WO2009012988A2 - Artikel mit geringer wasserstoffpermeation und deren verwendung - Google Patents

Artikel mit geringer wasserstoffpermeation und deren verwendung Download PDF

Info

Publication number
WO2009012988A2
WO2009012988A2 PCT/EP2008/006050 EP2008006050W WO2009012988A2 WO 2009012988 A2 WO2009012988 A2 WO 2009012988A2 EP 2008006050 W EP2008006050 W EP 2008006050W WO 2009012988 A2 WO2009012988 A2 WO 2009012988A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
coating
thermoplastic
polysilazane
Prior art date
Application number
PCT/EP2008/006050
Other languages
English (en)
French (fr)
Other versions
WO2009012988A3 (de
Inventor
Dragan Griebel
Stefan Brand
Udo Steffl
Original Assignee
Clariant International Ltd.
Rehau Ag + Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd., Rehau Ag + Co. filed Critical Clariant International Ltd.
Priority to JP2010517316A priority Critical patent/JP5545493B2/ja
Priority to EP08785003A priority patent/EP2176353A2/de
Priority to US12/670,176 priority patent/US20100266840A1/en
Priority to CA2694246A priority patent/CA2694246A1/en
Publication of WO2009012988A2 publication Critical patent/WO2009012988A2/de
Publication of WO2009012988A3 publication Critical patent/WO2009012988A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/16Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent

Definitions

  • the present invention relates to an article with low hydrogen permeation, for example, for pipes, hoses, moldings or containers.
  • Barrier materials characterize all industrial and economic sectors, especially food and beverage packaging, and they tend to prolong the shelf life of food. In addition to the barrier effect against oxygen and water vapor, the retention capacity for nitrogen, fragrances and aromatic substances is becoming increasingly important. In addition to permeation, barrier materials in some cases also reduce the migration of, for example, low molecular weight organic compounds and thus protect the packaged goods from foreign taste.
  • Permeation takes place in the steps of adsorption and sorption on the surface of the material, diffusion through the material itself and subsequent desorption.
  • a partially crystalline, nonpolar polyolefin has a good barrier effect against water vapor; the water vapor permeability according to DIN 53122 is typically 1 g / m 2 d, but at the same time also a poor oxygen barrier effect, the oxygen permeability according to DIN 53380 is typically 5000 to 8000 cm 3 / m 2 d bar.
  • Barrier plastics such as EVOH or PVDC or LCP have both a high barrier to water and to oxygen. All these materials fail, however, when it comes to high-barrier applications or even to the barrier effect against hydrogen gas.
  • DE 102004001288 A1 discloses a hydrophilic surface coating for materials such as metal, glass, ceramics, plastics, paints or porous surfaces.
  • the coating contains one or more polysilazanes and an ionic reagent or mixtures of ionic reagents.
  • JP-A-10016150 discloses a gas barrier film having transparency and good flexibility, and the heat resistance provided in the form of a ceramic layer formed by applying a polysilazane coating composition on at least one surface of a polyvinyl alcohol film, followed by converting the polysilazane coating into a ceramic layer , This laminate can be used as a gas barrier film.
  • JP-A-11151774 discloses a transparent gas barrier film. To this end, a vapor-deposited inorganic oxide film provided on the surface of a base material is coated with a coating film by applying a solution with a polysilazane, followed by heating and drying.
  • JP-A-2000246830 describes a silica-coated plastic film wherein the silica-coated plastic film is said to have good resistance to alkaline agents, as well as excellent adhesive properties and gas-barrier properties, the film consisting of a PET base film coated with a polysilazane solution.
  • WO 2004/039904 and WO 2006/056285 describe polysilazane-based coating solutions and their use, in particular for coating polymer films.
  • the coatings produced thereby are described as protective coatings to provide corrosion resistance, anticorrosive properties, abrasion resistance. Resistance, anti-fouling properties, sealing properties, chemical resistance, oxidation resistance, heat resistance, antistatic properties and barrier effect. With regard to barrier effects, these international patent applications merely disclose information regarding oxygen permeability.
  • Hydrogen differs significantly in its permeation properties from other gases, such as oxygen or carbon dioxide, so that information regarding any barrier property to oxygen that may be present has no bearing on the ability to increase the barrier to hydrogen.
  • the invention which has set itself the task of providing articles for the storage and transport of hydrogen available, which does not have the disadvantages and problems mentioned, so are of low weight, easy to mold and scratch resistant and especially one low permeation coefficient against hydrogen gas at 25 to 30 0 C of less than 10, preferably less than 7.50 and in particular less than 3 cm 3 mm / m 2 d atm, measured in accordance with DIN 53380-3 / ASTM D 3985 have.
  • the object is achieved by using an article having the features of claim 1, as well as by providing an article having the features of claim 8.
  • the article according to the invention is composed of a
  • Component (A) which consists of a thermoplastically processable plastic and
  • component (II) a component (B) consisting of a polysilazane which is applied by a coating process to component (A).
  • the component (B) may further contain residues of a catalyst such as ammonium salts, ethylenediamine, amines, pyridine derivatives, radical initiators, or organometallic compounds (eg, 0.05 to 5 wt .-% of a palladium compound), so that the reaction is carried out at lower temperatures can be.
  • a catalyst such as ammonium salts, ethylenediamine, amines, pyridine derivatives, radical initiators, or organometallic compounds (eg, 0.05 to 5 wt .-% of a palladium compound), so that the reaction is carried out at lower temperatures can be.
  • the article according to the invention preferably has a permeation coefficient against hydrogen gas at 25 to 30 ° C.
  • Component (A) of the articles according to the invention is a thermoplastic selected from the group of polyolefins or polyolefin derivatives or polyolefin copolymers, e.g. Polyethylene or polypropylene, or from the group of vinyl polymers, such as polystyrene or polystyrene copolymers, or from the group of polyamides, such as polyamide 6 or nylon 66, or from the group of polyesters, such as polyethylene terephthalate or polybutylene terephthalate, or from the group the aromatic polysulfides or aromatic sulfones.
  • a thermoplastic selected from the group of polyolefins or polyolefin derivatives or polyolefin copolymers, e.g. Polyethylene or polypropylene, or from the group of vinyl polymers, such as polystyrene or polystyrene copolymers, or from the group of polyamides, such as polyamide 6 or nylon 66, or
  • additives may optionally be present in the thermoplastic in the form of lubricants or processing aids, fillers such as talc, nucleating agents, stabilizers, antistatics, impact modifiers, flame retardants, fibers, conductivity additives.
  • fillers such as talc, nucleating agents, stabilizers, antistatics, impact modifiers, flame retardants, fibers, conductivity additives.
  • the article according to the invention may also comprise further layers, depending on the field of use of the article with low hydrogen permeation.
  • additional protective layer e.g., a colored layer (to facilitate identification), etc.
  • a colored layer to facilitate identification
  • layers produced by applying a polysilazane-containing composition surprisingly provide improved barrier properties to hydrogen permeation. It is essential in this context that the polysilazane has the formula defined in claim 1.
  • the polysilazane to be used in accordance with the present invention is usually processed in the form of a solution.
  • suitable solvents concentrations of polysilazane and possible auxiliaries, catalysts, etc.
  • component (B) is carried out by dipping, flooding, spin coating or spraying.
  • the curing can according to the invention at room temperature or preferably at elevated temperature, in particular at about 80 0 C, are performed.
  • the layer thickness of the coating after finished application in the range of 0.01 to 100 .mu.m, preferably 0.5 to 5 microns.
  • This layer is preferably applied directly to the molded part, molded with the thermoplastic resin, without intermediate additional layer, such as, for example, the oxide layers frequently used in the prior art or else adhesive layers or support layers.
  • a previous activation or pretreatment of the substrates in particular via a plasma treatment, if necessary.
  • coated articles according to the invention are preferably used in the electronics, electrical, vehicle or construction sectors as hydrogen transport pipes and hoses, hydrogen tanks, molded parts for these applications and the like.
  • Table 1 below shows the properties of the coated articles according to the invention. Table 1:
  • a 50 micron thick polyethylene film is pretreated by means of plasma and coated with a perhydropolysilazane solution in a mixture of dibutyl ether and anisole by spraying, 10 min. vented at room temperature and then cured for 2 h at 80 0 C, so that a 2 micron thick barrier layer results.
  • the hydrogen permeation coefficient is determined on the film as described below on the basis of DIN 53380-3 / ASTM D 3985.
  • the hydrogen permeation coefficient is determined on the basis of DIN 53380-3 / ASTM D 3985 as follows: W
  • the measuring cell was purged on the feed side with forming gas or hydrogen, on the permeate side with air.
  • the H2 content of this purge air was determined using an H2 sensor (Sensistor Hydrogen Leak Detector H 2000).
  • the evaluation was carried out by averaging several measured values after adjusting the equilibrium taking into account the purge gas flow.
  • Table 2 below shows the properties of comparative examples of known packaging materials.
  • Comparative Example 1 is a 0.126 mm thick aluminum foil.
  • Comparative Example 2 is a 0.182 mm thick polyethylene film.
  • Comparative Example 3 is a 0.230 mm thick film of a liquid crystal polymer LCP.
  • Comparative Example 4 is a 0.262 mm thick polytetrafluoroethylene film.
  • the articles of the polysilazane-coated thermoplastics used according to the invention have a hydrogen permeation coefficient which is approximately at the level of a 0.126 mm thick aluminum foil and is substantially reduced compared to the pure polyethylene foil.

Abstract

Die Erfindung bezieht sich auf Verwendung eines Formteils, geformt aus einer Zusammensetzung, umfassend (A) einen thermoplastischen Kunststoff, sowie eine darauf vorgesehene Beschichtung, geformt aus einer Zusammensetzung, umfassend eine Komponente (B), welche aus einem Polysilazan der Formel (- SiR'R'-NR''-)n ausgewählt ist, wobei entweder R', R' und R'' = -H bedeuten, oder R und R'' = -H; und R'' = -Methyl bedeuten, als Artikel mit geringer Wasserstoffpermeation, wobei der Artikel vorzugsweise einen Permeationskoeffizienten gegen Wasserstoffgas bei 25 bis 30 °C von kleiner 10 cm3 mm/ m2 d atm, gemessen in Übereinstimmung mit DIN 53380-3 und ASTM D 3985, und eine Mikrohärte von größer 150 N/mm2 nach DIN EN ISO 14577 aufweist. Weiter bezieht sich die Erfindung auf Artikel mit geringer Wasserstoffpermeation, umfassend ein Formteil geformt aus einer Zusammensetzung, umfassend (A) einen thermoplastischen Kunststoff, sowie eine darauf vorgesehene Beschichtung, geformt aus einer Zusammensetzung, umfassend eine Komponente (B), welche aus einem Polysilazan der Formel (- SiR'R'-NR''-)n ausgewählt ist, wobei entweder R', R' und R'' = -H bedeuten, oder R' und R'' = -H; und R' = -Methyl bedeuten.

Description

Artikel mit geringer Wasserstoff permeation und deren
Verwendung
Die vorliegende Erfindung betrifft einen Artikel mit geringer Wasserstoff permeation, zum Beispiel für Rohre, Schläuche, Formteile oder Behälter.
Barrierematerialien prägen alle Industrie- und Wirtschaftsbereiche, insbesondere den Bereich Lebensmittel- und Getränkeverpackungen, sie bewirken in der Regel eine verlängerte Haltbarkeit von Lebensmitteln. Neben der Sperrwirkung gegen Sauerstoff und Wasserdampf wird zunehmend auch das Rückhaltevermögen für Stickstoff, Riech- und Aromastoffe wichtig. Neben der Permeation reduzieren Barrierematerialien in einigen Fällen auch die Migration von zum Beispiel niedermolekularen organischen Verbindungen und schützen so das Verpackungsgut vor Fremdgeschmack.
Permeation vollzieht sich in den Schritten Adsorption und Sorption an der Oberfläche des Materials, Diffusion durch den Werkstoff selbst und anschließende Desorption.
Ein teilkristallines, unpolares Polyolefin hat eine gute Sperrwirkung gegen Wasserdampf; die Wasserdampfdurchlässigkeit nach DIN 53122 beträgt typischerweise 1 g/m2 d, gleichzeitig aber auch eine schlechte Sauerstoffsperrwirkung, die Sauerstoffdurchlässigkeit nach DIN 53380 beträgt typischerweise 5000 bis 8000 cm3/m2 d bar.
Barrierekunststoffe wie EVOH oder PVDC oder LCP besitzen sowohl eine hohe Barrierewirkung gegen Wasser als auch gegen Sauerstoff. All diese Materialien versagen aber, wenn es um Hochbarriereanwendungen oder gar um die Sperrwirkung gegen Wasserstoffgas geht.
Bei den Verpackungsfolien geht man zur weiteren Reduzierung der Permeationsraten dazu über, polymere Sperrschichten mit Aluminium zu bedampfen. Dabei werden im Hochvakuum Aluminiumschichten im Bereich weniger Nanometer bis Mikrometer aufgedampft. Dies bringt in den meisten Fällen die gewünschte Sperrwirkung.
Nachteilig sind jedoch die hohen Kosten einer solchen Beschichtung und die Tatsache, dass die bedampften Kunststoffe nicht mehr transparent sind. Ein anderer Weg wird in der Zeitschrift Surface and Coatings Technology 111 (1999) S. 72 bis 79 beschrieben. SiOx-Schichten werden mittels PVD-Verfahren abgeschieden und zusätzlich mit sogenannten Ormocerlacken - also anorganisch-organischen Hybridlacken - versiegelt. Aufgrund des mehrstufigen Applikationsverfahren ist dieser Weg wirtschaftlich völlig unattraktiv und hat daher den Weg in die Praxis nicht gefunden.
Aus DE 102004001288 A1 ist eine hydrophile Oberflächenbeschichtung für Materialien, wie Metall, Glas, Keramik, Kunststoffe, Lacke oder poröse Oberflächen bekannt.
Die Beschichtung enthält ein oder mehrere Polysilazane und ein ionisches Reagenz oder Mischungen von ionischen Reagenzien.
Zur Lagerung und zum Transport von Wasserstoff werden heute mangels Materialalternativen üblicherweise Teile aus Edelstahl eingesetzt. Deshalb sind wasserstoffführende Rohre unflexibel und schwierig zu verlegen und die entsprechenden Edelstahlbehälter haben ein hohes Gewicht und sind in ihrer Formgebung eingeschränkt.
JP-A-10016150 offenbart einen Gasbarrierefilm mit Transparenz und guter Flexibilität sowie die Wärmewiderstandsfähigkeit, der in der Form einer keramischen Schicht zur Verfügung gestellt wird, geformt durch Aufbringen einer Polysilazanbeschichtungszusammensetzung auf mindestens einer Oberfläche eines Polyvinylalkoholfilms, gefolgt von Umwandlung der Polysilazanbeschichtung in eine keramische Schicht. Dieses Laminat kann als Gasbarrierefilm verwendet werden. JP-A-11151774 offenbart einen transparenten Gasbarrierefilm. Dazu wird ein aus der Gasphase abgeschiedener Film eines anorganischen Oxids, vorgesehen auf der Oberfläche eines Basismaterials, mit einem Beschichtungsfilm überzogen, durch Aufbringung einer Lösung mit einem Polysilazan, gefolgt von Erwärmung und Trocknung. Die JP-A-2000246830 beschreibt einen Silika beschichteten Plastikfilm, wobei der Silika beschichtete Plastikfilm eine gute Widerstandsfähigkeit gegenüber alkalischen Mitteln aufweisen soll, sowie ausgezeichnete Klebeigenschaften und Gasbarriereeigenschaften, wobei der Film aus einem PET-Basisfilm besteht, beschichtet mit einer Polysilazanlösung.
Alle diese Dokumente offenbaren im Hinblick auf die Gasbarriere ihre Eigenschaften keinerlei weitergehende Information, insbesondere nicht gegenüber welchen Gasen die jeweiligen Filme Barriereeigenschaften aufweisen sollen.
Die WO 2004/039904 und die WO 2006/056285 beschreiben Polysilazan basierende Be- schichtungslösungen sowie deren Verwendung, insbesondere zur Beschichtung von Polymerfilmen. Die dadurch erzeugten Beschichtungen werden als Schutzschichten beschrieben, zur Bereitstellung von Korrosionswiderstandsfähigkeit, Antikratzeigenschaften, Abrieb- Widerstandsfähigkeit, Anti-Fouling-Eigenschaften, Versiegelungseigenschaften, chemische Widerstandsfähigkeit, Oxidationswiderstandsfähigkeit, Wärmewiderstandsfähigkeit, antistatische Eigenschaften sowie Barrierewirkung. Im Hinblick auf Barrierewirkungen offenbaren diese internationalen Patentanmeldungen lediglich Informationen im Hinblick auf Sauerstoffpermeabilität.
Wasserstoff unterscheidet sich jedoch im Hinblick auf seine Permeationseigenschaften erheblich von anderen Gasen, wie Sauerstoff oder Kohlendioxid, so dass Informationen im Hinblick auf eine eventuell vorhandene Barriereeigenschaft gegenüber Sauerstoff keinerlei Aussage im Hinblick auf die Eignung zur Erhöhung der Barrierewirkung gegenüber Wasserstoff hat.
Hier setzt die Erfindung ein, die es sich zur Aufgabe gestellt hat, Artikel für die Lagerung und den Transport von Wasserstoff zur Verfügung zu stellen, welche die genannten Nachteile und Probleme nicht aufweisen, also von geringem Gewicht, leicht formbar und kratzfest sind und insbesondere einen niedrigen Permeationskoeffizienten gegen Wasserstoffgas bei 25 bis 30 0C von kleiner 10, bevorzugt kleiner 7,50 und insbesondere kleiner als 3 cm3 mm/ m2 d atm, gemessen in Anlehnung an DIN 53380-3 / ASTM D 3985, aufweisen.
Erfindungsgemäß gelingt die Lösung der Aufgabe durch Verwendung eines Artikels mit den Merkmalen des Anspruchs 1 , sowie durch die Bereitstellung eines Artikels mit den Merkmalen des Anspruchs 8.
Bevorzugte Ausführungen und Weiterbildungen der Erfindung sind in den Unteransprüchen und nebengeordneten Ansprüchen ausgeführt.
Der erfindungsgemäße Artikel setzt sich zusammen aus einer
(I) Komponente (A), welche aus einem thermoplastisch verarbeitbaren Kunststoff besteht und
(II) einer Komponente (B), bestehend aus einem Polysilazan, welches durch einen Be- schichtungsprozess auf Komponente (A) appliziert wird.
Die Komponente (B) kann weiterhin Reste eines Katalysators wie z.B. Ammoniumsalze, Etyhlendiamin, Amine, Pyridin-Derivate, Radikalinitiatoren, oder metallorganische Verbindungen (z.B. 0,05 bis 5 Gew.-% einer Palladiumverbindung) enthalten, damit die Reaktion bei niedrigeren Temperaturen durchgeführt werden kann. Der erfindungsgemäße Artikel weist bevorzugt einen Permeationskoeffizienten gegen Wasserstoffgas bei 25 bis 30 0C von kleiner 10, bevorzugt kleiner 7,50, stärker bevorzugt kleiner als 5 und insbesondere kleiner 3 cm3 mm / m2d atm auf, gemessen in Anlehnung an DIN 53380-3 und ASTM D 3985, und ist weiterhin durch eine Mikrohärte (als Maß für die Kratzfestigkeit) von größer 150 N/mm2 stärker bevorzugt größer 155 und in Ausführungsformen größer als 300, naoh/OIN.EN ISO 14577 der beschichteten Komponente (A) gekennzeichnet.
Im Folgenden wird die Erfindung näher erläutert.
Komponente (A) der erfindungsgemäßen Artikel ist ein Thermoplast, ausgewählt aus der Gruppe der Polyolefine oder Polyolefinderivate oder Polyolefincopolymerisate, wie z.B. Po- lyethylen oder Polypropylen, oder aus der Gruppe der Vinylpolymere, wie Polystyrol oder Polystyrolcopolymerisate, oder aus der Gruppe der Polyamide, wie Polyamid 6 oder Polyamid 66, oder aus der Gruppe der Polyester, wie Polyethylenterephthalat oder Polybutylente- rephthalat, oder aus der Gruppe der aromatischen Polysulfide oder aromatischen Sulfone.
Im Thermoplast können erfipdungsgemäß gegebenenfalls Zusätze in Form von Gleit- oder Verarbeitungshilfsmitteln, Füllstoffen, wie Talkum, Nukleierungsmitteln, Stabilisatoren, An- tistatika, Schlagzähmodifiern, Flammschutzmitteln, Fasern, Leitfähigkeits-Additive, enthalten sein.
Weiterhin kann der erfindungsgemäße Artikel neben der Schicht aus der Komponente (A) noch weitere Schichten umfassen, je nach Einsatzgebiet des Artikels mit geringer Was- serstoffpermeation. So kann bei Rohren oder Schläuchen sowie anderen Aufbewahrungsbehältern (beispielsweise Tank) eine zusätzliche Schutzschicht, eine gefärbte Schicht (zur Erleichterung der Identifikation) usw. vorgesehen sein. Derartige Ausgestaltungen sind dem Fachmann auf dem jeweiligen Gebiet vertraut.
Erfindungsgemäß hat sich gezeigt, dass Schichten, erzeugt durch Aufbringung einer Polysi- lazan enthaltenden Zusammensetzung, überraschenderweise verbesserte Barriereeigenschaften gegenüber Wasserstoffpermeation zur Verfügung stellen. Wesentlich ist in diesem Zusammenhang, dass das Polysilazan die in Anspruch 1 definierte Formel aufweist.
Komponente (B) ist erfindungsgemäß ein Perhydropolysilazan der Formel (- SiR'R"-NR'"-)n mit R' = R" = R'" = -H (siehe Ausführungsbeispiele 1 bis 3), oder ein Polysilazan mit der Zusammensetzung R' = R"' = -H, und R" = -Methyl (siehe Ausführungsbeispiele 4 bis 6), wobei n eine ganze Zahl ist, und n bevorzugt so bemessen ist, dass das Polysilazan ein zahlen- mittleres Molekulargewicht von 150 bis 150000 g/mol aufweist, wie in der WO 2006/056285 A1 offenbart.
Insbesondere ist bevorzugt, dass Komponente (B) ein Perhydropolysilazan mit R' = R" = R'" = -H ist. Dies bedingt besonders gute Barriereeigenschaften gegenüber Wasserstoffpermea- tion.
Das Polysilazan, zu verwenden in Übereinstimmung mit der vorliegenden Erfindung, wird in üblicher weise in der Form einer Lösung verarbeitet. Im Hinblick auf geeignete Lösungsmittel, Konzentrationen an Polysilazan und eventuellen Hilfsstoffen, Katalysatoren usw., wird auf die Offenbarung der beiden internationalen Patentanmeldungen WO 2004/039904 und WO 2006/056285 verwiesen, die hier durch diesen Verweis mit umfasst sind.
Die Applikation der Komponente (B) erfolgt durch Tauchen, Fluten, Spincoaten oder Sprühen.
Die Aushärtung kann erfindungsgemäß bei Raumtemperatur oder vorzugsweise bei erhöhter Temperatur, insbesondere bei ca. 80 0C, durchgeführt werden.
Die Schichtdicke der Beschichtung liegt nach fertiger Applikation im Bereich von 0,01 bis 100 μm, vorzugsweise bei 0,5 bis 5 μm.
Diese Schicht wird vorzugsweise direkt auf dem Formteil, geformt mit dem thermoplastischen Kunststoff aufgebracht, ohne zwischenliegende Zusatzschicht, wie beispielsweise die im Stand der Technik häufig verwendeten Oxidschichten oder auch Adhesivschichten oder Trägerschichten.
Vorzugsweise erfolgt eine vorhergehende Aktivierung bzw. Vorbehandlung der Substrate, insbesondere über eine Plasmabehandlung, soweit dies notwendig ist.
Die erfindungsgemäßen beschichteten Artikel werden bevorzugt im Elektronik-, Elektro-, , Fahrzeug- oder Baubereich als Wasserstofftransportrohre und -schlauche, Wasserstofftanks, Formteile für diese Anwendungen und dergleichen eingesetzt.
Die nachfolgende Tabelle 1 zeigt die Eigenschaften der erfindungsgemäßen beschichteten Artikel. Tabelle 1:
Figure imgf000007_0001
Zu den Beispielen 1 bis 3
Eine 50μm dicke Polyethylenfolie wird mittels Plasma vorbehandelt und mit einer Perhydropolysilazanlösung in einer Mischung aus Dibutylether und Anisol durch Sprühen beschichtet, 10 min. bei Raumtemperatur abgelüftet und anschließend für 2h bei 80 0C gehärtet, so dass eine 2 μm dicke Barriereschicht resultiert.
An der Folie wird wie unten beschrieben der Wasserstoffpermeationskoeffizient in Anlehnung an DIN 53380-3 /ASTM D 3985 bestimmt.
Zu den Beispielen 4 bis 6
Eine 50 μm dicke Polyethylenfolie wird mit einer Lösung eines Polysilazans der Formel (- SiR'R"-NR'"-)n, mit R' = R1" = -H und R" = -Methyl in Di-n-butylether durch Dip-Coating beschichtet und 2 min bei Raumtemperatur abgelüftet und anschließend für 30 min bei 70 0C ausgehärtet, so dass eine 1 μm dicke Barriereschicht resultiert.
Der Wasserstoffpermeationskoeffizient wird in Anlehnung an DIN 53380-3 /ASTM D 3985 wie folgt bestimmt: W
Mit Komponente (B) beschichtete 50 μm dicke Folien aus Komponente (A) wurden zur Maskierung zwischen zwei Aluminiumfolien mit runden Ausschnitten geklebt.
Nach Einbau dieser Prüfmuster wurde die Messzelle auf der Feed-Seite mit Formiergas bzw. Wasserstoff gespült, auf der Permeatseite mit Luft.
Der H2-Gehalt dieser Spülluft wurde mit einem H2-Sensor (Sensistor Hydrogen Leak Detec- tor H 2000) bestimmt.
Die Auswertung erfolgte durch Mittelung mehrere Messwerte nach Einstellen des Gleichgewichts unter Berücksichtigung des Spülgasflusses.
Die nachfolgende Tabelle 2 zeigt die Eigenschaften der Vergleichsbeispiele bekannter Verpackungsmaterialien.
Vergleichsbeispiel 1 :
Beim Vergleichsbeispiel 1 handelt es sich um eine 0,126 mm dicke Aluminiumfolie.
Vergleichsbeispiel 2:
Beim Vergleichsbeispiel 2 handelt es sich um eine 0,182 mm dicke Polyethylenfolie.
Vergleichsbeispiel 3:
Beim Vergleichsbeispiel 3 handelt es sich um eine 0,230 mm dicke Folie aus einem flüssigkristallinem Polymer LCP.
Vergleichsbeispiel 4:
Beim Vergleichsbeispiel 4 handelt es sich um eine 0,262 mm dicke Polytetrafluorethylen- folie.
Tabelle 2:
Figure imgf000008_0001
Figure imgf000009_0001
Die erfindungsgemäß verwendeten Artikel aus den polysilazanbeschichteten Thermoplasten weisen einen Wasserstoffpermeationskoeffizienten auf, der annähernd auf dem Niveau einer 0,126 mm dicken Aluminiumfolie liegt und gegenüber der reinen Polyethy- lenfolie wesentlich erniedrigt ist.
Weiterführend wurden Permeationsuntersuchungen in Abhängigkeit von der Temperatur (bei 23 0C, 40 0C und 60 0C) durchgeführt:
a) Messung mit H2 trocken;
b) Messung mit H2 feucht = H2 und Spülgas mit 100% relativer Feuchte.
Die Ergebnisse zeigen, dass weder die Temperatur noch die Feuchtigkeit einen negativen Einfluss auf die Sperrwirkung der Beschichtung haben.
Es zeigt sich sogar, dass die relative Verbesserung der Barriere mit zunehmender Temperatur größer wird.
Weiterhin führt eine Konditionierung der Proben (diese wird eingespannt, eine Seite einem Vakuum für 2 Tage bei 23 0C ausgesetzt) mit einem Gemisch aus Isooctan/Toluol und Wasser zu einer verbesserten hb-Barriere.

Claims

Patentansprüche 1 bis 10
1. Verwendung eines Formteils, geformt aus einer Zusammensetzung, umfassend (A) einen thermoplastischen Kunststoff, sowie eine darauf vorgesehene Beschichtung, geformt aus einer Zusammensetzung, umfassend eine Komponente (B), welche aus einem Polysilazan der Formel (- SiR'R"-NR"'-)n ausgewählt ist, wobei entweder R', R" und R'" = -H bedeuten oder R' und R'" = -H; und R" = -Methyl bedeuten, als Artikel mit geringer Wasserstoffpermeation.
2. Verwendung nach Anspruch 1 , wobei der Artikel einen Permeationskoeffizienten gegen Wasserstoffgas bei 25 bis 30 0C von kleiner 10 cm3 mm / m2 d atm, gemessen in Übereinstimmung mit DIN 53380-3 und ASTM D 3985, und eine Mikroharte von größer 150 N/mm2 nach DIN EN ISO 14577 aufweist.
3. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass der thermoplastische Kunststoff der Komponente (A) ausgewählt ist aus der Gruppe der Polyolefine oder Polyolefinderivate oder Polyolefincopolymerisate, wie z.B. Polyethylen oder Polypropylen, oder aus der Gruppe der Vinylpolymere, wie Polystyrol oder Polysty- rolcopolymerisate, oder aus der Gruppe der Polyamide, wie Polyamid 6 oder Polyamid 66, oder aus der Gruppe der Polyester, wie Polyethylenterephthalat oder Polybutylenterephthalat, oder aus der Gruppe der aromatischen Polysulfide oder aromatischen Sulfone.
4. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass die Applikation der Komponente (B) durch Tauchen, Fluten, Spincoaten oder Sprühen erfolgt und die Aushärtung bei Raumtemperatur, vorzugsweise bei erhöhter Temperatur, insbesondere bei ca. 80 °C erfolgt.
5. Verwendung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Dicke der Beschichtung nach fertiger Applikation im Bereich von 0,01 bis 100 μm, vorzugsweise bei 0,5 bis 5 μm liegt.
6. Verwendung nach einem der vorangehenden Ansprüche vorzugsweise im Elektronik-, Elektro-, Fahrzeug- oder Baubereich, vorzugsweise als Wasserstofftransportrohr und -schlauch oder Wasserstofftank oder eines dabei benutzten Formteils.
7. Verwendung einer Komponente (B), welche aus einem Polysilazan der Formel (- SiR'R"-NR'"-)n ausgewählt ist, wobei entweder R", R" und R'" = -H bedeuten oder R' und R'" = -H; und R" = -Methyl bedeuten, zur Erzeugung einer Beschichtung zur Verringerung der Wasserstoffpermeation durch ein Formteil, hergestellt aus einem thermoplastischen Kunststoff.
8. Artikel mit geringer Wasserstoffpermeation, umfassend ein Formteil geformt aus einer Zusammensetzung, umfassend (A) einen thermoplastischen Kunststoff, sowie eine darauf vorgesehene Beschichtung, geformt aus einer Zusammensetzung, umfassend eine Komponente (B), welche aus einem Polysilazan der Formel (- SiR'R"-NR'"-)n ausgewählt ist, wobei entweder R', R" und R'" = -H bedeuten oder R' und R'" = -H; und R" = -Methyl bedeuten.
9. Artikel nach Anspruch 8, dadurch gekennzeichnet, dass der thermoplastische Kunststoff der Komponente (A) ausgewählt ist aus der Gruppe der Polyolefine oder Polyolefinderivate oder Polyolefincopolymerisate, wie z.B. Polyethylen oder Polypropylen, oder aus der Gruppe der Vinylpolymere, wie Polystyrol oder Polystyrol- copolymerisate, oder aus der Gruppe der Polyamide, wie Polyamid 6 oder Polyamid 66, oder aus der Gruppe der Polyester, wie Polyethylenterephthalat oder PoIy- butylenterephthalat, oder aus der Gruppe der aromatischen Polysulfide oder aromatischen Sulfone.
10. Artikel nach mindestens einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Dicke der Beschichtung nach fertiger Applikation im Bereich von 0,01 bis 100 μm, vorzugsweise bei 0,5 bis 5 μm liegt.
PCT/EP2008/006050 2007-07-24 2008-07-23 Artikel mit geringer wasserstoffpermeation und deren verwendung WO2009012988A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010517316A JP5545493B2 (ja) 2007-07-24 2008-07-23 水素透過性の低い物品及びその使用
EP08785003A EP2176353A2 (de) 2007-07-24 2008-07-23 Artikel mit geringer wasserstoffpermeation und deren verwendung
US12/670,176 US20100266840A1 (en) 2007-07-24 2008-07-23 Articles with low hydrogen permeation and their use
CA2694246A CA2694246A1 (en) 2007-07-24 2008-07-23 Articles with low hydrogen permeation and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007034393A DE102007034393A1 (de) 2007-07-24 2007-07-24 Artikel mit geringer Wasserstoffpermeation
DE102007034393.2 2007-07-24

Publications (2)

Publication Number Publication Date
WO2009012988A2 true WO2009012988A2 (de) 2009-01-29
WO2009012988A3 WO2009012988A3 (de) 2009-03-12

Family

ID=40157128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/006050 WO2009012988A2 (de) 2007-07-24 2008-07-23 Artikel mit geringer wasserstoffpermeation und deren verwendung

Country Status (6)

Country Link
US (1) US20100266840A1 (de)
EP (1) EP2176353A2 (de)
JP (2) JP5545493B2 (de)
CA (1) CA2694246A1 (de)
DE (1) DE102007034393A1 (de)
WO (1) WO2009012988A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123102A1 (de) 2020-09-03 2022-03-03 Bolz Block GmbH & Co. KG Tank zur Lagerung von Gasen, insbesondere Wasserstoff

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033277B2 (ja) * 2019-01-22 2022-03-10 株式会社タツノ 水素充填装置の校正方法
KR20230049396A (ko) * 2021-10-06 2023-04-13 코오롱플라스틱 주식회사 폴리아미드 수지 조성물 및 이로 이루어진 성형품

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747623A (en) * 1994-10-14 1998-05-05 Tonen Corporation Method and composition for forming ceramics and article coated with the ceramics
EP1170336A1 (de) * 1999-12-16 2002-01-09 Asahi Glass Company Ltd. Polysilanzan-zusammensetzung, gegossener, beschichteter gegenstand und vernetzter gegenstand
EP1618153A1 (de) * 2003-04-22 2006-01-25 Clariant GmbH Verwendung von polysilazan zur herstellung von hydrophob- und oleophobmodifizierten oberflächen
WO2006056285A1 (de) * 2004-11-23 2006-06-01 Clariant International Ltd Beschichtung auf polysilazanbasis sowie deren verwendung zur beschichtung von folien, insbesondere polymerfolien
DE102005034817A1 (de) * 2005-07-26 2007-02-01 Clariant International Limited Verfahren zur Herstellung einer dünnen glasartigen Beschichtung auf Substraten zur Verringerung der Gaspermeation
DE102005042944A1 (de) * 2005-09-08 2007-03-22 Clariant International Limited Polysilazane enthaltende Beschichtungen für Metall- und Polymeroberflächen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173137A (ja) * 1990-11-02 1992-06-19 Oike Ind Co Ltd バルーン用積層体
JP3449798B2 (ja) * 1994-10-14 2003-09-22 東燃ゼネラル石油株式会社 SiO2被覆プラスチックフィルムの製造方法
JPH1016150A (ja) 1996-07-02 1998-01-20 Teijin Ltd ガスバリア性積層フィルム
JPH10212114A (ja) * 1996-11-26 1998-08-11 Tonen Corp SiO2系セラミックス膜の形成方法
JPH10279362A (ja) * 1997-03-31 1998-10-20 Tonen Corp SiO2系セラミックス膜の形成方法
JPH11151774A (ja) 1997-11-19 1999-06-08 Dainippon Printing Co Ltd 透明ガスバリア−性フィルム
JP3484094B2 (ja) 1999-02-26 2004-01-06 グンゼ株式会社 シリカ被覆プラスティックフィルム及びその製造方法
PL374997A1 (en) 2002-11-01 2005-11-14 Clariant International Ltd Polysilazane-containing coating solution
JP4537006B2 (ja) * 2003-01-14 2010-09-01 株式会社ブリヂストン 燃料電池用高圧低水素透過性ホース
WO2005023714A1 (ja) * 2003-09-08 2005-03-17 National Institute Of Advanced Industrial Science And Technology 粘土膜
JP2005116546A (ja) * 2003-10-02 2005-04-28 Toshiba Corp 半導体装置およびその製造方法
DE102004001288A1 (de) 2004-01-07 2005-08-11 Clariant International Limited Hydrophile Beschichtung auf Polysilazanbasis
JP2006052376A (ja) * 2004-02-27 2006-02-23 Lintec Corp 高分子成形体の製造方法、高分子成形体およびその製造装置
JP2007162830A (ja) * 2005-12-14 2007-06-28 Toray Ind Inc 水素タンクおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747623A (en) * 1994-10-14 1998-05-05 Tonen Corporation Method and composition for forming ceramics and article coated with the ceramics
EP1170336A1 (de) * 1999-12-16 2002-01-09 Asahi Glass Company Ltd. Polysilanzan-zusammensetzung, gegossener, beschichteter gegenstand und vernetzter gegenstand
EP1618153A1 (de) * 2003-04-22 2006-01-25 Clariant GmbH Verwendung von polysilazan zur herstellung von hydrophob- und oleophobmodifizierten oberflächen
WO2006056285A1 (de) * 2004-11-23 2006-06-01 Clariant International Ltd Beschichtung auf polysilazanbasis sowie deren verwendung zur beschichtung von folien, insbesondere polymerfolien
DE102005034817A1 (de) * 2005-07-26 2007-02-01 Clariant International Limited Verfahren zur Herstellung einer dünnen glasartigen Beschichtung auf Substraten zur Verringerung der Gaspermeation
DE102005042944A1 (de) * 2005-09-08 2007-03-22 Clariant International Limited Polysilazane enthaltende Beschichtungen für Metall- und Polymeroberflächen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123102A1 (de) 2020-09-03 2022-03-03 Bolz Block GmbH & Co. KG Tank zur Lagerung von Gasen, insbesondere Wasserstoff

Also Published As

Publication number Publication date
JP2014194278A (ja) 2014-10-09
JP2010534124A (ja) 2010-11-04
WO2009012988A3 (de) 2009-03-12
JP5545493B2 (ja) 2014-07-09
JP5800269B2 (ja) 2015-10-28
EP2176353A2 (de) 2010-04-21
US20100266840A1 (en) 2010-10-21
CA2694246A1 (en) 2009-01-29
DE102007034393A1 (de) 2009-01-29

Similar Documents

Publication Publication Date Title
EP0792846B1 (de) Barriereschichten
Hirvikorpi et al. Thin Al2O3 barrier coatings onto temperature-sensitive packaging materials by atomic layer deposition
DE69724504T2 (de) Gassperrfilm
EP2551105B1 (de) Laminierter körper, verfahren zu seiner herstellung und formbehälter dafür
Amberg-Schwab et al. Inorganic-organic polymers with barrier properties for water vapor, oxygen and flavors
EP0564846B1 (de) Matte, biaxial gereckte Polypropylenfolie, Verfahren zu ihrer Herstellung
EP2012938A1 (de) Flexible plasmapolymere produkte, entsprechende artikel und verwendung
EP2247446A1 (de) Asymmetrischer mehrschichtverbund
DE2756497A1 (de) Verbundene polyolefinfolien
EP1596113A1 (de) Thermoplastische Polyamid-Formmassen
EP2393613B1 (de) Kunststoffsubstrat, umfassend eine flexible, transparente schutzschicht sowie verfahren zur herstellung eines solchen kunststoffsubstrates
CN102791789A (zh) 微细纤维素纤维分散液及其制造方法、纤维素膜以及层叠体
DE19650286C2 (de) Verpackungsmaterial
DE102009047032A1 (de) Polyamid-Ton-Kompositzusammensetzung und Brennstofftransportleitung, die diese verwendet
WO2012028530A1 (de) Barrierebeschichtung aus cycloolefincopolymeren
Soltani et al. Effect of polyelectrolyte on the barrier efficacy of layer-by-layer nanoclay coatings
WO2009012988A2 (de) Artikel mit geringer wasserstoffpermeation und deren verwendung
Zhu et al. Fabrication and evaluation of melamine-formaldehyde resin crosslinked PVA composite coating membranes with enhanced oxygen barrier properties for food packaging
Sykes A variant of the Brasher–Kingsbury equation
JP7247495B2 (ja) 蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、および蓄電デバイス
EP3854907A1 (de) Verbund mit barrierefunktion, dessen herstellung und verwendung
DE102011005234A1 (de) Gasbarriereschichtsystem
Lakshmi et al. XPS and SIMS studies of nanoscale polymer-based coatings
US20220325117A1 (en) Nanocomposite coating system via one-step co-assembly
DE102018108588A1 (de) Barriereschichten sowie Zusammensetzungen für deren Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08785003

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010517316

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2694246

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008785003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12670176

Country of ref document: US