンレス鋼 の製造方法。
( 7 ) フェライ ト相を母相としてオーステナイ ト相の体積分率を 1 5〜 5 0 %とし、 かつ、 3 0 t:、 3. 5 % N a C l 水溶液中の孔 食電位 V c ' 1 0 0 を 0. 3 V ( V V . s . A G C L) 以上とする ことを特徴とする ( 5 ) または ( 6 ) に記載の耐食性と加工性に優 れたフェライ ト · オーステナイ ト系ステンレス鋼の製造方法。
( 8 ) オーステナイ ト相の体積分率が 1 0 %以上 5 0 %未満であ り、 オーステナイ ト相中の化学組成より計算される M d値が下記 ( b) 式を満足し、 圧延幅方向に垂直な断面において結晶粒径が 1 5 m以下かつ形状ァスぺク 卜比が 3未満であるオーステナイ ト粒の 割合が全オーステナイ ト粒数の 9 0 %以上を占め、 また同断面にお いて最近接のオーステナイ ト粒間の平均距離が 1 2 /x m以下である ことを特徴とする加工性に優れたフェライ ト · オーステナイ ト系ス テンレス鋼。
- 1 0≤ d≤ 1 1 0 - - - (b)
(こ こで M d = 5 5 1 — 4 6 2 ( { C } + [N] ) — 9. 2 [ S i ] — 8. 1 [M n ] - 1 3. 7 [ C r ] - 2 9 [N i ] — 2 9 [ C u ] — 1 8. 5 [M o ] 、 [ ] はオーステナイ ト相中の組成 ( 質量%) 、 { } は平均組成 (質量%) )
( 9 ) 質量%で、
C : 0. 0 0 2〜 0. 1 %、
S i : 0. 0 5〜 2 %、 M n : 0. 0 5〜 5 %、
P : 0. 0 5 %未満、
S : 0. 0 1 %未満、
C r : 1 7〜 2 5 %、
N : 0. 0 1〜 0. 1 5 %、
を含有し、 残部が鉄及び不可避的不純物からなることを特徴とする ( 8 ) 記載の加工性に優れたフェライ ト · オーステナイ ト系ステン レス鋼。
( 1 0 ) 質量%で、
N i : 5 %以下、
C u : 5 %以下
o : 5 %以下
の 1種または 2種以上を含有することを特徴とする ( 8 ) または ( 9 ) 記載の加工性に優れたフェライ ト · オーステナイ ト系ステンレ ス鋼
( 1 1 ) 質量%で、
N b : 0. 5 %以下、
T i : 0. 5 %以下、
の 1種または 2種を含有することを特徴とする ( 8 ) 乃至 ( 1 0 ) のいずれかに記載の加工性に優れたフェライ ト · オーステナイ ト系 ス "ンレス鋼。
( 1 2 ) 質量%で、
C a : 0. 0 0 3 %以下、
M g : 0. 0 0 3 %以下、
の 1種または 2種を含有することを特徴とする ( 8 ) 乃至 ( 1 1 ) のいずれかに記載の加工性に優れたフェライ ト · オーステナイ ト系 ステンレス鋼。 ( 1 3 ) ( 8 ) 乃至 ( 1 2 ) のいずれかに記載の成分の鋼を連 続铸造し、 得られた鋼片を熱間圧延前に 1 1 5 0 以上 1 2 5 0 未満の加熱温度 T 1 (で) にて加熱後、 1 0 0 0 以上で 3 0 %以 上の圧下率を有する圧下に引き続いて 3 0 s以上保持する圧延を 1 パス以上実施し、 熱間圧延の総圧延率 9 6 %以上として得られた熱 延板を T 1 一 1 0 0 以上 T 1 以下の温度で焼鈍して、 しかる後 に冷延を実施し、 中間焼鈍を実施し、 または実施することなく、 最 終焼鈍を 1 0 0 0 t:〜 1 1 0 0でにて実施することを特徴とする加 ェ性に優れたフェライ 卜 · オーステナイ ト系ステンレス鋼の製造方 法。 図面の簡単な説明
図 1 は、 鋼 N o . 1の仕上げ焼鈍の冷却速度と孔食電位の関係を 示す図である。
図 2は、 E B S P測定結果を B C C相及び F C C相に分類した図 で、 ( a ) は B C C相を、 ( b ) は F C C相を、 それぞれ白色表示 で示す図である。
図 3は、 ァ相率と均一伸び (U — E L ) の関係を示す図である。 図 4は、 M d値と均一伸び ( u— E L) の関係を示す図である。 図 5は、 結晶粒径が 1 5 m以下かつ形状アスペク ト比が 3未満 のオーステナイ ト粒が全オーステナイ ト粒に占める割合 (X I ) と 均一伸び (u— E L) の関係を示す図である。
図 6は、 各オーステナイ ト粒の最近接粒との距離の平均値 (X 2
) と均一伸び ( u— E L) の関係を示す図である。 発明を実施するための最良の形態
本発明者らは、 低 N i 化を指向したフェライ ト · オーステナィ ト 系ステンレス鋼の耐食性と加工性に及ぼす成分と相バランスならび に仕上げ焼鈍条件の影響について鋭意研究を行った。
その結果、 まず、 第一の知見として、 耐食性の観点から、 中性塩 化物環境で S U S 3 0 4と同等以上である 3 0で、 3. 5 % N a C 1 水溶液中の孔食電位 V c ' 1 0 0が 0. 3 V ( V V . s . A G C L) 以上の耐食性を具備し、 優れた材料の伸び、 特に、 引張試験に おける均一伸びが 3 0 %以上の優れた均一伸びを具備する、 耐食性 と加工性に優れたフェライ ト · オーステナイ ト系ステンレス鋼を得 ることができることを見出した。
更に、 第二の知見として、 加工性の観点から、 オーステナイ ト粒 の具備すべき条件が ( 1 ) 結晶粒径が小さ く、 その形状が球形に近 く (圧延方向に展伸していない) 、 ( 2 ) 最近接のオーステナイ ト 粒との間隔が狭く、 更に ( 3 ) オーステナイ ト相中の化学組成から 計算されるオーステナイ 卜安定度 (Md値) が適正範囲にあることで 、 耐食性と加工性に優れたフェライ 卜 · オーステナイ ト系ステンレ ス鋼を得ることができることを見出し、 本発明を完成させた。
まず、 前記第一の知見について説明する。
本発明者らは、 低 N i 化を指向したフェライ ト · オーステナイ ト 系ステンレス鋼の耐食性と加工性に及ぼす成分と相バランスならび に耐食性に及ぼす仕上げ焼鈍条件の影響について鋭意研究を行い、 本発明を完成させた。 以下にその代表的な実験結果について説明す る。
表 1 に成分を示すフェライ ト · オーステナイ ト系ステンレス鋼を 真空溶解して得たステンレス鋼塊を熱間圧延し、 5 mm厚の熱延板 を製造した。 熱延板焼鈍は 1 0 0 0でで行い、 酸洗後に冷間圧延し て l mm厚の冷延板を作製した。 冷延板焼鈍は 1 0 0 0でで実施し 、 冷却は強制風冷により 1 0 0 0でから 2 0 0でまでの平均冷却速 度を 3 5〜 4 0で 秒の範囲とした。 冷延焼鈍板は、 オーステナイ ト (ァ) 相の体積分率測定、 孔食電位の測定、 J I S 1 3 B引張試 験に供した。 比較材として l mm厚の S U S 3 0 4および極低 C、 N化した S U S 4 3 0 L Xを用いた。 なお、 M nを比較的多く含有 する本鋼の耐孔食指数 (P I値) は C r + 3 M o + 1 0 N— M n ( %) により計算した。
ァ相の体積分率 (以下、 ァ相率と記載する) は、 板断面において E B S P法により f c c と b e cの結晶構造を同定する相マップの 測定により求めた。 孔食電位は、 3 0 、 3. 5 % N a C l 水溶液 中で # 5 0 0研磨面を評価面として V c ' 1 0 0 ( V V . s . A G C L) を測定した。 孔食電位の測定値は n 3の平均値とした。 J I S 1 3 B引張試験は、 圧延方向から引張試片を採取し、 引張速度 2 O mmZ分 ( J I S Z 2 2 4 1で規定する引張速度の範囲) で くびれが生じるまでの均一伸びを測定した。
表 1 には、 鋼成分に加えて、 上述したァ相率、 V c ' 1 0 0、 均 一伸びの測定結果を示している。 表 1から明らかなように、 鋼 N o . 1 は、 孔食電位 0. 3 8 V、 均一伸び 3 5 %であり、 中性塩化物 環境で S U S 3 0 4と同等以上の耐食性を有し、 極低 C、 N化によ り加工性を高めた S U S 4 3 O L Xと比較して均一伸びは大幅に向 上している。
一方、 鋼 N o . 2〜 6は、 S U S 4 3 0 L Xより十分高い均一伸 びを有するものの、 孔食電位は S U S 4 3 0 L Xと同等以下であり S U S 3 0 4と比較して大きく劣る。 孔食電位の劣化した鋼の成分 は、 ( i ) S i 量が 1 %超と高レ (鋼 N o . 2 ) 、 ( i i ) M n量 が 3. 8 %と高い (鋼 N o . 3 ) 、 ( i i i ) N量が 0. 1 5 %と 高い (鋼 N o . 4 ) 、 ( i V) 耐孔食指数 (P I値) が 1 8 %未満 (鋼 N o . 5 ) 、 (V) N量が 0. 1 6 %と高くかつァ相率が 5 0 %超である (鋼 N o . 6 ) という特徴を持つ。
【表 1 】
Figure imgf000014_0001
Vv. s. AGCL 一 ;添加なし SUS430LX; 0.3%Ti含有 図 1 は、 鋼 N o . 1 において、 仕上げ焼鈍の冷却速度と孔食電位 の関係を示している。 S U S 3 0 4と同等以上の孔食電位 ( 0. 3 V以上) を得るには、 冷却速度を 3で 秒以上に制約する必要があ る。 更に、 図中の黒丸で示すように 5 0 0 °Cで 1分間滞留する冷却 方法を実施したものは、 滞留なしに冷却速度 5 t:ノ秒で連続的に冷 却した場合より高い孔食電位を有するという特徴を持つ。
前記実験結果を説明するために、 光学顕微鏡、 S E M (走査型電 子顕微鏡) 、 T E M (透過型電子顕微鏡) を用いた詳細な組織解析 を行った。
先ず、 板断面を樹脂に埋め込み研磨した後、 赤血塩溶液 (商標名 : 村上試薬) でエッチングして更にシユウ酸電解エッチングを施し て光学顕微鏡観察に供した。 赤血塩溶液にてエッチングすると、 フ エライ ト相は灰色、 オーステナイ ト相は白色で判別することができ. る。 更に、 シユウ酸電解エッチングすると、 鋭敏化している場合に は粒界腐食が確認できる。 次に、 同試料を S E M— E D S分析によ り、 フェライ ト相とオーステナイ ト相における金属元素の分析を行 つた。 最後に、 同試料を抽出レプリカ T E M法により析出物を同定 した。
ァ相の体積分率は、 板断面において E B S P法により f c c と b c cの結晶構造を同定する相マツプの測定方法での詳細な組織解析 、 及び、 3 0で、 3. 5 % N a C l 水溶液中で # 5 0 0研磨面を評 価面として V c ' 1 0 0 ( V V . s . A G C L) を測定する孔食電 位の測定方法 (なお、 孔食電位の測定値は n 3の平均値とした) 、 並びに、 J I S 1 3 B引張試験により、 圧延方向から引張試片を採 取し、 引張速度 2 0 mm 分 ( J I S Z 2 2 4 1で規定する引 張速度の範囲) でくびれが生じるまでの均一伸びを測定する方法を 実施した結果、 前記した表 1および図 1の実験結果を説明する下記 の知見を得るに至った。
( a ) 鋼 N o . 2、 4、 6のフェライ ト粒界ならびにフェライ ト • オーステナイ 卜粒界には、 鋭敏化による粒界腐食が確認された。 更に、 結晶粒界には、 C r窒化物の析出が観察された。 従って、 孔 食電位の低下は、 C r窒化物の析出に伴う鋭敏化に起因すると解釈 できる。 すなわち、 S i 量 ( 1 %超) あるいは N量 ( 0. 1 5 %以 上) を高めると、 結晶粒界への C r窒化物の析出感受性が高くなり 、 孔食電位は耐孔食指数の P I値に相反して低くなる。
( b ) 1値に関係する。 1"量ゃ¥ 11量は、 フェライ ト相とォ一 ステナイ ト相において分配が異なる。 例えば、 鋼 N o . 1、 2、 4 、 6の場合、 C r量はフェライ ト相で 2 2〜 2 3 %、 オーステナイ ト相で 1 8〜 : L 9 %、 一方、 M n量はフェライ ト相で約 3 %、 ォ一 ステナイ ト相で約 4 %であった。 鋼 N o . 4と 6は、 同程度の N量 にもかかわらず、 N o . 6の孔食電位は低位である。 これら孔食電 位の低下は、 前記 ( a ) で述べた鋭敏化に加えて、 C r量が低く、 M n量の高いァ相率が 5 0 %超と多いことも関与していると推察す る。 すなわち、 C r量が低く、 M n量の高いオーステナイ ト相を多 く生成させると、 耐食性に劣る可能性が示唆される。
( c ) 鋼 N o . 3には、 他の鋼と比較して長辺 5 mを超える大 きい M n系硫化物が散在した。 これより、 孔食電位の低下は、 M n 量が高い ( 3. 8 %) ことで生成した比較的大きい M n系硫化物が 孔食の起点として作用したと考えられる。
( d ) 鋼 N o . 1 と 5は、 前記した鋭敏化や比較的大きい M n系 硫化物のいずれも確認されなかった。 従って、 鋼 N o . 5の孔食電 位の低下は、 P I値の低い (< 1 8 %) ことに起因するところが大 きいものと考えられる。
( e ) 鋼 N o . 1の孔食電位は、 図 1で示したように冷却速度の 低下により小さくなる。 冷却速度 5 秒以下の場合、 シユウ酸電 解エッチングで明瞭な粒界腐食を確認するには至らないまでも、 T E M観察において結晶粒界に僅かな C r窒化物の存在が見出された 。 これより、 孔食電位の低下には C r窒化物の析出が関与している と考えられる。
( f ) 鋼 N o . 1の孔食電位は、 図 1 の黒丸で示したように連続 的に冷却するよりも 5 0 0 で一旦滞留した方が向上している。 5 0 0 で滞留させた場合、 前記 ( e ) で述べた C r窒化物の存在が 見られなかった。 このことは、 フェライ ト · オーステナイ ト粒界近 傍において過飽和に存在する Nが、 5 0 0 °Cの滞留時に固溶限の大 きいオーステナイ ト粒へ拡散することにより C r窒化物の析出を抑 制したものと推察する。
( g ) 加工性の指標となる材料の均一伸びは、 表 1から明らかな ようにァ相率の増加とともに上昇する傾向にある。 但し、 5 0 %を 超えるァ相率の場合、 S U S 3 0 4に匹敵する高い均一伸びが得ら れるものの、 ( b ) 項で述べたように耐食性の低下が著しい。 2 0 〜 3 5 %のァ相率の場合、 金属組織は、 フェライ ト相を母相として 楕円から円形のオーステナイ 卜相が満遍なく分散する形態となる。 このようにオーステナイ ト相が分散した金属組織は、 通常 S U S 3 2 9 J 4 Lなどの二相ステンレス鋼で見られるフェライ ト オース テナイ ト相の層状組織と比較して高い均一伸びが得られる。
前記 ( 1 ) 〜 ( 7 ) の発明は、 第一の知見である上記 ( a ) 〜 ( g ) の知見に基づいて完成されたものである。
次に、 第二の知見について説明する。
本発明者らは、 前記の課題に対し、 均一伸びを支配する金属組織 因子を調査するために実験室にて種々のフェライ ト · オーステナイ ト系ステンレス鋼を溶製し、 熱間圧延後、 焼鈍および冷間圧延を実 施して薄鋼板を製造した。 得られた薄鋼板の金属組織と引張試験後 の均一伸びとの関係を調査した結果、 均一伸びが高い鋼種における オーステナイ ト粒の特徴に関する以下の知見を得た。
( h ) 結晶粒径が小さく、 その形状が球形に近い (圧延方向に展 伸していない) 。
( i ) 最近接のオーステナイ ト粒の間隔が狭い。
( j ) オーステナイ ト相中の化学組成から計算されるオーステナ ィ ト安定度に適正値がある。
その詳細について説明する。
まず、 0. 0 0 6〜 0. 0 3 0 % C、 0. 1 0〜 0. 8 5 % S i 、 1. 0〜 3. 0 % η , 0. 0 2 2〜 0. 0 3 9 % P、 0. 0 0 0 2〜 0. 0 0 3 5 % S、 2 0. 1〜 2 1. 0 % C r、 0. 0 8〜 0. 1 2 % Nの組成を有する 1 0鋼種を溶製後、 熱間圧延した後に 、 焼鈍と冷間圧延によって薄鋼板を製造するに当り、 熱間圧延条件 、 焼鈍温度等の製造条件を変化させた。 得られた l mm厚の薄鋼板 より圧延方向に平行に J I S I 3号 B引張試験片を採取し、 J I S Z 2 2 4 1 に準拠した方法で均一伸びを測定した。 引張速度は 1 O mmZ分とした。 また薄鋼板の圧延幅方向中心位置の圧延幅方 向に垂直な断面 (L断面) の金属組織を E B S Pにより調査し、 相 の同定を行った。 E B S Pより得られたデ一夕を結晶粒ごとにフエ ライ ト粒 (B C C相) およびオーステナイ ト粒 (F C C相) に分類 し、 まずオーステナイ ト相率を測定した。 また隣接する測定点にお ける結晶方位差が 1 5 ° 以上の箇所については結晶粒界とみなして 黒線で示した。 測定例を図 2に示す。 図 2 ( a ) は B C C相を、 図 2 ( b ) は F C C相を、 それぞれ白色表示で示す図である。
さらに、 オーステナイ ト粒 ( F C C相) の各粒の結晶粒径及びァ スぺク ト比を測定し、 またオーステナイ ト粒に関しては最近接粒間 距離を測定した。 最近接粒間距離は各オーステナイ ト粒の中心位置 同士の距離で最も小さな値をその粒の最近接粒間距離とした。 各結 晶粒の中心位置は、 粒の圧延方向長さを L、 板厚方向長さを Hとし たときに、 1 2 かつ 1ノ 2 Hの位置を結晶粒の中心位置とした 。 各オーステナイ ト粒 1 0 0個について各々の最近接粒間距離を測 定し、 それらの平均値を求めた。
また、 E P MAを用いてオーステナィ 卜粒内の化学組成を調査し た。 得られた化学組成よりオーステナイ ト相の安定度の指標として M d値を計算した。 ここで M dは下式 ( 2 ) により計算されるォー ステナイ 卜安定度を表す指標である。 本計算式の係数は、 野原らの 式 (鉄と鋼 6 3 ( 1 9 7 7 ) p . 7 7 2参照) を参考にした。 式中 の [ ] は各元素の E P MAで測定された組成を示す。 ただし、 C についてはオーステナイ ト相中の定量が E P MAで困難であるため 、 平均組成 { } を示す。 ここで言う 「平均組成」 とは、 相によら ず鋼中に含まれる平均的な組成を表し、 J I S G 1 2 1 1 に記 載されている燃焼一赤外線吸光法により求める。
M d = 5 5 1 - 4 6 2 ( { C } + [N] ) - 9 . 2 [ S i ] 一 8
. 1 [M n ] - 1 3 . 7 [ C r ] - 2 9 [N i ] - 2 9 [ C u ] 一
1 8 . 5 [M o ] ( 2 )
M d値はォーステナイ ト粒内の化学組成によつて決定される。 したがつてオーステナイ ト粒内の化学組成を例えば焼鈍温度や焼鈍 時間等で変えることで M d値を調整することがでさる。
N 、 C u、 N i 、 M nはオーステナィ 卜相中に濃化する、 すなわ ちフェライ ト相中の濃度よりオーステナイ 卜相中の濃度のほうが高 ぃ兀素であるため、 これらは添加 を増やすことで M d値を低下さ せることができる。 また通常、 ォ一ステナイ ト相の組成はその焼鈍 温度で決まる平衡組成にはなっていない。 これは各元素がある焼鈍 温度でオーステナイ 卜相及びフエラィ ト相へ分配するための拡散に 時間を要するためである。 したがづて最終焼鈍工程において保持時 間を長くすることにより平衡組成に近づく (N、 C u、 N i 、 M n のオーステナイ ト相中の濃度が高まる) ため、 保持時間を長時間化 することも M d値を低下させるのに有効な方法である。 但し、 保持 時間は 3 0分もあればほぼ平衡組成に達する。
Cは M d値を下げる元素であり、 添加量を増やすことで M d値を 低下させることができる。 また Cもオーステナイ ト相中へ濃化する 元素であるが、 オーステナイ ト相中の濃度測定が困難であり、 本願 発明では M d値の計算式では Cは平均組成を用いている。 したがつ て焼鈍時の保定時間は本願発明の M d値には影響しない。
S i 、 C r は M d値への影響は明確には言えない。 すなわち、 こ れらの元素は M d値へマイナスの係数で効いてく るため、 これらの 元素を単独で見た場合、 添加量が多い方が M d値が低下する。 しか し、 S i 、 C r量が高い場合、 M n、 N i 、 C u等のオーステナイ 卜相中の濃度が低下するため、 M d値が逆に増加する場合もある。 M n 、 N i 、 C uやその他の元素の濃度、 焼鈍条件によって C r 、 S iの影響度合いは変化する。
前述のように M d値はオーステナイ ト粒内の化学組成によって決 定される。 オーステナイ ト粒内の化学組成はオーステナイ 卜相率に よっても変化する。 すなわちオーステナイ ト相率が低い時にはォー ステナイ 卜相中のオーステナイ 卜生成元素の濃度が高くなるため、 M d値は低下する傾向にある。 一方、 オーステナイ ト相率が低いと さにはオース.テナイ ト相中のオーステナイ 卜生成元素の濃度は低く なるため、 M d値は上昇する。 またオーステナイ 卜相率は温度によ て変化する。 本願発明で規定する成分では 1 0 0 0 〜 1 1 5 0 で最もオーステナイ ト相率が高く、 それより温度が高かつたり低 かつたりするとオーステナイ 卜相率が減少する。
また 、 均一伸びの絶対値は高いほど加工性は高いが、 均一伸びが
3 0 以上あればフェライ ト系ステンレス鋼に比ベて高いレベルで あ Ό 、 4 0 %以上あれば良加工性のオーステナイ 卜系ステンレス鋼 とほぼ同形状の加工が可能である。
まず、 全デ一夕についてオーステナイ ト相の体積分率 (オーステ ナイ ト相率) と均一伸びの関係を調査した。 オーステナイ ト相と引 張試験時の均一伸びとの関係を図 3に示す。
均一伸びはオーステナイ 卜相率に対して適性範囲を持ち、 これが 高すぎても低すぎても均一伸びは低下する。 均一伸び 3 0 %以上を 確保するためにはオーステナイ ト相率は 1 0 %以上 5 0 %未満とす る必要がある。 好ましくは 1 5 〜 4 0 %である。
次にオーステナイ 卜相率が 1 0 %以上 5 0 %未満のデータについ て M d値と均一伸びの関係を図 4に示す。 良好な均一伸びを得るた めには M d値もオーステナィ 卜相率と同様に適正な範囲が存在する 。 M d値が一 1 0から + 1 1 0の範囲で均一伸びが 3 4〜 4 4 %と 高い値を示すが、 これを外れる範囲ではこのような高い均一伸びは 得られない。 但し、 M d値だけでは均一伸びのばらつきが大きく、 これ以外の組織因子も均一伸びへ影響を与えることが考えられる。 オーステナイ ト粒の結晶粒径及びその形状が均一伸びに影響する と考えられたため、 図 4の M d値が— 1 0から + 1 1 0のデータに ついて、 「結晶粒径が 1 5 m以下かつ形状ァスぺク ト比が 3未満 のオーステナイ ト粒が全オーステナイ ト粒に占める割合」 X I (% ) を測定し、 均一伸び u— E L (%) との関係を調査した。 その結 果を図 5に示す。 図 5に示すように、 この割合が高いほど均一伸び は高い傾向を示し、 割合が 9 0 %以上のときに更に良好な均一伸び が得られる。
さらに、 図 5中の均一伸びが 3 7 %以上のデータを抽出して、 前 述のように測定したオーステナイ ト粒の最近接粒との平均距離 X 2 ( m) と均一伸び u— E L ( % ) の関係を図 6に示す。 最近接粒 との距離の平均値が短いほど均一伸びは増加し、 1 2 m以下のと きに均一伸びが極めて高くなる。
前記 ( 8 ) 〜 ( 1 3 ) の発明は、 以上説明したように第二の知見 である ( h ) 〜 ( j ) の知見に基づいて完成されたものである。
以下、 本発明の各要件について詳しく説明する。 なお、 各元素の 含有量の 「%」 表示は 「質量%」 を意味する。
まず、 第一の知見に係る成分、 金属組織および製造条件の限定理 由を以下に説明する。
Cは、 オーステナイ ト相の体積分率を高めると共に、 オーステナ ィ 卜相中に濃化して、 オーステナイ 卜相の安定度を高める元素であ る。 上記効果を得るためには、 0. 0 0 1 %以上含有させる。 しか し、 0. 1 %を超えると、 Cを固溶させるための熱処理温度が著し く高くなるとともに、 炭化物の粒界析出による鋭敏化を生じやすく なる。 そのため、 0. 1 %以下とする。 好ましく は 0. 0 5 %以下 である。
C rは、 耐食性を確保する必須元素であり、 第一の知見の目的と する耐食性を発現させるために下限は 1 7 %とする。 しかし、 2 5 %を超えると、 靭性の低下、 伸びの低下が生じるとともに、 鋼中に オーステナイ ト相を生成させることが困難になる。 そのため、 2 5 %以下とする。 耐食性と加工性ならびに製造性の点から、 好ましく は、 1 9〜 2 3 %である。 より好ましく は、 2 0〜 2 2 %である。
S i は、 脱酸元素として添加される場合がある。 上記効果を得る ためには、 0. 0 1 %以上含有させる。 しかし、 1 %を超えると、 第一の知見の目的とする耐食性を確保することが困難になる。 その ため、 1 %以下とする。 過度の添加は精練コス トの増加にも繋がる 。 耐食性と製造性の点から、 好ましく は、 0. 0 2〜 0. 6 %であ る。 より好ましくは、 0. 0 5〜 0. 2 %である。
M nは、 オーステナイ ト相の体積分率を高めると共に、 オーステ ナイ ト相中に濃化して、 オーステナイ ト相の安定度を高める元素で ある。 また、 脱酸剤としても有効な元素である。 上記効果を得るた めには、 0. 5 %以上含有させる。 しかし、 3. 7 %を超えると、 第一の知見の目的とする耐食性を確保することが困難になる。 その ため、 3. 7 %以下とする。 耐食性や加工性ならびに製造性の点か ら、 好ましく は、 2〜 3. 5 %である。 より好ましく は、 2. 5〜 3. 3 %である。
Nは、 Cと同様に、 オーステナイ ト相の体積分率を高めると共に 、 オーステナイ ト相中に濃化して、 オーステナィ 卜相を安定化する 元素である。 また、 オーステナイ ト相に固溶して耐孔食性を高める 元素である。 上記効果を得るために下限は 0. 0 6 %とする。 しか し、 0. 1 5 %以上添加すると、 鋼材に含まれるクロム窒化物が、 0. 1質量%を超え、 そのクロム窒化物のほとんどが結晶粒界に析 出して、 クロム欠乏層を形成する要因となるため、 第一の知見の目 的とする耐食性を確保することが困難になる。
そのため、 0. 1 5 %未満とする。 また、 Nの添加は溶解時のブ 口一フォール発生や熱間加工性を低下させる。 耐食性や加工性なら びに製造性の点から、 好ましく は、 0. 0 7〜 0. 1 4 %である。 より好ましく は、 0. 0 8〜 0. 1 2 %である。
中性塩化物環境における耐孔食指数 (P I値) は、 以下の式 ( 1 ) により計算する。
耐孔食指数 ( P I値) = C r + 3 M o + 1 0 N -M n ( % )
( 1 ) なお、 上記式中の C r、 M o、 N、 M nは夫々の元素の質量%を 意味し、 含有されていない元素は 0 とする。
例えば、 「ステンレス鋼便覧第 3版」 、 p . 6 2 2、 ステンレス 協会編 に記述されているように、 C r に対する M oの係数は 3倍 、 C r に対する Nの係数は 1 0倍を採用した。
M nの C r に対する係数は、 例えば、 材料とプロセス、 v o l . 1 8 ( 2 0 0 5 ) 、 6 0 7 に記述されている— 1 を用いた。 第一 の知見の目的とする中性塩化物環境で S U S 3 0 4と同等以上の耐 食性を具備するためには、 C r + 3 M o + 1 0 N— M n〉 1 8 ( % ) とする。 好ましく は、 1 9 %以上とする。
N i は、 オーステナイ ト生成元素であり、 第一の知見の目的とす る耐食性や加工性の確保に有効な元素である。 添加する場合は、 上 記効果を得るために 0. 6 %以上とする。 3 %を超えると、 原料コ ス トの上昇を招く他、 コス トに見当たった効果を得ることが困難で ある。 そのため、 添加する場合は 3 %以下とする。 耐食性や加工性 ならびに経済性の点から、 好ましく は、 0. 7〜 2. 8 %である。 より好ましくは、 0. 9〜 2. 0 %である。
C uは、 M n、 N i と同様にオーステナイ ト生成元素であり、 第 一の知見の目的とする耐食性を主体にして加工性の確保に有効な元 素である。 特に、 N i と複合添加して耐食性を向上させるのに有効 な元素である。 添加する場合は、 N i と複合添加として、 上記効果 を得るために 0. 1 %以上とする。 3 %を超えると、 原料コス トの 上昇を招く他、 コス トに見当たった効果を得ることが困難である。 そのため、 添加する場合は 3 %以下とする。 耐食性や加工性ならび に経済性の点から、 好ましく は、 0. 3〜 1 %である。 より好まし く は、 0. 4〜 0. 6 %である。
M oは、 耐食性を向上させるために適宜添加することができる。 上記効果を得るためには、 0. 2 %以上添加することが好ましい。 しかし、 1 %を超えると、 経済性を損なう場合がある。 そのため、 添加する場合は 1 %以下とする。 耐食性と経済性の点から、 好まし く は、 0. 2〜 0. 8 %である。
T i と N bは、 Cや Nによる鋭敏化を抑制して耐食性を向上させ るために適宜添加することができる。 上記効果を得るためには、 夫 々 0. 0 1 %以上添加することが好ましい。
しかし、 0. 5 %を超えると、 経済性を損なう他、 オーステナイ 卜相率の低下とフェライ ト相の硬質化により加工性を損なう場合が ある。 そのため、 添加する場合は夫々 0. 5 %以下とする。 耐食性 と加工性の点から、 より好ましく は、 夫々 0. 0 3〜 0. 3 %であ る。 さ らに好ましくは、 夫々 0. 0 5〜 0. 1 %である。
A 1 は、 強力な脱酸剤であり、 適宜添加することができる。 上記 効果を得るためには、 0. 0 0 1 %以上添加することが好ましい。 しかし、 0. 2 %を超えると、 窒化物を形成して表面疵ゃ耐食性低 下の要因となる場合がある。 そのため、 添加する場合は 0. 2 %以 下とする。 製造性や耐食性の点から、 より好ましく は 0. 0 0 5〜 0. 1 %である。
B、 C a、 M gは、 熱間加工性を向上させるために適時添加する ことができる。 上記効果を得るためには、 夫々 0. 0 0 0 2 %以上 添加することが好ましい。 しかし、 夫々 0. 0 1 %を超えると、 耐 食性が著しく低下する場合がある。 そのため、 添加する場合は夫々 0. 0 1 %以下とする。 熱間加工性と耐食性の点から、 より好まし くは夫々 0. 0 0 0 5〜 0. 0 0 5 %である。
さ らに、 第一の知見に係るステンレス鋼は、 上記の成分以外に、 不可避的不純物の一部として P、 Sを下記の範囲で含有してもよい 。 P、 Sは、 熱間加工性や耐食性に有害な元素である。 Pは、 0. 1 %以下とするのが好ましい。 より好ましく は 0. 0 5 %以下であ る。 過度の低下は、 精鍊ゃ原材料コス トの増加を招くため下限は 0 . 0 0 5 %が好ましい。 Sは、 0. 0 1 %以下とするのが好ましい 。 より好ましく は 0. 0 0 5 %以下である。 過度の低下は、 精鍊ゃ 原材料コス 卜の増加を招くため下限は 0. 0 0 0 5 %が好ましい。 次に金属組織に関する限定理由を述べる。 第一の知見に係るフエ ライ ト · オーステナイ ト系ステンレス鋼は、 前記した成分を有し、 耐食性と加工性を向上させるために、 オーステナイ ト相の体積分率 (以下、 ァ相率) を規定したものである。
ァ相率は、 前記で述べたように、 E B S P法により求めることが できる。 E B S P法は、 例えば、 顕微鏡 ; 鈴木清一、 V o l . 3 9 、 N o . 2、 1 2 1〜 : I 2 4に記載されているように、 オーステナ イ ト相 ( f e e ) とフェライ ト相 ( b c c ) の結晶系データを指定 し、 相毎に色づけした相分布マップを表示する。 これにより、 ォ一 ステナイ ト相の分散状態を把握し、 ァ相率を求めることが出来る。 試料は板断面、 測定は倍率 5 0 0、 ステップ間隔は 1 0 mとした ァ相率の上限は、 前記したように第一の知見の目的とする耐食性 を確保するために、 5 0 %以下とする。 ァ相率の下限は、 材料の均 一伸びを向上させるために、 1 5 %以上とする。
好ましくは 2 0 %以上である。 耐食性と伸びの点か.ら、 より好ま しくは 3 0〜 4 0 %の範囲である。
オーステナイ ト相の分散状態は、 特に規定するものではないが、 材料の均一伸びを向上させる点から、 フェライ 卜 Zオーステナイ ト 相の層状組織ではなく、 フェライ ト相を母相として 1 0 0 ; m未満 の楕円から円形のオーステナイ 卜相が分散している形態が好ましい 。 より好ましく は、 5 O m未満のオーステナイ ト相が分散してい るものとする。
第一の知見の成分と前記した金属組織を有するフェライ ト · ォー ステナイ ト系ステンレス鋼は、 耐食性の指標である孔食電位が 0. 3 V以上、 加工性の指標となる均一伸びは 3 0 %以上から 5 0 %に まで高めることが可能となり、 S U S 3 0 4と同等以上の中性塩化 物環境の耐食性と、 S U S 4 3 0 L Xより大幅に高く S U S 3 0 4 に近い加工性を得ることができる。 孔食電位と均一伸びの測定条件 は前記したものと同様で、 次のとおりである。 孔食電位は、 3 0で 、 3. 5 % N a C 1 水溶液中で # 5 0 0研磨面を評価面として V c ' 1 0 0 ( V V . s . A G C L ) を測定した。 孔食電位の測定値は η 3の平均値とした。 均一伸びについては、 J I S 1 3 B引張試験 は、 圧延方向から引張試片を採取し、 引張速度 2 O mm/分 ( J I S Z 2 2 4 1で規定する引張速度の範囲) でくびれが生じるま での均一伸びを測定した。
以上説明した成分と金属組織を有するフェライ ト · オーステナイ ト系ステンレス鋼において、 第一の知見の目的とする耐食性と加工 性を発現するためには、 以下の製造条件が好ましい。
本製造に供する熱延鋼材は、 前述した成分を有していれば、 特に 限定するものではない。 冷間加工後の仕上げ焼鈍は、 9 5 0〜 1 1 5 0 に加熱 ' 保持することが好ましい。 9 5 O :未満の場合、 加 ェ組織の再結晶が不十分となる場合がある。 1 1 5 0 超の場合、 結晶粒径が大きくなり、 フェライ 卜 Zオーステナイ ト相の層状組織 ではなく、 フェライ ト相を母相として 1 0 0 m未満の楕円から円 形のオーステナイ ト相が分散している好ましい組織形態から大きく 逸脱する場合がある。 また、 ァ相率が減少して良好な伸びが得られ なくなる場合がある。 耐食性や加工性の発現に好ましい組織形態と するために、 より好ましく は 9 8 0〜 1 1 0 0での範囲とする。 さ らに好ましく は 9 8 0〜 1 0 5 0でとする。
仕上げ焼鈍後の冷却は、 加熱温度から 2 0 0 °Cまでの平均冷却速 度を 3で 秒以上とすることが好ましい。 3で/秒未満の場合、 C r窒化物の粒界析出に基づく鋭敏化により耐食性が低下する。 冷却 速度の上限は、 特に規定するものではないが、 ガス冷却の場合 5 0 で 秒く らいである。 水冷の場合は 3 0 0〜 5 0 0 /秒である。 工業的な連続焼鈍設備を使用する場合、 好ましくは 1 0〜 4 0で Z 秒とする。 より好ましく は 2 5〜 3 5で 秒とする。
前記仕上げ焼鈍の冷却過程において、 2 0 0〜 6 0 0 の温度域 にて 1分以上滞留させることが好ましい。 この温度域での滞留時に 結晶粒界近傍に過飽和に存在する Nが固溶限の大きいオーステナイ ト相へ拡散して固溶することにより、 孔食電位の低下を招く C r窒 化物の粒界析出を抑制する。 すなわち、 鋭敏化による耐食性の低下 を抑制することができる。
滞留温度は高いほど Nの拡散に有効であるが、 6 0 0 を超える と、 C r炭窒化物の粒界析出を促進させる。 そのため、 上限は 6 0 0 とする。 2 0 0 未満になると、 Nの拡散に長時間を要し、 前 記効果を得るのが困難となる。 従って、 下限は 2 0 0 とする。 よ り好ましくは、 3 0 0〜 5 5 0 の範囲とする。 さらに好ましくは 4 0 0〜 5 5 0 とする。
滞留時間は、 前記効果を得るために 1分以上とすることが好まし い。 上限は特に規定するものではないが、 工業的な連続焼鈍設備を 使用する場合は、 滞留時間が長時間となると生産性の低下を招くの で、 5分以下が好ましい。 より好ましくは 3分以下とする。
以上の製造方法によれば、 フェライ ト相を母相としてオーステナ イ ト相の体積分率が 1 5〜 5 0 %で、 かつ、 3 0 、 3. 5 % N a C 1 水溶液中の孔食電位 V c ' 1 0 0カ 0. 3 V ( V V . s . AG C L ) 以上で、 引張試験における均一伸びが 3 0 %以上である耐 食性と加工性に優れたフェライ ト · オーステナイ ト系ステンレス 鋼を製造することができる。
次に、 第二の知見に係る成分、 金属組織および製造条件の限定理 由を以下に説明する。
Cはオーステナイ ト相の安定度に大きな影響を及ぼす元素である 。 0. 1 0 0 %超の添加をすると均一伸びが低下する場合がある。 また C r炭化物の析出を促進するために粒界腐食の発生をもたらす ため、 0. 1 0 0 %を上限とした。 また耐食性の点から Cは低くす るほうが好ましいが、 現存の設備能力を考慮すると C量を 0. 0 0 2 %未満に低下させるには大きなコス ト増加を招くため、 これを下 限とした。 好ましくは、 0. 0 0 2〜 0. 8 %である。
S i は脱酸元素として使われたり、 耐酸化性向上のために添加さ れたりする場合がある。 しかし、 2. 0 0 %超の添加は材料の硬質 化をもたらし、 均一伸びが低下するため、 これを上限とした。 好ま しくは 1. 6 %以下である。 また S i を極低減するためには精鍊時 のコス ト増加を招くため、 下限を 0. 0 5 とした。 好ましくは 0. 0 8 %である。
M nはオーステナイ ト相に濃化し、 オーステナイ ト相の安定度を 変化させるのに重要な役割を持つ。 しかし多量の添加は均一伸びが 低下するばかりでなく、 耐食性や熱間加工性の低下をもたらすため 、 上限を 5. 0 0 %とした。 0. 0 5 %未満とするには精鍊工程に おけるコス トの増加を招くため、 これを下限とした。 耐食性の点か らは低い方が好ましく上限は 3. 0 0 %とすることがさらに望まし い。 また、 さらに上限を 2. 8 0 %とすることが望ましい。
Pは不可避的に混入する元素であり、 また C rなどの原料に含有 されているため、 低減することが困難であるが、 多量に含有した場 合には加工性を低下させるため、 上限を 0. 0 5 0 %未満としたが 、 低いほど好ましく 0. 0 3 5 %以下とすることが好ましい。
Sは不可避的に混入する元素であり、 M nと結合して介在物をつ く り、 発銹の基点となる場合があるため、 上限を 0. 0 1 0 %未満 とした。 低いほど耐食性からは好ましいため、 0. 0 0 2 0 %以下 とすることが望ましい。
C rは耐食性を確保するために必要な元素であり、 1 7 %以上の 添加が必要である。 しかし、 多量の添加は熱間加工割れをもたらし たり、 精練工程のコス ト増加につながるため、 上限を 2 5 %とした 。 好ましくは 1 7〜 2 2 %である。
Nは Cと同様にオーステナイ ト相の安定度に大きな影響を及ぼす 元素である。 また固溶して存在した場合に耐食性を向上させる効果 を持っため、 0. 0 1 0以上添加することとする。 但し、 0. 1 5 0 %超添加した場合は均一伸びが低下する場合が認められるほか、 C r窒化物が析出しやすくなつて逆に耐食性の低下をもたらすため 、 これを上限とした。 好ましくは 0. 0 3〜 0. 1 3 %である。 また、 選択的に下記元素を添加することができる。
1 はオーステナイ ト安定化元素であり、 オーステナイ ト相の安 定度を調整するために重要な元素である。 また熱間加工割れを抑制 する効果を持っため、 これらの効果を発揮させる場合に 0. 1 0 % 以上添加しても良い。 5. 0 0 %を超える添加は、 原料コス トの増 加をもたらし、 またオーステナイ ト、 フェライ トの 2相組織得るこ とが困難になる場合があるため、 これを上限とした。 好ましくは 3 . 0 0 %以下である。
C uも N i 同様、 オーステナイ ト安定化元素であり、 オーステナ ィ ト相の安定度を調整するために重要な元素である。 また耐食性を 向上する効果を持っため、 0. 1 0 %以上添加しても良い。 ただし 、 5. 0 0 %を超える添加は熱間加工時の割れを促進し、 また耐食 性を低下させるため、 これを上限とした。
M oは耐食性を向上させる元素であるため、 選択的に添加しても 良い。 0. 1 0 %以上の添加により、 耐食性向上効果が発揮される ため、 これ以上添加することが好ましい。 ただし、 5. 0 0 %を超 えると均一伸びが低下し、 原料コス トが大きく増加するため、 これ を上限とした。
N bは溶接熱影響部の粗大化を防止する効果があるため、 添加し ても良い効果を発揮するためには 0. 0 3 %以上の添加が必要であ るため、 これを下限として添加しても良い。 ただし、 0. 5 0 %超 の添加は均一伸びを低下させるため、 これを上限とした。
T i も N b同様、 溶接熱影響部の粗大化を防止したり、 さらには 凝固組織を微細等軸晶化するため、 0. 0 3 %以上添加しても良い 。 ただし、 0. 5 0 %超の添加は均一伸びを低下させるため、 これ を上限とした。 C aは脱硫、 脱酸のために若干添加されることがある。 0 . 0 0 0 2 %以上の添加で効果が発揮されるため、 これを下限として添加 しても良い。 但し、 0 . 0 0 3 0 %超の添加によって熱間加工割れ が生じやすくなり、 また耐食性が低下するため、 これを上限とした
M gは、 脱酸だけでなく、 凝固組織を微細化する効果を持ち、 添 加される場合がある。 これらの効果を発揮するためには、 0 . 0 0 0 2 %以上の添加が必要であり、 これを下限として添加しても良い 。 また 0 . 0 0 3 0 %超の添加は製鋼工程でのコス ト増加をもたら すため、 これを上限とした。
次に金属組織に関する限定理由を述べる。
オーステナイ ト相の体積分率が 1 0 %以上 5 0 %未満 : 前述の検 討結果のように良好な均一伸びを得るためにはオーステナイ ト相の 割合が 1 0 %以上必要であるため、 これを下限とした。 またオース テナイ ト相率は高いほど均一伸びが高くなるわけではなく、 5 0 % を超えると逆に均一伸びを低下させるためこれを上限とした。 ォー ステナイ ト相率の測定は、 E B S Pを用いて相を分類し、 オーステ ナイ ト粒のみを抽出してからその面積率を測定する方法が良い。 こ のとき測定範囲は 2 0 0 m X 2 0 0 m以上とする。 本発明にお いてオーステナイ ト相率が加工性 (均一伸び) の指標として重要で ある力 この理由については次のように考えている。 オーステナイ ト相は加工途中に加工誘起マルテンサイ ト変態を生じ、 均一伸びの 増加に寄与する。 このときにその変態量が少ないと均一伸びが少な くなる。 またオーステナイ ト相率が 5 0 %を超える場合に均一伸び が低い原因は現段階では明らかではないが、 オーステナイ ト相に比 ベて軟質なフェライ 卜相に変形が集中するためと推察される。
オーステナイ ト相中の化学組成より計算される M d値が一 1 0以 上 1 1 0以下 : 本発明においてはオーステナイ ト相の性質について も規定される。 すなわち、 オーステナイ ト相中の化学組成より計算 される M d値が下記 ( 1 ) 式を満足することを特徴とする。
- 1 0≤Μ ά≤ 1 1 0 · · · ( 1 )
(ここで M d = 5 5 1 — 4 6 2 ( { C } + [N] ) — 9. 2 [ S i ] - 8. 1 [M n ] — 1 3. 7 [ C r ] - 2 9 [N i ] — 2 9 [ C u ] - 1 8. 5 [M o ] 、 [ ] はオーステナイ ト相中の組成 (質量%) 、 { } は平均組成 (質量%) )
M dの計算の基となるオーステナイ ト相中の化学組成は E P MA により測定される。 上記の M d計算式における [ ] は各元素の E P MAで測定されたオーステナイ ト相中の組成 (質量%) を示す。 ただし、 Cについては E P M Aでの測定が困難であるため、 ォー ステナイ ト相中の組成でなく、 平均組成 (重量%) を示す。 M d値 がー 1 0未満及び + 1 1 0超の場合は良好な均一伸びが得られない ため、 これを下限及び上限とした。 M d値が均一伸びに影響を及ぼ す原因は次のように考えられる。 M d値はオーステナイ ト相の安定 度を表す指標であり、 すなわち加工誘起マルテンサイ 卜変態を生じ るために必要な歪量を表すと言える。 この歪量が小さすぎると加工 初期段階で加工誘起マルテンサイ ト変態が完了し、 加工可否に重要 な加工後期段階で十分な延性が保てない。 また上記歪量が大きすぎ る場合には、 その歪量に達する前に均一変形が完了して加工誘起マ ルテンサイ ト変態を有効に活用できないことになる。 したがって加 ェ途中に加工誘起マルテンサイ ト変態が生じるような適正な M d値 範囲が存在する。
結晶粒径が 1 5 m以下かつ形状アスペク ト比が 3未満であるォ ーステナイ ト粒の割合が全オーステナイ ト粒数の 9 0 %以上 : 良好 な均一伸びが得られるときのオーステナイ ト粒の金属組織的特徴と しては、 細粒かつ圧延方向に展伸していない とであり、 具体的に は結晶粒径が 1 5 m以下かつ形状ァスぺク 卜比が 3未満であるォ ーステナイ ト粒の割合が全ォ一ステナイ 卜粒数の 9 0 %以上である TO晶粒径が 1 5 ^ m超の結晶粒が多い場合には均一伸びが低くな るため、 これを上限とした。 また下限は特に規定する必要はないが 1 m以下とするには製造ェ程におけるコス 卜が大きく増加する ため 、 下限は とすることが望ましい。
また結晶粒の形状も重要な因子であり、 本発明においては L断面
(圧延方向に平行な面を板幅方向から観察した面) からの観察によ り、 各粒のアスペク ト比を測定し、 アスペク ト比が 3未満の結晶粒 の割合が重要となる。 このとき、 アスペク ト比が 3以上であると均 一伸びが低下する傾向にあるため、 組織因子として規定するァスぺ ク ト比条件を 3未満とした。 アスペク ト比の測定方法は、 各粒の最 長辺の長さをそれに直交する長さで除した値とする。 したがってァ スぺク ト比の下限は 1 となる。 結晶粒径及びアスペク ト比を測定す る結晶粒数は 1 0 0個以上とする。 本発明においてはオーステナイ ト粒径および粒形が均一伸びに影響を与えることがはじめて明らか となったが、 この理由については現段階では不明である。 しかし、 オーステナイ ト粒内の変形形態 (転位密度、 変形帯や双晶の有無な ど) に影響を及ぼし、 これが加工誘起マルテンサイ ト変態挙動を変 化させたと考えられる。
最近接のオーステナイ 卜粒間の平均距離が 1 2 m以下 : 最近接 のオーステナイ ト粒間距離も均一伸びに影響を及ぼすため、 その平 均距離を 1 2 m以下とする。 1 2 を超えると均一伸びが低下 するためこれを上限とした。 また下限については特に規定しない。 最近接粒間距離は各オーステナイ ト粒の圧延方向長さ中心線と板厚 方向長さ中心線の交点を結晶粒の中心位置とし、 各粒の中心位置同 士の距離で最も小さな値をその粒の最近接粒間距離とする。 これを
1 0 0結晶粒以上について測定した結果の平均値をもって 「最近接 のオーステナイ ト粒間の平均距離」 と定義する。 最近接のオーステ ナイ ト粒間の平均距離が均一伸びに影響を与える原因としては次の ように考えている。 変形過程において、 あるオーステナイ ト粒に歪 が導入されて、 加工誘起マルテンサイ ト変態が生じ、 ある程度の歪 に達したときに、 変形が周囲に広がっていく過程を考えると、 ォー ステナイ ト粒間距離が短いほうが、 加工誘起マルテンサイ ト変態が 、 幾つかの結晶粒に伝播して、 継続的に生じて、 極めて高い均一伸 び性を得ることができる。 それは、 第一の知見での均一伸び性が 3 0 %以上を確保しているのに比較し、 第二の知見では、 更に高い 4 0 %以上を確保できることからわかる。
なお均一伸びは本発明において加工性を代表する重要な指標であ る。 均一伸びの測定は J I S 1 3号 B引張試験片を圧延方向に平行 に採取し、 J I S Z 2 2 4 1 に準拠した方法で行う。
なお、 第二の知見においてフェライ ト粒の状態は特に規定しない が、 フェライ ト相の結晶粒径が粗大である場合には、 上述のオース テナイ ト粒間距離が大きくなることになるので、 結晶粒径は平均で 2 5 /_i m以下が望ましく、 また形状アスペク ト比が大きい場合もォ ーステナイ ト粒間距離が大きくなることになるので 3未満であるこ とが望ましい。
前述のように極めて良好な均一伸びを得るためには金属組織を制 御する必要があるが、 そのような金属組織は化学組成のみで得られ るものではない。 第二の知見の目的とする加工性、 特に均一伸び性 と耐食性を発現するためには、 以下の製造条件が好ましい。
熱間圧延素材としては連続铸造により得られた鋼片を用いる。 熱 間圧延前の加熱温度 T 1 は 1 1 5 0で以上 1 2 5 0で未満とする。 1 1 5 0 未満であると熱間圧延中に耳割れが生じてく るため、 こ れを下限とした。 また加熱温度が 1 2 5 0 超とした場合、 最終焼 鈍後のオーステナイ ト粒径が大きくなりやすいため、 また加熱炉内 で辋片が変形したり、 熱延時に疵が生じやすくなるため、 これを上 限とした。
また熱間圧延途中には、 1 0 0 0 以上で 3 0 %以上の圧下率を 有する圧下に引き続いて 3 0 s 以上保持するような圧延を 1 パス以 上実施することとする。 良好な均一伸びを得るための金属組織とす るには熱間圧延途中に再結晶を活用した細粒化工程が必要となる。 フェライ ト · オーステナイ ト系ステンレス鋼において熱間再結晶を 生じさせるには、 この圧下工程が必要となる。 圧延温度が 1 0 0 0 で未満の場合には 1パス 3 0 %以上の圧下後に 3 0 s 以上の保持を 実施しても冷延焼鈍後の金属組織においてオーステナイ ト粒径が粗 大となり、 引張試験時の均一伸びが不十分となる。 また圧下率とパ ス間時間はいずれも再結晶挙動に大きな影響を与えるが、 冷延焼鈍 後に微細かつァスぺク ト比の小さいオーステナイ ト粒を得るために は、 熱間圧延時の圧下率は 3 0 %以上でその後の保持時間を 3 0 s 以上とする必要がある。
さ らに熱間圧延の総圧延率は 9 6 %以上とする。 9 6 %未満の場 合には冷間圧延、 焼鈍後の結晶粒が粗大になったり、 またオーステ ナイ ト粒間の距離が大きくなつたりするため、 均一伸びが不十分と なる。 熱延板の焼鈍温度は、 熱間圧延前の加熱温度 T 1 一 1 0 0で から T i :の間で実施することとする。 T 1 一 1 0 0 より低い場 合には冷延、 焼鈍後の結晶粒のアスペク ト比が大きくなり、 また T 1 以上の場合には冷延、 焼鈍後の結晶粒径が粗大化して目的の金 属組織が得られず、 引張試験時の均一伸びが低下する。
また冷延、 焼鈍を繰り返し実施する、 いわゆる 2回冷延を実施し ても良い。 その際の中間焼鈍温度は熱延板焼鈍と同じように T 1 - 1 0 ot:以上 T l ^以下とする必要がある。
また最終焼鈍温度は 1 0 0 0で以上 1 1 0 0 以下で実施する。 1 0 0 0で未満の場合にはオーステナイ ト及びフェライ ト粒の形状 ァスぺク ト比が大きくなつたり、 M d値が適正範囲を外れて均一伸 びが低下するためである。 また 1 1 0 0で超の場合は、 r相率が低 下したり、 M d値が適正範囲を外れたり、 結晶粒径が大きくなりす ぎたりする。
以下に、 第一の知見に係る実施例について述べる。
【実施例 1 】
表 2 に成分を示すフェライ ト · オーステナィ ト系ステンレス 2 5 0 mm厚铸片を溶製し、 熱間圧延を行い板厚 5. 0 mmの熱延鋼板 とした。 鋼 N o . 1〜鋼 N o . 2 0は、 本発明で規定する成分を有 するものである。 鋼 N o . 2 1〜 2 6は、 本発明の規定から外れる 成分である。 これら熱延鋼板を焼鈍 · 酸洗した後、 1 mm厚に冷間 圧延し、 仕上げ焼鈍を実施した。 仕上げ焼鈍は、 比較のために本発 明の規定から外れる条件でも実施した。
得られた冷延焼鈍板から、 各種試験片を採取して、 ァ相の体積率 (ァ相率) 、 孔食電位、 均一伸びを評価した。 ァ相率は、 0 0 4 6 項に記載する E B S P法により求めた。 孔食電位は、 3 0で、 3. 5 % N a C l 水溶液中で # 5 0 0研磨面の V ' c 1 0 0 ( V v . s . A G C L) を測定した。 孔食電位の測定値は n 3の平均値とした 。 均一伸びは、 圧延方向から J I S 1 3 B試験片を採取し、 引張速 度 2 0 mmノ分 ( J I S Z 2 2 4 1で規定する引張速度の範囲 ) で測定した値とした。 【表 2】
Figure imgf000037_0001
一 :添加していないことを意味する
下線は、 本発明の規定から外れるものを意味する 製造条件と仕上げ焼鈍板のァ相率ならびに特性の関係を表 3 に示 す。 ここで、 冷速 1 は、 焼鈍温度から 2 0 0 までの平均冷却速度 を示す。 ただし、 冷却途中で滞留させる場合は、 焼鈍温度から滞留 する温度までの平均冷却速度を示す。 また、 冷速 2 は、 冷却途中で 滞留した場合、 滞留温度から常温までの平均冷却速度を示す。
N o . :! 〜 1 1 および 1 5〜 3 5 は、 本発明の成分を有し、 本発 明で規定する仕上げ焼鈍を実施したものである。 これら本発明例は 、 本発明で規定する ァ相率 1 5〜 5 0 %を満たし、 0. 3 V以上の 孔食電位と 3 0 %以上の均一伸びを有するものである。 これより、 本発明で規定する成分を有するフェライ 卜 · オーステナイ 卜系ステ ンレス鋼を本発明で規定する仕上げ焼鈍を行う ことにより、 中性塩 化物環境で S U S 3 0 4 と同等以上の耐食性を具備し、 延性は S U S 4 3 0 L Xと比べて十分高く S U S 3 0 4に匹敵するものまで得 られる。 特に、 N o . 9〜 1 1 は、 仕上げ焼鈍条件として、 仕上げ 焼鈍で 2 0 0〜 6 0 O t:の温度域の所定の温度にて約 2分滞留した 後、 滞留した温度から室温まで冷却を行なった例であり、 この例で は孔食電位 V c ' 1 0 0が良好な値を示していた。
N o . 1 2〜 1 4は、 本発明で規定する成分を有するものの、 本 発明で規定する仕上げ焼鈍条件から外れるものであり、 本発明の目 標とする孔食電位や均一伸びが得られなかったものである。
N o . 3 6〜 4 1 は、 本発明の規定から外れる成分であり、 本発 明で規定する仕上げ焼鈍を実施しても、 本発明の目標とする孔食電 位や均一伸びが得られなかったものである。 【表 3 】
Figure imgf000039_0001
冷速 1
焼鈍温度から滞留する温度までの平均冷却速度
冷速 2 :冷却途中で滞留した場合、 滞留温度から常温までの平均冷却速度 一 :冷却途中で滞留しない、 連続的に冷却していることを意味する 下線は、 本発明の規定から外れるものを意味する。 【実施例 2】
続いて、 第二の知見に係る実施例を示す。
表 4に示す鋼種を溶製した後、 熱間圧延、 熱延板焼鈍、 冷間圧延 、 最終焼鈍の工程を経て 1 . 0 m m厚の薄鋼板を作製した。 鋼板を 製造するにあたり、 素材厚み、 熱間圧延の加熱温度、 圧延パススケ ジュール、 圧延パス間時間、 熱延板焼鈍温度、 最終焼鈍温度及び時 間を変化させて金属組織を変化させることができるが、 今回は、 最 終焼鈍温度を変化させ、 焼鈍時間は 6 0秒とした。 得られた製品板 より、 引張試験を実施し、 均一伸びを測定した。 また薄鋼板 Z L断 面の金属組織より、 E B S Pによる相の同定、 粒径及び形状ァスぺ ク ト比の調査、 オーステナイ ト粒間の最近接粒間距離の測定を実施 した。 各条件は前述のとおりである。 得られた金属組織についてァ 相率、 M d値、 X I及び X 2 を測定し、 均一伸びとの関係を表 5 に 製造条件と共に示す。
【表 4】
Figure imgf000041_0001
下線は、 本発明の規定から外れるものを意味する。
【表 5】
Figure imgf000042_0001
表 5中の符号は下記に示すとおりである。 T 1 : 熱延前加熱温度 (で)
Ν : 熱間圧延工程において 1 0 0 0 以上で 3 0 %以上の圧下 率を有する圧下に引き続いて 3 0 s以上保持する圧延を行 つた回数
R : 熱延総圧下率 (%)
Τ 2 : 熱延板焼鈍温度 (で)
Τ 3 : 最終焼鈍温度 ( )
X I : 結晶粒径が 1 5 X m以下かつ形状アスペク ト比が 3未満の オーステナイ ト粒が全オーステナイ ト粒に占める割合 X 2 : 各オーステナイ ト粒の最近接粒との距離の平均値
M d : オーステナイ ト相中の組成 (Cのみ平均組成) より、 下記 式で計算される値
M d = 5 5 1 - 4 6 2 ( { C } + [N] ) — 9. 2 [S i ] — 8. 1 [M n ] - 1 3. 7 [ C r ] - 2 9 [N i ] 一 2 9 [C u ] - 1 8. 5 [ o ]
ここで、 [ ] はオーステナイ 卜相中の組成 (質量%) 、 { } は平均組成 (質量%) である。
条件 1 aは本発明例であり、 極めて良好な均一伸びが得られる。 条件 1 bは T 2が本発明範囲を満足しないため、 X 1及び X 2が本 発明から外れる。 また条件 1 cは T 1が本発明範囲を満足しないた め、 X 1が本発明から外れる。
条件 2 aは Rが本発明範囲を満足しないため、 X 2が本発明から 外れる。 条件 2 bは本発明例であり、 極めて良好な均一伸びが得ら れる。 条件 2 cは T 3が本発明範囲を満足しないため、 ァ相率及び X 2が本発明から外れる。
条件 3 aは T 3が本発明範囲を満足しないため、 X 1が本発明か ら外れる。 条件 3 bは本発明例であり、 極めて良好な均一伸びが得 られる。 条件 3 c は Nが本発明範囲を満足しないため、 X 1が本発 明から外れる。
条件 4 aは T 1及び Rが本発明範囲を満足しないため、 X 1 が本 発明から外れる。 条件 4 bは本発明例であり、 極めて良好な均一伸 びが得られる。 条件 4 c は T 2が本発明範囲を満足しないため、 X 2が本発明から外れる。
条件 5 aは本発明例であり、 極めて良好な均一伸びが得られる。 条件 5 bは T 2及び T 3が本発明範囲を満足しないため、 ァ相率及 び X 1 が本発明から外れる。 条件 5 c は T 1 が本発明範囲を満足し ないため、 X 1 が本発明から外れる。
条件 6 aは Rが本発明範囲を満足しないため、 X 2が本発明から 外れる。 条件 6 bは本発明例であり、 極めて良好な均一伸びが得ら れる。 条件 6 c は T 2及び T 3が本発明範囲を満足しないため、 M d及び X 2が本発明から外れる。
条件 7 aは T 3が本発明範囲を満足しないため、 X 1 が本発明か ら外れる。 条件 7 bは本発明例であり、 極めて良好な均一伸びが得 られる。 条件 7 c は Nが本発明範囲を満足しないため、 X 1 が本発 明から外れる。
条件 8 aは T 1 、 N、 R及び T 3が本発明範囲を満足しないため 、 7"相率、 M d及び X 2が本発明から外れる。 条件 8 bは本発明例 であり、 極めて良好な均一伸びが得られる。 条件 8 c は T 2が本発 明範囲を満足しないため、 X 1及び X 2が本発明から外れる。
条件 9 aは本発明例であり、 極めて良好な均一伸びが得られる。 条件 9 bは T 2が本発明範囲を満足しないため X 1 が本発明から外 れる。 条件 9 c は T 1 が本発明範囲を満足しないため、 X 1 及び X 2が本発明から外れる。
条件 1 0 aは Rが本発明範囲を満足しないため、 X 1 が本発明か ら外れる。 条件 1 0 bは本発明例であり、 極めて良好な均一伸びが 得られる。 条件 1 0 cは T 3が本発明範囲を満足しないため、 M d 及び X 2が本発明から外れる。
条件 1 1 aは T 3が本発明範囲を満足しないため、 ァ相率及び X 1が本発明から外れる。 条件 1 1 bは本発明例であり、 極めて良好 な均一伸びが得られる。 条件 1 1 cは Nが本発明範囲を満足しない ため、 X Iが本発明から外れる。
条件 1 2 aは T 1及び Nが本発明範囲を満足しないため、 X 1が 本発明から外れる。 条件 1 2 bは本発明例であり、 極めて良好な均 一伸びが得られる。 条件 1 2 cは T 2が本発明範囲を満足しないた め、 X 1及び X 2が本発明から外れる。
条件 1 3 aは本発明例であり、 極めて良好な均一伸びが得られる 。 条件 1 3 bは T 2が本発明範囲を満足しないため、 X 1及び X 2 が本発明から外れる。 条件 1 3 cは T 1及び Nが本発明範囲を満足 しないため、 X Iが本発明から外れる。
条件 1 4 aは本発明例であり、 極めて良好な均一伸びが得られる 。 条件 1 4 bは T 2が本発明範囲を満足しないため、 X I及び X 2 が本発明から外れる。 条件 1 4 cは T 1が本発明範囲を満足しない ため、 X Iが本発明から外れる。
条件 1 5 a 、 1 5 b 、 1 5 cはいずれも成分系が本発明範囲を満 足しないため、 極めて良好な均一伸びが得られない。
以上のように、 本発明例では極めて良好な均一伸びが得られる。 比較例ではァ相率、 M d値、 X I 、 X 2のいずれかが条件を満足し ておらず、 均一伸びが低い。 産業上の利用可能性
本発明の第一の知見によれば、 鋼の成分およびァ相率を規定し、 仕上げ焼鈍条件をコン トロールすることにより、 中性塩化物環境で
S U S 3 0 4 と同等以上の耐食性を具備する、 耐食性と加工性に優 れたフェライ ト · オーステナイ ト系ステンレス鋼を製造することが できる。
また、 本発明の第二の知見によれば、 多量の N i を含有すること なく、 加工性、 特に均一伸びに優れたフェライ ト · オーステナイ ト 系ステンレス薄鋼板を得ることができる。
従来、 多量の N i を含有したオーステナイ 卜系ステンレス鋼板が 用いられていた部品、 例えば中性塩化物環境で使用する厨房機器、 家電製品、 電子機器など幅広い分野に適用できるため、 N i 資源の 節約の点で地球環境に大きく貢献するものである。

Claims

請 求 の 範 囲
1 . 質量%にて 、
c : 0. 0 0 ;! 〜 0. 1 %、
c r : 1 7 〜 2 5 %、
s 1 : 0. 0 1 〜 1 %、
M n : 0. 5 〜 3. Ί %、
N : 0. 0 6 %以上、 0. 1 5 %未満を含有し 、
下記式 ( 1 ) で示される耐孔食指数 ( P I 値) が 1 8 %超を満 足し、 残部が F eおよび不可避的不純物からなり、 フェライ ト相を 母相としてォーステナイ 卜相の体積分率が 1 O 〜 0 0 %であること を特徴とする耐食性と加工性に優れたフエラィ 卜 · 才ーステナイ 卜 系ステンレス鋼 o
耐孔食指数 ( P I 値) = C r + 3 M o + 1 0 N ― M n
- - - ( 1 )
2. 前記鋼が 、 さ らに質量%にて、
N i : 0. 6 〜 3 %、
C u : 0. 1 〜 3 %
の 2種を含有していることを特徴とする請求の範囲 1 に記載の 耐食性と加工性に優れたフェライ ト · ォーステナイ 卜系ステンレス 前記鋼が、 さ らに質量%にて
M o : 1 %以下、
N b : 0 • 5 %以下、
T i : 0 • 5 %以下、
A 1 : 0 • 1 %以下、
B • 0. 0 1 %以下、 C a : 0. 0 1 %以下、
M g : 0. 0 1 %以下
の 1種または 2種以上含有していることを特徴とする請求の範 囲 1 または 2に記載の耐食性と加工性に優れたフェライ ト · オース テナイ ト系ステンレス鋼。
4. 3 0 、 3. 5 % N a C l水溶液中の孔食電位 V c ' 1 0 0 が 0. 3 V ( V V . s . A G C L) 以上であることを特徴とする請 求の範囲 1から 3のいずれかに記載の耐食性と加工性に優れたフエ ライ ト · オーステナイ ト系ステンレス鋼。
5. 請求の範囲 1から 3のいずれかに記載の鋼成分を有するステ ンレス鋼塊を熱間鍛造あるいは熱間圧延により熱延鋼材とし、 熱延 鋼材の焼鈍を行った後、 冷間加工と焼鈍を繰り返す鋼材の製造方法 において、 仕上げ焼鈍を 9 5 0〜 1 1 5 0でに加熱 · 保持し、 加熱 温度から 2 0 0でまでの平均冷却速度を 3 秒以上とし、 フェラ ィ ト相を母相としてオーステナィ ト相の体積分率を 1 5〜 5 0 %と することを特徴とする耐食性と加工性に優れたフェライ十 · オース テナイ ト系ステンレス鋼の製造方法。
6. 請求の範囲 1から 3のいずれかに記載の鋼成分を有するステ ンレス鋼塊を熱間鍛造あるいは熱間圧延により熱延鋼材とし、 熱延 鋼材の焼鈍を行った後、 冷間加工と焼鈍を繰り返す鋼材の製造方法 において、 仕上げ焼鈍で 9 5 0〜 1 1 5 0でに加熱 · 保持した後、 6 0 0でまでの平均冷却速度を 3で Z秒以上とし、 2 0 0〜 6 0 0 の温度域にて 1分以上滞留した後、 滞留した温度から室温までの 平均冷却速度を 3 秒以上とし、 フェライ ト相を母相としてォー ステナイ ト相の体積分率を 1 5〜 5 0 %とすることを特徴とする耐 食性と加工性に優れたフェライ ト · オーステナイ ト系ステンレス鋼 の製造方法。
7. フェライ ト相を母相としてオーステナイ ト相の体積分率を 1 5〜 5 0 %とし、 かつ、 3 0で、 3. 5 % N a C l 水溶液中の孔食 電位 V c ' 1 0 0を 0. 3 V ( V V . s . A G C L) 以上とするこ とを特徴とする請求の範囲 5または 6に記載の耐食性と加工性に優 れたフェライ ト · オーステナイ ト系ステンレス鋼の製造方法。
8. オーステナイ ト相の体積分率が 1 0 %以上 5 0 %未満であり 、 オーステナイ ト相中の化学組成より計算される M d値が下記 ( 1 ) 式を満足し、 圧延幅方向に垂直な断面において結晶粒径が 1 5 μ m以下かつ形状ァスぺク ト比が 3未満であるオーステナイ ト粒の割 合が全オーステナイ ト粒数の 9 0 %以上を占め、 また同断面におい て最近接のオーステナイ 卜粒間の平均距離が 1 2 m以下であるこ とを特徴とする加工性に優れたフェライ ト · オーステナイ ト系ステ ンレス鋼。 .
- 1 0≤M d≤ l 1 0 · · · ( 1 )
(ここで M d = 5 5 1 - 4 6 2 ( { C } + [N] )
9. 2 [S i ] — 8. 1 [M n ]
1 3. 7 [ C r ] - 2 9 [N i ]
2 9 [ C u ] - 1 8. 5 [M o ] 、
] はオーステナイ ト相中の組成 (質量%) } は平均組成 (質量%) )
9. 質量%で、
C : 0. 0 0 2 0. 1 %、
S i : 0. 0 5 2 %、
. M n : 0. 0 5 5 %、
P : 0. 0 5 %未満、
S : 0. 0 1 %未満、
C r : 1 7〜 2 5 %、 N : 0. 0 1〜 0. 1 5 %、
を含有し、 残部が鉄及び不可避的不純物からなることを特徴と する請求の範囲 8に記載の加工性に優れたフェライ ト · オーステナ ィ ト系ステンレス鋼。
1 0. 質量%で、
N i : 5 %以下、
C u : 5 %以下
M o : 5 %以下
の 1種または 2種以上を含有することを特徴とする請求の範囲 8または 9 1 に記載の加工性に優れたフェライ ト · オーステナイ ト 系ステンレス鋼。
1 1. 質量%で、
N b : 0. 5 %以下、
T i : 0. 5 %以下、
の 1種または 2種を含有することを特徴とする請求の範囲 8乃 至 1 0のいずれかに記載の加工性に優れたフェライ ト · オーステナ ィ ト系ステンレス鋼。
1 2. 質量%で、
C a : 0. 0 0 3 %以下、
g : 0. 0 0 3 %以下、
の 1種または 2種を含有することを特徴とする請求の範囲 8乃 至 1 1 のいずれかに記載の加工性に優れたフェライ ト · オーステナ イ ト系ステンレス鋼。
1 3. 請求の範囲 8乃至 1 2のいずれかに記載の成分の鋼を連続 铸造し、 得られた鋼片を熱間圧延前に 1 1 5 0で以上 1 2 5 0で未 満の加熱温度 T 1 (で) にて加熱後、 1 0 0 0で以上で 3 0 %以上 の圧下率を有する圧下に引き続いて 3 0 s以上保持する圧延を 1パ ス以上実施し、 熱間圧延の総圧延率 9 6 %以上として得られた熱延 板を T 1 一 1 0 0で以上 T 1 以下の温度で焼鈍して、 しかる後に 冷延を実施し、 中間焼鈍を実施し、 または実施することなく、 最終 焼鈍を 1 0 0 0 t:〜 1 1 0 0でにて実施することを特徴とする加工 性に優れたフェライ ト · オーステナイ ト系ステンレス鋼の製造方法
PCT/JP2008/064260 2007-08-02 2008-08-01 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法 WO2009017258A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18188353.9A EP3434802B1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability
KR1020097026935A KR101185978B1 (ko) 2007-08-02 2008-08-01 내식성과 가공성이 우수한 페라이트?오스테나이트계 스테인리스 강 및 그 제조 방법
US12/452,918 US20100126644A1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability andmethod of production of same
KR1020127001606A KR101253326B1 (ko) 2007-08-02 2008-08-01 내식성과 가공성이 우수한 페라이트·오스테나이트계 스테인리스 강 및 그 제조 방법
CN2008801006756A CN101765671B (zh) 2007-08-02 2008-08-01 耐蚀性和加工性优良的铁素体-奥氏体系不锈钢及其制造方法
EP08792317.3A EP2172574B1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
ES08792317T ES2717840T3 (es) 2007-08-02 2008-08-01 Acero inoxidable ferrítico-austenítico con excelente resistencia a la corrosión y trabajabilidad y método de producción del mismo
US13/621,473 US20130118650A1 (en) 2007-08-02 2012-09-17 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and method of production of same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-202016 2007-08-02
JP2007202016A JP5156293B2 (ja) 2007-08-02 2007-08-02 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法
JP2007222259A JP5213386B2 (ja) 2007-08-29 2007-08-29 成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板及びその製造方法
JP2007-222259 2007-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/621,473 Division US20130118650A1 (en) 2007-08-02 2012-09-17 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and method of production of same

Publications (1)

Publication Number Publication Date
WO2009017258A1 true WO2009017258A1 (ja) 2009-02-05

Family

ID=40304477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064260 WO2009017258A1 (ja) 2007-08-02 2008-08-01 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法

Country Status (6)

Country Link
US (2) US20100126644A1 (ja)
EP (2) EP2172574B1 (ja)
KR (2) KR101253326B1 (ja)
CN (1) CN101765671B (ja)
ES (2) ES2817436T3 (ja)
WO (1) WO2009017258A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009433A1 (en) * 2009-03-19 2012-01-12 Masaharu Hatano Duplex stainless steel sheet with excellent press-formability
EP2508639A1 (en) * 2009-12-01 2012-10-10 Nippon Steel & Sumikin Stainless Steel Corporation Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
US20130011294A1 (en) * 2010-03-08 2013-01-10 Matsuhashi Tooru Ferritic stainless steel excellent in corrosion resistance in environment of condensed water from hydrocarbon combustion gas
CN115821153A (zh) * 2022-06-27 2023-03-21 浙江吉森金属科技有限公司 一种温度传感器外壳用不锈钢及其制造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394848B (zh) * 2007-10-10 2013-05-01 Nippon Steel & Sumikin Sst 雙相不銹鋼線材、鋼線及螺釘以及其製造方法
FI122657B (fi) 2010-04-29 2012-05-15 Outokumpu Oy Menetelmä korkean muokattavuuden omaavan ferriittis-austeniittisen ruostumattoman teräksen valmistamiseksi ja hyödyntämiseksi
KR20120132691A (ko) * 2010-04-29 2012-12-07 오또꿈뿌 오와이제이 높은 성형성을 구비하는 페라이트-오스테나이트계 스테인리스 강의 제조 및 사용 방법
DE102012100908A1 (de) * 2012-02-03 2013-08-08 Klaus Kuhn Edelstahlgiesserei Gmbh Duplexstahl mit verbesserter Kerbschlagzähigkeit und Zerspanbarkeit
JP5869922B2 (ja) * 2012-03-09 2016-02-24 新日鐵住金ステンレス株式会社 面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板およびその製造方法
SE536835C2 (sv) * 2012-10-05 2014-09-30 Sandvik Intellectual Property En luftledning för elkraft
FI125734B (en) 2013-06-13 2016-01-29 Outokumpu Oy Duplex ferritic austenitic stainless steel
TWI490343B (zh) * 2013-07-04 2015-07-01 China Steel Corp 沃斯田鐵系合金板材及其製造方法
CN103667950A (zh) * 2013-12-05 2014-03-26 宁波宝新不锈钢有限公司 一种适于冷冲压加工的430不锈钢及其制造方法
FI125466B (en) * 2014-02-03 2015-10-15 Outokumpu Oy DUPLEX STAINLESS STEEL
FI126577B (en) 2014-06-17 2017-02-28 Outokumpu Oy DUPLEX STAINLESS STEEL
KR101668532B1 (ko) * 2014-12-26 2016-10-24 주식회사 포스코 항복강도 및 충격인성이 우수한 슈퍼 듀플렉스 스테인리스강 및 그 제조방법
EP3239344B1 (en) * 2014-12-26 2021-10-20 Posco Method for producing a lean duplex stainless steel
KR101668535B1 (ko) * 2014-12-26 2016-10-24 주식회사 포스코 페라이트계 스테인리스강
CN108026620B (zh) * 2015-10-30 2021-02-26 株式会社日立制作所 弥散强化型奥氏体系不锈钢钢材、该不锈钢钢材的制造方法和由该不锈钢钢材形成的制造物
WO2017141907A1 (ja) 2016-02-17 2017-08-24 新日鐵住金ステンレス株式会社 フェライト‐オーステナイト系二相ステンレス鋼材とその製造方法
US11142814B2 (en) 2017-01-23 2021-10-12 Jfe Steel Corporation Ferritic-austenitic duplex stainless steel sheet
JP6347864B1 (ja) * 2017-03-24 2018-06-27 日新製鋼株式会社 オーステナイト系ステンレス鋼スラブの製造方法
KR102326262B1 (ko) * 2019-12-18 2021-11-15 주식회사 포스코 고항복비 고강도 오스테나이트계 스테인리스강
KR102537950B1 (ko) * 2020-12-14 2023-05-31 주식회사 포스코 고온 연화저항성이 향상된 오스테나이트계 스테인리스강
CN114164373B (zh) * 2021-11-10 2022-11-11 中国兵器科学研究院宁波分院 一种Nb微合金化双相不锈钢及其制备方法
CN114045384B (zh) * 2021-11-10 2023-09-08 中国兵器科学研究院宁波分院 改善低镍铁素体-奥氏体型不锈钢低温冲击韧性的方法
KR20230166672A (ko) * 2022-05-31 2023-12-07 주식회사 포스코 오스테나이트계 스테인리스강 및 그 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247594A (ja) 1992-03-03 1993-09-24 Sumitomo Metal Ind Ltd 耐候性に優れた二相ステンレス鋼
JPH10219407A (ja) 1997-02-07 1998-08-18 Kawasaki Steel Corp 延性に優れたフェライト系ステンレス鋼およびその製 造方法
JPH1171643A (ja) 1997-06-30 1999-03-16 Union Sider Nord Est Fr <Usinor> 引張り延びに優れたニッケル含有率が極めて低いオーステノ・フェライト系ステンレス鋼
WO2002027056A1 (en) 2000-09-27 2002-04-04 Avestapolarit Aktiebolag (Publ) Ferritic-austenitic stainless steel
JP2006169622A (ja) 2004-01-29 2006-06-29 Jfe Steel Kk 成形性に優れるオーステナイト・フェライト系ステンレス鋼
JP2006183129A (ja) 2004-01-29 2006-07-13 Jfe Steel Kk 成形性に優れるオーステナイト・フェライト系ステンレス鋼
JP2006200035A (ja) 2004-03-16 2006-08-03 Jfe Steel Kk 張り出し成形性と耐隙間部腐食性が優れたフェライト・オーステナイト系ステンレス鋼
JP2006233308A (ja) 2005-02-28 2006-09-07 Jfe Steel Kk 耐粒界腐食性に優れるオーステナイト・フェライト系ステンレス鋼

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052523A (ja) * 1983-09-01 1985-03-25 Nippon Stainless Steel Co Ltd フエライト−オ−ステナイト二相ステンレス鋼の製造方法
JPH0768603B2 (ja) * 1989-05-22 1995-07-26 新日本製鐵株式会社 建築建材用二相ステンレス鋼
US6033497A (en) * 1997-09-05 2000-03-07 Sandusky International, Inc. Pitting resistant duplex stainless steel alloy with improved machinability and method of making thereof
KR100460346B1 (ko) * 2002-03-25 2004-12-08 이인성 금속간상의 형성이 억제된 내식성, 내취화성, 주조성 및열간가공성이 우수한 슈퍼 듀플렉스 스테인리스강
EP2562285B1 (en) * 2004-01-29 2017-05-03 JFE Steel Corporation Austenitic-ferritic stainless steel
JP4692259B2 (ja) * 2005-12-07 2011-06-01 Jfeスチール株式会社 成形性および形状凍結性に優れる高強度鋼板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247594A (ja) 1992-03-03 1993-09-24 Sumitomo Metal Ind Ltd 耐候性に優れた二相ステンレス鋼
JPH10219407A (ja) 1997-02-07 1998-08-18 Kawasaki Steel Corp 延性に優れたフェライト系ステンレス鋼およびその製 造方法
JPH1171643A (ja) 1997-06-30 1999-03-16 Union Sider Nord Est Fr <Usinor> 引張り延びに優れたニッケル含有率が極めて低いオーステノ・フェライト系ステンレス鋼
WO2002027056A1 (en) 2000-09-27 2002-04-04 Avestapolarit Aktiebolag (Publ) Ferritic-austenitic stainless steel
JP2006169622A (ja) 2004-01-29 2006-06-29 Jfe Steel Kk 成形性に優れるオーステナイト・フェライト系ステンレス鋼
JP2006183129A (ja) 2004-01-29 2006-07-13 Jfe Steel Kk 成形性に優れるオーステナイト・フェライト系ステンレス鋼
JP2006200035A (ja) 2004-03-16 2006-08-03 Jfe Steel Kk 張り出し成形性と耐隙間部腐食性が優れたフェライト・オーステナイト系ステンレス鋼
JP2006233308A (ja) 2005-02-28 2006-09-07 Jfe Steel Kk 耐粒界腐食性に優れるオーステナイト・フェライト系ステンレス鋼

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Stainless Steel Handbook", JAPAN STAINLESS STEEL ASSOCIATION, pages: 622
CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 18, 2005, pages 607
NOHARA ET AL., JOURNAL OF THE ISIJ, vol. 63, 1977, pages 772
SEIICHI SUZUKI, MICROSCOPY, vol. 39, no. 2, pages 121 - 124

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009433A1 (en) * 2009-03-19 2012-01-12 Masaharu Hatano Duplex stainless steel sheet with excellent press-formability
EP2410068A1 (en) * 2009-03-19 2012-01-25 Nippon Steel & Sumikin Stainless Steel Corporation Duplex stainless steel plate having excellent press moldability
EP2410068A4 (en) * 2009-03-19 2017-05-03 Nippon Steel & Sumikin Stainless Steel Corporation Duplex stainless steel plate having excellent press moldability
EP2508639A1 (en) * 2009-12-01 2012-10-10 Nippon Steel & Sumikin Stainless Steel Corporation Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
CN102753717A (zh) * 2009-12-01 2012-10-24 新日铁住金不锈钢株式会社 耐应力腐蚀裂纹性和加工性优异的细粒度奥氏体系不锈钢板
EP2508639A4 (en) * 2009-12-01 2014-08-13 Nippon Steel & Sumikin Sst FINISHED AUSTENITIC STAINLESS STEEL PLATE WITH EXCELLENT LOAD CORROSION RESISTANCE AND PROCESSABILITY
CN102753717B (zh) * 2009-12-01 2015-02-11 新日铁住金不锈钢株式会社 耐应力腐蚀裂纹性和加工性优异的细粒度奥氏体系不锈钢板及其制造方法
US20130011294A1 (en) * 2010-03-08 2013-01-10 Matsuhashi Tooru Ferritic stainless steel excellent in corrosion resistance in environment of condensed water from hydrocarbon combustion gas
CN115821153A (zh) * 2022-06-27 2023-03-21 浙江吉森金属科技有限公司 一种温度传感器外壳用不锈钢及其制造方法

Also Published As

Publication number Publication date
US20130118650A1 (en) 2013-05-16
EP3434802B1 (en) 2020-07-01
KR101253326B1 (ko) 2013-04-11
ES2817436T3 (es) 2021-04-07
KR101185978B1 (ko) 2012-09-26
US20100126644A1 (en) 2010-05-27
CN101765671A (zh) 2010-06-30
EP2172574B1 (en) 2019-01-23
ES2717840T3 (es) 2019-06-25
CN101765671B (zh) 2012-01-11
KR20120011098A (ko) 2012-02-06
EP2172574A4 (en) 2017-06-07
KR20100011989A (ko) 2010-02-03
EP2172574A1 (en) 2010-04-07
EP3434802A1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
WO2009017258A1 (ja) 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法
KR100957664B1 (ko) 오스테나이트·페라이트계 스테인레스 강판
JP5156293B2 (ja) 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法
Ma et al. Effects of Cr content on the microstructure and properties of 26Cr–3.5 Mo–2Ni and 29Cr–3.5 Mo–2Ni super ferritic stainless steels
JP4760031B2 (ja) 成形性に優れるオーステナイト・フェライト系ステンレス鋼
KR101227274B1 (ko) 내리징성과 가공성이 우수한 페라이트ㆍ오스테나이트계 스테인리스 강판 및 그 제조 방법
JP6004653B2 (ja) フェライト系ステンレス鋼線材、及び鋼線、並びに、それらの製造方法
KR101424859B1 (ko) 고강도 강판 및 그 제조 방법
TWI609971B (zh) 肥粒鐵-沃斯田鐵系不鏽鋼之製造及使用方法
JP5500960B2 (ja) 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板
JP6379282B2 (ja) せん断端面の耐食性に優れるフェライト・オーステナイト系ステンレス鋼板
JP2008138270A (ja) 加工性に優れた高強度ステンレス鋼板およびその製造方法
AU2014294080A1 (en) High-strength steel material for oil well and oil well pipes
WO2013107922A1 (en) An austenitic stainless steel product and a method for manufacturing same
JP5213386B2 (ja) 成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板及びその製造方法
JP2016053213A (ja) 二相ステンレス鋼板とその製造方法
TW202012649A (zh) 鋼板
JP5404280B2 (ja) 溶接熱影響部の耐食性に優れた高強度省合金型二相ステンレス鋼
CN115466902A (zh) 耐晶间腐蚀优良的含铌经济型高塑性双相不锈钢及其制造方法
EP3778964B1 (en) Ferrite-based stainless steel sheet and production method thereof, and ferrite-based stainless member
JP2023113375A (ja) 二相ステンレス形鋼およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880100675.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20097026935

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12452918

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008792317

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE