WO2008125041A1 - Procédé et dispositif pour commander une inversion principal-sauvegarde - Google Patents

Procédé et dispositif pour commander une inversion principal-sauvegarde Download PDF

Info

Publication number
WO2008125041A1
WO2008125041A1 PCT/CN2008/070520 CN2008070520W WO2008125041A1 WO 2008125041 A1 WO2008125041 A1 WO 2008125041A1 CN 2008070520 W CN2008070520 W CN 2008070520W WO 2008125041 A1 WO2008125041 A1 WO 2008125041A1
Authority
WO
WIPO (PCT)
Prior art keywords
service data
primary
backup
standby
aligned
Prior art date
Application number
PCT/CN2008/070520
Other languages
English (en)
French (fr)
Inventor
Wei Liu
Sisi Ou
Zhangwei Lei
Xiaotie Chen
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP08715256A priority Critical patent/EP2139160A4/en
Publication of WO2008125041A1 publication Critical patent/WO2008125041A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for controlling active/standby switching. Background technique
  • the active/standby switching technology is widely used in many communication devices, such as program-controlled switches, Ethernet switches, routers, etc., as well as in the process of conducting business and control message communication between various internal nodes of the control system to ensure communication. Reliability.
  • the primary and backup boards respectively send the same input data to the master.
  • the standby switching control device buffers the input service from the frame header position, and the system clock is simultaneously read at a fixed time.
  • the service data output by the two buffers is completely the same, and the two-way service can be realized at any position. Switch between.
  • the active/standby switching process uses a unified system frame header and system clock in the synchronous digital communication system, and the system frame header can be fixed at a certain time to simultaneously read the two-way buffer. Due to the existence of the system clock, the clock There is no need to switch, which reduces the difficulty of implementing lossless switching.
  • an asynchronous digital communication system such as an optical transport network (OTN)
  • OTN optical transport network
  • Embodiments of the present invention provide a method and apparatus for controlling active/standby switching, which reduces the difficulty of implementing active/standby switching in an asynchronous digital communication system, and implements lossless switching of primary and backup service data of an asynchronous digital communication system.
  • the embodiment of the invention provides a control method for active/standby switching, the method comprising:
  • the embodiment of the present invention further provides a control device for the active/standby switchover, where the device includes: a data frame processing unit, configured to respectively output the data indicating the same service master and backup service according to the output manner of the preset indication signal An indication signal of a frame alignment position;
  • the main cache processing unit is configured to buffer the main service data frame and the corresponding indication signal, and report the aligned position when writing and reading the main service data of the aligned position indicated by the indication signal Information
  • the backup cache processing unit is configured to buffer the standby service data frame and the corresponding indication signal, and report the information of the aligned position when the standby service data of the aligned position indicated by the indication signal is written and read;
  • a switching control unit configured to switch the primary and backup service data according to the aligned position of the primary and backup service data indicated by the aligned location information.
  • the primary and secondary service data have an indication signal indicating the alignment position, so the asynchronous communication system can report the information of the aligned position according to the indication of the indication signal when the primary and secondary service data is cached, so that the primary and the primary information can be determined.
  • the alignment position of the standby data reduces the difficulty of the main and standby switching of the asynchronous communication system, and realizes the lossless switching of the active and standby services.
  • FIG. 1 is a flowchart of an active/standby switching method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a correspondence relationship between an indication signal and a data frame in the embodiment of the present invention
  • FIG. 3 is a flowchart of controlling data switching between primary and backup services in an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an active/standby switching control device according to an embodiment of the present invention.
  • FIG. 5 is another schematic structural diagram of an active/standby switching control device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an active/standby switching control apparatus in a relay mode according to an embodiment of the present invention
  • FIG. 7 is a switching phase-locked clock source circuit according to an embodiment of the present invention
  • FIG. 8 is a timing diagram of a switching phase locked clock source circuit in accordance with an embodiment of the present invention.
  • FIG. 1 the figure is a schematic diagram of a first embodiment of the present invention, showing a main flow of an active/standby switching method, which mainly includes:
  • Step sl2 outputting an indication signal indicating the alignment position of the data frame of the same service master and the standby service according to the output mode of the preset indication signal;
  • Step sl3 respectively, buffering the primary and secondary service data frames and corresponding indication signals, and reporting the information of the aligned positions when buffering the primary and secondary service data in the aligned position indicated by the indication signal;
  • Step sl4 controlling switching of the primary and backup service data according to the information of the aligned position.
  • the embodiment of the present invention introduces an indication signal indicating the alignment position of the primary and secondary service data frames, and the structure of the indication signal is basically the same as the frame structure, and the difference is that the code is represented by "0" and "1" code.
  • the validity of each frame bit for example, when the position of the frame header is set to the aligned position, the position of the indication signal relative to the frame header can be set to "1", and the other positions are set to "0", and vice versa, as shown in the figure. 2, the figure takes the position of the frame header as an example, and the corresponding relationship between the indication signal and the data frame is described.
  • the embodiment of the present invention is not limited to the location, where Frame represents a complete frame, and Ind represents an indication.
  • the alignment of the signal indication shows that the indication signal opposite to Ind is high and the other positions are low.
  • the output mode of the indication signal in the embodiment of the present invention is related to the transmission delay in the network planning. If the path delay of the standby service data is compared with the path delay of the primary service data, the time difference is less than the transmission time of the half frame. , an indication signal may be output for each data frame; if the path delay of the alternate service data is greater than the path delay of the primary service data, and the time difference is greater than the time of the half frame data transmission, one of the multiple data frames may be output. Indication signal.
  • MFAS OTN Multi Frame Alignment Signal
  • the multiframe indication byte of the MFAS is 0-255 cycles. If the path delay of the alternate service data is less than the path delay of the primary service data, and the time difference is less than the transmission time of the field, an indication may be output for each data frame. Signal; if the path delay of the alternate service data is compared with the path delay of the primary service data, the time difference is greater than the transmission time of the field, but does not exceed the transmission time of 256/2 data frames, according to the specific delay And the number of multiframe bytes is selected to output an indication signal every N frames, for example, When the path delay of the service data is longer than the path delay of the primary service data, the time difference is greater than the transmission time of one half of the data frame and is slightly less than the transmission time of one data frame, then the value of N is 2, that is, every 2 The data frame outputs an indication signal; if the path delay of the alternate service data is longer than the path delay of the primary service data, and the time difference exceeds the transmission time of 256/2 bytes, the reserved bytes of
  • the indication signal of the primary service data is the same as the indication signal of the standby service data, that is, if the value of the indication signal of the primary service data at the position corresponding to the frame header is "1", then the indication of the standby service data The value of the signal at the position corresponding to the frame header of the alternate service data frame is also "1".
  • the frame alignment position that is, the effective position indicated by the indication signal
  • the frame alignment position may be set according to actual needs, for example, at the frame header or the multiframe position, or at any position in the frame structure.
  • FIG. 3 the figure is a schematic diagram of a second embodiment of the present invention, and shows a specific implementation process of the step sl4 in the first embodiment.
  • the process mainly includes:
  • Step s24 Obtaining the amount of the primary service data that is currently cached.
  • the primary service cache unit may report the amount of the primary service data in real time;
  • Step s25 determining whether the acquired amount of the primary service data is greater than or equal to a preset threshold, and if so, executing step s26; otherwise, performing step s30;
  • step s26 the main service data is read, and when the current service data to be read is in the aligned position indicated by the indication signal, it is determined whether the information of the aligned position reported by the backup buffer unit is received, and if so, Step s27 is performed, otherwise, step s31 is performed;
  • Step s27 determining that the primary and backup service data are currently aligned
  • Step s28 switching the determined currently aligned primary and backup services according to the external switching command; Step s29, ending;
  • Step s30 continue to cache the main service data, and then return to step s24;
  • Step s31 After the preset threshold is increased, the main service data is continuously cached, and then the process returns to step s24.
  • step s28 is determined according to the external switching command switching.
  • the associated clock of the primary and secondary service data is switched, and after the associated clock of the primary and backup service data is switched, the data accompanying the primary and backup services is switched.
  • the generated gap adjusts the frequency division setting of the clock, thereby avoiding glitch when switching the two-way service data with the path clock in the relay mode.
  • FIG. 4 is a schematic diagram of a third embodiment of the present invention, showing the structure of an active/standby switching control apparatus, which mainly includes: a data frame processing unit 11, a primary cache processing unit 12, a backup cache processing unit 13, and a switching Control unit 14.
  • the data frame processing unit 11 firstly frames the primary and secondary service data of the same service that arrives through different paths, and outputs the primary and backup services according to the data frames of the primary and backup service data.
  • An indication signal of the aligned position of the data frame and then, by the primary cache processing unit 12, the primary service data frame and the corresponding indication signal are buffered, and when the standby service data of the aligned position indicated by the indication signal is written and read, The information of the aligned position is reported, and the backup cache processing unit 13 buffers the alternate service data frame and the corresponding indication signal, and reports the information of the aligned position when the standby service data of the aligned position indicated by the indication signal is written and read. Finally, the switching control unit 14 controls the switching of the primary and backup service data based on the reported information of the aligned position.
  • the embodiment of the present invention introduces an indication signal indicating the alignment position of the primary and secondary service data frames
  • the structure of the indication signal is basically the same as the frame structure, and the difference is that the code is represented by "0" and "1" code.
  • the validity of each frame bit for example, when the position of the frame header is set to the aligned position, the indication signal can be set to "1" at the position opposite to the frame header, and the other position is set to "0", and vice versa. .
  • the indication signal of the primary service data is the same as the indication signal of the standby service data. For example, if the indication signal of the primary service data is "1" at the position corresponding to the frame header, then the standby service data is The value of the indication signal at the position corresponding to the frame header of the alternate service data frame is also "1", and vice versa.
  • the frame alignment position that is, the effective position indicated by the indication signal
  • the frame alignment position may be set according to actual needs, for example, at the frame header or the multiframe position, or at any position of the frame structure.
  • the embodiment of the present invention is further described by taking a frame header position as an alignment position.
  • the primary cache processing unit 12 and the backup cache processing unit 13 use a first in first out (FIFO) cache processing unit.
  • the primary cache processing unit 12 is therefore referred to as the primary FIFO, and accordingly, the secondary cache processing unit 13 is referred to as the standby FIFO.
  • FIG. 5 which is a schematic diagram of a fourth embodiment of the present invention, showing a specific implementation of the active/standby switching control apparatus, first describing the primary FIFO 12 and the standby FIFO 13, the primary FIFO 12 and the standby FIFO 13
  • the read enable is controlled by the switching control unit 14, i.e., when the switching is not performed, the switching control unit 14 always reads data from the primary FIFO 12, and the standby FIF 013 read enable is turned off by the switching control unit 14.
  • the main FIF 012 has the same function as the standby FIF 013.
  • the spare FIFO 13 mainly includes: a storage unit 131, an information reporting unit 132, a full flag output unit 133, and a reset unit 134.
  • the backup service data frame from the data frame processing unit 11 and the corresponding indication signal are stored by the storage unit 131, and the information reporting unit 132 stores the standby service data in the storage unit 131 at the aligned position indicated by the indication signal.
  • the aligned position information of the standby service data is reported to the switching control unit 14;
  • the switching control unit 14 When the switching control unit 14 reads data from the main FIFO 12, the read enable of the standby FIF 013 is turned off by the switching control unit 14, and when the standby service data stored in the standby FIF 013 reaches the preset full flag threshold, it is generally said When the buffer is full, the full flag output unit 133 outputs a full flag, and then the reset unit 134 clears the stored standby service data, so that the read/write data pointer is reset, that is, the read/write pointer is returned to 0, and the standby FIFO 13 is turned into an empty state. Cache data again until the next frame arrives;
  • the switching control unit 14 of the embodiment of the present invention specifically includes: a determining unit 141, an alignment control unit 142, and a switching execution unit 143;
  • the determining unit 141 determines whether the amount of the primary service data currently buffered by the primary FIF 012 is greater than or equal to a preset threshold, and if so, instructs the alignment control unit 142 to perform processing; otherwise, the primary FIF 012 is still closed. Read enable
  • the alignment control unit 142 first turns on the read enable of the main FIF 012, and reads the cached main service data from the main FIFO 12, and reads if the frame header position is the alignment position indicated by the indication signal. Before the frame header of the primary service data, it is determined whether the aligned location information of the standby service data is received. If yes, it is determined that the primary and secondary service data are currently aligned. If the frame header position is the aligned position, then the frame of the standby service data frame is received.
  • the switching execution unit 143 switches the determined currently aligned primary and backup service data according to the external switching command, that is, the read enable of the primary FIF 012 is turned off, and the read enable of the standby FIF013 is enabled. From the alternate FIFO 13 Read the cached alternate service data, otherwise increase the preset threshold;
  • the determining unit 141 determines that the main service data buffered in the main FIF 012 is greater than or equal to the preset threshold, the read enable of the main FIF 012 is enabled, and the main cache of the cache is read from the main FIFO 12.
  • the service data that is, the watermark value of the main FIFO 12 is greater than or equal to the low water line set by the switching control unit 14, and the data is read, so that the main FIFO 12 is always in the vicinity of a set low water line, and the reading clock (Clk) — switch ) can be derived from the working clock of the functional unit of the latter stage, or can be an externally provided clock.
  • the latter functional unit can be a mapping function unit or a demapping function unit, etc., and selects the reading according to the Clk_switch rate.
  • the general principle is that the data read rate is greater than the write rate, that is, Clk_switch frequency X read data bit width (FIFO_dout) > write clock (Clk_in) frequency X write data bit width (FIFO_din).
  • the buffer amount of the primary FIFO 12 and the backup FIFO 13 in the embodiment of the present invention may be set according to the service delay in the actual application, but if the resource occupied by the design is not sensitive, the primary FIFO 12 may be used.
  • the buffer amount of the standby FIFO 13 is set to be greater than 2 times the maximum service delay, so that when the primary FIFO 12 reaches half of the buffer amount, the header data of the spare FIFO 13 must be stored at its 0 address, so that the FIFO can be omitted. Part of the circuit for waterline adjustment.
  • the embodiment of the present invention provides a fifth embodiment. Referring to FIG. 6, the embodiment is applied to the relay mode. The difference between the embodiment and the fourth embodiment is that the switching control unit 14 further includes the switching control unit 14 in this embodiment. :
  • the clock control unit 144 is configured to generate a phase-locked clock source according to the associated clock of the current primary standby service data, and output the phase-locked clock source to the phase-locked loop module 15, and the phase-locked loop module 15 generates the phase-locked loop source according to the phase-locked clock source.
  • the relay clock is output to the relay buffer module 16, and when the external switching command is received, the associated clock of the primary standby service data is switched, and after the associated clock of the primary standby service data is switched, according to the primary standby service data
  • the clock gap generated by the associated clock adjusts the frequency division setting of the clock. The following describes the frequency division setting process of the adjustment clock in combination with the switching phase-locked clock source circuit.
  • the switch-locked clock source circuit in the clock control unit 144 can be a circuit as shown in FIG. 7, wherein Ctrl represents a switching control signal, C1 represents a path-corresponding clock of the main service data, and C2 represents an alternate service data.
  • the associated clock, C' indicates the associated clock after switching, qll/ql2/q21/q22 indicates the register output in the circuit.
  • the specific working process of the circuit is prior art, and is not performed here. Narration.
  • the timing of this circuit is shown in Figure 8.
  • H is not an ideal clock source for both clocks. There is no jitter drift. There is only a fixed phase difference (dP). It can be analyzed that if C1 switches to C2, the gap is 1+dP.
  • the gap from C 2 to C 1 is 2-dP, and the sum of the total gaps of the two switchings is 3 clock cycles. Therefore, considering the clock gap in the switching, the frequency division setting of the clock is modified, every two.
  • the secondary switching compensates for 3 clock gaps, which does not cause the water line fluctuation of the relay buffer module 16 of the subsequent stage.
  • the watermark of the cache module 16 may still fluctuate. Therefore, according to the waterline condition of the relay buffer module 16, the adjustment strength is increased or decreased, and the frequency division setting can be increased or decreased to avoid the relay cache.
  • the module is abnormal.
  • the output clock is processed by the clock control unit 144 to reduce the impact of the clock jitter on the subsequent functional unit during the clock switching, for example, the impact on the relay buffer module 16.
  • the data frame processing unit 11 respectively frames the primary and secondary service data of the same service that arrives through different paths, and according to the The data frames of the primary and secondary service data respectively output indication signals indicating the aligned positions of the primary and secondary service data frames.
  • the primary and secondary service data may also be processed and output through different data frame processing units, that is, corresponding to the primary and secondary services, respectively, having respective data frame processing units.
  • the primary and secondary service data are respectively written into the cache by the respective associated clocks, and the read clock and the switching control of the primary and backup services are read from the cache during the primary and backup switching.
  • the unit uses the same working clock, so that the active and standby switching of the asynchronous system can be realized.
  • the active/standby service data can be non-destructively switched in the case where the active and standby services are normal in the asynchronous system; in the relay mode, the output clock is processed correspondingly, thereby reducing the cause of the handover process.
  • the impact of the clock jitter on the rear-level functional unit; in addition, the embodiment of the present invention can also enable the OTN system with 1+1 hot backup to select the service sent from the active/standby cross-board, which facilitates the replacement and maintenance of the cross-board. It can also be applied in the case of line 1+1 protection for important services.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

主备倒换的控制方法以及装置
本申请要求于 2007 年 4 月 13 日提交中国专利局、 申请号为 200710027536.2、 发明名称为"主备倒换的控制方法以及装置,,的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通讯领域, 尤其涉及一种主备倒换的控制方法以及装置。 背景技术
在通讯系统中, 主备倒换技术被广泛应用于许多通讯设备, 例如程控交换 机, 以太网交换机, 路由器等, 以及各种控制系统内部节点之间进行业务和控 制消息通讯的过程中, 以保证通讯的可靠性。
目前, 在同步数字体系 (Synchronous Digital Hierachy, SDH) /同步光纤网 ( Synchronous Optical Networksonet, SONET )等同步数字通讯系统中, 在进 行主备倒换时, 主、备板分别发送相同的输入数据至主备倒换控制装置, 该主 备倒换控制装置对输入业务从帧头位置进行緩存,由系统时钟在固定时刻同时 读出, 两緩存器输出的业务数据完全相同, 可以在任何位置实现两路业务之间 的切换。
上述同步数字通讯系统的主备倒换过程,釆用同步数字通讯系统中统一的 系统帧头和系统时钟, 系统帧头可以固定在某一时刻同时读出两路緩存, 由于 系统时钟的存在, 时钟不需要进行切换, 降低了无损倒换的实现难度。 但是在 异步数字通讯系统中, 例如光传送网 ( optical transport network, OTN ), 如果 釆用类似 SDH等同步系统的主备倒换技术, 由于异步通讯系统不存在系统时 钟和系统帧头, 则增加了主备倒换的难度。
发明内容
本发明的实施例提供一种主备倒换的控制方法以及装置,降低了异步数字 通讯系统中主备倒换实现的难度, 实现了异步数字通讯系统主、备用业务数据 的无损切换。
本发明实施例提出了一种主备倒换的控制方法, 该方法包括:
按照预设的指示信号的输出方式, 分别输出指示同一业务主、备用业务数 据帧对齐位置的指示信号; 分别緩存所述主、备用业务数据帧以及相应的指示信号, 并在緩存到所述 指示信号指示的对齐位置的主、 备用业务数据时, 上报所述对齐位置的信息; 根据所述对齐位置信息指示的主、备用业务数据的对齐位置,倒换所述主、 备用业务数据。
相应地, 本发明实施例还提供了一种主备倒换的控制装置, 该装置包括: 数据帧处理单元, 用于按照预设的指示信号的输出方式, 分别输出指示同 一业务主、 备用业务数据帧对齐位置的指示信号;
主用緩存处理单元, 用于緩存所述主用业务数据帧以及相应的指示信号, 并在写入、读出所述指示信号指示的对齐位置的主用业务数据时, 上报所述对 齐位置的信息;
备用緩存处理单元, 用于緩存所述备用业务数据帧以及相应的指示信号, 并在写入、读出所述指示信号指示的对齐位置的备用业务数据时, 上报所述对 齐位置的信息;
倒换控制单元, 用于根据所述对齐位置信息指示的主、备用业务数据的对 齐位置, 倒换所述主、 备用业务数据。
由于本发明实施例主、备用业务数据具有指示对齐位置的指示信号, 因此 异步通讯系统可以在緩存主、备用业务数据时根据所述指示信号的指示, 上报 对齐位置的信息, 从而能够确定主、 备用数据的对齐位置, 近而降低了异步通 讯系统的主、 备倒换难度, 实现了主备业务的无损倒换。
附图说明
图 1是本发明实施例的主备倒换方法的流程图;
图 2是本发明实施例中指示信号与数据帧的对应关系示意图;
图 3是本发明实施例中控制主、 备用业务数据倒换的流程图;
图 4是本发明实施例的主备倒换控制装置的一种结构示意图;
图 5是本发明实施例的主备倒换控制装置的另一种结构示意图;
图 6是本发明实施例的中继模式下主备倒换控制装置的结构示意图; 图 7是本发明实施例的切换锁相时钟源电路;
图 8是本发明实施例的切换锁相时钟源电路的时序图。
具体实施方式 下面结合附图对本发明的优选实施例进行详细说明。
参考图 1 , 该图为本发明的第一实施例示意图, 示出了主备倒换方法的主 要流程, 主要包括:
步骤 sl2, 按照预设的指示信号的输出方式, 分别输出指示同一业务主、 备用业务数据帧对齐位置的指示信号;
步骤 sl3 , 分别緩存所述主、 备用业务数据帧以及相应的指示信号, 并在 緩存到所述指示信号指示的对齐位置的主、备用业务数据时, 上报所述对齐位 置的信息;
步骤 sl4,根据所述对齐位置的信息,控制所述主、备用业务数据的倒换。 需要说明的是, 本发明实施例引入了指示主、备用业务数据帧的对齐位置 的指示信号, 该指示信号的结构与帧结构基本相同, 不同的是釆用 "0"、 "1 "代 码表征各帧位的有效性, 例如当设置帧头的位置为对齐位置时, 则指示信号与 帧头相对的位置处可设置为 "1",其它位置设置为" 0",反之亦然,如图 2所示, 该图以帧头位置为对齐位置为例, 对指示信号与数据帧的对应关系进行说明, 但本发明实施例不局限于该位置, 其中 Frame表示一完整的帧, Ind表示指示 信号指示的对齐位置, 可以看到与 Ind相对的指示信号为高电平, 其它的位置 为低电平。
本发明实施例中所述的指示信号的输出方式与网络规划中的传输延时有 关, 若备用业务数据的路径延时与主用业务数据的路径延时相比, 时间差小于 半帧的传输时间, 则可对每一个数据帧输出一个指示信号;若备用业务数据的 路径延时与主用业务数据的路径延时相比, 时间差大于半帧数据传输的时间, 则可多个数据帧输出一个指示信号。
下面以 OTN的复帧定位信号 ( Multi Frame Alignment Signal, MFAS )为 例进行说明, 但并不局限于此。
MFAS的复帧指示字节为 0-255循环,若备用业务数据的路径延时与主用 业务数据的路径延时相比, 时间差小于半帧的传输时间, 则可每一个数据帧 输出一个指示信号; 若备用业务数据的路径延时与主用业务数据的路径延时 相比, 时间差大于半帧的传输时间, 但不超过 256/2个数据帧的传输时间, 则可根据具体的延时和复帧字节数选择每 N个帧输出一个指示信号,例如备 用业务数据的路径延时与主用业务数据的路径延时相比, 时间差大于半个数 据帧的传输时间且略小于 1个数据帧的传输时间, 则 N的取值为 2 , 即每 2 个数据帧输出一个指示信号; 若备用业务数据的路径延时与主用业务数据的 路径延时相比, 时间差超过 256/2个字节的传输时间, 则可利用帧的保留字 节来扩大延时的范围, 例如, 超过 256/2个字节的传输时间, 则可利用帧的 保留字节扩展 8bit, 那么最大可容忍 65536/2个数据帧的延时, 所以当延时 256/2个数据帧的传输时间,但略小于 258/2个数据帧的传输时间时, N的取 值为 258 , 即每 258个数据帧输出一个指示信号。
另外, 主用业务数据的指示信号与备用业务数据的指示信号是相同的, 即 如果主用业务数据的指示信号在与帧头对应的位置处的值为" 1", 那么备用业 务数据的指示信号在与备用业务数据帧帧头对应的位置处的值也为 "1"。
另外, 帧对齐位置, 即指示信号指示的有效位置, 可根据实际需要进行设 定, 例如在帧头、 复帧位置都可以, 也可以在帧结构中的任意位置。
参考图 3 , 该图为本发明的第二实施例示意图, 示出了第一实施例中的步 骤 sl4的具体实现流程, 该流程主要包括:
步骤 s24 , 获取当前緩存的主用业务数据量, 实际应用中, 可以由主用緩 存单元实时上报主用业务数据量;
步骤 s25 , 判断所述获取的主用业务数据量是否大于等于预设的阔值, 若 是, 则执行步骤 s26 , 否则, 执行步骤 s30;
步骤 s26 , 开始读取主用业务数据, 并在当前待读取的主用业务数据处于 所述指示信号指示的对齐位置时,判断是否接收到备用緩存单元上报的对齐位 置的信息, 若是, 则执行步骤 s27 , 否则, 执行步骤 s31 ;
步骤 s27 , 确定主、 备用业务数据当前已对齐;
步骤 s28 ,根据外部倒换命令,切换所述确定的当前已对齐的主、备用业务; 步骤 s29 , 结束;
步骤 s30 , 继续緩存主用业务数据, 然后返回步骤 s24;
步骤 s31 , 增大所述预设的阔值后继续緩存主用业务数据, 然后返回步骤 s24。
需要说明的是, 在中继模式下, 步骤 s28在根据外部倒换命令切换确定的 当前已对齐的主、备用业务数据的同时,要切换主、备用业务数据的随路时钟, 并在切换主、备用业务数据的随路时钟之后, 根据切换主、备用业务的数据随 路时钟所产生的缺口,调整时钟的分频设置,从而避免了在中继模式下对两路 业务数据随路时钟进行切换时产生毛刺。
参考图 4, 该图为本发明的第三实施例示意图, 示出了主备倒换控制装置 的结构, 主要包括: 数据帧处理单元 11、 主用緩存处理单元 12、 备用緩存处 理单元 13以及倒换控制单元 14。
具体实现时, 首先由数据帧处理单元 11分别对经不同路径延时到达的同 一业务的主、 备用业务数据进行定帧, 并根据主、 备用业务数据的数据帧, 分 别输出指示主、备用业务数据帧的对齐位置的指示信号, 然后, 由主用緩存处 理单元 12緩存主用业务数据帧以及相应的指示信号, 并在写入、 读出该指示 信号指示的对齐位置的备用业务数据时, 上报该对齐位置的信息,备用緩存处 理单元 13緩存备用业务数据帧以及相应的指示信号, 并在写入、 读出该指示 信号指示的对齐位置的备用业务数据时, 上报该对齐位置的信息, 最后, 由倒 换控制单元 14根据上报的对齐位置的信息, 控制主、 备用业务数据的倒换。
需要说明的是, 本发明实施例引入了指示主、备用业务数据帧的对齐位置 的指示信号, 该指示信号的结构与帧结构基本相同, 不同的是釆用 "0"、 "1 "代 码表征各帧位的有效性, 例如当设置帧头的位置为对齐位置时, 则所述的指示 信号与帧头相对的位置处可设置为 "1", 其它位置设置为" 0", 反之亦然。
另外, 主用业务数据的指示信号与备用业务数据的指示信号是相同的, 例 如, 若主用业务数据的指示信号在与帧头对应的位置处的值为 "1", 那么备用 业务数据的指示信号在与备用业务数据帧帧头对应的位置处的值也为 "1", 反 之亦然。
另外, 帧对齐位置, 即指示信号指示的有效位置, 可根据实际需要进行设 定, 例如在帧头、 复帧位置都可以, 也可以在帧结构的任意位置。 下面以帧头 位置为对齐位置为例, 对本发明实施例作进一步说明, 其中, 主用緩存处理单 元 12以及备用緩存处理单元 13釆用先入先出 ( First In First Out, FIFO )緩存 处理单元, 因此将主用緩存处理单元 12称为主用 FIFO, 相应地, 备用緩存处 理单元 13称为备用 FIFO。 参考图 5, 该图为本发明的第四实施例的示意图, 示出了主备倒换控制装 置的具体实现,首先对主用 FIFO 12以及备用 FIFO 13进行说明,主用 FIFO 12 与备用 FIFO 13的读使能由倒换控制单元 14控制, 即在未进行倒换时, 倒换 控制单元 14始终从主用 FIFO 12中读取数据,而备用 FIF013读使能被倒换控 制单元 14关闭。
另外, 主用 FIF012与备用 FIF013的功能相同, 下面以备用 FIF013为例 进行说明, 备用 FIFO 13主要包括: 存储单元 131 , 信息上报单元 132、 满标 志输出单元 133以及复位单元 134。
具体实现时, 首先, 由存储单元 131存储来自数据帧处理单元 11的备用 业务数据帧以及相应的指示信号,并由信息上报单元 132在存储单元 131存储 到指示信号指示的对齐位置的备用业务数据时,向倒换控制 单元 14上报备用 业务数据的对齐位置信息;
当倒换控制单元 14从主用 FIFO 12读取数据时,备用 FIF013的读使能被 倒换控制单元 14关闭, 在备用 FIF013存储的备用业务数据达到预设的满标 志阔值时, 即通常所说的緩存满时, 由满标志输出单元 133输出满标志, 然后 由复位单元 134清空已存储的备用业务数据,使读写数据指针复位, 即读写指 针归 0, 备用 FIFO 13转为空状态, 直到下一帧到来时再次緩存数据;
其次, 本发明实施例的倒换控制单元 14具体包括: 判断单元 141、 对齐 控制单元 142以及倒换执行单元 143;
具体实现时, 首先, 由判断单元 141判断主用 FIF012当前緩存的主用业 务数据量是否大于等于预设的阔值,若是,则指示对齐控制单元 142进行处理, 否则, 仍然关闭主用 FIF012的读使能;
对齐控制单元 142在进行处理时, 首先开启主用 FIF012的读使能, 从主 用 FIFO 12中读取緩存的主用业务数据,若帧头位置为指示信号指示的对齐位 置, 则在读取主用业务数据的帧头之前, 判断是否接收到备用业务数据的对齐 位置信息, 若是, 则确定主、 备用业务数据当前已对齐, 如果帧头位置为对齐 位置, 则当备用业务数据帧的帧头处于备用 FIF013的 0地址时, 指示倒换执 行单元 143根据外部倒换命令, 切换确定的当前已对齐的主、 备用业务数据, 即关闭主用 FIF012的读使能, 开启备用 FIF013的读使能, 从备用 FIFO 13 中读取緩存的备用业务数据, 否则, 增大预设的阔值;
需要说明的是, 当判断单元 141判断主用 FIF012中緩存的主用业务数据 大于等于预设的阔值时, 开启主用 FIF012的读使能, 从主用 FIFO 12中读取 緩存的主用业务数据, 即主用 FIFO 12的水线值大于等于倒换控制单元 14设 定的低水线则读取数据, 这样主用 FIFO 12始终处于一个设定的低水线附近, 读取时钟(Clk— switch ) 可以来源于后级功能单元的工作时钟, 也可以是外部 提供的时钟 ,所述的后级功能单元 ,可为映射功能单元或者解映射功能单元等 , 在根据 Clk— switch速率选择读数据位宽时,总的原则是数据的读出速率要大于 写入速率, 即 Clk_switch频率 X读数据位宽 (FIFO_dout ) >写时钟( Clk_in ) 频率 X写数据位宽 (FIFO— din )。
另外,本发明实施例中的主用 FIFO 12以及备用 FIFO 13的緩存量可以根 据实际应用中的业务延时进行设定,但如果对设计占用的资源不敏感的话, 则 可以将主用 FIFO 12以及备用 FIFO 13的緩存量设置为大于 2倍的业务最大时 延, 这样当主用 FIFO 12达到一半緩存量时, 备用 FIFO 13的帧头数据必然已 经存储在其 0地址处, 这样可省略掉 FIFO水线调整的部分电路。
另外, 中继模式下在进行主备业务数据的倒换的同时,要切换时钟给锁相 环模块, 以避免产生毛刺, 造成中继 FIFO异常的现象。 为此, 本发明实施例 提供了第五实施例, 参考图 6 , 该实施例应用于中继模式下, 本实施例与第四 实施例不同的是, 本实施例中倒换控制单元 14还包括:
时钟控制单元 144, 用于根据当前主备用业务数据的随路时钟产生锁相时 钟源, 并将该锁相时钟源输出至锁相环模块 15 , 锁相环模块 15根据该锁相时 钟源产生中继时钟, 输出给中继緩存模块 16, 以及在接收到外部倒换命令时, 倒换主备用业务数据的随路时钟, 并在倒换主备用业务数据的随路时钟后,根 据主备用业务数据的随路时钟所产生的时钟缺口, 调整时钟的分频设置, 下面 结合切换锁相时钟源电路, 对调整时钟的分频设置过程进行说明。
在实际应用中,时钟控制单元 144中切换锁相时钟源电路可为如图 7所示 的电路, 其中, Ctrl表示倒换控制信号, C1 表示主用业务数据的随路时钟, C2表示备用业务数据的随路时钟, C'表示倒换后的随路时钟, qll/ql2/q21/q22 均表示电路中的寄存器输出, 该电路的具体工作过程为现有技术,在此不进行 赘述。 该电路的时序如图 8所示, H没两时钟均为理想的时钟源, 不存在抖动 漂移,只存在固定相差(dP ),可以分析得出如果 C1切换到 C2的缺口为 1+dP; 则从 C 2再倒换回 C 1的缺口为 2-dP,则两次倒换总的缺口之和为 3个时钟周 期, 因此在倒换时考虑根据时钟缺口, 修改时钟的分频设置, 每两次倒换补偿 3个时钟缺口, 这样不会带来后级的中继緩存模块 16的水线波动, 但由于两 路时钟相位关系在业务传输过程中是不断变化的,使得无法补偿完全, 中继緩 存模块 16的水线仍有可能会产生波动,因此根据中继緩存模块 16的水线情况 加大或者减小调整力度, 即可通过增大或者减小分频设置实现,避免了中继緩 存模块异常。
本实施例中通过时钟控制单元 144对输出时钟作相应的处理,减小了时钟 切换过程中因时钟的抖动对后级功能单元的冲击, 例如对中继緩存模块 16的 冲击。
需要说明的是,在上述各实施例所示的主备倒换控制装置中,数据帧处理 单元 11分别对经不同路径延时到达的同一业务的主、备用业务数据进行定帧, 并根据所述主、备用业务数据的数据帧, 分别输出指示所述主、备用业务数据 帧的对齐位置的指示信号。在实际应用中,也可以分别通过不同的数据帧处理 单元对主、 备用业务数据进行处理输出, 也就是说, 对应于主、 备用业务, 分 别有各自的数据帧处理单元。
本发明方法及设备的实施例中, 主、备业务数据分别由各自的随路时钟写 入緩存, 而在进行主、 备倒换时, 从緩存中读取主、 备业务的读时钟和倒换控 制单元使用同一工作时钟, 从而可以实现异步系统的主、 备倒换。
综上 ,本发明实施例可在异步系统中主备业务均正常的情况下实现主备业 务数据的无损切换; 中继模式下对输出的时钟进行了相应的处理, 减小了切换 过程中因时钟抖动对后级功能单元的冲击; 另外, 本发明实施例还可使釆用 1+1热备份的 OTN系统实现对主备交叉板发送过来的业务的选收, 便于交叉 板的更换和维护; 也可以应用在重要业务的线路 1+1保护的情况下。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种主备倒换的控制方法, 包括:
按照预设的指示信号的输出方式, 分别输出指示同一业务主、备用业务数 据帧对齐位置的指示信号;
分别緩存所述主、备用业务数据帧以及相应的指示信号, 并在緩存到所述 指示信号指示的对齐位置的主、 备用业务数据时, 上报所述对齐位置信息; 根据所述对齐位置信息指示的主、备用业务数据的对齐位置,倒换所述主、 备用业务数据。
2、 如权利要求 1所述的主备倒换的控制方法, 其特征在于, 还包括: 根据网络规划中的路径延时,预设同一业务主、备用业务数据指示信号的 输出方式。
3、 如权利要求 1所述的主备倒换的控制方法, 其特征在于, 所述根据所 述对齐位置信息指示的主、备用业务数据的对齐位置, 倒换所述主、 备用业务 数据包括:
获取当前緩存的主用业务数据量;
当所述主用业务数据量大于等于预设的阔值, 并且确定主、备用业务数据 当前已对齐时,根据外部倒换命令,切换所述当前已对齐的主、备用业务数据。
4、 如权利要求 3所述的主备倒换的控制方法, 其特征在于, 所述确定主、 备用业务数据当前已对齐的过程包括:
读取主用业务数据;
在当前待读取的主用业务数据处于所述指示信号指示的对齐位置时,判断 是否接收到备用业务数据的对齐位置信息;
若是, 则确定主、 备用业务数据当前已对齐;
否则,增大所述预设的阔值, 直到在当前待读取的主用业务数据处于所述 指示信号指示的对齐位置时, 已接收到备用业务数据的对齐位置信息。
5、 如权利要求 3所述的主备倒换的控制方法, 其特征在于, 还包括: 在中继模式下, 根据外部倒换命令倒换主、备用业务数据的随路时钟, 并 通过调整时钟的分频设置补偿在倒换主、备用业务数据的随路时钟时产生的时 钟缺口。
6、 一种主、 备倒换的控制装置, 其特征在于, 包括:
数据帧处理单元, 用于按照预设的指示信号的输出方式, 分别输出指示同 一业务主、 备用业务数据帧对齐位置的指示信号;
主用緩存处理单元, 用于緩存所述主用业务数据帧以及相应的指示信号, 并在写入、读出所述指示信号指示的对齐位置的主用业务数据时, 上报所述对 齐位置的信息;
备用緩存处理单元, 用于緩存所述备用业务数据帧以及相应的指示信号, 并在写入、读出所述指示信号指示的对齐位置的备用业务数据时, 上报所述对 齐位置的信息;
倒换控制单元, 用于根据所述对齐位置信息指示的主、备用业务数据的对 齐位置, 倒换所述主、 备用业务数据。
7、 如权利要求 6所述的主备倒换的控制装置, 其特征在于, 所述的倒换 控制单元包括:
判断单元 ,用于判断主用緩存单元当前緩存的主用业务数据量是否大于等 于预设的阔值;
对齐控制单元, 用于在所述判断单元判断为是后, 读取主用业务数据, 并 在当前待读取的主用业务数据处于所述指示信号指示的对齐位置时,判断是否 接收到所述备用緩存处理单元上报的对齐位置的信息, 若是, 则确定主、备用 业务数据当前已对齐; 否则, 增大所述预设的阔值;
倒换执行单元, 用于根据外部倒换命令, 在所述对其控制单元确定主、备 用业务数据当前已对齐的情况下,切换所述确定的当前已对齐的主、备用业务 数据。
8、 如权利要求 7所述的主备倒换的控制装置, 其特征在于, 所述倒换控 制单元还包括:
时钟控制单元, 用于在中继模式下,在根据外部倒换命令倒换主备用业务 数据的随路时钟后,通过调整时钟的分频设置补偿在倒换主、备用业务数据的 随路时钟时产生的时钟缺口。
9、 如权利要求 6至 8任一项所述的主备倒换的控制装置, 其特征在于, 所述主用緩存单元、 备用緩存单元分别包括: 存储单元, 用于存储业务数据帧以及相应的指示信号;
信息上报单元,用于在所述存储单元存储到所述指示信号指示的对齐位置 的业务数据时, 上报所述对齐位置的信息。
10、 如权利要求 9所述的主备倒换的控制装置, 其特征在于, 所述主用緩 存单元、 备用緩存单元还分别包括:
满标志输出单元, 用于在存储的业务数据达到预设的满标志阔值时,输出
、/两标志;
复位单元 , 用于在所述满标志输出单元输出满标志时 , 、清 所述已存储的 业务数据, 使读写数据指针复位。
PCT/CN2008/070520 2007-04-13 2008-03-18 Procédé et dispositif pour commander une inversion principal-sauvegarde WO2008125041A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08715256A EP2139160A4 (en) 2007-04-13 2008-03-18 METHOD AND DEVICE FOR CONTROLLING MAIN BACKUP INVERSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100275362A CN101043309B (zh) 2007-04-13 2007-04-13 主备倒换的控制方法以及装置
CN200710027536.2 2007-04-13

Publications (1)

Publication Number Publication Date
WO2008125041A1 true WO2008125041A1 (fr) 2008-10-23

Family

ID=38808548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070520 WO2008125041A1 (fr) 2007-04-13 2008-03-18 Procédé et dispositif pour commander une inversion principal-sauvegarde

Country Status (3)

Country Link
EP (1) EP2139160A4 (zh)
CN (1) CN101043309B (zh)
WO (1) WO2008125041A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277164B (zh) * 2008-05-15 2012-07-11 中兴通讯股份有限公司 一种同步数字体系业务总线无损切换的方法
CN101299647B (zh) * 2008-06-27 2011-05-11 中兴通讯股份有限公司 一种实现sdh业务无损切换的装置和方法
CN101777996B (zh) * 2009-12-29 2013-04-10 中兴通讯股份有限公司 一种实现业务主备切换的装置及方法
CN101814968B (zh) * 2010-03-16 2014-06-11 中兴通讯股份有限公司 实现帧头对齐和复帧归零的方法及装置
CN102271047B (zh) * 2010-06-02 2013-09-25 杭州华三通信技术有限公司 主备倒换方法及主控板、线卡板
JP5736889B2 (ja) * 2011-03-25 2015-06-17 日本電気株式会社 伝送装置、伝送システム、経路選択方法、及び経路選択プログラム
CN106933843B (zh) * 2015-12-29 2020-09-29 阿里巴巴集团控股有限公司 数据库心跳检测方法以及装置
CN105718412B (zh) * 2016-01-14 2018-10-26 深圳市紫光同创电子有限公司 一种通道频差补偿方法、通道控制方法、装置及系统
CN105718413B (zh) * 2016-01-14 2018-08-21 深圳市紫光同创电子有限公司 一种通道对齐方法、装置及系统
JP6783872B2 (ja) 2016-04-08 2020-11-11 華為技術有限公司Huawei Technologies Co.,Ltd. 故障検出方法及びデバイス
CN105763381A (zh) * 2016-04-14 2016-07-13 烽火通信科技股份有限公司 一种主备倒换报文的无损处理方法及系统
WO2021031153A1 (zh) * 2019-08-21 2021-02-25 华为技术有限公司 一种数据处理的设备以及系统
WO2022133938A1 (zh) * 2020-12-24 2022-06-30 华为技术有限公司 一种灵活以太网开销帧处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592134A (zh) * 2003-08-27 2005-03-09 华为技术有限公司 主备时钟的相位对齐方法
CN1689355A (zh) * 2002-08-21 2005-10-26 高通股份有限公司 在广播服务通信系统上传送内容的方法和系统
CN1808925A (zh) * 2005-01-21 2006-07-26 华为技术有限公司 对异步信号进行主备选收无损切换的方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221724A (ja) * 1994-02-07 1995-08-18 Fujitsu Ltd 現用/予備の切替回路
US7167442B2 (en) * 2001-05-22 2007-01-23 Nortel Networks Limited Hitless protection switching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1689355A (zh) * 2002-08-21 2005-10-26 高通股份有限公司 在广播服务通信系统上传送内容的方法和系统
CN1592134A (zh) * 2003-08-27 2005-03-09 华为技术有限公司 主备时钟的相位对齐方法
CN1808925A (zh) * 2005-01-21 2006-07-26 华为技术有限公司 对异步信号进行主备选收无损切换的方法和系统

Also Published As

Publication number Publication date
EP2139160A1 (en) 2009-12-30
EP2139160A4 (en) 2010-11-24
CN101043309B (zh) 2010-06-02
CN101043309A (zh) 2007-09-26

Similar Documents

Publication Publication Date Title
WO2008125041A1 (fr) Procédé et dispositif pour commander une inversion principal-sauvegarde
US9025467B2 (en) Hitless protection for traffic received from 1+1 protecting line cards in high-speed switching systems
US7242736B2 (en) Data transfer
JPH02247709A (ja) スキユー除去方法
EP2141837B1 (en) Active/standby switchover method and device of asynchronous backplane in transport network
US5509037A (en) Data phase alignment circuitry
JP5195557B2 (ja) データ処理装置および無瞬断切り替え方法
US7380084B2 (en) Dynamic detection of block boundaries on memory reads
US7243253B1 (en) Repeating switching of a cross-connect and a timing source in a network element through the use of a phase adjuster
JPS60121842A (ja) デ−タ信号の相対位置自動補正装置
JP4699913B2 (ja) 無瞬断切り替え装置
JP5700038B2 (ja) 伝送システム
JP4168701B2 (ja) 位相調整装置及びそれに用いる位相調整方法並びにそのプログラム
US6581165B1 (en) System for asynchronously transferring timed data using first and second clock signals for reading and writing respectively when both clock signals maintaining predetermined phase offset
US7002909B2 (en) Zero data loss network protection
US8312208B2 (en) Memory access controller and method implementing packet processing
EP1624601B1 (en) Digital delay buffers and related methods
CN100578981C (zh) 采用异步帧脉冲解决光网络中系统时钟和帧脉冲变化的方法
CN111630794B (zh) 具有故障转移机制的otn多机箱系统中的自动时钟相位同步
JP5471237B2 (ja) クロックとフレームの乗せ換え方法及び回路
JP2872011B2 (ja) Atm通信システムにおける送信データの現用予備両系バイト位相合せ装置
JP2829602B2 (ja) 伝送データの位相合わせ方式及び無瞬断切替装置
JPH0774755A (ja) Atm通信システムにおける現用予備両系セル位相合せ装置
JPH07143089A (ja) 位相比較方式
JP2000013346A (ja) 無瞬断切替え回路及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008715256

Country of ref document: EP