WO2008134939A1 - Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction - Google Patents

Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction Download PDF

Info

Publication number
WO2008134939A1
WO2008134939A1 PCT/CN2008/000886 CN2008000886W WO2008134939A1 WO 2008134939 A1 WO2008134939 A1 WO 2008134939A1 CN 2008000886 W CN2008000886 W CN 2008000886W WO 2008134939 A1 WO2008134939 A1 WO 2008134939A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
reaction
fischer
catalyst
liquid medium
Prior art date
Application number
PCT/CN2008/000886
Other languages
English (en)
French (fr)
Inventor
Yuan Kou
Ning Yan
Chaoxian Xiao
Zhipeng Cai
Yongwang Li
Original Assignee
Synfuels China Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synfuels China Technology Co., Ltd. filed Critical Synfuels China Technology Co., Ltd.
Priority to CA2681319A priority Critical patent/CA2681319C/en
Priority to US12/593,607 priority patent/US20100179234A1/en
Priority to AU2008247186A priority patent/AU2008247186B2/en
Publication of WO2008134939A1 publication Critical patent/WO2008134939A1/zh
Priority to US13/938,169 priority patent/US20140039073A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/648Fischer-Tropsch-type reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Definitions

  • Transition metal nanocatalyst and preparation method thereof and application in Fischer-Tropsch synthesis reaction
  • This invention relates to transition metal nanocatalysts and their preparation and their use in Fischer-Tropsch synthesis reactions.
  • the Fischer-Tropsch synthesis reaction refers to a reaction in which carbon monoxide and hydrogen (synthesis gas) are converted into hydrocarbons under the catalytic action of metals such as iron, cobalt and ruthenium, and the products are widely distributed and continuously distributed from (methane). Due to the depletion of petroleum resources and the relatively abundant resources such as coal, natural gas and biomass, the production of syngas from coal, natural gas, biomass, etc., and the synthesis of hydrocarbons (gasoline, diesel, etc.) from syngas through syngas can be alleviated. The dependence on oil resources is of great significance to national security and social interests.
  • the desired gasoline and diesel oil (mainly € 5+ ) have low selectivity, while the methane selectivity that cannot be utilized is high; CO conversion is incomplete and needs to be recovered in the exhaust gas.
  • the reaction temperature is generally 200-350 ° C, but the Fischer-Tropsch synthesis reaction is an exothermic reaction, high temperature is unfavorable to the reaction equilibrium, and it is easy to locally superheat the catalyst and sinter; Bulk molten iron or a catalyst such as iron, cobalt or ruthenium supported on the surface of a support such as SiO 2 is generally used.
  • Such a catalyst is not freely rotatable due to the active component being bound to the 2-dimensional surface of the support, and the exposed catalyst surface area and The active site is relatively small, thereby reducing the reactivity.
  • the highest catalytic activity is ruthenium, followed by iron and cobalt; the reaction temperature is basically 200-350 V, and the total pressure of the system is about l-50 atm.
  • the total pressure required is very severe, typically 1000 atm (Robert B. Anderson, in "The Fischer-Tropsch synthesis", pp. 104 -105, Academic Press, 1984), the resulting product has a large molecular weight, most of which is greater than 10,000 polyethylene.
  • the transition metal nanocatalyst provided by the invention comprises transition metal nanoparticles and a polymer stabilizer, and the transition metal nanoparticles are dispersed in a liquid medium to form a stable colloid.
  • the transition metal nanoparticles have a particle diameter of 1-10 nm; preferably 1.8 ⁇ 0.4 nm; transition metal selection From one or more of Ru, Co, Ni, Fe, and R.
  • the method for preparing the above transition metal nanocatalyst provided by the present invention comprises the steps of: dispersing a transition metal salt and a polymer stabilizer in a liquid medium, and reducing at 3 to 4 at 100 to 200 ° C to obtain the above transition metal nanocatalyst.
  • the pressure of the reduction reaction is 0.1 to 4.0 MPa, the reaction temperature is 100 to 200 Torr, and the reaction time is 2 hours.
  • the molar ratio of the polymeric stabilizer to the transition metal salt is from 400:1 to 1:1, preferably from 200:1 to 1:1; the concentration of the transition metal salt in the liquid medium is from 0.0014 to 0.014 mol/L.
  • the commonly used transition metal salt is selected from one or more of Ru, Co, Ni, Fe and Rh;
  • the polymer stabilizer is polyvinylpyrrolidone or oly[(N-Vinyl-2-pyrrolidone)- Co-( 1 -vinyl-3 -alkylimidazolium halide)] (vinyl pyrrolidone-vinylimidazolium chloride copolymer copolymer, abbreviated as [BVIMPVP] C1, see Xin-dong Mu, Jian-qiang Meng, Zi- Chen Li, and Yuan Kou, Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J.
  • Alcohols, hydrocarbons, ethers and ionic liquids preferably water, ethanol, cyclohexane, 1,4-dioxane or [BMIM][BF 4 ] ionic liquids.
  • the above transition metal nanocatalyst provided by the present invention is used in a Fischer-Tropsch synthesis reaction to carry out a catalytic reaction of CO and H 2 under the action of the catalyst.
  • the temperature of the catalytic reaction is from 100 to 200 ° C, preferably 150 ° C.
  • the total pressure of CO and H 2 is from 0.1 to 10 MPa; preferably 3 MPa.
  • the molar ratio of H 2 /CO is from 0.5 to 3:1; preferably from 0.5, 1.0 or 2.0.
  • FIG. 1 is an electron micrograph and particle size distribution diagram of a ruthenium nanocatalyst according to the present invention.
  • the method for preparing a transition metal nanoparticle catalyst provided by the invention comprises mixing a transition metal salt and a polymer stabilizer in a liquid medium, and reducing it by H 2 at 100-200 ° C to obtain the transition metal nanocatalyst.
  • the commonly used transition metal salts are RuCl 3 .n3 ⁇ 4O, CoCl r 6H 2 O, NiCl 6H 2 O, FeCl 3 -63 ⁇ 4O, RhCl 3 -nH 2 O.
  • a salt of a different transition metal element is selected, a mixed transition metal can be obtained.
  • Nanocatalyst; polymer stabilizer is polyvinylpyrrolidone or poly[(N-Vinyl-2-pyrrolidone)-co-(1 -vinyl-3 -alkylimidazolium halide) Acetylene-vinylimidazolium chloride copolymer polymer, referred to as [BVIMPVP]C1, for preparation methods, see Xin-dong Mu, Jian-qiang Meng, Zi-Chen Li, and Yuan Kou, Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids : Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J. Am. Chem. Soc.
  • the liquid medium is selected from the group consisting of water, alcohols, hydrocarbons, ethers and ionic liquids, etc., preferably water, ethanol , cyclohexane, 1,4-dioxane or [BMIM][BF 4 ] ionic liquid.
  • the molar ratio of the polymeric stabilizer to the transition metal salt is from 400:1 to 1:1, preferably from 200:1 to 1:1, and the concentration of the transition metal salt in the liquid medium is from 0.0014 to 0.014 mol/L.
  • a preferred pressure is 0.1 to 4.0 MPa, preferably 2 MPa; a preferred reaction temperature is 150 ° C, and the reaction time is 2 hours.
  • the Fischer-Tropsch synthesis reaction using the above catalyst is carried out by charging a 13 ⁇ 4 and 0 synthesis gas at a certain pressure in a catalyst system and starting the reaction at an appropriate temperature.
  • the reaction medium is the liquid medium in which the catalyst is dispersed.
  • the reaction temperature is between 100 and 200 ° C, preferably 15 CTC; the reaction pressure is 0.1 to 10 MPa, preferably 3 MPa; and the synthesis gas has a molar ratio of H 2 /CO of 0.5 to 3. : 1, preferably 0.5, 1.0 or 2.0.
  • the product distribution under various reaction conditions is relatively uniform, mainly normal hydrocarbons, with small amounts of isoparaffins and alpha-olefins.
  • the typical distribution of the product is: 3.4-6.3%, C 2 -C 4 13.2-18.0%, C 5 -C 12 53.2-56.9%, C 13 -C 20 16.9-24,2 %, C 21+ 1.5-4.9%.
  • the available C 5+ accounts for 76.7-83.4% of the total amount of the product.
  • the reaction process of the present invention is described below in conjunction with specific examples.
  • Ru 3.4
  • the total pressure drop refers to the change in total pressure before and after the reaction observed at room temperature over a period of time; the conversion frequency refers to the number of moles of CO converted per mole of metal catalyst per hour.
  • the transition metal nanocatalyst has a good catalytic activity at 100-150 ° C, which is significantly lower than the temperature of the industrial Fischer-Tropsch catalyst (200-350 ° C).
  • the content of C 5+ component available in the product is also high (76.7-83.4%), so the transition metal nanocatalyst has a good industrial application prospect.
  • the invention firstly prepares a transition metal nano catalyst.
  • the catalyst is a nanometer (1-10 nm) metal nanoparticle, which can be uniformly dispersed in a liquid medium to form a stable colloid, and the colloid does not accumulate before and after the reaction. .
  • the catalyst can realize three-dimensional free rotation under the reaction conditions, has good low-temperature activity, and can catalyze Fischer-Tropsch synthesis at 100-200 ° C, which is far milder than the conditions required by current industrial catalysts (200-350 ⁇ ); and, transition
  • the particle size of the metal nanoparticles is small and the distribution is narrow, which is beneficial to control the distribution of the product.
  • the hydrocarbon product is easily separated from the catalyst, and the catalyst can be recycled and recycled, and has broad application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

过渡金属纳米催化剂及其制备方法与在费托合成反应中的应用 技术领域
本发明涉及过渡金属纳米催化剂及其制备方法与在费托合成反应中的应 用。
背景技术
费托合成反应指一氧化碳和氢气 (合成气)在铁、 钴、 钌等金属催化作 用下转化为烃类的反应, 其产物分布很宽, 从 (甲烷) 始呈连续分布。 由 于石油资源日益枯竭, 而煤、 天然气、 生物质等资源相对丰富, 从煤、 天然 气、 生物质等出发生产合成气, 再由合成气通过费托合成制烃(汽油, 柴油 等) , 可以缓解对石油资源的依赖, 对国家安全和社会利益都有很重要的意 义。
目前,在现有费托合成反应条件下,希望得到的汽油、柴油(主要是€5+) 选择性较低, 而不能利用的甲烷选择性偏高; CO转化不完全, 需要在尾气中 回收利用, 从而增加生产成本; 反应的温度一般在 200-350°C , 但是费托合成 反应是一个放热反应, 高温对反应平衡是不利的, 而且容易使催化剂局部过 热而烧结;此外费托合成普遍采用块状的熔铁或担载在 SiO2等载体表面的铁、 钴、 钌等催化剂, 此类催化剂由于活性组分被束缚在载体的 2维表面, 不能 自由旋转, 裸露的催化剂表面积及活性位相对较少, 从而降低了反应活性。 根据文献报道,催化活性最高的是钌,其次是铁和钴;反应温度基本在 200-350 V,体系的总压力为 l-50 atm左右。虽然, 有在 100-140Ό下非担载的钌催化 CO加氢的报道, 但是需要的总压力非常苛刻, 通常为 1000 atm (Robert B. Anderson, in "The Fischer-Tropsch synthesis", pp.104-105, Academic Press, 1984) , 得到的产物分子量很大, 大部分为大于 10000的聚乙烯。
发明公开
本发明的目的是提供一种过渡金属纳米催化剂及其制备方法与在费托合 成反应中的应用。
本发明提供的过渡金属纳米催化剂, 包括过渡金属纳米粒子和高分子稳 定剂, 过渡金属纳米粒子分散在液体介质中形成稳定胶体。
该过渡金属纳米粒子的粒径为 1-10 nm;优选为 1.8±0.4 nm; 过渡金属选 自 Ru、 Co、 Ni、 Fe和 R 中的一种或几种。
本发明提供的制备上述过渡金属纳米催化剂的方法, 是将过渡金属盐与 高分子稳定剂混合分散于液体介质中, 在 100-200°C下以 ¾还原, 得到上述 过渡金属纳米催化剂。
该还原反应的压力为 0.1-4.0MPa, 反应温度为 100-200Ό , 反应时间为 2 小时。 高分子稳定剂与过渡金属盐的摩尔比为 400:1-1:1, 优选 200: 1-1: 1; 过渡金属盐在液体介质中浓度为 0.0014-0.014 mol/L。 常用的过渡金属盐选自 Ru、 Co、 Ni、 Fe和 Rh中的一种或几种; 所述高分子稳定剂为聚乙烯基吡咯 焼酮或 oly[( N- Vinyl-2-pyrrolidone)-co-( 1 -vinyl-3 -alkylimidazolium halide)] (乙 烯基吡咯垸酮-乙烯基咪唑氯盐共聚高分子, 简称 [BVIMPVP]C1, 制备方法见 Xin-dong Mu, Jian-qiang Meng, Zi-Chen Li, and Yuan Kou, Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J. Am. Chem. Soc. 2005, 127, 9694-9695 ) ; 所述液体介质选自水、 醇类、 烃类、 醚类和离子液体, 优选为 水, 乙醇, 环己烷, 1,4-二氧六环或 [BMIM][BF4]离子液体。
本发明提供的上述过渡金属纳米催化剂在费托合成反应中的应用, 是将 CO和 H2在该催化剂的作用下进行催化反应。
该催化反应的温度为 100-200°C, 优选为 150°C。 CO和 H2的总压力为 0.1-10MPa; 优选为 3MPa。 催化反应中, H2/CO的摩尔比为 0.5-3 : 1 ; 优选 为 0.5、 1.0或 2.0。
附图说明
图 1为本发明钌纳米催化剂的电镜照片和粒径分布图。
实施发明的最佳方式
本发明提供的制备过渡金属纳米粒子催化剂的方法, 是将过渡金属盐与 高分子稳定剂混合分散于液体介质中, 在 100-200°C下以 H2还原, 得到该过 渡金属纳米催化剂。
其中, 常用过渡金属盐为 RuCl3.n¾O、 CoClr6H2O、 NiCl 6H2O、 FeCl3-6¾O, RhCl3-nH2O, 当选用不同过渡金属元素的盐时, 可以得到混合 过渡金属纳米催化剂; 高分子稳定剂为聚乙烯基吡咯烷酮或 poly[( N-Vinyl-2-pyrrolidone)- co-( 1 -vinyl-3 -alkylimidazolium halide)] (乙稀基 B比 咯垸酮-乙烯基咪唑氯盐共聚高分子, 简称 [BVIMPVP]C1, 制备方法见 Xin-dong Mu, Jian-qiang Meng, Zi-Chen Li, and Yuan Kou, Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J. Am. Chem. Soc. 2005, 127, 9694-9695 ); 液体介质选自水、醇类、烃类、醚类和离子液体等, 优选为水, 乙醇, 环己烷, 1,4-二氧六环或 [BMIM][BF4]离子液体。 高分子稳定剂与过渡 金属盐的摩尔比为 400:1-1:1, 优选 200: 1-1: 1, 过渡金属盐在液体介质中浓 度为 0.0014-0.014 mol/L。
进行还原反应时,优选的压力为 0.1-4.0MPa,优选为 2MPa;优选的反应 温度为 150°C, 反应时间为 2小时。
应用上述催化剂进行费托合成反应, 是在催化剂体系中, 充入一定压力 的 1¾和 0合成气, 在适当温度下开始反应。 反应介质即为催化剂所分散的 液体介质。
在上述费托合成反应过程中,反应温度在 100-200°C之间,优选为 15CTC ; 反应压力为 0.1-10MPa,优选为 3MPa;合成气中, H2 / CO的摩尔比为 0.5-3 : 1, 优选为 0.5、 1.0或 2.0。
各种反应条件下的产物分布比较一致, 主要为正构垸烃, 有少量异构烷 烃和 α-烯烃。 在以下的各具体实施例中, 产物的典型分布为: 3.4-6.3%, C2-C4 13.2-18.0%, C5-C12 53.2-56.9%, C13-C20 16.9-24,2%, C21+ 1.5-4.9%。 可 用的 C5+占到产物总量的 76.7-83.4%。 以下结合具体实施例描述本发明反应过程。
实施例 1
将 73mg RuCl3-nH2O和 620mg聚乙烯基吡咯烷酮 (聚乙烯基吡咯烷酮: Ru=20,摩尔比,下同)加入到 20ml水中,搅拌混匀,然后加入到容积为 60ml 的高压釜中, 在 150Ό , 20 atm H2下还原 2小时, 即制得反应用催化剂。 制 备的钌纳米粒子平均粒径为 1.8±0.4 nm, 钌纳米粒子的透射电镜照片和粒径 分布分别如图 la和图 lb所示。
将催化剂冷至室温, 放出残余气体, 然后充入 lO atm CO, 20 atm H2, 在 150°C下反应。 反应结果见表 1。 实施例 2
将 73mgRuCl3.nH2O和 106mg聚乙烯基吡咯垸酮 (聚乙烯基吡咯烷酮: Ru=3.4) 加入到 20ml 1,4-二氧六环中, 搅拌混勾, 然后加入到容积为 60ml 的高压釜中, 在 150°C, 20atmH2下还原 2小时, 即制得反应用催化剂。
将催化剂冷至室温, 放出残余气体, 充入 lOatmCO, 20atmH2, 在 150 °0下反应。 反应结果见表 1。 实施例 3
将 73mgRuCl3.nH2O和 106mg聚乙烯基吡咯烷酮 (聚乙烯基吡咯烷酮:
Ru=3.4) 加入到 20ml乙醇中, 搅拌混勾, 然后加入到容积为 60ml的高压釜 中, 在 150°C, 20atmH2下还原 2小时, 即制得反应用催化剂。
将催化剂冷至室温, 放出残余气体, 充入 lOatmCO, 20atmH2, 在 150 °(:下反应。 反应结果见表 1。 实施例 4
将 73mg RuCl3'nH2O和 1.4mmol poly[(N-Vinyl-2-pyrrolidone)- co-(l-vinyl-3-alkylimidazoliumhalide)] (乙烯基吡咯垸酮-乙烯基咪唑氯盐共聚 高分子, 简称 [BVIMPVP]C1, 按单体分子量为 126计算) 的甲醇溶液加入到 10ml[BMIM][BF4]离子液体中, 搅拌混匀, 在 60°C旋蒸 lh, 除去甲醇, 剩余 溶液加入到容积为 60ml的高压釜中, 在 150°C, 20 atm ¾下还原 2小时, 即 制得反应用催化剂。
将催化剂冷至室温, 放出残余气体, 充入 lOatmCO, 20atmH2, 在 150 °(下反应。 反应结果见表 1。 实施例 5
将 73mgRuCl3.nH2O和 620mg聚乙烯基吡咯烷酮 (聚乙烯基吡咯烷酮: Ru=20)加入到 20ml水中, 搅拌混匀, 然后加入到容积为 60ml的高压釜中, 在 150°C, 20 atm H2下还原 2小时, 即制得反应用催化剂。
将催化剂冷至室温, 放出残余气体, 充入 lOatmCO, 5atmH2, 在 150 °C下反应。 反应结果见表 1。 实施例 6
将 73mgRuCl3.nH2O和 620mg聚乙烯基吡咯垸酮 (聚乙烯基吡咯烷酮: Ru=20) 加入到 20ml水中, 搅拌混匀, 然后加入到容积为 60ml的高压釜中, 在 150°C, 20atmH2下还原 2小时, 即制得反应用催化剂。
将催化剂冷至室温, 放出残余气体, 充入 lOatmCO, 20atmH2, 在 100 °C下反应。 反应结果见表 1。 实施例 7
将 7.3mgRuCl3.nH2O和 62mg聚乙烯基吡咯烷酮 (聚乙烯基吡咯烷酮: 111=20)加入到201111水中, 搅拌混匀, 然后加入到容积为 60ml的高压釜中, 在 150°C, 20atmH2下还原 2小时, 即制得反应用催化剂。
冷至室温,放出残余气体, 充入 lOatmCO, 20atmH2,在 150°C下反应。 反应结果见表 1。 实施例 8
将 73mgRuCl3.nH2O和 6.20g聚乙烯基吡咯烷酮 (聚乙烯基吡咯垸酮: Ru=200)加入到 20 ml水中,搅拌混匀,然后加入到容积为 60ml的高压釜中, 在 150°C, 20atm¾下还原 2小时, 即制得反应用催化剂。
冷至室温,放出残余气体,充入 lOatmCO, 20atmH2,在 150°C下反应。 反应结果见表 1。 实施例 9
将 119mg CoCl2-6H2O和 2.25g聚乙烯基吡咯垸酮 (聚乙烯基吡咯烷酮:
0)=40)加入到50011水中,搅拌混勾,然后加入到容积为 100ml的高压釜中, 在 170°C, 40atmH2下还原 2小时, 即制得反应用催化剂。
冷至室温,放出残余气体,充入 lOatmCO, 20atmH2,在 170 °C下反应。 反应结果见表 1。 实施例 10
将 136mgFeCl3.6H2O和 5.63g聚乙烯基吡咯垸酮 (聚乙烯基吡咯烷酮: Fe=100) 加入到 50 ml水中, 搅拌混匀, 然后加入到容积为 100ml的高压釜 中, 在 200°C, 40atmH2下还原 2小时, 即制得反应用催化剂。
冷至室温,放出残余气体,充入 20atmCO, 40atmH2,在 200°C下反应。 反应结果见表 1。
过渡金属纳米粒子在不同溶剂中的费托合成反应活性 实施例 反应条件 下降总压力 转化频率(按 CO计,摩 尔 CO/ (摩尔 Ιιι·小时)) 实施例 1 聚乙烯基吡咯垸酮: Ru=20: 1, 26.2atm/14h 6.1
20.0 mlTK, 2.79xlO"4molRu,
150。C, 20.0atmH2, 10.0 atm CO
实施例 2 聚乙烯基吡咯烷酮: Ru=3.4:1, latm/8h 0.42
20.0 ml 1,4-二氧六环, 2.79xl0"4 mol Ru,
150°C, 20.0 atm ¾, 10.0 atm CO
实施例 3 聚乙烯基吡咯烷酮: Ru=3.4:l, latm/lOh 0.32
20.0 ml 乙醇, 2.79xlO-4molRu,
150 , 20.0 atm H2, 10.0 atm CO
实施例 4 [BVIMPVP]Cl:Ru=5:l, 10.0ml[BMIM][BF4] 3.2atm/14.3h 0.52
离子液体, 2.79xlO-4molRu,
150。C, 20.0 atm H2, 10.0 atm CO
实施例 5 聚乙烯基吡咯烷酮: Ru=20:l, 8atm/11.5h 2.3
20.0 ml水, 2.79x10— 4 mol Ru,
150°C, 5.0 atm ¾, 10.0 atm CO
实施例 6 聚乙烯基吡咯垸酮: Ru=20:l, 3.4atm/15h 0.74
20.0 ml水, 2.79xlO-4molRu,
100°C, 20.0 atm H2, 10.0 atm CO
实施例 7 聚乙烯基吡咯烷酮: Ru=20: 1, 6.2atm/15.5h 13
20.0 ml水, 2.79xl0-5 mol Ru,
150 °C, 20.0 atm H2, 10.0 atm CO
实施例 8 聚乙烯基吡咯烷酮: Ru=200:l , 22.5atm/20.7 3.54
20.0 ml水, 2.79xl04molRu, h 150 °C, 20.0 atm ¾, 10.0 atm CO
实施例 9 聚乙烯基吡咯垸酮: Co=40:l , 0.2atm/24h 0.020
50.0 ml水, 5.0xl0" mol Co,
170°C, 20.0 atm H2, 10.0 atm CO
实施例 聚乙烯基吡咯烷酮: Fe=100:l , 0.2atm/50h 0.0096 10 50.0 ml水, 5.0xlO-4 mol Fe,
200 °C , 40.0 atm H2- 20.0 atm CO
表 1中, 下降总压力是指一段时间内在室温条件下所观测到的反应前后 总压力的变化; 转化频率是指每小时每摩尔金属催化剂上转化的 CO摩尔数。
以上结果表明, 该过渡金属纳米催化剂在 100-150°C就具有好的催化活 性, 比工业费托催化剂的温度(200-350°C )显著降低。 产物中可用的 C5+组 分含量也较高(76.7-83.4%) , 因而该过渡金属纳米催化剂具有很好的工业应 用前景。
工业应用
本发明先制备了一种过渡金属纳米催化剂, 催化剂是一种纳米级 (1-10 nm) 的金属纳米粒子, 可以均匀分散在液体介质中, 形成稳定的胶体, 该胶 体在反应前后不会聚沉。 催化剂能够在反应条件下实现三维自由旋转, 具有 很好的低温活性,在 100-200°C下即可催化费托合成,远比现行工业催化剂需 要的条件(200-350Ό )温和; 并且, 过渡金属纳米粒子的粒径较小, 分布较 窄, 有利于控制产物的分布; 烃类产物容易与催化剂分离, 催化剂可实现回 收和循环利用, 具有广阔的应用前景。

Claims

权利要求
1、 一种过渡金属纳米催化剂, 包括过渡金属纳米粒子和高分子稳定剂, 所述过渡金属纳米粒子分散在液体介质中形成稳定胶体。
2、根据权利要求 1所述的过渡金属纳米催化剂, 其特征在于: 所述过渡 金属纳米粒子的粒径为 1-lOnm; 所述过渡金属选自 Ru、 Co、 Ni、 Fe和 Rh 中的一种或几种。
3、根据权利要求 2所述的过渡金属纳米催化剂, 其特征在于: 所述过渡 金属纳米粒子的粒径为 1.8±0.4nm。
4、根据权利要求 1-3任一所述的过渡金属纳米催化剂, 其特征在于: 所 述高分子稳定剂为聚乙烯基吡咯垸酮或乙烯基吡咯烷酮 -乙烯基咪唑氯盐共 聚高分子; 所述液体介质选自水、 醇类、 烃类、 醚类和离子液体。
5、根据权利要求 4所述的过渡金属纳米催化剂, 其特征在于: 所述液体 介质为水、 乙醇、 环己烷、 1,4-二氧六环或 [BMIM][BF4]离子液体。
6、一种制备权利要求 1-5任一所述的过渡金属纳米催化剂的方法, 是将 过渡金属盐与高分子稳定剂混合分散于液体介质中,在 100-200°( 以112还原, 得到所述过渡金属纳米催化剂。
7、 根据权利要求 6所述的制备方法, 其特征在于: 所述还原反应中,
H2的压力为 0.1-4MPa, 反应时间为 2小时。
8、根据权利要求 6或 7所述的制备方法, 其特征在于: 所述高分子稳定 剂与过渡金属盐的摩尔比为 400:1-1:1 ; 过渡金属盐在所述液体介质中的浓度 为 0.0014-0.014 mol/L。
9、根据权利要求 8所述的制备方法, 其特征在于: 所述高分子稳定剂与 过渡金属盐的摩尔比为 200:1-1:1。
10、 根据权利要求 6或 7所述的制备方法, 其特征在于: 所述过渡金属 盐选自 RuCl3'nH2O、 CoClr6H2O、 NiClr6H2O、 FeCl3'6H2O、 RhCl3-nH2O中 的一种或几种; 所述高分子稳定剂为聚乙烯基吡咯烷酮或乙烯基吡咯烷酮-乙 烯基咪唑氯盐共聚高分子; 所述液体介质选自水、 醇类、 烃类、 醚类和离子 液体。
11、根据权利要求 10所述的制备方法,其特征在于:所述液体介质为水、 乙醇、 环己烷、 1,4-二氧六环或 [BMIM][BF4]离子液体。
12、 根据权利要求 8所述的制备方法, 其特征在于: 所述过渡金属盐选 自 RuCl3'nH2O、 CoCl 6H2O、 NiCl 6H2O、 FeCl3'6H2O、 RhCl3-nH2O中的一 种或几种; 所述高分子稳定剂为聚乙烯基吡咯烷酮或乙烯基吡咯烷酮-乙烯基 咪唑氯盐共聚高分子; 所述液体介质选自水、 醇类、 烃类、 醚类和离子液体。
13、根据权利要求 12所述的制备方法,其特征在于:所述液体介质为水、 乙醇、 环己烷、 1,4-二氧六环或 [BMIM][BF4]离子液体。
14、 根据权利要求 9所述的制备方法, 其特征在于: 所述过渡金属盐选 自 RuCl3.nH2O、 CoCl2-6H2O, NiCl 6H2O、 FeCl3'6H2O、 R Cl3-nH2O中的一 种或几种; 所述高分子稳定剂为聚乙烯基吡咯垸酮或乙烯基吡咯烷酮-乙烯基 咪唑氯盐共聚高分子; 所述液体介质选自水、 醇类、烃类、醚类和离子液体。
15、根据权利要求 14所述的制备方法,其特征在于:所述液体介质为水、 乙醇、 环己烷、 1,4-二氧六环或 [BMIM][BF4]离子液体。
16、 权利要求 1-5任一所述的过渡金属纳米催化剂在费托合成反应中的 应用, 是将 CO和 H2在权利要求 1-5任一所述的过渡金属纳米催化剂的作用 下进行催化反应。
17、根据权利要求 16所述的过渡金属纳米催化剂在费托合成反应中的应 用, 其特征在于: 所述催化反应的温度为 100-20(TC。
18、根据权利要求 17所述的过渡金属纳米催化剂在费托合成反应中的应 用, 其特征在于: 所述催化反应的温度为 100Ό或 150°C。
19、 根据权利要求 16-18任一所述的过渡金属纳米催化剂在费托合成反 应中的应用, 其特征在于: 所述反应中, CO和 H2的总压力为 0.1-10MPa。
20、根据权利要求 19所述的过渡金属纳米催化剂在费托合成反应中的应 用, 其特征在于: 所述反应中, 0和¾的总压力为 3MPa。
21、 根据权利要求 16-18任一所述的过渡金属纳米催化剂在费托合成反 应中的应用, 其特征在于: 所述催化反应中, H2/CO的摩尔比为 0.5-3 : 1。
22、根据权利要求 21所述的过渡金属纳米催化剂在费托合成反应中的应 用, 其特征在于: 所述催化反应中, H2/CO的摩尔比为 0.5、 1.0或 2.0。
23、根据权利要求 19所述的过渡金属纳米催化剂在费托合成反应中的应 用, 其特征在于: 所述催化反应中, H2/CO的摩尔比为 0.5-3: 1。
24、根据权利要求 23所述的过渡金属纳米催化剂在费托合成反应中的应 用, 其特征在于: 所述催化反应中, H2/CO的摩尔比为 0.5、 1.0或 2.0。
25、根据权利要求 20所述的过渡金属纳米催化剂在费托合成反应中的应 用, 其特征在于: 所述催化反应中, H2/CO的摩尔比为 0.5-3 : 1。
26、根据权利要求 25所述的过渡金属纳米催化剂在费托合成反应中的应 用, 其特征在于: 所述催化反应中, H2/CO的摩尔比为 0.5、 1.0或 2.0。
PCT/CN2008/000886 2007-05-08 2008-04-30 Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction WO2008134939A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2681319A CA2681319C (en) 2007-05-08 2008-04-30 Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction
US12/593,607 US20100179234A1 (en) 2007-05-08 2008-04-30 Transition metal nanocatalyst, method for preparing the same, and process for fischer-tropsch synthesis using the same
AU2008247186A AU2008247186B2 (en) 2007-05-08 2008-04-30 Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction
US13/938,169 US20140039073A1 (en) 2007-05-08 2013-07-09 Transition metal nanocatalyst, method for preparing the same, and process for fischer-tropsch synthesis using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB200710099011XA CN100493701C (zh) 2007-05-08 2007-05-08 一种进行费托合成反应的方法及其专用催化剂
CN200710099011.X 2007-05-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/593,607 A-371-Of-International US20100179234A1 (en) 2007-05-08 2008-04-30 Transition metal nanocatalyst, method for preparing the same, and process for fischer-tropsch synthesis using the same
US13/938,169 Continuation US20140039073A1 (en) 2007-05-08 2013-07-09 Transition metal nanocatalyst, method for preparing the same, and process for fischer-tropsch synthesis using the same

Publications (1)

Publication Number Publication Date
WO2008134939A1 true WO2008134939A1 (en) 2008-11-13

Family

ID=38770300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000886 WO2008134939A1 (en) 2007-05-08 2008-04-30 Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction

Country Status (7)

Country Link
US (2) US20100179234A1 (zh)
CN (1) CN100493701C (zh)
AU (1) AU2008247186B2 (zh)
CA (1) CA2681319C (zh)
RU (1) RU2430780C2 (zh)
WO (1) WO2008134939A1 (zh)
ZA (1) ZA200907134B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496576C1 (ru) * 2012-09-20 2013-10-27 Сергей Михайлович Левачев Способ модификации поверхности неорганического оксида
CN112077334A (zh) * 2020-09-03 2020-12-15 南京晓庄学院 一种过渡金属掺杂钌铑合金的制备方法及其应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100493701C (zh) * 2007-05-08 2009-06-03 中科合成油技术有限公司 一种进行费托合成反应的方法及其专用催化剂
CN101259411B (zh) * 2008-04-16 2010-06-09 厦门大学 一种制备柴油馏分碳氢化合物的催化剂及其制备方法
CN100548476C (zh) * 2008-05-19 2009-10-14 中国科学院山西煤炭化学研究所 一种适合于浆态床用纳米催化剂及制法和应用
CN102408908B (zh) * 2010-09-21 2015-06-17 中科合成油技术有限公司 一种由溶剂相费托合成生产线性α-烯烃的方法
CN102794197B (zh) * 2011-05-27 2014-03-12 中国石油化工股份有限公司 加氢催化剂及其制备方法和应用
CN102489312B (zh) * 2011-11-24 2013-06-19 武汉凯迪工程技术研究总院有限公司 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
CN102716766B (zh) * 2012-06-15 2015-06-17 武汉凯迪工程技术研究总院有限公司 液相co2甲烷化催化剂、制备方法及其应用
RU2537850C1 (ru) * 2013-09-12 2015-01-10 Общество с ограниченной ответственностью "АНИКО" Катализатор и способ получения синтетических углеводородов алифатического ряда из оксида углерода и водорода в его присутствии
CN104607190B (zh) * 2015-01-30 2018-01-16 武汉凯迪工程技术研究总院有限公司 用于费托合成的单分散过渡金属纳米催化剂及其制备方法和应用
CN106635117B (zh) * 2015-10-30 2019-01-08 中国石油化工股份有限公司 一种费托合成反应方法
CN106622058B (zh) * 2015-10-30 2019-04-16 中国石油化工股份有限公司 一种费托合成反应装置和费托合成方法
CN106622056B (zh) * 2015-10-30 2019-02-01 中国石油化工股份有限公司 费托合成反应系统和费托合成方法
RU2628396C2 (ru) * 2015-12-09 2017-08-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Сорбент для очистки водных сред от ионов мышьяка и способ его получения
RU2665575C1 (ru) * 2017-12-28 2018-08-31 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения металлсодержащих наноразмерных дисперсий
RU2745214C1 (ru) * 2020-08-11 2021-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Катализатор синтеза фишера-тропша и способ его получения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237494A (zh) * 1998-05-29 1999-12-08 中国科学院化学研究所 一种金属纳米簇的制备方法
WO2006100578A2 (en) * 2005-03-25 2006-09-28 Cima Nano Tech Israel Ltd Nano-metal particle-containing polymer composites, methods for producing same, and uses for same
CN1903427A (zh) * 2005-07-28 2007-01-31 中国科学院大连化学物理研究所 一种金属钌纳米线的制备方法
CN101045206A (zh) * 2007-05-08 2007-10-03 北京大学 一种进行费托合成反应的方法及其专用催化剂
CN101134163A (zh) * 2007-10-11 2008-03-05 北京大学 一种合成甲酸酯的方法及其专用催化剂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100479917C (zh) * 2003-04-07 2009-04-22 新日本制铁株式会社 由合成气制造烃的催化剂及催化剂的制造方法
US20070225382A1 (en) * 2005-10-14 2007-09-27 Van Den Berg Robert E Method for producing synthesis gas or a hydrocarbon product
US7682789B2 (en) * 2007-05-04 2010-03-23 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
US8075799B2 (en) * 2007-06-05 2011-12-13 South Dakota School Of Mines And Technology Carbon nanoparticle-containing hydrophilic nanofluid with enhanced thermal conductivity
US8399527B1 (en) * 2009-03-17 2013-03-19 Louisiana Tech University Research Foundation; A Division Of Louisiana Tech University Foundation, Inc. Bound cobalt nanowires for Fischer-Tropsch synthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237494A (zh) * 1998-05-29 1999-12-08 中国科学院化学研究所 一种金属纳米簇的制备方法
WO2006100578A2 (en) * 2005-03-25 2006-09-28 Cima Nano Tech Israel Ltd Nano-metal particle-containing polymer composites, methods for producing same, and uses for same
CN1903427A (zh) * 2005-07-28 2007-01-31 中国科学院大连化学物理研究所 一种金属钌纳米线的制备方法
CN101045206A (zh) * 2007-05-08 2007-10-03 北京大学 一种进行费托合成反应的方法及其专用催化剂
CN101134163A (zh) * 2007-10-11 2008-03-05 北京大学 一种合成甲酸酯的方法及其专用催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG H. ET AL.: "Rhodium Nanoclusters Protected by Ionic Copolymer in a Ionic Liquid: a Catalytically Efficient System of Arene Hydrogenation", ABSTRACTS OF THE 25TH CCS CONGRESS (I), January 2006 (2006-01-01), pages 082 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496576C1 (ru) * 2012-09-20 2013-10-27 Сергей Михайлович Левачев Способ модификации поверхности неорганического оксида
CN112077334A (zh) * 2020-09-03 2020-12-15 南京晓庄学院 一种过渡金属掺杂钌铑合金的制备方法及其应用

Also Published As

Publication number Publication date
US20100179234A1 (en) 2010-07-15
CN100493701C (zh) 2009-06-03
CN101045206A (zh) 2007-10-03
RU2009143200A (ru) 2011-06-20
CA2681319A1 (en) 2008-11-13
AU2008247186A2 (en) 2009-11-19
AU2008247186B2 (en) 2010-11-04
RU2430780C2 (ru) 2011-10-10
ZA200907134B (en) 2010-07-28
US20140039073A1 (en) 2014-02-06
AU2008247186A1 (en) 2008-11-13
CA2681319C (en) 2012-11-13

Similar Documents

Publication Publication Date Title
WO2008134939A1 (en) Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction
Gual et al. Colloidal Ru, Co and Fe-nanoparticles. Synthesis and application as nanocatalysts in the Fischer–Tropsch process
Guan et al. Comparison of Pd-UiO-66 and Pd-UiO-66-NH2 catalysts performance for phenol hydrogenation in aqueous medium
Yao et al. Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane
Otun et al. Metal-organic framework (MOF)-derived catalysts for Fischer-Tropsch synthesis: Recent progress and future perspectives
Song et al. Selective hydrogenolysis of lignin-derived aryl ethers over Co/C@ N catalysts
Zhao et al. Monodisperse metal–organic framework nanospheres with encapsulated core–shell nanoparticles Pt/Au@ Pd@{Co2 (oba) 4 (3-bpdh) 2} 4H2O for the highly selective conversion of CO2 to CO
Gao et al. Monodisperse PtCu alloy nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane
CN101142021A (zh) 甲硅烷基改性的催化剂及该催化剂用于将合成气转化为烃类的用途
CN104368344A (zh) 钴基费托合成催化剂及其制备方法和应用
Shao et al. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products
CN101602644A (zh) 一种十氢萘的合成方法
CN104185604A (zh) 氢气制备
CN105964263B (zh) 石墨烯负载的高效铁基费托合成制低碳烯烃催化剂及其制备方法
Fu et al. Recent advances in metal–organic framework based heterogeneous catalysts for furfural hydrogenation reactions
Zhao et al. Synergistic bimetallic Ru–Pt catalysts for the low‐temperature aqueous phase reforming of ethanol
Zhang et al. Regulating the Cu0-Cu+ ratio to enhance metal-support interaction for selective hydrogenation of furfural under mild conditions
Ding et al. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid
Zhao et al. Water-involved tandem conversion of aryl ethers to alcohols over metal phosphide catalyst
Li et al. Dry reforming of methane over Ni/Al2O3 catalysts: Support morphological effect on the coke resistance
Wu et al. Engineering of the Cu+/Cu0 interface by chitosan-glucose complex for aqueous phase reforming of methanol into hydrogen
Miao et al. Catalytic formic acid dehydrogenation via hexagonal-boron nitride supported palladium
Zhao et al. Construction of a sandwich-like UiO-66-NH2@ Pt@ mSiO2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde
Gahtori et al. Highly Efficient ZIF-67-Derived PtCo Alloy–CN Interface for Low-Temperature Aqueous-Phase Fischer–Tropsch Synthesis
Xu et al. Hydrogenolysis of organosolv hydrolyzed lignin over high-dispersion Ni/Al-SBA-15 catalysts for phenolic monomers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08748445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2681319

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008247186

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008247186

Country of ref document: AU

Date of ref document: 20080430

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6608/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009143200

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12593607

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08748445

Country of ref document: EP

Kind code of ref document: A1