CN100493701C - 一种进行费托合成反应的方法及其专用催化剂 - Google Patents

一种进行费托合成反应的方法及其专用催化剂 Download PDF

Info

Publication number
CN100493701C
CN100493701C CNB200710099011XA CN200710099011A CN100493701C CN 100493701 C CN100493701 C CN 100493701C CN B200710099011X A CNB200710099011X A CN B200710099011XA CN 200710099011 A CN200710099011 A CN 200710099011A CN 100493701 C CN100493701 C CN 100493701C
Authority
CN
China
Prior art keywords
transition metal
catalyst
metal nano
reaction
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB200710099011XA
Other languages
English (en)
Other versions
CN101045206A (zh
Inventor
寇元
颜宁
肖超贤
蔡志鹏
李永旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Synthetic Oil Technology Co Ltd
Original Assignee
Zhongke Synthetic Oil Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Synthetic Oil Technology Co Ltd filed Critical Zhongke Synthetic Oil Technology Co Ltd
Priority to CNB200710099011XA priority Critical patent/CN100493701C/zh
Publication of CN101045206A publication Critical patent/CN101045206A/zh
Priority to AU2008247186A priority patent/AU2008247186B2/en
Priority to US12/593,607 priority patent/US20100179234A1/en
Priority to RU2009143200/04A priority patent/RU2430780C2/ru
Priority to CA2681319A priority patent/CA2681319C/en
Priority to PCT/CN2008/000886 priority patent/WO2008134939A1/zh
Application granted granted Critical
Publication of CN100493701C publication Critical patent/CN100493701C/zh
Priority to ZA200907134A priority patent/ZA200907134B/xx
Priority to US13/938,169 priority patent/US20140039073A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/648Fischer-Tropsch-type reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种进行费托合成反应的方法及其专用催化剂。该过渡金属纳米催化剂,包括过渡金属纳米粒子和高分子稳定剂,过渡金属纳米粒子分散在液体介质中形成胶体。本发明进行费托合成反应的方法,是将CO和H2在催化剂作用下进行催化反应,所用催化剂即为本发明过渡金属纳米催化剂。催化剂能够在反应条件下实现三维自由旋转,具有很好的低温活性,在100-200℃下即可催化费托合成,远比现行工业催化剂需要的条件(200-350℃)温和;并且,过渡金属纳米粒子的粒径较小,分布较窄,有利于控制产物的分布;烃类产物容易与催化剂分离,催化剂可实现回收和循环利用,具有广阔的应用前景。

Description

一种进行费托合成反应的方法及其专用催化剂
技术领域
本发明涉及一种进行费托合成反应的方法及其专用催化剂。
背景技术
费托合成反应指一氧化碳和氢气(合成气)在铁、钴、钌等金属催化作用下转化为烃类的反应,其产物分布很宽,从C1(甲烷)开始呈连续分布。由于石油资源日益枯竭,而煤、天然气、生物质等资源相对丰富,从煤、天然气、生物质等出发生产合成气,再由合成气通过费托合成制烃(汽油,柴油等),可以缓解对石油资源的依赖,对国家安全和社会利益都有很重要的意义。
目前,在现有费托合成反应条件下,希望得到的汽油、柴油(主要是C5+)选择性较低,而不能利用的甲烷选择性偏高;CO转化不完全,需要在尾气中回收利用,从而增加生产成本;反应的温度一般在200-350℃,但是费托合成反应是一个放热反应,高温对反应平衡是不利的,而且容易使催化剂局部过热而烧结;此外费托合成普遍采用块状的熔铁或担载在SiO2等载体表面的铁、钴、钌等催化剂,此类催化剂由于活性组分被束缚在载体的2维表面,不能自由旋转,裸露的催化剂表面积及活性位相对较少,从而降低了反应活性。根据文献报道,催化活性最高的是钌,其次是铁和钴;反应温度基本在200-350℃,体系的总压力为1-50atm左右。虽然,有在100-140℃下非担载的钌催化CO加氢的报道,但是需要的总压力非常苛刻,通常为1000atm(Robert B.Anderson,in“The Fischer-Tropsch synthesis”,pp.104-105,Academic Press,1984),得到的产物分子量很大,大部分为大于10000的聚乙烯。
发明内容
本发明的目的是提供一种反应速率高、反应温度低的进行费托合成反应的方法及其专用过渡金属催化剂。
该过渡金属纳米催化剂,包括过渡金属纳米粒子和高分子稳定剂,过渡金属纳米粒子分散在液体介质中形成稳定胶体。
过渡金属纳米粒子的粒径为1—10nm;优选为1.8±0.4nm;过渡金属选自Ru、Co、Ni、Fe和Rh中的一种或几种。
该过渡金属纳米催化剂可按如下步骤制备:
将过渡金属盐与高分子稳定剂混合分散于液体介质中,在100—200℃下以H2还原,得到所述过渡金属纳米催化剂。
还原反应的压力为0.1—4.0MPa,反应温度为100-200℃,反应时间为2小时。高分子稳定剂与过渡金属盐的摩尔比为400:1—1:1,过渡金属盐在液体介质中浓度为0.0014—0.014mol/L。常用的过渡金属盐选自Ru、Co、Ni、Fe和Rh中的一种或几种;所述高分子稳定剂为聚乙烯基吡咯烷酮或poly[(N-Vinyl-2-pyrrolidone)-co-(1-vinyl-3-alkylimidazolium halide)](一种共聚高分子,简称[BVIMPVP]Cl,制备方法见J.Am.Chem.Soc.2005,127,9694-9695);所述液体介质选自水、醇类、烃类、醚类和离子液体,优选为水,乙醇,环己烷,1,4-二氧六环或[BMIM][BF4]离子液体。
本发明进行费托合成反应的方法,是将CO和H2在催化剂作用下进行催化反应,所用催化剂为本发明过渡金属纳米催化剂。
催化反应的温度为100—200℃,优选为150℃。CO和H2的总压力为0.1—10MPa;优选为3MPa。催化反应中,H2/CO的摩尔比为0.5—3:1;优选为0.5、1.0或2.0。
本发明先制备了一种过渡金属纳米催化剂,催化剂是一种纳米级(1-10nm)的金属纳米粒子,可以均匀分散在液体介质中,形成稳定的胶体,该胶体在反应前后不会聚沉。催化剂能够在反应条件下实现三维自由旋转,具有很好的低温活性,在100—200℃下即可催化费托合成,远比现行工业催化剂需要的条件(200-350℃)温和;并且,过渡金属纳米粒子的粒径较小,分布较窄,有利于控制产物的分布;烃类产物容易与催化剂分离,催化剂可实现回收和循环利用,具有广阔的应用前景。
附图说明
图1为本发明钌纳米催化剂的电镜照片和粒径分布图。
具体实施方式
本发明进行费托合成反应主要是利用一种过渡金属纳米粒子催化剂,该催化剂可按照如下过程制备:
将过渡金属盐与高分子稳定剂混合分散于液体介质中,在100—200℃下以H2还原,得到该过渡金属纳米催化剂。
其中,常用过渡金属盐为RuCl3·nH2O、CoCl2·6H2O、NiCl2·6H2O、FeCl3·6H2O、RhCl3·nH2O,当选用不同过渡金属元素的盐时,可以得到混合过渡金属纳米催化剂;高分子稳定剂为聚乙烯基吡咯烷酮等;液体介质选自水、醇类、烃类、醚类和离子液体等,优选为水,乙醇,环己烷,1,4-二氧六环或[BMIM][BF4]离子液体。高分子稳定剂与过渡金属盐的摩尔比为400:1—1:1;过渡金属盐在液体介质中浓度为0.0014—0.014mol/L。
进行还原反应时,优选的压力为0.1—4.0MPa,优选为2MPa;优选的反应温度为150℃,反应时间为2小时。
应用上述催化剂进行费托合成反应,是在催化剂体系中,充入一定压力的H2和CO合成气,在适当温度下即可以开始反应。反应介质即为催化剂所分散的液体介质。
在上述费托合成反应过程中,反应温度在100—200℃之间,优选为150℃;反应压力为0.1—10MPa,优选为3MPa;合成气中,H2/CO的摩尔比为0.5—3:1,优选为0.5、1.0或2.0。
各种反应条件下的产物分布比较一致,主要为正构烷烃,有少量异构烷烃和α-烯烃。在以下的各具体实施例中,产物的典型分布为:C1 3.4-6.3%,C2-C4 13.2-18.0%,C5-C12 53.2-56.9%,C13-C20 16.9-24.2%,C21+ 1.5-4.9%。可用的C5+占到产物总量的76.7-83.4%。
以下结合具体的实施例来描述本发明反应过程。
实施例1、
将73mg RuCl3·nH2O和620mg聚乙烯基吡咯烷酮(聚乙烯基吡咯烷酮:Ru=20,摩尔比,下同)加入到20ml水中,搅拌混匀,然后加入到容积为60ml的高压釜中,在150℃,20atm H2下还原2小时,即制得反应用催化剂。制备的钌纳米粒子平均粒径为1.8±0.4nm,钌纳米粒子的透射电镜照片和粒径分布分别如图1a和图1b所示。
将催化剂冷至室温,放出残余气体,然后充入10atm CO,20atm H2,在150℃下反应。反应结果见表1。
实施例2
将73mg RuCl3·nH2O和106mg聚乙烯基吡咯烷酮(聚乙烯基吡咯烷酮:Ru=3.4)加入到20ml 1,4-二氧六环中,搅拌混匀,然后加入到容积为60ml的高压釜中,在150℃,20atm H2下还原2小时,即制得反应用催化剂。冷至室温,放出残余气体,充入10atmCO,20atm H2,在150℃下反应。反应结果见表1。
实施例3
将73mg RuCl3·nH2O和106mg聚乙烯基吡咯烷酮(聚乙烯基吡咯烷酮:Ru=3.4)加入到20ml乙醇中,搅拌混匀,然后加入到容积为60ml的高压釜中,在150℃,20atmH2下还原2小时,即制得反应用催化剂。冷至室温,放出残余气体,充入10atm CO,20atm H2,在150℃下反应。反应结果见表1。
实施例4
将73mg RuCl3·nH2O和1.4mmol poly[(N-Vinyl-2-pyrrolidone)-co-(1-vinyl-3-alkylimidazolium halide)](简称[BVIMPVP]Cl,按单体分子量为126计算)的甲醇溶液加入到10ml[BMIM][BF4]离子液体中,搅拌混匀,在60℃旋蒸1h,除去甲醇,剩余溶液加入到容积为60ml的高压釜中,在150℃,20atm H2下还原2小时,即制得反应用催化剂。冷至室温,放出残余气体,充入10atm CO,20atm H2,在150℃下反应。反应结果见表1。
实施例5
将73mg RuCl3·nH2O和620mg聚乙烯基吡咯烷酮(聚乙烯基吡咯烷酮:Ru=20)加入到20ml水中,搅拌混匀,然后加入到容积为60ml的高压釜中,在150℃,20atmH2下还原2小时,即制得反应用催化剂。冷至室温,放出残余气体,充入10atm CO,5atm H2,在150℃下反应。反应结果见表1。
实施例6
将73mg RuCl3·nH2O和620mg聚乙烯基吡咯烷酮(聚乙烯基吡咯烷酮:Ru=20)加入到20ml水中,搅拌混匀,然后加入到容积为60ml的高压釜中,在150℃,20atmH2下还原2小时,即制得反应用催化剂。冷至室温,放出残余气体,充入10atm CO,20atm H2,在100℃下反应。反应结果见表1。
实施例7
将7.3mg RuCl3·nH2O和62mg聚乙烯基吡咯烷酮(聚乙烯基吡咯烷酮:Ru=20)加入到20ml水中,搅拌混匀,然后加入到容积为60ml的高压釜中,在150℃,20atmH2下还原2小时,即制得反应用催化剂。冷至室温,放出残余气体,充入10atm CO,20atm H2,在150℃下反应。反应结果见表1。
表1.过渡金属纳米粒子在不同溶剂中的费托合成反应活性
 
实施例 反应条件 下降总压力 转化频率(按CO计,摩尔CO/(摩尔Ru·小时))
 
实施例1 聚乙烯基吡咯烷酮:Ru=20:1,20.0ml水,2.79×10<sup>-4</sup>mol Ru,150℃,20.0atm H<sub>2</sub>,10.0atm CO 26.2atm/14h 6.1
实施例2 聚乙烯基吡咯烷酮:Ru=3.4:1,20.0ml 1,4-二氧六环,2.79×10<sup>-4</sup>mol Ru,150℃,20.0atm H<sub>2</sub>,10.0atm CO 1atm/8h 0.42
实施例3 聚乙烯基吡咯烷酮:Ru=3.4:1,20.0ml乙醇,2.79×10<sup>-4</sup>mol Ru,150℃,20.0atm H<sub>2</sub>,10.0atm CO 1atm/10h 0.32
实施例4 [BVIMPVP]Cl∶Ru=5:1,10.0ml[BMIM][BF<sub>4</sub>]离子液体,2.79×10<sup>-4</sup>mol Ru,150℃,20.0atm H<sub>2</sub>,10.0atm CO 3.2atm/14.3h 0.52
实施例5 聚乙烯基吡咯烷酮:Ru=20:1,20.0ml水,2.79×10<sup>-4</sup>mol Ru,150℃,5.0atm H<sub>2</sub>,10.0atm CO 8atm/11.5h 2.3
实施例6 聚乙烯基吡咯烷酮:Ru=20:1,20.0ml水,2.79×10<sup>-4</sup>mol Ru,100℃,20.0atm H<sub>2</sub>,10.0atm CO 3.4atm/15h 0.74
实施例7 聚乙烯基吡咯烷酮:Ru=20:1,20.0ml水,2.79×10<sup>-5</sup>mol Ru,150℃,20.0atm H<sub>2</sub>,10.0atm CO 6.2atm/15.5h 13
以上结果表明,该过渡金属纳米催化剂在100-150℃就具有好的催化活性,比工业费托催化剂的温度(200-350℃)显著降低。产物中可用的C5+组分含量也较高(76.7-83.4%),因而该过渡金属纳米催化剂具有很好的工业应用前景。

Claims (15)

1、一种用于费托合成反应的过渡金属纳米催化剂,包括过渡金属纳米粒子和高分子稳定剂,所述过渡金属纳米粒子分散在液体介质中形成稳定胶体;所述过渡金属为Ru、Co、Ni和Fe中的一种或几种;所述高分子稳定剂为聚乙烯基吡咯烷酮或(N-乙烯基-2-吡咯烷酮)-(1-乙烯基-3-烷基咪唑卤盐)共聚物。
2、根据权利要求1所述的过渡金属纳米催化剂,其特征在于:所述过渡金属纳米粒子的粒径为1—10nm。
3、根据权利要求2所述的过渡金属纳米催化剂,其特征在于:所述过渡金属纳米粒子的粒径为1.8±0.4nm。
4、根据权利要求1-3中任一所述的过渡金属纳米催化剂,其特征在于:所述过渡金属纳米催化剂按如下步骤制备:
将过渡金属盐与高分子稳定剂混合分散于液体介质中,在100—200℃下以H2还原,得到所述过渡金属纳米催化剂。
5、根据权利要求4所述的过渡金属纳米催化剂,其特征在于:所述还原反应H2的压力为0.1—4MPa,反应时间为2小时。
6、根据权利要求4所述的过渡金属纳米催化剂,其特征在于:所述高分子稳定剂与过渡金属盐的摩尔比为400:1—1:1;过渡金属盐在液体介质中浓度为0.0014—0.014mol/L。
7、根据权利要求4所述的过渡金属纳米催化剂,其特征在于:所述过渡金属盐选自RuCl3·nH2O、CoCl2·6H2O、NiCl2·6H2O和FeCl3·6H2O中的一种或几种,所述液体介质选自水、醇、烃、醚和离子液体。
8、根据权利要求7所述的过渡金属纳米催化剂,其特征在于:所述液体介质选自水、乙醇、环己烷、1,4-二氧六环或[BMIM][BF4]离子液体。
9、一种进行费托合成反应的方法,是将CO和H2在催化剂作用下进行催化反应,其特征在于:所述催化剂为权利要求1—8任一所述的过渡金属纳米催化剂。
10、根据权利要求9所述的方法,其特征在于:所述催化反应的温度为100—200℃。
11、根据权利要求10所述的方法,其特征在于:所述催化反应的温度为100℃或150℃。
12、根据权利要求9所述的方法,其特征在于:CO和H2的总压力为0.1—10MPa。
13、根据权利要求12所述的方法,其特征在于:CO和H2的总压力为3MPa。
14、根据权利要求9所述的方法,其特征在于:催化反应中,H2/CO的摩尔比为0.5—3∶1。
15、根据权利要求14所述的方法,其特征在于:催化反应中,H2/CO的摩尔比为0.5、1.0或2.0。
CNB200710099011XA 2007-05-08 2007-05-08 一种进行费托合成反应的方法及其专用催化剂 Active CN100493701C (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CNB200710099011XA CN100493701C (zh) 2007-05-08 2007-05-08 一种进行费托合成反应的方法及其专用催化剂
CA2681319A CA2681319C (en) 2007-05-08 2008-04-30 Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction
US12/593,607 US20100179234A1 (en) 2007-05-08 2008-04-30 Transition metal nanocatalyst, method for preparing the same, and process for fischer-tropsch synthesis using the same
RU2009143200/04A RU2430780C2 (ru) 2007-05-08 2008-04-30 Нанокатализатор на основе переходного металла, способ его приготовления и использование в реакции синтеза фишера-тропша
AU2008247186A AU2008247186B2 (en) 2007-05-08 2008-04-30 Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction
PCT/CN2008/000886 WO2008134939A1 (en) 2007-05-08 2008-04-30 Transition metal nano-catalyst, its preparation method and its use in fischer-tropsch synthetic reaction
ZA200907134A ZA200907134B (en) 2007-05-08 2009-10-13 Transition metal nano-catalyst, its preparation method and its use in Fischer-Tropsch synthetic reaction
US13/938,169 US20140039073A1 (en) 2007-05-08 2013-07-09 Transition metal nanocatalyst, method for preparing the same, and process for fischer-tropsch synthesis using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200710099011XA CN100493701C (zh) 2007-05-08 2007-05-08 一种进行费托合成反应的方法及其专用催化剂

Publications (2)

Publication Number Publication Date
CN101045206A CN101045206A (zh) 2007-10-03
CN100493701C true CN100493701C (zh) 2009-06-03

Family

ID=38770300

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200710099011XA Active CN100493701C (zh) 2007-05-08 2007-05-08 一种进行费托合成反应的方法及其专用催化剂

Country Status (7)

Country Link
US (2) US20100179234A1 (zh)
CN (1) CN100493701C (zh)
AU (1) AU2008247186B2 (zh)
CA (1) CA2681319C (zh)
RU (1) RU2430780C2 (zh)
WO (1) WO2008134939A1 (zh)
ZA (1) ZA200907134B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100493701C (zh) * 2007-05-08 2009-06-03 中科合成油技术有限公司 一种进行费托合成反应的方法及其专用催化剂
CN101259411B (zh) * 2008-04-16 2010-06-09 厦门大学 一种制备柴油馏分碳氢化合物的催化剂及其制备方法
CN100548476C (zh) * 2008-05-19 2009-10-14 中国科学院山西煤炭化学研究所 一种适合于浆态床用纳米催化剂及制法和应用
CN102408908B (zh) * 2010-09-21 2015-06-17 中科合成油技术有限公司 一种由溶剂相费托合成生产线性α-烯烃的方法
CN102794197B (zh) * 2011-05-27 2014-03-12 中国石油化工股份有限公司 加氢催化剂及其制备方法和应用
CN102489312B (zh) * 2011-11-24 2013-06-19 武汉凯迪工程技术研究总院有限公司 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
CN102716766B (zh) * 2012-06-15 2015-06-17 武汉凯迪工程技术研究总院有限公司 液相co2甲烷化催化剂、制备方法及其应用
RU2496576C1 (ru) * 2012-09-20 2013-10-27 Сергей Михайлович Левачев Способ модификации поверхности неорганического оксида
RU2537850C1 (ru) * 2013-09-12 2015-01-10 Общество с ограниченной ответственностью "АНИКО" Катализатор и способ получения синтетических углеводородов алифатического ряда из оксида углерода и водорода в его присутствии
CN104607190B (zh) * 2015-01-30 2018-01-16 武汉凯迪工程技术研究总院有限公司 用于费托合成的单分散过渡金属纳米催化剂及其制备方法和应用
CN106622058B (zh) * 2015-10-30 2019-04-16 中国石油化工股份有限公司 一种费托合成反应装置和费托合成方法
CN106635117B (zh) * 2015-10-30 2019-01-08 中国石油化工股份有限公司 一种费托合成反应方法
CN106622056B (zh) * 2015-10-30 2019-02-01 中国石油化工股份有限公司 费托合成反应系统和费托合成方法
RU2628396C2 (ru) * 2015-12-09 2017-08-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Сорбент для очистки водных сред от ионов мышьяка и способ его получения
RU2665575C1 (ru) * 2017-12-28 2018-08-31 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения металлсодержащих наноразмерных дисперсий
RU2745214C1 (ru) * 2020-08-11 2021-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Катализатор синтеза фишера-тропша и способ его получения
CN112077334A (zh) * 2020-09-03 2020-12-15 南京晓庄学院 一种过渡金属掺杂钌铑合金的制备方法及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095411C (zh) * 1998-05-29 2002-12-04 中国科学院化学研究所 一种金属纳米簇的制备方法
EP1632289A4 (en) * 2003-04-07 2012-03-07 Nippon Steel Corp CATALYST FOR THE PRODUCTION OF HYDROGEN CARBON BODY FROM SYNTHESEGAS AND METHOD FOR THE PRODUCTION OF THE CATALYST
JP2008537978A (ja) * 2005-03-25 2008-10-02 シーマ ナノ テック イスラエル リミティド ナノ−金属粒子含有ポリマー複合材、その製造方法およびその使用
CN100357023C (zh) * 2005-07-28 2007-12-26 中国科学院大连化学物理研究所 一种金属钌纳米线的制备方法
US20070225382A1 (en) * 2005-10-14 2007-09-27 Van Den Berg Robert E Method for producing synthesis gas or a hydrocarbon product
US7682789B2 (en) * 2007-05-04 2010-03-23 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
CN100493701C (zh) * 2007-05-08 2009-06-03 中科合成油技术有限公司 一种进行费托合成反应的方法及其专用催化剂
US8075799B2 (en) * 2007-06-05 2011-12-13 South Dakota School Of Mines And Technology Carbon nanoparticle-containing hydrophilic nanofluid with enhanced thermal conductivity
CN101134163B (zh) * 2007-10-11 2010-09-15 北京大学 一种合成甲酸酯的方法及其专用催化剂
US8399527B1 (en) * 2009-03-17 2013-03-19 Louisiana Tech University Research Foundation; A Division Of Louisiana Tech University Foundation, Inc. Bound cobalt nanowires for Fischer-Tropsch synthesis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
离子液体中高效催化苯环加氢的离子液体型高分子保护的铑纳米簇体系. 王寒枝等.中国化学会第二十五届学术年会论文摘要集(上册). 2006
离子液体中高效催化苯环加氢的离子液体型高分子保护的铑纳米簇体系. 王寒枝等.中国化学会第二十五届学术年会论文摘要集(上册). 2006 *

Also Published As

Publication number Publication date
US20100179234A1 (en) 2010-07-15
AU2008247186B2 (en) 2010-11-04
CA2681319A1 (en) 2008-11-13
RU2009143200A (ru) 2011-06-20
US20140039073A1 (en) 2014-02-06
ZA200907134B (en) 2010-07-28
CN101045206A (zh) 2007-10-03
AU2008247186A2 (en) 2009-11-19
RU2430780C2 (ru) 2011-10-10
CA2681319C (en) 2012-11-13
WO2008134939A1 (en) 2008-11-13
AU2008247186A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
CN100493701C (zh) 一种进行费托合成反应的方法及其专用催化剂
Axet et al. Catalysis with colloidal ruthenium nanoparticles
Farajzadeh et al. Anchoring Pd-nanoparticles on dithiocarbamate-functionalized SBA-15 for hydrogen generation from formic acid
Liu et al. Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal–organic frameworks
Yao et al. Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane
Gao et al. Monodisperse PtCu alloy nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane
KR101625987B1 (ko) 다공성 재료 갇힘 기반의 피셔-트롭쉬 합성 코발트 나노 결정 및 이의 제조 방법
Shao et al. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products
Cho et al. Effects of metal-organic framework-derived iron carbide phases for CO hydrogenation activity to hydrocarbons
Qin et al. Bifunctional catalysts with core–shell distributed ZrO2 and Co nanoparticles derived from MOF-on-MOF heterostructures for economical one-pot tandem CO2 fixation
Fu et al. Recent advances in metal–organic framework based heterogeneous catalysts for furfural hydrogenation reactions
Huang et al. The “on–off” switch for on-demand H2 evolution from hydrous hydrazine over Ni8Pt1/C nano-catalyst
Wu et al. Schiff base conjugated carbon nitride-supported PdCoNi nanoparticles for enhanced formic acid dehydrogenation
Gautam et al. Selective hydrogenation of CO 2 to formic acid over alumina-supported Ru nanoparticles with multifunctional ionic liquid
Gahtori et al. Highly Efficient ZIF-67-Derived PtCo Alloy–CN Interface for Low-Temperature Aqueous-Phase Fischer–Tropsch Synthesis
Qin et al. Hydrogel-based catalysts for hydrogen generation by the hydrolysis of B–H compounds under external physical fields
Zhao et al. Construction of a sandwich-like UiO-66-NH2@ Pt@ mSiO2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde
Zheng et al. Chitosan derived efficient and stable Pd nano-catalyst for high efficiency hydrogenation
Miao et al. Catalytic formic acid dehydrogenation via hexagonal-boron nitride supported palladium
Srivastava CO 2 Hydrogenation over Ru-NPs Supported Amine-Functionalized SBA-15 Catalyst: Structure–Reactivity Relationship Study
CN103721718B (zh) 一种用于费-托合成制取高级烃类的催化剂及其制备方法
Hao et al. Selective Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Over Popcorn-Like Nitrogen-Doped Carbon-Confined CuCo Bimetallic Catalyst
Wang et al. Platinum nanoparticles uniformly dispersed on covalent organic framework supports for selective synthesis of secondary amines
CN101385974A (zh) 一种进行低温费托合成反应的方法及其专用催化剂体系
Yang et al. Highly Efficient Dehydrogenation of Ammonia Borane over Reduced Graphene Oxide‐Supported Pd@ NiP Nanoparticles at Room Temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: ZHONGKE SYNTHETIC OIL TECHNOLOGY CO., LTD., DISTR

Free format text: FORMER OWNER: PEKING UNIVERSITY

Effective date: 20080523

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080523

Address after: 4, A and B District, 2 Cyberport, South Central Cyberport, hi tech Zone, Shanxi, Taiyuan: 030000

Applicant after: Zhongke Synthetic Oil Technology Co., Ltd.

Address before: No. 5, the Summer Palace Road, Beijing, Peking University, Haidian District 100871, China

Applicant before: Peking University

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: 101407 Beijing city Huairou District Yanqi Economic Development Zone C District No. 1 south two Street Park

Patentee after: Zhongke Synthetic Oil Technology Co., Ltd.

Address before: 030000, Shanxi, Taiyuan hi tech Zone, South Central Cyberport 2, port 4, A, B District

Patentee before: Zhongke Synthetic Oil Technology Co., Ltd.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 101407 No.1, south 2nd Yueyuan street, C District, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Zhongke synthetic oil Technology Co.,Ltd.

Address before: 101407 No.1, south 2nd Yueyuan street, C District, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee before: SYNFUELS CHINA TECHNOLOGY Co.,Ltd.