WO2009005169A1 - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
WO2009005169A1
WO2009005169A1 PCT/JP2008/062430 JP2008062430W WO2009005169A1 WO 2009005169 A1 WO2009005169 A1 WO 2009005169A1 JP 2008062430 W JP2008062430 W JP 2008062430W WO 2009005169 A1 WO2009005169 A1 WO 2009005169A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
pressure
flow path
cell system
Prior art date
Application number
PCT/JP2008/062430
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Imanishi
Kota Manabe
Tomoya Ogawa
Yoshiaki Naganuma
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008800141727A priority Critical patent/CN101675550B/zh
Priority to US12/600,953 priority patent/US8361667B2/en
Priority to KR1020097027329A priority patent/KR101136497B1/ko
Priority to DE112008001674.7T priority patent/DE112008001674B4/de
Publication of WO2009005169A1 publication Critical patent/WO2009005169A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04686Failure or abnormal function of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a control method thereof. '' Background technology
  • a fuel cell system including a fuel cell that receives a supply of reaction gas (fuel gas and oxidizing gas) to generate power
  • reaction gas fuel gas and oxidizing gas
  • fuel off-gas containing surplus fuel hydrogen
  • the amount of hydrogen contained in the fuel off-gas may exceed the specified environmental standard value. For this reason, a technique has been proposed for reducing the hydrogen concentration by mixing and diluting the fuel off-gas discharged from the fuel cell anode with a diluent gas such as air.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a fuel cell system capable of suppressing the discharge of pumping hydrogen during low-efficiency power generation without relying on dilution means.
  • a fuel cell system comprises: a fuel cell that generates power; and a low-efficiency power generation of the fuel cell by reducing the amount of reaction gas supplied to the fuel cell compared to that during normal power generation.
  • a fuel cell system comprising: a control means for realizing the following: the control means, wherein the generation amount of anode gas (bombing hydrogen) generated by the power sword of the fuel cell during low-efficiency power generation is less than a predetermined amount
  • the lower limit value of the voltage of the fuel cell is set.
  • control method includes a fuel cell that generates power, and a fuel cell that realizes low-efficiency power generation of the fuel cell by reducing the amount of reaction gas supplied to the fuel cell compared to that during normal power generation.
  • the amount of bombing hydrogen generated can be suppressed to a predetermined amount or less by setting the lower limit voltage of the fuel cell to a specific value during low-efficiency power generation. Accordingly, since the amount of bombing hydrogen discharged during low-efficiency power generation can be reduced, an apparatus for diluting the pumping hydrogen can be omitted.
  • the fuel cell system may further include a dilution means for diluting the pumping hydrogen. Only when the diluting means is abnormal, it is possible to employ a control device that sets the lower limit voltage of the fuel cell so that the amount of bombing hydrogen generated during low-efficiency power generation is less than or equal to a predetermined amount.
  • the concentration of the bombing hydrogen can be diluted by the diluting means when the diluting means is normal, and low-efficiency power generation is performed without particularly setting the lower limit value of the voltage. Therefore, warm-up (self-heating) can be performed effectively.
  • the dilution means is abnormal, low-efficiency power generation is performed while setting the lower limit value of the fuel cell voltage to a specific value, so that the amount of bombing hydrogen generated can be suppressed to a predetermined amount or less. it can.
  • a gas supply flow path for supplying an oxidant gas supplied from an oxidant gas supply source to the cathode of the fuel cell, and a gas exhaust flow for circulating the gas discharged from the cathode of the fuel cell Roads and can be provided.
  • a bypass flow path for bypassing part of the oxidant gas flowing through the gas supply flow path to the gas discharge flow path and a bypass valve for adjusting the flow rate of the oxidant gas flowing through the bypass flow path;
  • a diluting means for diluting the pumping hydrogen with the oxidizing gas flowing from the gas supply flow path to the gas discharge flow path via the bypass flow path.
  • a pressure sensor for detecting the pressure of the oxidizing gas supplied from the oxidizing gas supply source can be provided.
  • the pressure of the oxidant gas supplied from the oxidant gas supply source is estimated based on the command value of the flow rate of the oxidant gas flowing through the nopass flow path and the opening of the bypass valve, and the estimated pressure It is possible to employ an abnormality determination means for determining an abnormality of the dilution means based on a deviation between the detected pressure detected by the pressure sensor.
  • Abnormality determination means for determining that a closed failure has occurred in the bypass valve can be employed.
  • dilution means having a back pressure valve for adjusting the pressure of the gas flowing through the gas discharge flow path can be employed.
  • the estimated pressure is greater than the detected pressure and the absolute value of the deviation between the estimated pressure and the detected pressure exceeds a predetermined threshold, it is determined that an open failure has occurred in the back pressure valve. Can be adopted.
  • FIG. 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2A is an explanatory diagram showing the relationship between output power and power loss during normal operation of the fuel cell system shown in FIG.
  • FIG. 2B is an explanatory diagram showing the relationship between output power and power loss during low-efficiency operation of the fuel cell system shown in FIG.
  • Fig. 3 is an IV characteristic map of the fuel cell system shown in Fig. 1 during normal operation and low-efficiency operation.
  • 4A and 4B are explanatory diagrams for explaining the principle of generation of bombing hydrogen.
  • FIG. 5 is a table used for setting the lower voltage limit during low-efficiency operation (when the dilution means is abnormal) of the fuel cell system shown in FIG.
  • Figure 6 is an approximate curve map created by plotting the data in the table shown in Figure 5.
  • FIG. 7 is a flowchart for explaining the operation method of the fuel cell system shown in FIG.
  • the fuel cell system 1 includes a fuel cell 2 that generates electric power upon receipt of reaction gas (oxidized gas and fuel gas), and air as an oxidant gas.
  • Oxidizing gas piping system 3 to be supplied to fuel cell
  • fuel gas piping system 4 to supply hydrogen gas as fuel gas to fuel cell 2
  • power system 5 to charge / discharge system power
  • control device 6 to control the entire system, etc. It has.
  • the fuel cell 2 is composed of, for example, a solid polymer electrolyte type and has a stack structure in which a large number of unit cells 20 (FIG. 4A) are stacked.
  • the unit cell 20 of the fuel cell 2 has a force sword (air electrode) on one surface of the electrolyte membrane 21 (FIG.
  • anode fuel electrode
  • a power sword a pair of separators so as to sandwich the anode from both sides.
  • the fuel gas is supplied to the fuel gas flow path of one separator, and the oxidant gas is supplied to the oxidizing gas flow path of the other separator, and the fuel cell 2 generates electric power by this gas supply.
  • the cathode off-gas is discharged from the cathode of the fuel cell 2.
  • 'Cathode off-gas includes oxygen off-gas after being subjected to the cell reaction of fuel cell 2 and bombing hydrogen (described later) produced by a force sword.
  • the fuel cell 2 includes a current sensor 2 a and a voltage sensor 2 b that detect current and voltage (output current and output voltage) during power generation, and a temperature that detects the temperature of the fuel cell 2.
  • the fuel cell 2 may be a phosphoric acid type or a molten carbonate type.
  • Oxidizing gas piping system 3 includes air compressor 3 1, oxidizing gas supply flow path 3 2, calo-humidity module 3 3, force sword-off gas flow path 3 4, bypass flow path 3 8, diluter 4 0, air compressor 3 1 It has a motor Ml etc. to drive.
  • the air compressor 3 1 is driven by the driving force of the motor M l that is operated by the control command of the control device 6, and oxygen (oxidized gas) taken from outside air through an air filter (not shown) is the fuel cell 2.
  • the oxidizing gas supply flow path 3 2 is a gas flow path for introducing oxygen supplied from the air compressor 31 to the power sword of the fuel cell 2.
  • the oxidizing gas supply flow path 3 2 is provided with a pressure sensor 35 and a temperature sensor 3 6 for detecting the ffi force and temperature of the oxidizing gas supplied from the air compressor 31. Information on the pressure and temperature detected by the pressure sensor 35 and the temperature sensor is used for determining the abnormality of the diluting means described later.
  • the humidification module 3 3 exchanges moisture between the low-humidity oxidizing gas flowing in the oxidizing gas supply flow path 3 2 and the high-humid power sword off gas flowing in the force sword-off gas flow path 3 4, and fuel. Moisturize the oxidizing gas supplied to Battery 2 appropriately.
  • the cathode off gas flow path 34 is a gas flow path for exhausting the force sword off gas outside the system, and is an embodiment of the gas discharge flow path in the present invention.
  • a back pressure valve 3 7 is arranged near the force sword pole outlet of the force sword off gas flow path 3 4.
  • the control device 6 controls the opening / closing operation of the back pressure valve 37, whereby the pressure of the cathode offgas flowing through the cathode offgas flow path 34 is adjusted, and as a result, the discharge amount of bombing hydrogen is adjusted.
  • the bypass flow path 3 8 leads a part of the oxidizing gas flowing through the oxidizing gas supply flow path 3 2 to the cathode off-gas flow path 3 4 by bypassing the fuel cell 2.
  • a bypass valve 3 9 is provided in the bypass flow path 3 8. The flow rate of the oxidizing gas flowing through the bypass channel 3 8 is adjusted by the bypass valve 39.
  • the control device 6 controls the opening / closing operation of the bypass valve 3 9, the oxidizing gas is supplied from the oxidizing gas supply flow path 3 2 to the force sword-off gas flow path 3 4 via the bypass flow path 3 8.
  • the pumping hydrogen flowing through the force sword-off gas channel 34 is diluted. That is, the bypass flow path 3 8, the bypass valve 3 9 and the control device 6 constitute a dilution means in the present invention.
  • the back pressure valve 37 also adjusts the amount of bombing hydrogen discharged, and therefore constitutes a dilution means in the present invention.
  • the diluter 40 dilutes so that the hydrogen gas discharge concentration is kept below a preset concentration (predetermined environmental standard value).
  • the diluter 40 communicates with the downstream of the force sword off-gas channel 3 4 and the downstream of the anode off-gas channel 4 4 described later.
  • the hydrogen off-gas and the oxygen off-gas are mixed and diluted and exhausted outside the system. It becomes this.
  • the fuel gas piping system 4 includes a fuel gas supply source 41, a fuel gas supply channel 4 2, a fuel gas circulation channel 4 3, an anode off-gas channel 4 4, a hydrogen circulation pump 4 5, a check valve 4 6, and hydrogen.
  • a motor M 2 and the like for driving the circulation pump 45 are provided.
  • the fuel gas supply source 41 is a means for supplying a fuel gas such as hydrogen gas to the fuel cell 2, and is constituted by, for example, a high-pressure hydrogen tank or a hydrogen storage tank.
  • the fuel gas supply channel 4 2 is a gas channel for guiding the fuel gas released from the fuel gas supply source 41 to the anode electrode of the fuel cell 2, and the gas channel is a tank from upstream to downstream.
  • Valves such as valve H1, hydrogen supply valve H2, and FC inlet valve H3 are provided.
  • the FC inlet valve H 3 is a short valve for supplying (or shutting off) fuel gas to the fuel cell 2, and is constituted by, for example, an electromagnetic valve.
  • the fuel gas circulation passage 4 3 is a return gas passage for recirculating unreacted fuel gas to the fuel cell 2, and the gas passage has an FC outlet valve H 4 and a hydrogen circulation pump 4 from upstream to downstream. 5.
  • Check valves 4 and 6 are provided respectively.
  • the low-pressure unreacted fuel gas discharged from the fuel cell 2 is moderately pressurized by the hydrogen circulation pump 45 driven by the driving force of the motor M 2 that operates according to the control command of the control device 6, and the fuel gas is supplied. Guided to channel 4 2.
  • the backflow of the fuel gas from the fuel gas supply channel 4 2 to the fuel gas circulation channel 4 3 is suppressed by the check valve 46.
  • the anode off-gas channel 44 is a gas channel for exhausting the anode off-gas containing the hydrogen off-gas discharged from the fuel cell 2 to the outside of the system, and a purge valve H 5 is provided in the gas channel. Yes.
  • the electric power system 5 includes a high-voltage DCZDC converter 51, a battery 52, a traction inverter 53, an auxiliary inverter 54, a traction motor M3, an auxiliary motor M4, and the like.
  • the high-voltage DC ZD C converter 5 1 is a DC voltage converter that adjusts the DC voltage input from the battery 5 2 and outputs it to the traction inverter 5 3 side, and the fuel cell 2 or traction motor M And a function of adjusting the DC voltage input from 3 and outputting it to the battery 52.
  • These functions of the high-voltage DC / DC converter 51 allow the battery 52 to be charged / discharged.
  • the output voltage of the fuel cell 2 is controlled by the high voltage DCZDC converter 51.
  • the battery 52 is a chargeable / dischargeable secondary battery (for example, a nickel metal hydride battery).
  • the battery 52 can be charged with surplus power or supplementarily supplied with power by control of a battery computer (not shown).
  • Part of the direct current generated by the fuel cell 2 is a high voltage DC / DC
  • the battery is boosted / lowered by the battery 51 and charged to the battery 52.
  • a chargeable / dischargeable capacitor for example, a capacitor
  • the Traction Inverter 53 and the Auxiliary Inverter 5 4 are pulse width modulation type PWM inverters, and the DC power output from the fuel cell 2 or the battery 52 according to the given control command is three-phase AC. Convert to electric power and supply to traction motor M3 and auxiliary motor M4.
  • the traction motor M 3 is a motor for driving the wheels 7 L and 7 R.
  • Auxiliary motor M4 is a motor for driving various auxiliary machines, and is a generic term for motor Ml that drives air compressor 31 and motor M2 that drives hydrogen circulation pump 45. .
  • the control device 6 is composed of CPU, ROM, RAM, etc., and controls each part of the system in an integrated manner based on each sensor signal inputted.
  • control device 6 calculates the required output power of the fuel cell 2 based on each sensor signal sent from an unillustrated accelerator pedal sensor or the like that detects the accelerator pedal opening. Then, the control device 6 controls the output voltage and output current of the fuel cell 2 so as to generate output power corresponding to the required output power. Further, the control device 6 controls the traction motor M 3 and the auxiliary motor M 4 by controlling the output pulse widths of the truncation inverter 53 and the auxiliary inverter 54.
  • the control device 6 detects the temperature of the fuel cell 2 based on the sensor signal output from the temperature sensor 2 c provided in the fuel cell 2, and compares the detected temperature with a predetermined reference temperature. Determine whether warm-up is necessary. Then, when it is determined that the temperature of the fuel cell 2 exceeds the reference temperature and the warm-up is unnecessary, the control device 6 performs a normal operation process.
  • the normal operation process refers to a process of operating at an efficient operation point (that is, an operation point with small power loss) without warming up.
  • the control device 6 is based on the temperature of the fuel cell 2. When it is determined that the temperature is below the temperature and warm-up is required, low-efficiency operation processing (processing that operates at an operation point with low power generation efficiency) is performed.
  • the horizontal axis represents the output current
  • the vertical axis represents the output voltage
  • OCV Open Circuit Voltage
  • the control device 6 has a normal operation operating point (I., V 0 with a small power loss with respect to the output power). ) Start operation.
  • the control device 6 operates at a low-efficiency operation point (I V L ) with a large power loss as shown in Fig. 2B.
  • I V L low-efficiency operation point
  • the amount of power loss thermal energy
  • Figure 3 shows the IV characteristic map during normal operation (solid line) and the IV characteristic map during low-efficiency operation (broken line). These are shown during normal operation and low-efficiency operation.
  • the operating point can be determined using the IV characteristic map.
  • the IV characteristic map (dashed line) during low-efficiency operation can be set as appropriate according to the output demand from the traction motor M3.
  • the example shown in Fig. 3 is an example.
  • the air stoichiometric ratio is set to 1.0 or higher so that high power generation efficiency can be obtained while suppressing power loss.
  • the air stoichiometric ratio is the ratio of the actual oxidant gas supply amount to the theoretical value of the oxidant gas supply amount necessary for power generation of the fuel cell 2 (the value obtained by dividing the actual oxidant gas supply amount by the theoretical value). means.
  • the power loss raise the temperature of the fuel cell 2 and set the air stoichiometric ratio to less than 1.0. If the air stoichiometric ratio is set low, the power loss (thermal energy) of the energy that can be extracted by the reaction between hydrogen and oxygen can be increased actively, while the cathode of the fuel cell 2 is bombed. Hydrogen is generated.
  • FIG. 4A and FIG. 4B are diagrams for explaining the generation principle of pumping hydrogen.
  • FIG. 4A is a diagram showing a battery reaction during normal operation
  • FIG. 4B is a diagram showing a battery reaction during low-efficiency operation.
  • Each unit cell 20 of the fuel cell 2 includes an electrolyte membrane 21, and an anode and a force sword that sandwich the electrolyte membrane 21.
  • Fuel gas containing hydrogen (H 2 ) is supplied to the anode
  • oxidizing gas containing oxygen (O 2 ) is supplied to the power sword.
  • the reaction of the following chemical formula (A) proceeds and hydrogen is separated from hydrogen ions and electrons. Hydrogen ions generated at the anode pass through the electrolyte membrane 21 and move to the cathode, while electrons move from the anode to the cathode through an external circuit.
  • the controller 6 is used for low-efficiency power generation where such bombing hydrogen is generated and the dilution means is abnormal (the back pressure valve 3 7 or When the bypass valve 39 fails), the lower limit value of the output voltage of the fuel cell 2 is set so that the amount of bombing hydrogen generated is less than or equal to the predetermined amount, that is, the control device 6 is the control means in the present invention. Function as one embodiment.
  • FIG. 5 is a table that defines the relationship between the output current (A) of the fuel cell 2, the temperature (° C) of the fuel cell 2, and the lower limit value (V) of the output voltage of the fuel cell 2.
  • 6 is a map that draws an approximate curve by plotting the values in the table in Fig. 5.
  • the lower limit value of the output voltage of the fuel cell 2 shown in the table of FIG. 5 is obtained by changing the output current of the fuel cell 2 to I ⁇ I 10 and changing the temperature of the fuel cell 2 from T to T 6 . In this case, the value is set so that the generation amount of pumping hydrogen is not more than a predetermined amount.
  • the control device 6 sets the lower limit value of the output voltage of the fuel cell 2 to V 31 , V 32 , “”, V 36 ,.
  • the control device 6 sets the lower limit value of the output voltage of the fuel cell 2 to V 61 , V 62 , ⁇ ⁇ ⁇ ⁇ , V 6 Q.
  • the device 6 is in a region above the approximate curve T N (N: 1 to 6) drawn in the map of FIG. Set the output current and output voltage.
  • control device 6 is based on the command value of the flow rate of the oxidizing gas flowing through the bypass flow path 38, the opening degree of the bypass valve 39, and the temperature of the oxidizing gas detected by the temperature sensor 36. Compress the pressure of the oxidizing gas supplied from the air compressor 3 1. Determine. Based on the deviation between the estimated pressure and the pressure of the oxidant gas detected by the pressure sensor 35, the control device 6 detects that the dilution means is abnormal (failure of the back pressure valve 37 and the bypass valve 39). Determine. That is, the control device 6 also functions as an embodiment of the abnormality determination means in the present invention.
  • the abnormality determination method for the dilution means by the control device 6 will be specifically described.
  • the flow rate command value Q of the oxidizing gas flowing through the bypass passage 3 8 and the opening A of the bypass valve 3 9 are values determined by the control device 6 according to the operating point of the low efficiency operation of the fuel cell 2. It is.
  • the controller 6 calculates the estimated pressure P E calculated in this way and the pressure (detected pressure) P detected by the pressure sensor 3 5. . And are calculated, and the absolute value e of the deviation between the two is calculated. Then, when the absolute value e of the calculated deviation exceeds a predetermined threshold, the control device 6 determines that the back pressure valve 37 or the bypass valve 39 is out of order (the diluting means is abnormal).
  • the control device 6 has the estimated pressure P E smaller than the detected pressure P 0 , and these estimated pressure P E and detected pressure P.
  • the absolute value e of the deviation from the above exceeds a predetermined threshold value, it is determined that a closed failure has occurred in the bypass valve 39.
  • a closed failure occurs in the bypass valve 3 9
  • the oxidizing gas pressure (detected pressure) in the oxidizing gas supply passage 3 2 is the theoretical value (estimated). This is because it is significantly higher than (pressure).
  • the control device 6 the estimated pressure P E is greater than the detected pressure P 0, and, when the absolute value e of the deviation between these estimated pressure P E and the detected pressure P 0 exceeds a predetermined threshold, back It is determined that an open failure has occurred in the pressure valve 37.
  • an open failure occurs in the back pressure valve 37, gas leaks to the downstream side of the back pressure valve 37. Therefore, the pressure of the oxidizing gas in the oxidizing gas supply flow path 32 on the upstream side of the back pressure valve 37 ( This is because the (detected pressure) is significantly lower than the theoretical value (estimated pressure).
  • the control device 6 detects the temperature of the fuel cell 2 based on the sensor signal output from the temperature sensor 2 c (temperature detection step: S 1), and compares the detected temperature with a predetermined reference temperature. It is determined whether or not warm-up is necessary (warm-up determination step: S 2). In the warm-up determination step S2, the control device 6 realizes the normal operation when it is determined that the temperature of the fuel cell 2 exceeds the reference temperature and the warm-up is unnecessary (normal operation step: S1 4). . On the other hand, in the warm-up determination step S2, the control device 6 determines whether or not the dilution means is abnormal when it is determined that the temperature of the fuel cell 2 is lower than the reference temperature and the dredger is necessary. (Whether the back pressure valve 37 or the bypass valve 39 is out of order) is determined (dilution means abnormality determination step: S3). Low-efficiency operation during abnormal conditions>
  • the control device 6 calculates the estimated pressure P E calculated in the dilution means abnormality determination step S 3 and the detected pressure P by the pressure sensor 35.
  • the absolute value e of the deviation exceeds the predetermined threshold (the dilution means is abnormal)
  • the following abnormal low-efficiency operation Perform step S6). That is, the control device 6 detects the output current of the fuel cell 2 detected by the current sensor 2a, the temperature of the fuel cell 2 detected by the temperature sensor 2c, the tables shown in FIGS. Set the lower limit value of the output voltage of the fuel cell 2 based on the Pressure lower limit setting process: S 4).
  • the control device 6 sets a target low-efficiency operation operating point (target output current command value and output voltage command value) that exceeds the set voltage lower limit value (low-efficiency operation point setting process in case of abnormality: S5).
  • the control device 6 controls the output voltage of the fuel cell 2 detected by the voltage sensor 2 b to be close to the output voltage command value by using the high voltage DCZDC converter 51, and the air compressor 3 1 Control the fuel cell 2 output current detected by the current sensor 2a closer to the output current command value by reducing the amount of air supplied to the fuel cell 2 using the back pressure valve 3 7 Process: S6).
  • the control device 6 determines whether or not the temperature of the fuel cell 2 has exceeded a predetermined reference temperature (temperature determination step: S 7), and if the temperature of the fuel cell 2 has exceeded the reference temperature, an abnormal condition has occurred.
  • a predetermined reference temperature temperature determination step: S 7
  • the process returns to the dilution means abnormality determination step S3 and the control is continued.
  • the control of the dilution means composed of the bypass valve 39 and the like is stopped.
  • the controller 6 determines that the absolute value e of the deviation between the estimated pressure P E calculated in the dilution means abnormality determination step S 3 and the detected pressure P 0 detected by the pressure sensor 35 is equal to or less than a predetermined threshold value (When it is determined that the dilution means is normal), the following normal low-efficiency operation (normal low-efficiency operating point setting step S8 to hydrogen dilution step S12) is performed.
  • control device 6 sets a target low-efficiency operation operating point according to a predetermined warm-up target temperature or the like (normal low-efficiency operating point setting process: S 8), and uses the high-pressure DCZC converter 5 1.
  • the current control using the air compressor 31 and the back pressure valve 37 is performed (normal current voltage control process: S9).
  • control device 6 derives the purge hydrogen amount and the bombing hydrogen amount corresponding to the set target low-efficiency operation point based on a map or the like, and adds them.
  • the total discharged hydrogen amount from the fuel cell 2 is calculated (total discharged hydrogen amount calculating step: S 1 0).
  • the control device 6 uses the dilution information (the command for the flow rate of the oxidizing gas flowing through the bypass flow path 3 8) that is necessary to bring the discharged hydrogen concentration below the predetermined environmental reference value. Value, etc.) (dilution information calculation step: S 1 1). Based on the calculated dilution information, the control device 6 adjusts the rotation speed of the air conditioner press 31, the opening degree of the back pressure valve 37, the opening degree of the bypass valve 39, etc. Dilute the bombing hydrogen discharged to the tank (hydrogen dilution process: S 1 2).
  • the control device 6 determines whether or not the temperature of the fuel cell 2 has exceeded a predetermined reference temperature (temperature determination step: S 1 3), and is normal if the temperature of the fuel cell 2 has exceeded the reference temperature.
  • a predetermined reference temperature temperature determination step: S 1 3
  • the bombing hydrogen can be diluted by the dilution means composed of the bypass valve 39 and the like, so that the lower limit value of the voltage is not limited.
  • the concentration of the pumping hydrogen can be diluted by the diluting means, and in particular, the lower limit value of the voltage is set.
  • low-efficiency power generation can be implemented, and warm-up (self-heating) can be performed effectively.
  • the dilution means is abnormal, low-efficiency power generation is performed while setting the lower limit of the voltage of the fuel cell 2 to a specific value, so that the amount of bombing hydrogen generated can be suppressed to a predetermined amount or less. it can.
  • the example in which the low-efficiency operation is performed for the purpose of the dredger when the temperature of the fuel cell 2 is lowered is shown.
  • the temperature sensor 2 c attached to the fuel cell 2 is used to detect the temperature of the fuel cell 2 and determine whether or not warm-up is necessary. Instead of temperature, it is also possible to determine whether warm air is necessary by detecting the outside air temperature and the temperature of parts around the fuel cell.
  • the fuel cell system according to the present invention can be mounted on a fuel cell vehicle as shown in the above embodiment, and can also be mounted on various mobile bodies (robots, ships, aircrafts, etc.) other than the fuel cell vehicle. It is. Further, the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (house, building, etc.).

Abstract

発電を行う燃料電池と、燃料電池への反応ガスの供給量を通常発電時よりも低減させることにより燃料電池の低効率発電を実現させる制御手段と、を備える燃料電池システムである。制御手段は、低効率発電時において燃料電池のカソードで生成されるアノードガス(ポンピング水素)の生成量が所定量以下になるように燃料電池の電圧下限値を設定する。

Description

明細書 燃料電池システム及ぴその制御方法 技術分野
本発明は、 燃料電池システム及びその制御方法に関する。 ' 背景技術
従来より、 反応ガス (燃料ガス及び酸化ガス) の供給を受けて発電を fiう 燃料電池を備えた燃料電池システムが提案され、 実用化されている。 このよ うな燃料電池システムの燃料電池のアノードからは、 発電時に消費されずに 余った燃料 (水素) を含む燃料オフガスが排出される。 このような燃料オフ ガスをそのままシステムの外部に排出すると、 燃料オフガスに含まれる水素 の排出量が所定の環境基準値を上回る場合がある。 このため、 燃料電池のァ ノードから排出される燃料オフガスを空気等の希釈ガスと混合 ·希釈して水 素濃度を低減させる技術が提案されている。
ところで、 現在においては、 燃料電池の低効率運転 (通常運転時よりも発 電効率が低い状態での運転) を実施することにより、 供給した反応ガスのェ ネルギをより多く熱エネルギに変換して、 燃料電池を昇温させる技術が提案 されている。 このような低効率運転においては、 燃料電池のアノードから水 素を含む燃料オフガスが排出されるだけでなく、 燃料電池のカソードにおい てアノードガス (いわゆるボンビング水素) が生成されることが知られてレ、 る。 このため、 近年においては、 燃料電池の力ソード側に希釈手段を設ける ことにより、 排出されるボンビング水素の濃度を低減させる技術が提案され ている (例えば、 特開 2 0 0 5— 1 7 4 6 4 5号公報参照) 。 発明の開示
し力 し、 特開 2 0 0 5— 1 7 4 6 4 5号公報に記載された技術を採用して も、 力ソード側の希釈手段力 S故障した場合には、 ボンビング水素の濃度を低 減させることができないため、 排出水素濃度を所定の環境基準値以下に抑え ることができないおそれがある。
本発明は、 かかる事情に鑑みてなされたものであり、 希釈手段に頼らずに 低効率発電時におけるボンピング水素の排出を抑制するこ ができる燃料電 池システムを提供することを目的とする。
前記目的を達成するため、 本発明に係る燃料電池システムは、 発電を行う 燃料電池と、 この燃料電池への反応ガスの供給量を通常発電時よりも低減さ せることにより燃料電池の低効率発電を実現させる制御手段と、 を備える燃 料電池システムであって、 制御手段は、 低効率発電時において燃料電池の力 ソードで生成されるアノードガス (ボンビング水素) の生成量が所定量以下 になるように燃料電池の電圧下限値を設定するものである。
また、 本発明に係る制御方法は、 発電を行う燃料電池を備え、 この燃料電 池への反応ガスの供給量を通常発電時よりも低減させることにより燃料電池 の低効率発電を実現させる燃料電池システムの制御方法であって、 低効率発 電時において燃料電池のカソードで生成されるアノードガス (ボンビング水 素) の生成量が所定量以下になるように燃料電池の電圧下限値を設定するェ 程を備えるものである。
かかる構成及び方法を採用すると、 低効率発電時において、 燃料電池の電 圧下限値を特定の値に設定することにより、 ボンビング水素の生成量を所定 量以下に抑えることができる。 従って、 低効率発電時におけるボンビング水 素の排出量を低減させることができるので、 ボンピング水素を希釈するため の装置を省くことができる。 前記燃料電池システムにおいて、 ボンピング水素を希釈する希釈手段を備 えることもできる。 そして、 この希釈手段が異常である場合にのみ、 低効率 発電時においてボンビング水素の生成量が所定量以下になるように燃料電池 の電圧下限値を設定する制御装置を採用することができる。
力かる構成を採用すると、 希釈手段が正常である場合には、 ボンビング水 素の濃度を希釈手段で希釈することができ、 なおかつ、 特に電圧の下限値を 設定することなく低効率発電を実施することができるので暖機 (自己発熱) を効果的に行うことができる。 一方、 希釈手段が異常である場合には、 燃料 電池の電圧下限値を特定の値に設定しながら低効率発電を実施することによ り、 ボンビング水素の生成量を所定量以下に抑えることができる。
また、 前記燃料電池システムにおいて、 酸化ガス供給源から供給される酸 化ガスを燃料電池のカソードに供給するためのガス供給流路と、 燃料電池の カソードから排出されるガスを流通させるガス排出流路と、 を設けることが できる。 そして、 ガス供給流路を流れる酸化ガスの一部を燃料電池をバイパ スしてガス排出流路へと導くバイパス流路と、 このバイパス流路を流通する 酸化ガスの流量を調整するバイパス弁と、 を有し、 ガス供給流路からバイパ ス流路を経由してガス排出流路へと流れる酸化ガスによりボンピング水素を 希釈する希釈手段を採用することができる。
また、 前記燃料電池システムにおいて、 酸化ガス供給源から供給される酸 化ガスの圧力を検出する圧力センサを設けることができる。 かかる場合、 ノ ィパス流路を流通する酸化ガスの流量の指令値と、 バイパス弁の開度と、 に 基づいて、 酸化ガス供給源から供給される酸化ガスの圧力を推定し、 この推 定圧力と圧力センサで検出した検出圧力との偏差に基づいて希釈手段の異常 を判定する異常判定手段を採用することができる。
また、前記燃料電池システムにおいて、推定圧力が検出圧力よりも小さく、 かつ、 推定圧力と検出圧力との偏差の絶対値が所定の閾値を超える場合に、 バイパス弁に閉故障が生じたものと判定する異常判定手段を採用することが できる。
また、 前記燃料電池システムにおいて、 ガス排出流路を流通するガスの圧 力を調整する背圧弁を有する希釈手段を採用することができる。かかる場合、 推定圧力が検出圧力よりも大きく、 つ、 推定圧力と検出圧力との偏差の絶 対値が所定の閾値を超える場合に、 背圧弁に開故障が生じたものと判定する 異常判定手段を採用することができる。
本発明によれば、 希釈手段に頼らずに低効率発電時におけるボンピング水 素の排出を抑制することができる燃料電池システムを提供することが可能と なる。 図面の簡単な説明
図 1は、 本発明の実施形態に係る燃料電池システムの構成図である。
図 2 Aは、 図 1に示す燃料電池システムの通常運転時の出力電力と電力損 失との関係を示す説明図である。
図 2 Bは、 図 1に示す燃料電池システムの低効率運転時の出力電力と電力 損失との関係を示す説明図である。
図 3は、 図 1に示す燃料電池システムの通常運転時及ぴ低効率運転時にお ける I V特性マップである。
図 4 A及ぴ図 4 Bは、 ボンビング水素の発生原理を説明するための説明図 である。
図 5は、 図 1に示す燃料電池システムの低効率運転時 (希釈手段異常時) における電圧下限値の設定に使用されるテーブルである。
図 6は、 図 5に示すテーブルのデータをプロットして作成した近似曲線マ ップである。 図 7は、 図 1に示す燃料電池システムの運転方法を説明するためのフロー チヤ一トである。
発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施形態に係る燃料電池システムについ て説明する。 本実施形態においては、 本発明を燃料電池車両の車載発電シス テムに適用した例について説明することとする。
まず、 図 1〜図 6を用いて、 本発明の実施形態に係る燃料電池システム 1 の構成について説明する。
本実施形態に係る燃料電池システム 1は、図 1に示すように、反応ガス(酸 化ガス及び燃料ガス) の供給を受けて電力を発生する燃料電池 2、 酸化ガス としての空気を燃料電池 2に供給する酸化ガス配管系 3、 燃料ガスとしての 水素ガスを燃料電池 2に供給する燃料ガス配管系 4、 システムの電力を充放 電する電力系 5、 システム全体を統括制御する制御装置 6等を備えている。 燃料電池 2は、 例えば固体高分子電解質型で構成され、 多数の単電池 2 0 (図 4 A) を積層したスタック構造を備えている。 燃料電池 2の単電池 2 0 は、 電解質膜 2 1 (図 4 A) の一方の面に力ソード (空気極) を有し、 他方 の面にアノード (燃料極) を有し、 さらに力ソード及びアノードを両側から 挟みこむように一対のセパレータを有している。 一方のセパレータの燃料ガ ス流路に燃料ガスが供給され、 他方のセパレータの酸化ガス流路に酸ィヒガス が供給され、 このガス供給により燃料電池 2は電力を発生する。 また、 燃料 電池 2のカソードからはカソードオフガスが排出される。'カソードオフガス には、 燃料電池 2の電池反応に供した後の酸素オフガスのほか、 力ソードで 生成されるボンビング水素 (後述) が含まれる。
燃科電池 2には、 発電中の電流及び電圧 (出力電流及び出力電圧) を検出 する電流センサ 2 a及ぴ電圧センサ 2 bと、 燃料電池 2の温度を検出する温 度センサ 2 cと、 が取り付けられている。 電流センサ 2 aで検出された出力 電流に係る情報や温度センサ 2 cで検出された温度に係る情報は、 後述する 電圧制御に用いられる。 なお、 燃料電池 2としては、 固体高分子電解質型の ほか、 燐酸型や熔融炭酸塩型のものを採用することができる。
酸化ガス配管系 3は、 エアコンプレッサ 3 1、 酸化ガス供給流路 3 2、 カロ 湿モジュール 3 3、 力ソードオフガス流路 3 4、 バイパス流路 3 8、 希釈器 4 0、 エアコンプレッサ 3 1を駆動するモータ M l等を有している。
エアコンプレッサ 3 1は、 制御装置 6の制御指令で作動するモータ M lの 駆動力により駆動されて、 図示していないエアフィルタを介して外気から取 り込んだ酸素(酸化ガス)を燃料電池 2の力ソード極に供給するものであり、 ' 本発明における酸化ガス供給源の一実施形態である。 酸化ガス供給流路 3 2 は、 エアコンプレッサ 3 1から供給される酸素を燃料電池 2の力ソードに導 くためのガス流路である。 酸化ガス供給流路 3 2には、 エアコンプレッサ 3 1から供給される酸化ガスの ffi力及び温度を検出する圧力センサ 3 5及び温 度センサ 3 6が設けられている。 これら圧力センサ 3 5及ぴ温度センサで検 出された圧力及び温度に係る情報は、 後述する希釈手段の異常判定に用レ、ら れる。
加湿モジュール 3 3は、 酸化ガス供給流路 3 2を流れる低湿潤状態の酸化 ガスと、 力ソードオフガス流路 3 4を流れる高湿潤状態の力ソードオフガス と、 の間で水分交換を行い、 燃料電池 2に供給される酸化ガスを適度に加湿 する。 カソードオフガス流路 3 4は、 力ソードオフガスをシステム外に排気 するためのガス流路であり、 本発明におけるガス排出流路の一実施形態であ る。 力ソードオフガス流路 3 4の力ソード極出口付近には、 背圧弁 3 7が配 設されている。 制御装置 6が背圧弁 3 7の開閉動作を制御することにより、 カソードオフガス流路 3 4を流通するカソードオフガスの圧力が調整され、 この結果、 ボンビング水素の排出量が調整されることとなる。 バイパス流路 3 8は、 酸化ガス供給流路 3 2を流れる酸化ガスの一部を、 燃料電池 2をパイパスして、カソードオフガス流路 3 4へと導くものである。 バイパス流路 3 8には、 バイパス弁 3 9が設けられている。 バイパス流路 3 8を流通する酸化ガスの流量は、 バイパス弁 3 9によって調整される。 制御 装置 6がバイパス弁 3 9の開閉動作を制御することにより、 酸化ガス供給流 路 3 2からバイパス流路 3 8を経由して力ソードオフガス流路 3 4へと酸化 ガスが供給され、 これにより、 力ソードオフガス流路 3 4を流通するポンピ ング水素が希釈される。 すなわち、 バイパス流路 3 8、 バイパス弁 3 9及ぴ 制御装置 6は、 本発明における希釈手段を構成する。 なお、 背圧弁 3 7もま たボンビング水素の排出量を調整するものであるため、 本発明における希釈 手段を構成する。
希釈器 4 0は、水素ガスの排出濃度を予め設定された濃度 (所定の環境基準 値) 以下に抑えるように希釈する。 希釈器 4 0には、 力ソードオフガス流路 3 4の下流及ぴ後述するアノードオフガス流路 4 4の下流が連通しており、 水素オフガス及び酸素オフガスは混合希釈されてシステム外に排気されるこ ととなる。
燃料ガス配管系 4は、 燃料ガス供給源 4 1、 燃料ガス供給流路 4 2、 燃料 ガス循環流路 4 3、 アノードオフガス流路 4 4、 水素循環ポンプ 4 5、 逆止 弁 4 6、 水素循環ポンプ 4 5を駆動するためのモータ M 2等を有している。 燃料ガス供給源 4 1は、 燃料電池 2へ水素ガス等の燃料ガスを供給する手 段であり、 例えば高圧水素タンクや水素貯蔵タンク等によつて構成される。 燃料ガス供給流路 4 2は、 燃料ガス供給源 4 1から放出される燃料ガスを燃 料電池 2のアノード極に導くためのガス流路であり、 そのガス流路には上流 から下流にかけてタンクバルブ H 1、 水素供給バルブ H 2、 F C入口バルブ H 3等の弁が配設されている。 タンクバルブ H I、 水素供給バルブ H 2及ぴ F C入口バルブ H 3は、 燃料電池 2へと燃料ガスを供給 (又は遮断) するた めのシャツトバルブであり、 例えば電磁弁によって構成されている。
燃料ガス循環流路 4 3は、 未反応燃料ガスを燃料電池 2へ還流させるため の帰還ガス流路であり、 そのガス流路には上流から下流にかけて F C出ロバ ルブ H 4、 水素循環ポンプ 4 5、 逆止弁 4 6が各々配設されている。 燃料電 池 2から排出された低圧の未反応燃料ガスは、 制御装置 6の制御指令で作動 するモータ M 2の駆動力により駆動される水素循環ポンプ 4 5によって適度 に加圧され、 燃料ガス供給流路 4 2へ導かれる。 燃料ガス供給流路 4 2から 燃料ガス循環流路 4 3への燃料ガスの逆流は、 逆止弁 4 6によって抑制され る。 アノードオフガス流路 4 4は、 燃料電池 2から排出された水素オフガス を含むアノードオフガスをシステム外に排気するためのガス流路であり、 そ のガス流路にはパージバルブ H 5が配設されている。
電力系 5は、 高圧 D CZD Cコンバータ 5 1、 パッテリ 5 2、 トラクショ ンィンバ一タ 5 3、 補機インバータ 5 4、 トラクシヨンモータ M 3、 補機モ ータ M 4等を備えている。
高圧 D C ZD Cコンバータ 5 1は、 直流の電圧変換器であり、 バッテリ 5 2から入力された直流電圧を調整してトラクションィンバータ 5 3側に出力 する機能と、 燃料電池 2又はトラクシヨンモータ M 3から入力された直流電 圧を調整してバッテリ 5 2に出力する機能と、 を有する。 高圧 D C/D Cコ ンバータ 5 1のこれらの機能により、 バッテリ 5 2の充放電が実現される。 また、 高圧 D CZD Cコンバータ 5 1により、 燃料電池 2の出力電圧が制御 される。
バッテリ 5 2は、 充放電可能な二次電池 (例えばニッケル水素電池等) で ある。 バッテリ 5 2は、 図示していないバッテリコンピュータの制御によつ て余剰電力を充電したり補助的に電力を供給したりすることが可能になって いる。 燃料電池 2で発電された直流電力の一部は、 高圧 D C /D Cコンパ一 タ 5 1によって昇降圧され、 バッテリ 5 2に充電される。 なお、 バッテリ 5 2に代えて二次電池以外の充放電可能な蓄電器 (例えばキャパシタ) を採用 することもできる。
トラクシヨンィンバータ 5 3及び補機ィンパータ 5 4は、 パルス幅変調方 式の P WMインバータであり、 与えられる制御指令に応じて燃料電池 2又は バッテリ 5 2から出力される直流電力を三相交流電力に変換してトラクショ ンモータ M 3及び補機モータ M 4へ供給する。 トラクションモータ M 3は、 車輪 7 L、 7 Rを駆動するためのモータである。 補機モータ M 4は、 各種補 機類を駆動するためのモータであり、 エアコンプレッサ 3 1を駆動するモー タ M lや水素循環ポンプ 4 5を駆動するモータ M 2等を総称したものである。 制御装置 6は、 C P U、 R OM, R AM等により構成され、 入力される各 センサ信号に基づき、当該システムの各部を統合的に制御する。具体的には、 制御装置 6は、 ァクセルペダル開度を検出する図示されていないァクセルべ ダルセンサ等から送出される各センサ信号に基づいて、 燃料電池 2の出力要 求電力を算出する。 そして、 制御装置 6は、 この出力要求電力に対応する出 力電力を発生させるように燃料電池 2の出力電圧及び出力電流を制御する。 また、 制御装置 6は、 トラクシヨンィンバータ 5 3及び補機ィンバータ 5 4 の出力パルス幅等を制御して、 トラクションモータ M 3及び補機モータ M 4 を制御する。
また、 制御装置 6は、 燃料電池 2に設けられた温度センサ 2 cから出力さ れるセンサ信号に基づき燃料電池 2の温度を検出し、 検出した温度と所定の 基準温度とを比較することにより、 暖機が必要であるか否かを判定する。 そ' して、 制御装置 6は、 燃料電池 2の温度が基準温度を超え、 暖機が不要であ ると判定した場合に、 通常運転処理を行う。 ここで、 通常運転処理とは、 暖 機することなく効率の高い運転動作点 (すなわち電力損失の小さな運転動作 点) で運転する処理をいう。 一方、 制御装置 6は、 燃料電池 2の温度が基準 温度以下であり、 暖機が必要であると判定した場合に、 低効率運転処理 (発 電効率の低い運転動作点で運転する処理) を行う。
ここで、 図 2 A〜図 4 Bを用いて、 通常運転と低効率運転との関係及ぴポ ンビング水素の発生原理について説明する。
図 2 A及ぴ図 2 Bにおいて、 横軸は出力電流を、 縦軸は出力電圧を、 各々 表しており、 O C V (Open Circuit Voltage;開回路電圧) は、 燃料電池 2 に電流を流していない状態における電圧を表す。 一般に、 図 2 Aに示すよう な電流 ·電圧特性 (I V特性) が得られる燃料電池 2においては、 制御装置 6は、 出力電力に対して電力損失の小さな通常運転動作点 (I。、 V0) にて 運転を行う。 これに対し、 暧機運転を行う場合には、 制御装置 6は、 図 2 B に示すように電力損失の大きな低効率運転動作点 (Iい VL) にて運転を行' 、 い、 燃料電池 2の内部温度を上昇させる。 かかる低効率運転が行われる過程 では、 水素と酸素との反応によって取り出せるエネルギのうち、 電力損失分 (熱エネルギ) を積極的に増大させることができるため、 迅速な暖機を実現 させることができる。
なお、 図 3は、 通常運転時における I V特性マップ (実線) と、 低効率運 転時における I V特性マップ (破線) と、 を示すものであり、 通常運転時及 び低効率運転時においてはこれら I V特性マップを用いて運転動作点を決定 することができる。 低効率運転時における I V特性マップ (破線) は、 トラ クシヨンモータ M 3からの出力要求に応じて適宜設定することができ、 図 3 に示したものはその一例である。
燃料電池 2の通常運転時には、 電力損失を抑えて高い発電効率が得られる ように、 エアストィキ比を 1 . 0以上に設定する。 ここで、 エアストィキ比 とは、 燃料電池 2を発電させるのに必要な酸化ガス供給量の理論値に対する 実際の酸化ガス供給量の比 (実際の酸化ガス供給量を理論値で除した値) を 意味する。 これに対し、 燃料電池 2の低効率運転時には、 電力損失を大きく して燃料電池 2の温度を上昇させるベく、 エアス トィキ比を 1 . 0未満に設 定する。 エアストィキ比を低く設定すると、 水素と酸素との反応によって取 り出すことができるエネルギのうち、 電力損失分 (熱エネルギ) を積極的に 増大させることができる一方、 燃料電池 2のカソードにはボンビング水素が 発生する。
図 4 A及び図 4 Bは、 ポンビング水素の発生原理を説明するための図であ る。 図 4 Aは通常運転時における電池反応を示す図であり、 図 4 Bは低効率 運転時における電池反応を示す図である。 燃料電池 2の各単電池 2 0は、 電 解質膜 2 1と、 この電解質膜 2 1を挟持するアノード及び力ソードを備えて レ、る。 水素 (H2) を含む燃料ガスはアノードに供給され、 酸素 (〇2) を含 む酸化ガスは力ソードに供給される。 ァノードへ燃料ガスが供給されると以 下の化学式 (A) の反応が進行して水素が水素イオンと電子に乖離する。 ァ ノードで生成した水素イオンは電解質膜 2 1を透過してカソードへ移動する 一方、 電子はアノードから外部回路を通ってカソードへ移動する。
H2 → 2 H+ + 2 e " · · · (A) . ここで、 力ソードへの酸化ガスの供給が十分である場合 (エアス トィキ比 が 1 . 0以上) には、 以下の化学式 (B ) の反応が進行して、 図 4 Aに示す ように酸素、 水素イオン及ぴ電子から水が生成される。 一方、 力ソードへの 酸化ガスの供給が不足している場合 (エアストィキ比が 1 . 0未満) には、 不足する酸化ガス量に応じて以下の化学式 (C ) の反応が進行し、 図 4 Bに 示すように水素イオンと電子が再結合して水素が生成される。 生成された水 素は、 酸素オフガスとともに力ソードから排出されることになる。 このよう に乖離した水素ィオンと電子が再結合することによってカソードで生成され る水素 (すなわち力ソードにおいて生成されるアノードガス) を、 「ポンピ ング水素」 と呼ぶ。
2 H+ + 2 e " + ( 1 / 2 ) O, → H20 · . . ( B ) 2 H+ + 2 e " → H2 · · · (〇) 制御装置 6は、 このようなボンビング水素が生成される低効率発電時にお いて、 希釈手段が異常である場合 (背圧弁 3 7やバイパス弁 3 9が故障した 場合) に、 ボンビング水素の生成量が所定量以下になるように燃料電池 2の 出力電圧の下限値を設定する。 すなわち、 制御装置 6は、 本発明における制 御手段の一実施形態として機能する。
低効率発電時 ·希釈手段異常時における制御装置 6の具体的な電圧制御に ついて、図 5及び図 6を用いて説明する。図 5は、燃料電池 2の出力電流(A) と、 燃料電池 2の温度 (°C) と、 燃料電池 2の出力電圧の下限値 (V) と、 の関係を規定したテーブルであり、 図 6は、 図 5のテーブルの値をプロット して近似曲線を描いたマップである。 図 5のテーブルに示した燃料電池 2の 出力電圧の下限値は、燃料電池 2の出力電流を I广 I 10まで変化させ、かつ、 燃料電池 2の温度を T ,〜 T 6まで変化させた場合においてポンピング水素の 生成量が所定量以下になるように設定した値である。
制御装置 6は、 電流センサ 2 aで検出した燃料電池 2の出力電流と、 温度 センサ 2 cで検出した燃料電池 2の温度と、 図 5及び図 6のテーブル ·マツ プと、 に基づいて、 燃料電池 2の出力電圧の下限値を設定する。 例えば、 制 御装置 6は、燃料電池 2の温度が T3である場合に、燃料電池 2の出力電圧の 下限値を V31、 V32、 ' "、 V36、 …に設定する。 また、 制御装置 6は、 燃料電 池 2の温度が T6である場合に、燃料電池 2の出力電圧の下限値を V61、 V62、 ^ ■·■、 V6Qに設定する。すなわち、制御装置 6は、燃料電池 2の温度が T N ( N: 1〜6 ) である場合に、 図 6のマップに描かれた近似曲線 TN (N: 1〜6 ) よりも上方の領域において、 出力電流と出力電圧を設定するようにする。
また、 制御装置 6は、 バイパス流路 3 8を流通する酸化ガスの流量の指令 値と、 パイパス弁 3 9の開度と、 温度センサ 3 6で検出した酸化ガスの温度 と、 に基づいて、 エアコンプレッサ 3 1から供給される酸化ガスの圧力を推 定する。 そして、 制御装置 6は、 この推定した圧力と、 圧力センサ 3 5で検 出した酸化ガスの圧力と、 の偏差に基づいて、 希釈手段の異常 (背圧弁 3 7 やパイパス弁 3 9の故障) を判定する。 すなわち、 制御装置 6は、 本発明に おける異常判定手段の一実施形態としても機能する。
制御装置 6による希釈手段の異常判定手法について、 具体的に説明する。 パイパス流路 3 8を流通する酸化ガスの流量の指令値を Q (L/min) 、 バイ パス弁 3 9の開度を A (mm2) 、 バイパス弁 3 9の下流圧力を P L (kPa) (= 1 0 1 . 3 (大気圧) ) 、 エアコンプレッサ 3 1から供給される酸化ガスの 圧力の推定値 (推定圧力) を P E (kPa) 、 エアコンプレッサ 3 1から供給さ れる酸化ガスの温度を TQ (°C) 、 単位変換係数を k (= 0 . 2 2 6 ) とする と、推定圧力 PEは以下の数式により算出される。 なお、パイパス流路 3 8を 流通する酸化ガスの流量指令値 Q及びバイパス弁 3 9の開度 Aは、 燃料電池 2の低効率運転の動作点に応じて、 制御装置 6により決定される値である。
O 二 k X A X PL ^ (PE - PL) X / 273.15 + 1 0 ノ ノ 273.15 制御装置 6は、 このようにして算出した推定圧力 P Eと、圧力センサ 3 5で 検出した圧力 (検出圧力) P。と、 を比較し、 両者の偏差の絶対値 eを算出す る。 そして、 制御装置 6は、 算出した偏差の絶対値 eが所定の閾値を超える 場合に、 背圧弁 3 7又はバイパス弁 3 9が故障している (希釈手段が異常で ある) ものと判定する。
具体的には、 制御装置 6は、 推定圧力 PEが検出圧力 P0よりも小さく、 か つ、 これら推定圧力 P Eと検出圧力 P。との偏差の絶対値 eが所定の閾値を超 える場合に、 バイパス弁 3 9に閉故障が生じたものと判定する。 バイパス弁 3 9に閉故障が生じると、 パイパス流路 3 8に酸化ガスが流入し難くなり、 酸化ガス供給流路 3 2における酸化ガスの圧力 (検出圧力) が理論値 (推定 圧力) よりも有意に高くなるためである。 一方、 制御装置 6は、 推定圧力 P E が検出圧力 P 0よりも大きく、 かつ、 これら推定圧力 P Eと検出圧力 P0との偏 差の絶対値 eが所定の閾値を超える場合に、 背圧弁 3 7に開故障が生じたも のと判定する。 背圧弁 3 7に開故障が生じると、 背圧弁 3 7の下流側にガス が漏れることとなるため、 背圧弁 3 7の上流側の酸化ガス供給流路 3 2にお ける酸化ガスの圧力 (検出圧力) が理論値 (推定圧力) よりも有意に低くな るためである。
次に、 図 7のフローチャートを用いて、 本実施形態に係る燃料電池システ ム 1の制御方法について説明する。 '
まず、 制御装置 6は、 温度センサ 2 cから出力されるセンサ信号に基づき 燃料電池 2の温度を検出し (温度検出工程: S 1 ) 、 検出した温度と所定の 基準温度とを比較することにより、 暖機が必要であるか否かを判定する (暖 機判定工程: S 2 ) 。 制御装置 6は、 暖機判定工程 S 2において、 燃料電池 2の温度が基準温度を超え、 暖機が不要であると判定した場合に、 通常運転 を実現させる (通常運転工程: S 1 4 ) 。 一方、 制御装置 6は、 暖機判定ェ 程 S 2において、 燃料電池 2の温度が基準温度以下であり、 暧機が必要であ ると判定した場合に、 希釈手段が異常であるか否か (背圧弁 3 7又はバイパ ス弁 3 9が故障しているか否か)を判定する(希釈手段異常判定工程: S 3 )。 ぐ異常時低効率運転 >
制御装置 6は、希釈手段異常判定工程 S 3において、算出した推定圧力 P E と、圧力センサ 3 5での検出圧力 P。と、の偏差の絶対値 eが所定の閾値を超 える (希釈手段が異常である) と判定した場合に、 以下の異常時低効率運転 (電圧下限値設定工程 S 4〜異常時電流電圧制御工程 S 6 ) を実施する。 すなわち、 制御装置 6は、 電流センサ 2 aで検出した燃料電池 2の出力電 流と、 温度センサ 2 cで検出した燃料電池 2の温度と、 図 5及ぴ図 6のテー ブル.マップと、に基づいて、燃料電池 2の出力電圧の下限値を設定する (電 圧下限値設定工程: S 4 ) 。 そして、 制御装置 6は、 設定した電圧下限値を 上回るような目標低効率運転動作点 (目標とする出力電流指令値及び出力電 圧指令値) を設定する (異常時低効率動作点設定工程: S 5 ) 。 次いで、 制 御装置 6は、 高圧 D CZD Cコンバータ 5 1を用いることにより、 電圧セン サ 2 bで検出した燃料電池 2の出力電圧を出力電圧指令値に近付ける制御を 行うとともに、 エアコンプレッサ 3 1や背圧弁 3 7を用いて燃料電池 2への エア供給量を絞ることにより、 電流センサ 2 aで検出した燃料電池 2の出力 電流を出力電流指令値に近付ける制御を行う (異常時電流電圧制御工程: S 6 ) 。 '
その後、 制御装置 6は、 燃料電池 2の温度が所定の基準温度を超えたか否 かを判定し (温度判定工程: S 7 ) 、 燃料電池 2の温度が基準温度を超えた 場合には異常時低効率運転を終了し、 超えない場合には希釈手段異常判定ェ 程 S 3に戻って制御を続行する。以上のような異常時低効率運転においては、 バイパス弁 3 9等から構成される希釈手段の制御が停止されることとなる。 <正常時低効率運転 >
一方、 制御装置 6は、 希釈手段異常判定工程 S 3において、 算出した推定 圧力 P Eと、 圧力センサ 3 5での検出圧力 P0と、 の偏差の絶対値 eが所定の 閾値以下である (希釈手段が正常である) と判定した場合に、 以下の正常時 低効率運転 (正常時低効率動作点設定工程 S 8〜水素希釈工程 S 1 2 ) を実 施する。
すなわち、 制御装置 6は、 所定の暖機目標温度等に応じた目標低効率運転 動作点を設定し (正常時低効率動作点設定工程: S 8 ) 、 高圧 D CZD Cコ ンバータ 5 1を用いた電圧制御を行うとともに、 エアコンプレッサ 3 1や背 圧弁 3 7を用いた電流制御を行う (正常時電流電圧制御工程: S 9 )。また、 制御装置 6は、 設定した目標低効率運転動作点に対応したパージ水素量及び ボンビング水素量をマップ等に基づいて導出し、 これらを加算することによ り燃料電池 2からの総排出水素量を算出する (総排出水素量算出工程: S 1 0 ) 。 次いで、 制御装置 6は、 算出した総排出水素量に基づいて、 排出水素 濃度を所定の環境基準値以下にするために必要な希釈情報 (バイパス流路 3 8を流通する酸化ガスの流量の指令値等) を算出する (希釈情報算出工程: S 1 1 ) 。 そして、 制御装置 6は、 算出した希釈情報に基づいて、 エアコン プレッサ 3 1の回転数、 背圧弁 3 7の開度、 バイパス弁 3 9の開度等を調整 して、 正常時低効率運転中に排出されるボンビング水素等を希釈する (水素 希釈工程: S 1 2 ) 。
その後、 制御装置 6は、 燃料電池 2の温度が所定の基準温度を超えたか否 かを判定し (温度判定工程: S 1 3 ) 、 燃料電池 2の温度が基準温度を超え た場合には正常時低効率運転を終了し、 超えない場合には希釈手段異常判定 工程 S 3に戻って制御を続行する。 以上のような正常時低効率運転において は、 バイパス弁 3 9等から構成される希釈手段によるボンビング水素の希釈 が可能となるため、 電圧の下限値が制限されることがない。
以上説明した実施形態に係る燃料電池システム 1においては、 希釈手段が 正常である場合には、 ボンピング水素の濃度を希釈手段で希釈することがで き、 なおかつ、 特に電圧の下限値を設定することなく低効率発電を実施する ことができるので暖機 (自己発熱) を効果的に行うことができる。 一方、 希 釈手段が異常である場合には、 燃料電池 2の電圧下限値を特定の値に設定し ながら低効率発電を実施することにより、 ボンビング水素の生成量を所定量 以下に抑えることができる。
なお、 以上の実施形態においては、 燃料電池 2の温度が低下した場合に、 暧機を目的として低効率運転を実施した例を示したが、 燃料電池 2の触媒活 性を回復させる場合や、 燃料電池 2の電極触媒が被毒状態にあることを検知 した場合に、 低効率運転を実施することもできる。 また、 以上の実施形態においては、 燃料電池 2に取り付けた温度センサ 2 cを用いて燃料電池 2の温度を検出して暖機が必要か否か等の判定を行った が、 燃料電池 2の温度の代わりに、 外気温度や燃料電池周辺の部品温度を検 出して暖気が必要か否か等の判定を行うこともできる。 産業上の利用可能性
本発明に係る燃料電池システムは、 以上の実施形態に示すように、 燃料電 池車両に搭載可能であり、また、燃料電池車両以外の各種移動体(ロボット、 船舶、 航空機等) にも搭載可能である。 また、 本発明に係る燃料電池システ ムを、 建物 (住宅、 ビル等) 用の発電設備として用いられる定置用発電シス テムに適用してもよい。

Claims

請求の範囲
1 . 発電を行う燃料電池と、 前記燃料電池への反応ガスの供給量を通常発 電時よりも低減させることにより前記燃料電池の低効率発電を実現させる制 御手段と、 を備える燃料電池システムであって、
前記制御手段は、 前記低効率発電時において前記燃料電池の力ソードで生 成されるァノードガスの生成量が所定量以下になるように前記燃料電池の電 圧下限値を設定するものである、
燃料電池システム。
2 . 前記燃料電池のカソードで生成されるアノードガスを希釈する希釈手 段を備え、
前記制御装置は、 前記希釈手段が異常である場合にのみ、 前記低効率発電 時において前記燃料電池の力ソードで生成されるアノードガスの生成量が所 定量以下になるように前記燃料電池の電圧下限値を設定するものである、 請求項 1に記載の燃料電池システム。
3 . 酸化ガス供給源から供給される酸化ガスを前記燃料電池のカソードに 供給するためのガス供給流路と、
前記燃料電池のカソードから排出されるガスを流通させるガス排出流路と、 を備え、
前記希釈手段は、 前記ガス供給流路を流れる酸化ガスの一部を前記燃料電 池をバイパスして前記ガス排出流路へと導くバイパス流路と、 前記パイパス 流路を流通する酸化ガスの流量を調整するバイパス弁と、 を有し、 前記ガス 供給流路から前記バイパス流路を経由して前記ガス排出流路へと流れる酸化 ガスにより前記燃料電池の力ソードで生成されるァノードガスを希釈するも のである、
請求項 2に記載の燃料電池システム。'
4 . 前記酸化ガス供給源から供給される酸化ガスの圧力を検出する圧力セ ンサと、
前記バイパス流路を流通する酸ィ匕ガスの流量の指令値と、 前記バイパス弁 の開度と、 に基づいて、 前記酸化ガス供給源から供給される酸化ガスの圧力 を推定し、 この推定圧力と前記圧力センサで検出した検出圧力との偏差に基 づいて前記希釈手段の異常を判定する異常判定手段と、
を備える、
請求項 3に記載の燃料電池システム。
5 . 前記異常判定手段は、 前記推定圧力が前記検出圧力よりも小さく、 力、 つ、 前記推定圧力と前記検出圧力との偏差の絶対値が所定の閾値を超える場 合に、 前記バイパス弁に閉故障が生じたものと判定するものである、 請求項 4に記載の燃料電池システム。
6 . 前記希釈手段は、 ガス排出流路を流通するガスの圧力を調整する背圧 弁を有し、
前記異常判定手段は、 前記推定圧力が前記検出圧力よりも大きく、 かつ、 前記推定圧力と前記検出圧力との偏差の絶対値が所定の閾値を超える場合に、 前記背圧弁に開故障が生じたものと判定するものである、
請求項 4又は 5に記載の燃料電池システム。
7 . 発電を行う燃料電池を備え、 前記燃料電池への反応ガスの供給量を通 常発電時よりも低減させることにより前記燃料電池の低効率発電を実現させ る燃料電池システムの制御方法であって、
前記低効率発電時において前記燃料電池の力ソードで生成されるアノード ガスの生成量が所定量以下になるように前記燃料電池の電圧下限値を設定す る工程を備える、
燃料電池システムの制御方法。
PCT/JP2008/062430 2007-07-03 2008-07-03 燃料電池システム及びその制御方法 WO2009005169A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008800141727A CN101675550B (zh) 2007-07-03 2008-07-03 燃料电池系统及其控制方法
US12/600,953 US8361667B2 (en) 2007-07-03 2008-07-03 Fuel cell system and its control method
KR1020097027329A KR101136497B1 (ko) 2007-07-03 2008-07-03 연료전지시스템 및 그 제어방법
DE112008001674.7T DE112008001674B4 (de) 2007-07-03 2008-07-03 Brennstoffzellensystem und Steuerverfahren desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-175150 2007-07-03
JP2007175150A JP4905706B2 (ja) 2007-07-03 2007-07-03 燃料電池システム及びその制御方法

Publications (1)

Publication Number Publication Date
WO2009005169A1 true WO2009005169A1 (ja) 2009-01-08

Family

ID=40226200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062430 WO2009005169A1 (ja) 2007-07-03 2008-07-03 燃料電池システム及びその制御方法

Country Status (6)

Country Link
US (1) US8361667B2 (ja)
JP (1) JP4905706B2 (ja)
KR (1) KR101136497B1 (ja)
CN (1) CN101675550B (ja)
DE (1) DE112008001674B4 (ja)
WO (1) WO2009005169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473938A (zh) * 2009-07-30 2012-05-23 丰田自动车株式会社 燃料电池系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534688B2 (ja) * 2009-03-13 2014-07-02 株式会社日立情報通信エンジニアリング 燃料電池電源システムおよびその制御方法
US20140023944A1 (en) * 2011-03-31 2014-01-23 Panasonic Corporation Fuel cell system and method of operating same
US9812722B2 (en) * 2013-04-16 2017-11-07 Nissan Motor Co., Ltd. Fuel cell system and control method for fuel cell system
JP6292405B2 (ja) * 2014-11-14 2018-03-14 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの運転制御方法
JP6112100B2 (ja) 2014-11-14 2017-04-12 トヨタ自動車株式会社 燃料電池システム
KR101836611B1 (ko) 2016-04-07 2018-03-09 현대자동차주식회사 연료전지차량의 시동 제어방법
JP6376184B2 (ja) * 2016-07-21 2018-08-22 トヨタ自動車株式会社 燃料電池システムおよび車両
JP6935757B2 (ja) * 2018-01-30 2021-09-15 トヨタ自動車株式会社 燃料電池システム
JP6922765B2 (ja) 2018-01-30 2021-08-18 トヨタ自動車株式会社 燃料電池システム
JP6992605B2 (ja) * 2018-03-07 2022-01-13 トヨタ自動車株式会社 燃料電池システム
JP7134160B2 (ja) * 2019-12-18 2022-09-09 本田技研工業株式会社 ガス制御装置及びガス制御方法
US11721818B2 (en) * 2020-01-16 2023-08-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of controlling fuel cell system
JP7276249B2 (ja) * 2020-01-16 2023-05-18 トヨタ自動車株式会社 燃料電池システムおよび燃料電池の制御方法
CN111613813B (zh) * 2020-05-26 2021-09-10 东风汽车集团有限公司 一种燃料电池空气供给系统及其泄压控制方法
CN111613815B (zh) * 2020-05-26 2021-09-10 东风汽车集团有限公司 一种燃料电池氢气循环系统及其控制方法
CN113937324B (zh) * 2021-08-30 2022-12-20 东风汽车集团股份有限公司 一种燃料电池车辆空气泄露诊断方法及装置
DE102022128711A1 (de) 2022-10-28 2024-05-08 MTU Aero Engines AG Flugzeug-Brennstoffzellen-Antrieb

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003215A1 (en) * 1999-06-30 2001-01-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell with polymer electrolyte
JP2002313388A (ja) * 2001-04-10 2002-10-25 Honda Motor Co Ltd 燃料電池の制御方法と燃料電池電気車両
JP2003288926A (ja) * 2002-03-27 2003-10-10 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2003317765A (ja) * 2002-04-19 2003-11-07 Nissan Motor Co Ltd 燃料電池制御システム
JP2004030979A (ja) * 2002-06-21 2004-01-29 Equos Research Co Ltd 燃料電池システム
JP2004172027A (ja) * 2002-11-22 2004-06-17 Toyota Motor Corp 燃料電池システム
JP2006073501A (ja) * 2004-08-05 2006-03-16 Denso Corp 燃料電池システム
JP2006286513A (ja) * 2005-04-04 2006-10-19 Denso Corp 燃料電池システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366821A (en) * 1992-03-13 1994-11-22 Ballard Power Systems Inc. Constant voltage fuel cell with improved reactant supply and control system
JP2000331693A (ja) * 1999-05-19 2000-11-30 Asahi Glass Co Ltd 固体高分子型燃料電池
US6461751B1 (en) * 1999-12-06 2002-10-08 Ballard Power Systems Inc. Method and apparatus for operating a fuel cell
JP3904191B2 (ja) * 2001-10-23 2007-04-11 本田技研工業株式会社 排出燃料希釈器および排出燃料希釈式燃料電池システム
AT411943B (de) * 2002-05-06 2004-07-26 Vaillant Gmbh Verfahren zum betreiben einer brennstoffzellenanlage
DE60321109D1 (de) * 2002-10-31 2008-07-03 Matsushita Electric Ind Co Ltd Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem
JP4904661B2 (ja) 2002-11-21 2012-03-28 株式会社デンソー 燃料電池システム
JP4486353B2 (ja) * 2003-12-05 2010-06-23 パナソニック株式会社 水素生成装置および水素生成装置の作動停止方法並びに燃料電池発電装置
JP2005174645A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池システム
JP4593311B2 (ja) * 2005-02-24 2010-12-08 三菱電機株式会社 燃料電池発電システム及びその停止方法
JP4945968B2 (ja) * 2005-09-02 2012-06-06 株式会社デンソー 燃料電池システム
JP4905847B2 (ja) * 2005-11-30 2012-03-28 トヨタ自動車株式会社 燃料電池システム
JP4905642B2 (ja) * 2005-12-05 2012-03-28 トヨタ自動車株式会社 燃料電池システム及び移動体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003215A1 (en) * 1999-06-30 2001-01-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell with polymer electrolyte
JP2002313388A (ja) * 2001-04-10 2002-10-25 Honda Motor Co Ltd 燃料電池の制御方法と燃料電池電気車両
JP2003288926A (ja) * 2002-03-27 2003-10-10 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2003317765A (ja) * 2002-04-19 2003-11-07 Nissan Motor Co Ltd 燃料電池制御システム
JP2004030979A (ja) * 2002-06-21 2004-01-29 Equos Research Co Ltd 燃料電池システム
JP2004172027A (ja) * 2002-11-22 2004-06-17 Toyota Motor Corp 燃料電池システム
JP2006073501A (ja) * 2004-08-05 2006-03-16 Denso Corp 燃料電池システム
JP2006286513A (ja) * 2005-04-04 2006-10-19 Denso Corp 燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473938A (zh) * 2009-07-30 2012-05-23 丰田自动车株式会社 燃料电池系统
US8927168B2 (en) 2009-07-30 2015-01-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system control during low efficiency operation

Also Published As

Publication number Publication date
JP4905706B2 (ja) 2012-03-28
CN101675550A (zh) 2010-03-17
DE112008001674T5 (de) 2010-07-22
CN101675550B (zh) 2013-09-04
KR20100010515A (ko) 2010-02-01
DE112008001674B4 (de) 2020-01-23
US20100159342A1 (en) 2010-06-24
US8361667B2 (en) 2013-01-29
KR101136497B1 (ko) 2012-04-19
JP2009016117A (ja) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4905706B2 (ja) 燃料電池システム及びその制御方法
US8691453B2 (en) Fuel cell system
JP5120594B2 (ja) 燃料電池システム及びその運転方法
JP4844838B2 (ja) 燃料電池システム
JP5007927B2 (ja) 燃料電池システム
JP4993293B2 (ja) 燃料電池システム及び移動体
WO2007046545A1 (ja) 燃料電池システム、アノードガス生成量推定装置及びアノードガス生成量の推定方法
JP5757227B2 (ja) 燃料電池システム及びその制御方法
JP5229528B2 (ja) 燃料電池システム
JP2008130442A (ja) 燃料電池システム
JP2007141744A (ja) 燃料電池システム
JP2008226595A (ja) 燃料電池システム及びその制御方法
JP2008103167A (ja) 燃料電池システム
JP4831437B2 (ja) 燃料電池システム及びその制御方法
JP5142006B2 (ja) 燃料電池システム
JP2010157426A (ja) 燃料電池システム
JP5110347B2 (ja) 燃料電池システムおよびその停止処理方法
JP2013164938A (ja) 燃料電池システム及びその運転方法
JP2007317472A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880014172.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12600953

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20097027329

Country of ref document: KR

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 112008001674

Country of ref document: DE

Date of ref document: 20100722

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08778011

Country of ref document: EP

Kind code of ref document: A1