WO2008123534A1 - 燃料部品用成形材料及びそれを用いた燃料部品 - Google Patents

燃料部品用成形材料及びそれを用いた燃料部品 Download PDF

Info

Publication number
WO2008123534A1
WO2008123534A1 PCT/JP2008/056518 JP2008056518W WO2008123534A1 WO 2008123534 A1 WO2008123534 A1 WO 2008123534A1 JP 2008056518 W JP2008056518 W JP 2008056518W WO 2008123534 A1 WO2008123534 A1 WO 2008123534A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
molding material
parts
carbon atoms
acid
Prior art date
Application number
PCT/JP2008/056518
Other languages
English (en)
French (fr)
Inventor
Hiroshi Okushita
Kouichiro Kurachi
Yukio Kaneko
Masato Shimokawa
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to US12/532,875 priority Critical patent/US20100113738A1/en
Priority to EP08739631A priority patent/EP2130851A4/en
Priority to CN2008800086310A priority patent/CN101636430B/zh
Priority to JP2009509270A priority patent/JP5218399B2/ja
Publication of WO2008123534A1 publication Critical patent/WO2008123534A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03177Fuel tanks made of non-metallic material, e.g. plastics, or of a combination of non-metallic and metallic material

Definitions

  • the present invention relates to a molding material for fuel parts, in particular, a molding material for automobile fuel parts and a fuel part using the same. More specifically, the present invention relates to a molding material for fuel parts and a fuel part that have excellent fuel barrier properties and low water absorption. Background art
  • Polyamide resins are widely used as injection molding materials for automobiles, electrical and electronic parts, and packaging materials for foods, beverages, chemicals, and electronic parts because of their excellent mechanical performance. Fuel tanks, fuel tubes, quick connectors, quick connections, valves, and other parts used in the vicinity of fuel (gasoline) are demanding advanced fuel barrier properties. Nylon 6, Nylon 6 6 Currently, the fuel barrier properties of general-purpose polyamides such as these are insufficient. In addition, by adding biomass-derived ethanol to gasoline, the use of fossil fuels can be reduced and carbon dioxide emissions can be reduced. But Nai Long 6, Nai Ron 66 and the like have poor barrier properties against alcohols, and therefore materials with higher barrier performance are desired. Nylon 6 and Nylon 6 6 have a large water absorption rate and have insufficient dimensional stability, so they have only been used for limited parts.
  • PA 6 T a polyamide (hereinafter abbreviated as PA 6 T) composed of terephthalic acid and hexaethylenediamine is used as a main component. It is disclosed that such semi-aromatic polyamides can be used as automobile parts.
  • P A 6 T has a melting point in the vicinity of 3 70 that exceeds the decomposition temperature of the polymer, so melt polymerization and melt molding are difficult, and it is not practical.
  • the present invention provides a molding material for fuel parts that is superior in fuel barrier properties of not only gasoline fuel but also alcohol-mixed fuel and has low water absorption, which has not been achieved by the prior art. And providing fuel parts.
  • the polyamide of the present invention is a polyamide resin in which the dicarboxylic acid component is oxalic acid, and the diamine component is alkylene having 6 to 12 carbon atoms and / or arylene having 6 to 14 carbon atoms.
  • oxalic acid diester is used, and there is no particular limitation as long as it has reactivity with an amino group. Dimethyl oxalate, jetyl oxalate, oxalic acid Di n—
  • aliphatic monovalent alcohol oxalic acid diesters having more than 3 carbon atoms alicyclic alcohol oxalic acid esters, and aromatic alcohol oxalic acid diesters are preferred, among which dibutyl oxalate and diphenol oxalate. -Is particularly preferred.
  • alkylenediamine component having 6 to 12 carbon atoms examples include 1,6_hexamethylenediamine, 1,7_heptanediamine.
  • 1, 8 Octocene amine, 1,9 —Nonaminodiamine, 1,10—Tecandiamin, 1,1 1 —Undecandiamin, 1,1 2 —Dode, Tecandiamin, etc. 1—Ptyl 1 1, 2 —Ethanediamine, 1,1 —Dimethyl— 1, 4 1 Butane jamin, 1 —Ethyl— 1, 4 1 Butane jamin, 1,2 —Dimethyl
  • 1-octanediamine 4-methyl 1 1,8-octanediamine, 1 , 3-Dimethyl-1, 8-Octanediamine, 1, 4-Dimethyl-1, 2, 8-Dioctaneamine, 2, 4-Dimethyl-1, 1, 8-Octanediamine, 3, 4-Dimethyl-1, 8, 8 Octanediamine, 4,5 1-dimethyl-1,8-octanediamine, 2,2--dimethyl-1-, 8-octanediamine, 3,3-methyl-1,8-octanediamine, 4,4-dimethyl-1,8-octanediamine And branched chain aliphatic alkylenediamines such as 5-methyl-1,1,9-nonanediamine, etc., and one or more of these can be used.
  • arylene amine components having 6 to 14 carbon atoms examples include P-phenylenediamine, m-phenylenediamine, p-xy
  • Examples include aromatic diamines such as diaminodiphenyl ether, and one or more of these can be used.
  • aromatic diamines such as diaminodiphenyl ether, and one or more of these can be used.
  • P-xylylenediamine and m-xylylenediamine are preferable, and m-xylylenediamine is more preferable because an excellent molded polyamide product can be obtained due to fuel barrier properties and low water absorption.
  • Polyamide 92 can be obtained by using oxalic acid or oxalic acid diester as the dicarboxylic acid component and 1,9-nonanediamine or 2-methyl-1,8-octanediamine as the diamine component.
  • oxalic acid or oxalic acid diester is used as the dicarboxylic acid component
  • 1,9-nonanediamine or Z and 2-methyl-1,8-octanediamine and 1,6-hexaethylenediamine are used as the diamine component.
  • polyamide 9 2/6 2 is obtained.
  • the polyamide resin of the present invention can be produced by using any method known as a method for producing a polyamide.
  • a method for producing a polyamide for example, it can be produced by polycondensation using methods such as a solution polycondensation method, an interfacial polycondensation method, a melt polycondensation method and a solid phase polycondensation method.
  • it can be obtained by subjecting diamine and oxalic acid diester to a polycondensation reaction in a batch or continuous manner.
  • oxalic acid diester (Diamine component) and oxalic acid diester (oxalic acid source) are mixed.
  • a solvent in which both diamine and oxalic acid diester are soluble may be used.
  • Solvents in which both the diamine component and the oxalic acid source are soluble are not particularly limited, but include toluene, xylene, trichlorobenzene, and phenol. Nord, trifluorene and the like can be used, and in particular, toluene can be preferably used.
  • the charge ratio of oxalic acid diester to the above-mentioned jamin is 0.8 to 1.5 (molar ratio), preferably 0.91 to: 1. More preferably 0.99 to 1.0.01 (molar ratio).
  • the temperature inside the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen publishing.
  • the reaction temperature is preferably controlled so that the final temperature reaches 80 to 1550: preferably in the range of 100 to 140. Reaction time at the final temperature reached is 3-6 hours
  • (ii) Post-polycondensation step In order to further increase the molecular weight, the temperature of the polymer produced in the pre-polycondensation step is gradually raised in the reactor under normal pressure. In the temperature rising process, the final temperature of the prepolycondensation step, that is, from 80 to 1550, is finally reached to a temperature range of 220 ° C to 30 ° C. It is preferable to carry out the reaction for 1 to 8 hours including the temperature raising time, preferably 2 to 6 hours. Furthermore, in the post-polymerization step, polymerization can be performed under reduced pressure as necessary. A preferable final pressure in the case of carrying out the vacuum polymerization is from 0. less than I M Pa to 13.3 Pa.
  • phosphoric acid, phosphorous acid, hypophosphorous acid, or a salt thereof, or an ester thereof can be used as a catalyst.
  • metal salts such as potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganone, tin, tungsten, germanium, titanium, antimony, ammonium salts, ethyl esters, isopropyl esters Butyl ester, hexyl ester, isodecyl ester, octyl decyl ester, decyl ester, stearyl ester, vinyl ester and the like.
  • the molecular weight of the polyamide resin obtained from the present invention is not particularly limited, but the relative viscosity measured at 25 X: using a 96% concentrated sulfuric acid solution with a polyamide resin concentration of 1.0 g / d 1.
  • V r is in the range 1 • 8 6 • 0. It is preferably 2.05.5, and 2.54.5 is particularly preferred. If r is lower than 1.8, the molded product becomes brittle and the physical properties deteriorate. On the other hand, if 7r is higher than 6.0, the melt viscosity is high and the moldability is low.
  • the polyamide resin obtained by the present invention can be mixed with other dicarboxylic acid components as long as the effects of the present invention are not impaired.
  • Other dicarboxylic acid components other than oxalic acid include malonic acid and dimethylmalonic acid.
  • Aliphatic dicarboxylic acids such as jetyl succinic acid, azeleic acid, sebacic acid, and suberic acid
  • 1 3 cyclene alicyclic dicarboxylic acids such as pendant dicarboxylic acid, 14-cyclohexanedicarboxylic acid, etc.
  • Rubonic acid further terephthalic acid, isophthalic acid, 2 6 — naphthenic dicarboxylic acid, 2 7 — naphthenic dicarboxylic acid 1 4 1 naphthenic dicarboxylic acid, 1 4 — fluorene didioxine acetic acid, 1 3 1 fue Fragrances such as didioxydiacetic acid, dibenzoic acid, 4,4 1-year-old xididibenzoic acid, diphenylmethane-1,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid 4 4'_biphenyldicarboxylic acid Group dicarboxylic acid alone or these It is also possible to add any mixture during the polycondensation reaction.
  • polyvalent ruponic acids such as h-rimellitic acid, trimesic acid, and pyromellitic acid can be used within the range where melt molding is possible.
  • the present invention may be mixed with other polyamides such as aromatic polyamides, aliphatic polyamides, and small aliphatic 'J-amides as long as the effects of the present invention are not impaired. Is possible.
  • thermoplastic polymers other than 3 U-amide, elastomers, fillers, reinforcing fibers, and various additives can be blended in the same manner.
  • polyamide resin obtained by the present invention can be used as necessary.
  • Stabilizers such as copper compounds, colorants, UV absorbers, light stabilizers, antioxidants, antistatic agents, flame retardants, crystallization accelerators, glass fibers, plasticizers, lubricants, etc. It can be added at or after.
  • the polyamide resin obtained by the present invention can be used as a raw material for a fuel tank, a single layer fuel tube, a multilayer fuel tube, a quick connector, a canyon, a valve and the like.
  • the present invention is a molding material for fuel parts that is excellent in fuel barrier properties of not only gasoline fuel but also alcohol blended fuel and has low water absorption, which could not be achieved by the prior art. ) And fuel parts.
  • the molding material for fuel part PP of the present invention can be used particularly as a molding material for fuel parts of automobiles.
  • fuel tanks, fuel tubes or parts attached to them for example, various connectors such as quick connectors, valve valves such as filler caps, control port valves, fuel tankers, canisters It is preferably used for separate night and evening.
  • various connectors such as quick connectors, valve valves such as filler caps, control port valves, fuel tankers, canisters It is preferably used for separate night and evening.
  • n (NH 2 ) N (NH 2 ) / [(N (NH 2 ) + N (HC HO) + N ( ⁇ Bu)) / 2]
  • -n (NHCHO) N (NHCHO) / [(N (NH 2 ) + N (NHCHO) + N ( ⁇ Bu)) / 2]
  • N p S p / sp-N (NH C HO)
  • n p Number of repeating units in the molecular chain per molecule.
  • n (NH 2 ) Number of terminal amino groups per molecule.
  • terminal amino group concentration [NH 2 ] terminal butoxy group concentration [OB u]
  • Tm and T c were measured under a nitrogen atmosphere using PYRISD iamond DSC manufactured by Perkin Elmer.
  • the temperature is increased from 30 to 3 2 0 at a rate of 10 minutes (called temperature rising fast run), held at 3 2 O t: for 3 minutes, and then to _ 1 0 0 at 1 0 / minute Speed of The temperature was lowered at a temperature (called a temperature drop first strand), and then the temperature was increased to 3 20 at a rate of 10 minutes (called a temperature rise second run). From the obtained DSC chart, Tc was the exothermic peak temperature of the temperature drop first strand, and Tm was the endothermic peak temperature of the second temperature rise.
  • Film forming was performed using a vacuum press machine TM B-10 manufactured by Toho Machinery. It was melted by heating at 2 30 to 30 0 0 for 6 minutes in a reduced pressure atmosphere of 5 0 to 70 0 O Pa, and then pressed for 1 minute at 10 MPa to form a film. Next, the reduced-pressure atmosphere was returned to normal pressure, and then cooled and crystallized at room temperature 10 MPa for 2 minutes to obtain a film.
  • Td was measured by thermogravimetric analysis (TGA) using THE RMOGR AV IMM ETRIC A NA L YZ ERT GA- 50 manufactured by Shimadzu Corporation. The temperature was raised from room temperature under nitrogen flow of 20 m 1 min to 500 ° C. at a heating rate of 10 min and T d was measured.
  • TGA thermogravimetric analysis
  • Pre-polycondensation step Nitrogen gas with a purity of 9 9. 9 9 9% inside the 1 L separable flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, and raw material inlet Substituted with dehydrated toluene, 500 ml, 1, 9-nonanediamine (NMDA) 6 8. 30 90 1 (0.4 3 1 6 mol), 2-methyl mono-1,8-octanediamine (MODA) 1 2. 0 5 4 5 g (0. 0 7 6 2 mol) was charged. The separable flask was placed in an oil bath and the temperature was raised to 50. Dibutyl oxalate 1 0 2.
  • Table 1 shows the results of analysis of the obtained polyad.
  • Table 2 shows the results of the fuel permeability coefficient and saturated water absorption of the film formed at 2600.
  • Table 1 shows the analysis results of the obtained polyamide.
  • Table 2 shows the results of the fuel permeation coefficient and saturated water absorption of the film formed in 2 85.
  • Example 6 Using a separable flask with a volume of 500 m in the pre-polymerization step, 20 ml of dehydrated toluene, hexamethylenediamine (H MD A) 1 4. 1 2 2 1 g (0 1 2 1 5 moles), 1,9-nonanediamine (NMD A) 6.4 3 0 9 g (0.04 0 6 moles), 2 — methyl mono 1,8 —octanediamine (MO DA) 6 4 3 0 9 g (0. 0 4 0 6 mol) and dibutyl oxalate 4 0.
  • H MD A hexamethylenediamine
  • NMD A 1,9-nonanediamine
  • MO DA mono 1,8 —octanediamine
  • Pre-polycondensation step Nitrogen gas with a purity of 9 9. 9 9 9% inside the 1 L separable flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, and raw material inlet Replaced with and dehydrated toluene 500 ml After adding 0.06 4 6 g of benzenephosphinic acid as a catalyst and dissolving it, hexamethylenediamine (HMD A) 2 9. 1 6 5 4 g
  • HMD A hexamethylenediamine
  • HMDA hexamethylenediamine
  • MXDA m-xylylenediamine
  • the molding material for fuel members of the present invention is excellent in fuel barrier properties of not only gasoline fuel but also alcohol blended fuel and low water absorption, so it is a molding material for fuel parts (especially for automotive fuel parts). It can be used as a molding material.
  • fuel tanks, fuel tubes or parts attached to them for example, various connectors such as quick connectors, valves such as filler caps and control valves, fuel trains, Canon evenings, It is preferably used for a separation evening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

ガソリン燃料のみならずアルコール混合燃料の燃料バリア性に優れ、かつ低吸水性である燃料部品用成形材料(特に、自動車の燃料部品用成形材料)を提供する。−NH−R−NHC(=O)C(=O)−で表されるオキサミド結合単位を含有するポリアミドからなる燃料部品用成形材料及び燃料部品。

Description

明 細 書 燃料部品用成形材料及びそれを用いた燃料部品 関連出願の説明
'本件出願は、 日本国特許庁に 2 0 0 7年 3月 2 7 日付で出願され た特願 2 0 0 7 - 0 8 1 2 3 3号に基づく優先権を主張する国際出 願であり、 その出願の開示内容はここに参照して含めるものである
技術分野
本発明は、 燃料部品用成形材料、 特に、 自動車の燃料部品用成形 材料及び れを用いた燃料部品に関する。 更に詳しく は、 燃料バリ ァ性に優れ、 かつ低吸水である該燃料部品用成形材料及び燃料部品 に関する。 背景技術
ポリアミ ド樹脂は、 優れた機械的性能を有することから、 自動車 や電気電子部品などの射出成形材料、 さ らに、 食品、 飲料、 薬品、 電子部品等の包装資材として幅広く利用されている。 燃料 (ガソ リ ン) 周辺に使用される燃料タンク、 燃料チューブ、 クイ ックコネク 夕、 キヤニス夕、 バルブ等の部品には、 高度な燃料バリア性が要求 されつつあり、 ナイ ロン 6、 ナイ ロン 6 6のような汎用ポリアミ ド の燃料バリア性では不十分であるのが現状である。 さ らに、 ガソリ ンにバイオマス由来のエタノール等を添加することにより、 化石燃 料の使用量を減らし二酸化炭素の排出量を削減できるため、 ェ夕ノ ールを含む燃料の利用検討が進められているが、 ナイ ロン 6、 ナイ ロン 6 6などは、 アルコール類に対するバリア性が劣るために、 よ りバリア性能を高めた材料が望まれている。 また、 ナイ ロン 6、 ナ ィ ロン 6 6 は吸水率が大きく、 寸法安定性が十分でなく、 限られた 部品への採用に止まっていた。
このような世の中の要求に対して、 テレフタル酸とへキサメチレ ンジァミン (H M D A ) を主成分とする半芳香族ポリアミ ドが種々 提案され、 一部は実用化されている。 特開平 3 — 7 7 6 1号公報や 特開平 4— 2 3 9 5 3 1号公報には、 テレフタル酸とへキサメチレ ンジァミンからなるポリアミ ド (以下、 P A 6 Tと略称する) を主 成分とする半芳香族ポリアミ ドが、 自動車部品として使用できるこ とが開示されている。 しかしながら、 P A 6 Tは、 ポリマーの分解 温度を超える 3 7 0で付近に融点があるため、 溶融重合、 溶融成形 が困難であり、 実用に耐えるものではない。 そのため実際には、 ァ ジピン酸、 イソフ夕ル酸などのジカルボン酸成分、 あるいはナイ 口 ン 6などの脂肪族ポリアミ ドを 3 0〜 4 0モル%共重合することに より、 実使用可能温度領域、 すなわち 2 8 0〜 3 2 0 程度にまで 低融点化した組成で用いられているのが現状である。 これらの先行 文献では、 芳香族基の導入により従来の脂肪族ポリアミ ドと比較し て、 吸水性は多少改善されているものの、 実質的な問題解決のレべ ルまでには達していない。 また、 燃料バリア性に特に優れた性能が 発現するとの示唆もない。
特表平 5— 5 0 6 4 6 6号公報 (W 0 9 1 / 1 3 1 1 3 ) には、 蓚酸をジカルボン酸単位とし、 炭素数が 6から 1 2 の脂肪族ジアミ ン及びノ又は炭素数が 6から 1 4の芳香族ジァミ ンをジァミ ン単位 とするォキサミ ド結合単位を有するポリアミ ドが開示されている。 この先行文献には、 酸素透過度に関して、 低湿度域より も高湿度域 の方が酸素の透過度が低く、 酸素バリア用途において有用であるこ とが明記されているが、 燃料部品への使用について何ら記載はなく 、 燃料バリア性に特に優れた性能が発現するとの示唆もない。 また 、 強靭な成形体が成形できない程度の低分子量体しか得られていな いという問題点がある。 発明の開示
本発明は、 従来技術が達成できなかった、 ガソリ ン燃料のみなら ずアルコール混合燃料の燃料バリア性に優れ、 かつ低吸水性である 燃料部品用成形材料 (特に、 自動車の燃料部品用成形材料) 及び燃 料部品を提供することを課題とする。
本発明者らは、 上記課題を解決するために鋭意検討した結果、 ォ キサミ ド結合単位、 好ましく は一 N H— R— N H C ( = 0 ) C ( = O ) 一 〔式中、 Rは 6〜 1 2の炭素原子数のアルキレン及び Z又は Rが 6〜 1 4の炭素原子数のァリ一レンである〕 で表されるォキサ ミ ド結合単位を含有するポリアミ ドからなる燃料部品用成形材料及 び燃料部品を提供することによって解決されることを見出した。 発明を実施するための最良の形態
( 1 ) ポリアミ ド樹脂の構成成分
本発明のポリアミ ドは、 ジカルボン酸成分が蓚酸であり、 ジアミ ン成分の炭素原子数が 6〜 1 2のアルキレン及び 又は炭素原子数 が 6〜 1 4のァリーレンであるポリアミ ド樹脂.である。
本発明のポリアミ ドの製造に用いられる蓚酸源としては、 蓚酸ジ エステルが用いられ、 これらはァミ ノ基との反応性を有するもので あれば特に制限はなく、 蓚酸ジメチル、 蓚酸ジェチル、 蓚酸ジ n—
(または i — ) プロピル、 蓚酸ジ n _ (または i 一、 または t 一) ブチル等の脂肪族 1価アルコールの蓚酸ジエステル、 蓚酸ジシクロ へキシル等の脂環式アルコ一ルの蓚酸ジエステル、 蓚酸ジフ Xニル 等の芳香族アルコ一ルの蓚酸ジエステル等が挙げられる
上記の蓚酸ジェステルの中でも炭素原子数が 3 を超える脂肪族 1 価ァルコールの蓚酸ジエステル、 脂環式アルコールの蓚酸ジェステ ル、 芳香族アルコ —ルの蓚酸ジエステルが好ましく、 その中でも蓚 酸ジブチル及び蓚酸ジフエ ―ルが特に好ましい。
炭素原子数が 6 〜 1 2のアルキレンジァミ ン成分としては、 例 ば、 1 , 6 _へキサメチレンジァミン、 1 , 7 _ヘプ夕ンジアミン
、 1 , 8 —ォク夕ンジァミ ン、 1 , 9 —ノナンジァミ ン、 1 , 1 0 ーテカンジアミ ン 、 1 , 1 1 —ゥンデカンジアミ ン、 1 , 1 2 — ド、 テカンジアミ ン等の直鎖状脂肪族アルキレンジァミ ン ; 1 —プチル 一 1 , 2 —エタンジァミ ン、 1 , 1 —ジメチル— 1 , 4 一ブタンジ ァミ ン、 1 —ェチル— 1 , 4 一ブタンジァミ ン、 1 , 2 —ジメチル
_ 1 , 4—ブ夕ンジァミ ン、 1 , 3 —ジメチル一 1 , 4 —ブタンシ ァミ ン、 1 , 4 ―ジメチルー 1 , 4 —ブタンジァミ ン、 2, 3 -シ メチル _ 1 , 4 ―ブタンジァミ ン、 2 —メチル一 1 , 5 —ペン夕ン ジァミ ン、 3 —メチルー 1 , 5 —ペン夕ンジアミ ン、 2 , 5 —ジメ チル— 1 , 6 —へキサンジァミ ン、 2, 4 —ジメチル— 1 , 6 _へ キサンジァミ ン 、 3 , 3 _ジメチルー 1 , 6 —へキサンジァミ ン 、
2 , 2 _ジメチル — 1 , 6 —へキサンジァミ ン、 2 , 2 , 4 _ 卜 U メチルー 1 , 6 へキサンジァミン、 2 , 4 , 4 一 ト リ メチルー 1
6 一へキサンンァミ ン、 2 , 4 —ジェチルー 1 , 6 —へキサンン ァミ ン、 2, 2 ジメチル一 1 , 7 —ヘプ夕ンジァミ ン、 2 , 3 ジメチルー 1 , 7 —ヘプ夕ンジァミ ン、 2, 4 —ジメチルー 1 , 7 一ヘプタンジァ - ン、 2, 5 —ジメチル _ 1 , 7 —ヘプ夕ンジァ ン、 2 —メチル ― 1 , 8 —オクタンジァミ ン、 3 —メチルー 1 , 8
一オクタンジァ ン、 4 —メチル一 1 , 8 —ォク夕ンジァミ ン、 1 , 3 —ジメチルー 1 , 8 —オクタンジァミ ン、 1 , 4—ジメチル一 1 , 8 —ォク夕ンジァミン、 2 , 4 —ジメチル一 1 , 8 —オクタン ンァミ ン、 3 , 4 —ジメチル一 1 , 8 —オクタンジァミ ン、 4 , 5 一ジメチルー 1 , 8 -オクタンジァミン、 2 , 2 —ジメチル一 1 , 8 —オクタンジァミ ン、 3 , 3 —メチルー 1 , 8 —オクタンジアミ ン、 4 , 4 -ジメチル - 1 , 8 —オクタンジァミ ン、 5 —メチル一 1 , 9 —ノナンジアミ ン等の分岐鎖状脂肪族アルキレンジァミ ンな どを挙げることができ、 これらのうち 1種または 2種以上を使用す ることができる。
上記の脂肪族アルキレンジァミ ンの中でも、 燃料バリア性、 低吸 水性により優れたポリァ ド成形品が得られることから 1 , 6 —へ キサメチレンジァミ ン , 8 —オクタンジァミ ン、 2 —メチルー 1 , 8 —ォク夕ンジァ ノ、 1 , 9 —ノナンジァミ ン、 1 , 1 0 — テカンジアミ ン、 1 , 1 ーゥンデカンジァミ ン、 1 , 1 2 — ドデ カンジアミ ンが好まし < へキサメチレンジァミ ン、 1 , 9 ーノナ ンジ了ミ ン 2 —メチルー 1 , 8 —オクタンジァミ ンがより好まし い。
また、 1 6 _へキサメチレンジァミ ンと 1 , 9 ーノナンジアミ ンと 2 —メチルー 1 , 8 ―オクタンジァミ ンの 3種のジアミ ンを併 用することが好ましい。
炭素原子数が 6 〜 1 4のァリーレンジァミン成分としては 、 例え ば、 P —フェニレンジァ ン、 m—フエ二レンジァミ ン、 p ―キシ
へ ヽ へ リ レンジァ ^ ノ、 mーキシリ レンジァミ ン、 4 , 4 ' —ジァ ノジ フエニルメ夕ン、 4 , 4 ージアミ ノジフエニルスルホン、 4 , 4
' ージアミ ノジフェニルェ一テルなどの芳香族ジアミ ンなどを挙げ ることがでさ、 これらの Όち 1種または 2種以上を使用するしとが できる。 上記の芳香族ジァミンの中でも、 燃料バリア性、 低吸水性により 優れたポリアミ ド成形品が得られることから P —キシリ レンジアミ ン、 m—キシリ レンジァミ ンが好ましく、 m—キシリ レンジァミ ン がより好ましい。
ジカルボン酸成分として、 蓚酸又は 及び蓚酸ジエステルを用い 、 ジァミン成分として 1, 9 ーノナンジァミ ン又は 及び 2 —メチ ル一 1, 8 —オクタンジァミ ンを用いることによって、 ポリアミ ド 9 2が得られる。
また、 ジカルボン酸成分として、 蓚酸又は 及び蓚酸ジエステル を用い、 ジァミ ン成分として、 1, 9—ノナンジァミン又は Z及び 2 —メチル一 1, 8 —オクタンジァミ ンと、 1 , 6 —へキサメチレ ンジァミ ンを用いることによって、 ポリアミ ド 9 2 / 6 2が得られ る。
( 2 ) ポリアミ ド樹脂の製造
本発明のポリアミ ド樹脂は、 ポリアミ ドを製造する方法として知 られている任意の方法を用いて製造することができる。 例えば、 溶 液重縮合法、 界面重縮合法、 溶融重縮合法及び固相重縮合法などの 方法を利用して重縮合させることにより製造することができる。 本 発明者らの研究によれば、 ジァミ ン及び蓚酸ジエステルをバッチ式 又は連続式で重縮合反応させることにより得ることができる。 具体 的には、 以下の操作で示されるような、 ( i ) 前重縮合工程、 (i i ) 後重縮合工程の順で行うのが好ましい。
( i ) 前重縮合工程 : まず反応器内を窒素置換した後、 ジァミ ン
(ジァミ ン成分) 及び蓚酸ジエステル (蓚酸源) を混合する。 混合 する場合にジァミ ン及び蓚酸ジエステルが共に可溶な溶媒を用いて も良い。 ジァミ ン成分及び蓚酸源が共に可溶な溶媒としては、 特に 制限されないが、 トルエン、 キシレン、 ト リ クロ口ベンゼン、 フエ ノール、 ト リ フルォロェ夕ノールなどを用いることができ、 特に ト ルェンを好ましく用いることができる。 例えば、 ジァミ ンを溶解し た トルエン溶液を 5 0でに加熱した後、 これに対して蓚酸ジエステ ルを加える。 このとき、 蓚酸ジエステルと上記ジァミ ンの仕込み比 は、 蓚酸ジエステル Z上記ジァミ ンで、 0. 8〜 1. 5 (モル比) 、 好ましくは 0. 9 1〜 : 1. 1 (モル比) 、 更に好ましくは 0. 9 9〜 : 1. 0 1 (モル比) である。
このように仕込んだ反応器内を攪拌及び 又は窒素パブリ ングし ながら、 常圧下で昇温する。 反応温度は、 最終到達温度が 8 0〜 1 5 0 :、 好ましくは 1 0 0〜 1 4 0での範囲になるように制御する のが好ましい。 最終到達温度での反応時間は 3時間〜 6時間である
( i i) 後重縮合工程 : 更に高分子量化を図るために、 前重縮合ェ 程で生成した重合物を常圧下において反応器内で徐々に昇温する。 昇温過程において前重縮合工程の最終到達温度、 すなわち 8 0〜 1 5 0でから、 最終的に 2 2 0 °C以上 3 0 0 以下の温度範囲にまで 到達させる。 昇温時間を含めて 1〜 8時間、 好ましく は 2〜 6時間 保持して反応を行う ことが好ましい。 さ らに後重合工程において、 必要に応じて減圧下での重合を行う こともできる。 減圧重合を行う 場合の好ましい最終到達圧力は 0. I M P a未満〜 1 3. 3 P aで ある。
ポリアミ ドを製造するに際して、 例えば触媒としてリ ン酸、 亜リ ン酸、 次亜リ ン酸、 またはそれらの塩、 さ らにはそれらのエステル などを使用することができる。 具体的にはカ リ ウム、 ナ ト リウム、 マグネシウム、 バナジウム、 カルシウム、 亜鉛、 コバル ト、 マンガ ン、 錫、 タングステン、 ゲルマニウム、 チタン、 アンチモンなどの 金属塩やアンモニゥム塩、 ェチルエステル、 イソプロピルエステル 、 ブチルエステル、 へキシルエステル、 イソデシルエステル、 ォク 夕デシルエステル、 デシルエステル、 ステアリルエステル、 フエ二 ルエステルなどを挙げることができる。
( 3 ) ポリアミ ド樹脂の性状及び物性
本発明から得られるポリアミ ド樹脂の分子量に特別の制限はない が、 ポリアミ ド樹脂濃度が 1 . 0 g / d 1 の 9 6 %濃硫酸溶液を用 い、 2 5 X:で測定した相対粘度 V rが 1 • 8 6 • 0 の範囲内であ る。 好ましくは 2 . 0 5 . 5であり、 2 . 5 4 . 5が特に好ま しレ 。 ? rが 1 . 8より低いと成形物が脆くなり物性が低下する。 一方、 7 rが 6 . 0より高いと溶融粘度が高くな Ό 、 成形加工性が ΐ
( 4 ) ポリアミ ド榭脂に配合できる成分
本発明により得られるポリアミ ド樹脂には、 本 明の効果を損な わない範囲で他のジカルボン酸成分を混合する事が出来る。 蓚酸以 外の他のジカルボン酸成分としては、 マロン酸、 ジメチルマロン酸
、 コハク酸、 ダルタル酸、 アジピン酸、 2 —メチルアジピン酸、 ト リ メチルアジピン酸、 ピメ リ ン酸、 2 , 2 —ジメチルダル夕ル酸、
3 , 3 —ジェチルコハク酸、 ァゼライ ン酸、 セバシン酸、 スベリ ン 酸などの脂肪族ジカルボン酸、 また 1 3 —シク □ペン夕ンジカ ルボン酸、 1 4 —シクロへキサンジカルボン酸などの脂環式ジカ ルボン酸、 さらにテレフタル酸、 ィソフタル酸、 2 6 —ナフ夕レ ンジカルボン酸、 2 7 —ナフ夕レンジカルボン酸 1 4 一ナフ 夕レンジカルボン酸、 1 4 —フ X二レンジォキシン酢酸、 1 3 一フエ二レンジォキシジ酢酸、 ジ安息香酸、 4 , 4 一才キシジ安 息香酸、 ジフエ二ルメタン一 4 4 ' ージカルボン酸 、 ジフェニル スルホン— 4 , 4 ' —ジカルボン酸 4 4 ' _ビフェニルジカル ボン酸などの芳香族ジカルボン酸などを単独で、 あるいはこれらの 任意の混合物を重縮合反応時に添加することもでさる。 さらに、 h リメ リ ッ ト酸、 ト リメシン酸、 ピロメ リ ッ ト酸などの多価力ルポン 酸を溶融成形が可能な範囲内で用いることもできる o
また、 本発明には本発明の効果を損なわない範囲で、 他のポ Uォ キサミ ドや、 芳香族ポリアミ ド、 脂肪族ポリァミ 、 脂 式小 'Jァ ミ ドなどポリアミ ド類を混合することが可能である 。 更に、 3ヽ Uァ ミ ド以外の熱可塑性ポリマー、 エラス 卜マ一、 フィ ラーや、 補強繊 維、 各種添加剤を同様に配合することができる。
さらに、 本発明により得られるポリアミ ド樹脂には必要に応じて
、 銅化合物などの安定剤、 着色剤、 紫外線吸収剤 、 光安定化剤 、 酸 化防止剤、 帯電防止剤、 難燃剤、 結晶化促進剤、 ガラス繊維、 可塑 剤、 潤滑剤などを重縮合反応時、 またはその後に添加することもで さる。
( 5 ) ポリアミ ド樹脂の用途
本発明により得られたポリアミ ド樹脂は燃料タンク、 単層燃料チ ュ一ブ、 多層燃料チューブ、 クイ ックコネクタ、 キヤニス夕、 バル ブなどの原料に利用できる。
本発明は、 従来技術が達成できなかった、 ガソ リ ン燃料のみなら ずアルコール混合燃料の燃料バリア性に優れ、 かつ低吸水性である 燃料部品用成形材料 (特に、 自動車の燃料部品用成形材料) 及び燃 料部品を提供するしとができる。
Π
本発明の燃料部 PP用成形材料は 、 特に自動車の燃料部品の成形材 料として使用できる 。 具体的には 、 燃料夕ンク 、 燃料チューブ又は それらに付属する部品、 例えば、 クイ ックコネクタ等の各種コネク 夕、 フィ ラーキヤップ、 コン ト口一ルバルブ等のバルブ類、 フュー エルス 卜レーナ一 、 キヤニス夕一 、 セパレ一夕一等に好適に用いら れる。 実施例
[物性測定、 成形、. 評価方法]
以下、 実施例を挙げて本発明を具体的に説明するが、 本発明はこ れらにより何ら制限されるものではない。 なお、 実施例中の相対粘 度、 数平均分子量、 末端基濃度、 融点、 結晶化温度、 及び燃料透過 係数、 飽和吸水率の測定は以下の方法で行った。
( 1 ) 相対粘度 ( r )
r? rはポリアミ ドの 9 6 %硫酸溶液 (濃度 : 1. O g Z d l ) を 使用してォス トワルド型粘度計を用いて 2 5でで測定した。
( 2 ) 数平均分子量 (M n )
数平均分子量 (M n ) は、 1 H— NMRスペク トルから求めたシ グナル強度をもとに、 例えば、 蓚酸源として蓚酸ジブチル、 ジアミ ン成分として 1, 9—ノナンジァミン (NMDA) / 2—メチルー 1 , 8 —オクタンジァミ ン (MO DA) = 8 5 / 1 5 m o l %を用 いて製造したポリアミ ド 〔以下、 P A 9 2 (N M D A/M O D A = 8 5 / 1 5 ) と略称する〕 の場合は下式により算出した。
M n = n p X 2 1 2. 3 0 + n (NH2) X 1 5 7. 2 8 + n ( 〇 B u ) X 1 2 9. 1 4 + n (NH C HO) X 2 9. 1 4
なお、 1 H— N M Rの測定条件は以下の通りである。
' 使用機種 : ブル力一 ' バイオスピン社製 A V A N C E 5 0 0 • 溶媒 : 重硫酸
• 積算回数 : 1 0 2 4回
また、 前記式中の各項は以下のように規定される。
- n p = N p / [ (N (N H2) + N (NH C HO) + N (O B u ) ) / 2 ]
• n (NH2) =N (NH2) / [ (N (N H2 ) + N ( H C HO ) + N (〇 B u) ) / 2 ] - n (N H C H O) = N ( N H C H O ) / [ (N (NH2) + N ( N H C H O) + N (〇 B u) ) / 2 ]
• n (〇 B u ) = N (O B u) Z [ ( N ( N H2 ) + N (NH C H 〇) + N (O B u) ) / 2 ]
• N p = S p / s p - N (NH C HO)
• N (NH2) = S (NH2) / s (NH2)
• N (NH C HO) = S (NH C HO) / s ( H C HO)
• N (O B u ) = S (O B u ) / s (O B u )
但し、 各項は以下の意味を有する。
• N p : P A 9 2 (NMDA/MODA= 8 5 / 1 5 ) の末端ュニ ッ トを除いた、 分子鎖中の繰り返しユニッ ト総数。
• n p : 分子 1本当たりの分子鎖中の繰り返しユニッ ト数。
• S p : P A 9 2 (NMDA/MOD A = 8 5 / 1 5 ) の末端を除 いた、 分子鎖中の繰り返しュニッ 卜中のォキサミ ド基に隣接するメ チレン基のプロ トンに基づぐシグナル ( 3. l p p m付近) の積分 値。
• s p : 積分値 S pにカウン トされる水素数 ( 4個) 。
- N (NH2) : P A 9 2 (NMDAZM〇D A= 8 5 / 1 5 ) の 末端アミノ基の総数。
• n (NH2) : 分子 1本当たりの末端アミ ノ基の数。
• S ( N H2 ) : P A 9 2 (NMD AZMOD A S S / l S ) の 末端アミノ基に隣接するメチレン基のプロ トンに基づく シグナル ( 2. 6 p p m付近) の積分値。
• s (NH2) : 積分値 S (NH2) にカウン トされる水素数 ( 2個
) o
• N (NH C HO) : P A 9 2 (NMD A/MO D A = 8 5 / 1 5 ) の末端ホルムアミ ド基の総数。 • n (N H C H O) : 分子 1本当たりの末端ホルムアミ ド基の数。 • S (NH C HO) : P A 9 2 (NMD A/MO D A= 8 5 / 1 5
) のホルムアミ ド基のプロ トンに基づく シグナル ( 7. 8 p p m) の積分値。
• s (NH C HO) : 積分値 S (NH C HO) にカウン トされる水 素数 ( 1個) 。
• N (〇 B u ) : P A 9 2 (NMD A/ O D A= 8 5 / 1 5 ) の 末端ブトキシ基の総数。
• n (〇 B u ) : 分子 1本当たりの末端ブトキシ基の数。
• S (〇 B u ) : P A 9 2 (NMD A M〇 D A= 8 5 Z 1 5 ) の 末端ブトキシ基の酸素原子に隣接するメチレン基のプロ トンに基づ く シグナル ( 4. 1 p p m付近) の積分値。
• s (O B u ) : 積分値 S (O B u ) にカウン トされる水素数 ( 2 個) 。
( 3 ) 末端基濃度
蓚酸ジブチルを用いた場合、 末端アミ ノ基濃度 [N H 2 ] 、 末端 ブトキシ基濃度 [O B u ] 、 末端ホルムアミ ド基濃度 [NH C HO
] は次の式に従ってそれぞれ求めた。
• 末端アミ ノ基濃度 [N H 2 ] = n (NH 2 ) / n
' 末端ブトキシ基濃度 [〇 B u ] = n (〇 B u ) /U n
' 末端ホルムアミ ド基濃度 [NH C HO] = n (NH C HO) /M n
( 4 ) 融点 (Tm) 及び結晶化温度 (T G )
Tm及び T c は、 P e r k i n E l m e r社製 P Y R I S D i a m o n d D S C用いて窒素雰囲気下で測定した。 3 0でから 3 2 0でまで 1 0で 分の速度で昇温し (昇温ファース トランと呼ぶ ) 、 3 2 O t:で 3分保持したのち、 _ 1 0 0 まで 1 0で/分の速 度で降温し (降温ファース トランと呼ぶ) 、 次に 3 2 0でまで 1 0 で 分の速度で昇温した (昇温セカン ドランと呼ぶ) 。 得られた D S Cチャー トから降温ファース トランの発熱ピーク温度を T c、 昇 温セカン ドランの吸熱ピーク温度を Tmとした。
( 5 ) フィルム成形
東邦マシナリー社製真空プレス機 TM B— 1 0を用いてフィルム 成形を行った。 5 0 0〜 7 0 O P aの減圧雰囲気下 2 3 0〜 3 0 0 でで 6分間加熱溶融させた後、 1 0 M P aで 1分間プレスを行いフ イルム成形した。 次に減圧雰囲気を常圧まで戻したのち室温 1 0 M P aで 2分間冷却結晶化させてフィルムを得た。
( 6 ) 燃料透過係数
ステンレス製の容器に燃料 { E 0 (トルエン Zイソオクタン = 5 0 / 5 0 V o 1 % ) 、 E 1 0 (トルエン イソオクタン エ夕ノー ル = 4 5 Z 4 5 Z l 0 v o l %) 、 E 1 0 0 (エタノール = 1 0 0 V o 1 %) } を 5 0 m l 入れ、 ( 5 ) の条件で成形したフィルムを 用いて、 P T F E製のガスケッ トをかませて容器に蓋をし、 ねじ圧 力にて締め付けた。 カップを 6 0で恒温槽に入れ、 槽内は窒素を 5 0 m 1 Zm i nで流した。 重量の経時変化を測定し時間当たりの重 量変化が安定した時点で、 燃料透過係数を式 ( 1 ) から算出した。 試料サンプルの透過面積は 7 8. 5 c m 2 である。
燃料透過係数 ( g - mm/m 2 · d a y) =
[透過重量 ( g ) Xフィルム厚 (mm) ] [透過面積 (m2 ) X 曰数 ( d a y) ] · · · ( 1 )
( 7 ) 飽和吸水率
ポリアミ ド樹脂を ( 5 ) の条件で成形したフィルム (寸法 : 2 0 mm X 1 0 mm, 厚さ 0. 2 5 mm ; 重量約 0. 0 5 g) を 2 3 のイオン交換水に浸漬し、 所定時間ごとにフィルムを取り出し、 フ イルムの重量を測定した。 フィルム重量の増加率が 0. 2 %の範囲 で 3回続いた場合にポリアミ ド樹脂フィルムへの水分の吸収が飽和 に達したと判断して、 水に浸漬する前のフィルムの重量 (X g) と 飽和に達した時のフィルムの重量 (Y g ) から式 ( 2 ) により飽和 吸水率 (%) を算出した。 飽和吸水率 (%) =^^xl 00 · · · ( 2 )
( 8 ) 1 %重量減少温度 (T d )
T dは島津製作所社製 TH E RMO G R AV I M E T R I C A NA L Y Z E R T GA— 5 0を用い、 熱重量分析 (T GA) によ り測定した。 2 0 m 1 分の窒素気流下室温から 5 0 0でまで 1 0 で 分の昇温速度で昇温し、 T dを測定した。
[実施例 1 ]
( i ) 前重縮合工程 : 撹拌機、 還流冷却器、 窒素導入管、 原料投 入口を備えた内容積が 1 Lのセパラブルフラスコの内部を純度が 9 9. 9 9 9 9 %の窒素ガスで置換し、 脱水済みトルエン 5 0 0 m l 、 1 , 9 —ノナンジァミン (NMDA) 6 8. 3 0 9 1 ( 0. 4 3 1 6モル) 、 2—メチル一 1 , 8—オクタンジァミ ン (MODA ) 1 2. 0 5 4 5 g ( 0. 0 7 6 2モル) を仕込んだ。 このセパラ ブルフラスコをオイルバス中に設置して 5 0でに昇温した後、 蓚酸 ジブチル 1 0 2. 1 9 5 6 g ( 0. 5 0 5 3モル) を仕込んだ。 次 にオイルバスの温度を 1 3 0でまで昇温し、 還流下、 5時間反応を 行った。 なお、 原料仕込みから反応終了までの全ての操作は 5 0 m 1 Z分の窒素気流下で行った。 内容物を冷却した後、 ろ過及び真空 乾燥にて溶媒を留去し、 前重合物を得た。
( i i) 後重縮合工程 : 上記操作によって得られた前重合物を撹拌 機、 空冷管、 窒素導入管を備えた直径約 3 5 m m φの力ラス製 R it、 管に仕込み、 反応管内を 1 3. 3 P a以下の減圧下に保ち、 次に常 圧まで窒素ガスを導入する操作を 5回繰り返した後、 5 0 m l /分 の窒素気流下 2 1 0でに保った塩浴に移し 、 直ちに昇温を開始した
。 1時間かけて塩浴の温度を 2 6 0 とし 、 さ らに 2時間反応させ た。 塩浴から取り出し 5 0 m l 分の窒素気流下で室温まで冷却し て P A 9 2 (N M D A/M O D A = 8 5 / 1 5 ) を得た。 得られた ポリアミ ドの分析結果を表 1 に示す。 2 6 0でで成形したフイリレム の燃料透過係数と飽和吸水率の結果を表 2に示す。
[実施例 2 ]
前重合工程において容積が 5 0 0 m 1 のセパラブルフラスコを使 用し、 脱水済み トルエン 2 0 0 m l 、 1 , 9 —ノナンジァミ ン ( N
MDA) 1 5. 6 1 6 8 g ( 0. 0 9 8 7モル) 、 2ーメチルー 1
, 8—オクタンジァミ ン (MODA) 1 5 6 1 6 8 g ( 0. 0 9
8 7モル) 、 蓚酸ジブチル 4 0. 0 4 1 2 g ( 0. 1 9 8 0モル) を仕込み、 後重合工程において 2 3 0でで反応した以外は、 実施例 1 と伺様に反応を行って P A 9 2 (NMD A/MOD A= 5 0 / 5 0 ) を得た。 得られたポリアミ ドの分析結果を表 1 に示す。 2 3 0 でで成形したフィルムの燃料透過係数と飽和吸水率の結果を表 2 に 示す。
[実施例 3 ]
前重合工程において容積が 5 0 0 m 1 のセパラブルフラスコを使 用し、 脱水済みトルエン 2 0 0 m l 、 1, 9 —ノナンジァミ ン (N MD A) 9. 5 6 5 5 g ( 0. 0 6 0 4モル) 、 2 —メチルー 1, 8—オクタンジァミ ン (MODA) 2 2. 3 1 9 5 g ( 0. 1 4 1 0モル) 、 蓚酸ジブチル 4 0. 7 8 8 1 g ( 0. 2 0 1 7モル) を 仕込み、 後重合工程において 2 4 0 で反応した以外は、 実施例 1 と同様に反応を行って P A 9 2 (NMD A/MO D A= 3 0 / 7 0 ) を得た。 得られたポリアミ ドの分析結果を表 1 に示す。 2 4 0 で成形したフィルムの燃料透過係数と飽和吸水率の結果を表 2に示 す。
[実施例 4 ]
前重合工程において容積が 5 0 0 m 1 のセパラブルフラスコを使
用し、 脱水済みトルエン 2 0 0 m l 、 1 , 9 ーノナノジァミ ン ( N
M D A) 1. 8 9 3 3 g ( 0. 0 1 2 0モル) 、 2 ―メチルー 1 ,
8 —オクタンジァミ ン (MODA) 2 9. 6 6 1 1 g ( 0. 1 8 7
3モル) 、 蓚酸ジブチル 4 0. 3 0 9 4 g ( 0. 1 9 9 3モル) を 仕込んだ以外は、 実施例 1 と同様に反応を行って P A 9 2 ( N D
A/M O D A = 6 / 9 4 ) を得た。 得られたポリァ ドの分析結果 を表 1 に示す。 2 6 0 で成形したフイルムの燃料透過係数と飽和 吸水率の結果を表 2に示す。
[実施例 5 ]
前重合工程において容積が 5 0 0 m 1 のセパラブルフラスコを使 用し、 脱水済みトルエン 2 0 0 m l 、 へキサメチレンジァミ ン ( H
MDA) 1 1. 5 8 6 6 g ( 0. 0 9 9 7モル) 、 1 , 9 —ノナン ジァミ ン (NMDA) 7. 8 6 6 7 g ( 0. 0 4 9 7モル) 、 2 — メチル _ 1, 8 —オクタンジァミ ン (MO DA) 7 • 8 6 6 7 g (
0. 0 4 9 7モル) 、 蓚酸ジブチル 4 0. 3 5 2 4 g ( 0. 1 9 9
5モル) を仕込み、 後重合工程において 2 7 0でで反応した以外は 、 実施例 1 と同様に反応を行って P A 6 2 Z 9 2 (HMD A/NM DA/MODA= 5 0 / 2 5 / 2 5 ) を得た。 得られたポリ アミ ド の分析結果を表 1 に示す。 2 8 5でで成形したフィルムの燃料透過 係数と飽和吸水率の結果を表 2に示す。
[実施例 6 ] 前重合工程において容積が 5 0 0 m 1 のセパラブルフラスコを使 用し、 脱水済みトルエン 2 0 0 m l 、 へキサメチレンジァミ ン (H MD A) 1 4. 1 2 2 1 g ( 0. 1 2 1 5モル) 、 1 , 9 ーノナン ジァミ ン (NMD A) 6. 4 3 0 9 g ( 0. 0 4 0 6モル) 、 2 — メチル一 1 , 8 —オクタンジァミ ン (MO D A) 6. 4 3 0 9 g ( 0. 0 4 0 6モル) 、 蓚酸ジブチル 4 0. 0 0 7 4 g ( 0. 2 0 2 8モル) を仕込み、 後重合工程において 2 9 0でで反応した以外は 、 実施例 1 と同様に反応を行って P A 6 2 Z 9 2 (HMD A/NM D A/MO D A= 6 0 / 2 0 / 2 0 ) を得た。 得られたポリアミ ド の分析結果を表 1 に示す。 3 0 0でで成形したフィルムの燃料透過 係数と飽和吸水率の結果を表 2 に示す。
[実施例 7 ]
前重合工程において容積が 5 0 0 m 1 のセパラブルフラスコを使 用し、 脱水済みトルエン 2 0 0 m l 、 へキサメチレンジァミン (H M D A) 1 4. 6 4 4 0 g ( 0. 1 2 6 0モル) 、 1 , 9 —ノナン ジァミ ン (NMD A) 0. 7 9 9 1 g ( 0. 0 0 5 0モル) 、 2 — メチル一 1 , 8 —オクタンジァミ ン (MO D A) 1 2. 5 1 8 5 g
( 0. 0 7 9 1 モル) 、 蓚酸ジブチル 4 2. 5 1 3 6 g ( 0. 2 1 0 2モル) を仕込み、 後重合工程において 2 9 0でで反応した以外 は、 実施例 1 と同様に反応を行って P A 6 2 Z 9 2 (HMD A/N D A/MO D A = 6 0 / 2. 4 / 3 7. 6 ) を得た。 得られたポ リアミ ドの分析結果を表 1 に示す。 3 0 0でで成形したフィルムの 燃料透過係数と飽和吸水率の結果を表 2 に示す。
[実施例 8 ]
( i ) 前重縮合工程 : 撹拌機、 還流冷却器、 窒素導入管、 原料投 入口を備えた内容積が 1 Lのセパラブルフラスコの内部を純度が 9 9. 9 9 9 9 %の窒素ガスで置換し、 脱水済みトルエン 5 0 0 m l を入れ、 触媒としてベンゼンホスフィ ン酸 0. 0 2 4 6 g加え溶解 させた後、 へキサメチレンジァミン (HMD A) 2 9. 1 6 5 4 g
( 0. 2 5 1 0モル) 、 m_キシリ レンジァミ ン (MXDA) 3 4 . 2 3 5 5 g ( 0. 2 5 1 4モル) を仕込んだ。 このセパラブルフ ラスコをオイルバス中に設置して 5 0 に昇温した後、 蓚酸ジブチ ル 1 0 1. 6 1 4 5 g ( 0. 5 0 2 4モル) を仕込んだ。 次にオイ ルバスの温度を 1 3 0 まで昇温し、 還流下、 5時間反応を行った 。 なお、 原料仕込みから反応終了までの全ての操作は 5 0 m l 分 の窒素気流下で行った。 内容物を冷却した後、 ろ過及び真空乾燥に て溶媒を留去し、 前重合物を得た。
(ii) 後重縮合工程 : 上記操作によって得られた前重合物を撹拌 機、 空冷管、 窒素導入管を備えた内容積が 3 0 O mLのセパラブル フラスコに仕込み、 反応管内を 1 3. 3 P a以下の減圧下に保ち、 次に常圧まで窒素ガスを導入する操作を 5回繰り返した後、 5 0 m 1 分の窒素気流下 1 9 0 に保った塩浴に移し、 直ちに昇温を開 始した。 1時間かけて塩浴の温度を 2 5 0でとした後、 容器内を 7 7 P aまで減圧し、 固相状態でさらに 2. 5時間反応させた。 塩浴 から取り出し 5 O m l Z分の窒素気流下で室温まで冷却して P A M 2 / 6 2 (MXD A/HMDA= 5 0 / 5 0 ) を得た。 得られた ポリアミ ドの分析結果を表 1 に示す。 2 9 5 °Cで成形したフィルム の燃料透過係数と飽和吸水率の結果を表 2に示す。
[比較例 1 ]
本発明で得られるポリアミ ド樹脂に替えて P A 6 (宇部興産製、 U B Eナイ ロン 1 0 1 3 B) を用いて 2 5 0ででフィルムを成形 した。 このフィルムの燃料透過係数、 飽和吸水率を評価した。 結果 を表 2にそれぞれ示す。
[比較例 2 ] 本発明で得られるポリアミ ド樹脂に替えて P A 6 6 (宇部興産製 、 U B Eナイ ロン 2 0 2 0 B ) を用いて 2 9 5ででフィルムを成 形した。 このフィルムの燃料透過係数、 飽和吸水率を評価した。 結 果を表 2にそれぞれ示す。
[比較例 3 ]
本発明で得られるポリアミ ド樹脂に替えて P A 1 2 (宇部興産製 、 U B E S TA 3 0 1 4 U) を用いて 2 2 0ででフィルムを成形 した。 このフィルムの燃料透過係数、 飽和吸水率を評価した。 結果 を表 2にそれぞれ示す。
[比較例 4 ]
前重合工程において容積が 5 0 0 m 1 のセパラブルフラスコを使 用し、 脱水済みトルエン 2 0 0 m l 、 へキサメチレンジァミ ン (H MDA) 2 4. 4 2 9 9 g ( 0. 2 1 0 2モル) 、 蓚酸ジブチル 4 2. 5 1 3 6 g ( 0. 2 1 0 2モル) を仕込み、 後重合工程におい て 2 5 0 で 1 0時間固相反応した以外は、 実施例 1 と同様に反応 を行って P A 6 2 (HMDA= 1 0 0 ) を得た。 得られたポリアミ ドの分析結果を表 1 に示す。
表 1
Figure imgf000021_0001
表 2
Figure imgf000022_0001
ジアミ ン成分として 1 , 9 -ノナンジアミ ン (NMD A ) と 2 - メチルー 1, 8 ォクタンジァミ ン (MOD A) とを併用したポリ アミ ド樹脂、 若しくは 、 ジアミ ン成分として 1, 9 —ノナンジアミ ン (NMD A) と 2 一メチルー 1, 8 —ォクタンジァミ ン ( OD
A) とへキサメチレンシァミ ン (HMD A) とを併用したポリアミ ド樹脂、 又は、 ジァミ ン成分としてへキサメチレンジァミ ン (HM DA) と m—キシリ レンジァミ ン (MXDA) とを併用したポリア ミ ド樹脂のいずれかのポリアミ ド樹脂を用いた燃料部品用成形材料 とすることにより、 成形可能温度幅が広くなり、 より加工性に優れ た燃料部品用成形材料となる。 産業上の利用可能性
本発明の燃料部材用成形材料は、 ガソ リ ン燃料のみならずアルコ ール混合燃料の燃料バリア性に優れ、 かつ低吸水性であることから 燃料部品用成形材料 (特に、 自動車の燃料部品用成形材料) として 使用できる。 具体的には、 燃料タンク、 燃料チューブ又はそれらに 付属する部品、 例えば、 クイ ックコネクタ等の各種コネクタ、 フィ ラ一キャップ、 コン トロールバルブ等のバルブ類、 フユ一エルス ト レーナ一、 キヤニス夕一、 セパレー夕一等に好適に用いられる。

Claims

1. ォキサミ ド結合単位を含有するポリアミ ドからなる、 燃料部 品用成形材料。
2. ォキサミ ド結合単位が、 _ NH_ R— NH C ( =〇) C (= 〇) 一 〔式中、 Rは 6〜 1 2の炭素原子数のアルキレン及び Z又は 請
Rが 6〜 1 4の炭素原子数のァリーレンである〕 で表される、 請求 項 1記載の燃料部品用成形材料。
3. Rが 6〜 1 2の炭素原子数ののアルキレンが、 へキサメチレン 、 ノナメチレン、 2 —メチルォクタメ範チレンから 1つ以上選ばれた ポリアミ ドである、 請求項 2記載の燃料部品用成形材料。
4. Rが 6〜 1 4の炭素原子数のァリーレンが m—キシリ レンで ある、 請求項 2記載の燃料部品用成形材料。
5. ポリアミ ド樹脂濃度が 1 : 0 g/d 1 の 9 6 %濃硫酸溶液を 用い、 2 5 で測定した相対粘度 7? rが 1. 8〜 6. 0の範囲内で ある、 請求項 1〜 4のいずれか 1項記載の燃料部品用成形材料。
6. 燃料部品用成形材料が、 自動車の燃料部品用成形材料である 、 請求項 1〜 4のいずれか 1項記載の燃料部品用成形材料。
7. 燃料部品が、 燃料タンク、 燃料チューブ又はそれらに付属す る部品である、 請求項 1〜 4のいずれか 1項に記載の燃料部品用成 形材料。
8. 請求項 1〜 4のいずれか 1項に記載の燃料部品用成形材料を 用いてなる燃料部品。
9. ォキサミ ド結合単位を含有するポリアミ ドからなる、 燃料部 品。
1 0. ォキサミ ド結合単位が、 — NH— R— NH C ( =〇) C ( =〇) 一 〔式中、 Rは 6〜 1 2の炭素原子数のアルキレン及び 又 は Rが 6〜 1 4の炭素原子数のァリ一レンである〕 で表される、 請 求項 9記載の燃料部品。
— 1 1. Rが 6〜 1 2の炭素原子数のアルキレンが、 へキサメチレ ン、 ノナメチレン、 2 _メチルォクタメチレンから 1つ以上選ばれ たポリアミ ドである、 請求項 1 0記載の燃料部品。
1 2. Rが 6〜 ; L 4の炭素原子数のァリ一レンが m—キシリ レン である、 請求項 1 0記載の燃料部品。
1 3. 燃料部品が、 自動車の燃料部品である、 請求 9〜 1 2の いずれか 1項記載の燃料部品用成形材料。
1 4. 燃料タンク、 燃料チューブ又はそれらに付属する部品であ る、 請求項 9〜 1 2のいずれか 1項に記載の燃料部品用成形材料。
PCT/JP2008/056518 2007-03-27 2008-03-26 燃料部品用成形材料及びそれを用いた燃料部品 WO2008123534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/532,875 US20100113738A1 (en) 2007-03-27 2008-03-26 Molding material for fuel parts and fuel part using the same
EP08739631A EP2130851A4 (en) 2007-03-27 2008-03-26 MOLDING MATERIAL FOR FUEL COMPONENT, AND FUEL COMPONENT USING SAID MATERIAL
CN2008800086310A CN101636430B (zh) 2007-03-27 2008-03-26 燃料部件用成型材料及使用该材料的燃料部件
JP2009509270A JP5218399B2 (ja) 2007-03-27 2008-03-26 燃料部品用成形材料及びそれを用いた燃料部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-081233 2007-03-27
JP2007081233 2007-03-27

Publications (1)

Publication Number Publication Date
WO2008123534A1 true WO2008123534A1 (ja) 2008-10-16

Family

ID=39831011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056518 WO2008123534A1 (ja) 2007-03-27 2008-03-26 燃料部品用成形材料及びそれを用いた燃料部品

Country Status (5)

Country Link
US (1) US20100113738A1 (ja)
EP (1) EP2130851A4 (ja)
JP (1) JP5218399B2 (ja)
CN (1) CN101636430B (ja)
WO (1) WO2008123534A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151145A1 (ja) * 2008-06-10 2009-12-17 宇部興産株式会社 新規なポリアミド樹脂組成物及びポリアミド樹脂含有製品
JP2011063695A (ja) * 2009-09-16 2011-03-31 Ube Industries Ltd ポリアミド樹脂を用いた透明部材
JP2011118230A (ja) * 2009-12-04 2011-06-16 Ube Industries Ltd 電子写真用部材
JP2011116889A (ja) * 2009-12-04 2011-06-16 Ube Industries Ltd Smtコネクタ用ポリアミド樹脂組成物
JP2011116886A (ja) * 2009-12-04 2011-06-16 Ube Industries Ltd 産業用チューブ
WO2011136263A1 (ja) * 2010-04-30 2011-11-03 宇部興産株式会社 ポリアミド樹脂
JP2012020571A (ja) * 2010-06-14 2012-02-02 Ube Industries Ltd 積層チューブ
WO2013062089A1 (ja) * 2011-10-28 2013-05-02 宇部興産株式会社 ポリアミド樹脂及びそれからなる成形品
WO2013061650A1 (ja) * 2011-10-28 2013-05-02 宇部興産株式会社 ポリアミド樹脂組成物
JP2013095803A (ja) * 2011-10-28 2013-05-20 Ube Industries Ltd ポリアミド樹脂組成物及びそれを成形して得た耐熱性成形体
JP2013095778A (ja) * 2011-10-28 2013-05-20 Ube Industries Ltd ポリアミド樹脂組成物及びそれを成形して得た成形体
JP2013095793A (ja) * 2011-10-28 2013-05-20 Ube Industries Ltd ポリアミド樹脂組成物
JP2013095792A (ja) * 2011-10-28 2013-05-20 Ube Industries Ltd 充填材含有ポリアミド樹脂組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172520A1 (en) * 2010-09-17 2013-07-04 Ube Industries, Ltd. Polyoxamide resin having excellent impact resistance and impact-resistant part
CN103172853B (zh) * 2011-12-20 2016-01-13 东丽纤维研究所(中国)有限公司 一种脂肪族聚酰胺树脂及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037761A (ja) 1989-03-17 1991-01-14 Mitsui Petrochem Ind Ltd プラスチック組成物
WO1991013113A1 (en) 1990-02-20 1991-09-05 Exxon Chemical Patents Inc. Oxygen barrier
JPH04239531A (ja) 1991-01-22 1992-08-27 Mitsui Petrochem Ind Ltd 自動車用ポリアミド成形体
JP2004150500A (ja) * 2002-10-29 2004-05-27 Kuraray Co Ltd 燃料透過耐性に優れた燃料配管用継手
JP2005179434A (ja) * 2003-12-17 2005-07-07 Ube Ind Ltd 燃料配管用継手
JP2006057033A (ja) * 2004-08-23 2006-03-02 Ube Ind Ltd 低吸水性部材
JP2007081233A (ja) 2005-09-15 2007-03-29 Topcon Corp レーザ発振装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178432A (en) * 1977-08-15 1979-12-11 The Upjohn Company Copolyoxalamide from branched chain diamine
JPS59193958A (ja) * 1983-04-18 1984-11-02 Dainippon Ink & Chem Inc シ−ル材
DE3514870A1 (de) * 1985-04-25 1986-11-06 Basf Ag, 6700 Ludwigshafen Thermoplastische formmasse
US5233603A (en) * 1988-04-21 1993-08-03 Nec Corporation Packet switch suitable for integrated circuit implementation
JP2000191771A (ja) * 1998-12-25 2000-07-11 Kuraray Co Ltd ポリアミドおよびその組成物
US6297345B1 (en) * 1999-05-27 2001-10-02 Ube Industries, Ltd. Polyamide having excellent stretching properties
JP2004083817A (ja) * 2002-08-29 2004-03-18 Kuraray Co Ltd ポリアミド
RU2347790C2 (ru) * 2004-05-21 2009-02-27 Мицубиси Кемикал Корпорейшн Полиамидная смола и шарнирные формованные изделия
JP5056763B2 (ja) * 2006-12-11 2012-10-24 宇部興産株式会社 ポリアミド樹脂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037761A (ja) 1989-03-17 1991-01-14 Mitsui Petrochem Ind Ltd プラスチック組成物
WO1991013113A1 (en) 1990-02-20 1991-09-05 Exxon Chemical Patents Inc. Oxygen barrier
JPH05506466A (ja) 1990-02-20 1993-09-22 エクソン・ケミカル・パテンツ・インク 酸素バリヤー
JPH04239531A (ja) 1991-01-22 1992-08-27 Mitsui Petrochem Ind Ltd 自動車用ポリアミド成形体
JP2004150500A (ja) * 2002-10-29 2004-05-27 Kuraray Co Ltd 燃料透過耐性に優れた燃料配管用継手
JP2005179434A (ja) * 2003-12-17 2005-07-07 Ube Ind Ltd 燃料配管用継手
JP2006057033A (ja) * 2004-08-23 2006-03-02 Ube Ind Ltd 低吸水性部材
JP2007081233A (ja) 2005-09-15 2007-03-29 Topcon Corp レーザ発振装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANCO L., SUBIRANA J.A., PUIGGALI J.: "Structure and Morphology of Odd Polyoxamides [Nylon 9,2]. A New Example of Hydrogen-Bonding Interactions in Two Different Directions", MACROMOLECULES, vol. 31, no. 12, 1998, pages 3912 - 3924, XP008116678 *
See also references of EP2130851A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151145A1 (ja) * 2008-06-10 2009-12-17 宇部興産株式会社 新規なポリアミド樹脂組成物及びポリアミド樹脂含有製品
JP2011063695A (ja) * 2009-09-16 2011-03-31 Ube Industries Ltd ポリアミド樹脂を用いた透明部材
JP2011118230A (ja) * 2009-12-04 2011-06-16 Ube Industries Ltd 電子写真用部材
JP2011116889A (ja) * 2009-12-04 2011-06-16 Ube Industries Ltd Smtコネクタ用ポリアミド樹脂組成物
JP2011116886A (ja) * 2009-12-04 2011-06-16 Ube Industries Ltd 産業用チューブ
US8975364B2 (en) 2010-04-30 2015-03-10 Ube Industries, Ltd. Polyamide resin
WO2011136263A1 (ja) * 2010-04-30 2011-11-03 宇部興産株式会社 ポリアミド樹脂
JP5796573B2 (ja) * 2010-04-30 2015-10-21 宇部興産株式会社 ポリアミド樹脂
JP2012020571A (ja) * 2010-06-14 2012-02-02 Ube Industries Ltd 積層チューブ
WO2013061650A1 (ja) * 2011-10-28 2013-05-02 宇部興産株式会社 ポリアミド樹脂組成物
JP2013095778A (ja) * 2011-10-28 2013-05-20 Ube Industries Ltd ポリアミド樹脂組成物及びそれを成形して得た成形体
JP2013095793A (ja) * 2011-10-28 2013-05-20 Ube Industries Ltd ポリアミド樹脂組成物
JP2013095792A (ja) * 2011-10-28 2013-05-20 Ube Industries Ltd 充填材含有ポリアミド樹脂組成物
JP2013095803A (ja) * 2011-10-28 2013-05-20 Ube Industries Ltd ポリアミド樹脂組成物及びそれを成形して得た耐熱性成形体
JPWO2013062089A1 (ja) * 2011-10-28 2015-04-02 宇部興産株式会社 ポリアミド樹脂及びそれからなる成形品
WO2013062089A1 (ja) * 2011-10-28 2013-05-02 宇部興産株式会社 ポリアミド樹脂及びそれからなる成形品

Also Published As

Publication number Publication date
JP5218399B2 (ja) 2013-06-26
US20100113738A1 (en) 2010-05-06
CN101636430A (zh) 2010-01-27
CN101636430B (zh) 2012-07-04
EP2130851A1 (en) 2009-12-09
EP2130851A4 (en) 2012-07-04
JPWO2008123534A1 (ja) 2010-07-15

Similar Documents

Publication Publication Date Title
WO2008123534A1 (ja) 燃料部品用成形材料及びそれを用いた燃料部品
JP4487687B2 (ja) 低吸水性部材
JP6819606B2 (ja) ポリアミド樹脂、成形品およびポリアミド樹脂の製造方法
US20100098893A1 (en) Polyamide resin
JP5796573B2 (ja) ポリアミド樹脂
JP5673130B2 (ja) ポリアミド樹脂およびその製造方法
US10544262B2 (en) Polyamide
TW201739788A (zh) 聚醯胺樹脂、成形品及聚醯胺樹脂之製造方法
JP2009235225A (ja) ポリアミド樹脂
WO2013004548A1 (en) Branched polyamide
KR20130060301A (ko) 내충격성이 우수한 폴리옥사미드 수지 및 내충격성 부품
JP6708313B2 (ja) 樹脂組成物および成形品
WO2005063888A1 (ja) ポリアミド樹脂組成物
KR101570562B1 (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
JP2013095777A (ja) プリント基板表面実装部品用ポリアミド樹脂組成物及びそれを成形して得たプリント基板表面実装部品
WO2023089941A1 (ja) ポリアミド樹脂の製造方法、および、樹脂組成物
JP2011063694A (ja) ポリオキサミド樹脂の分子量制御方法及びポリオキサミド樹脂
JP3474248B2 (ja) 自動車部品用成形材料
JP6451082B2 (ja) ポリアミド樹脂
JP6273883B2 (ja) ポリアミド樹脂
JP2011231167A (ja) 熱処理による密度変化が小さい自動車部品又は電気・電子部品用ポリアミド樹脂
JP2013095799A (ja) Icトレイ用ポリアミド樹脂組成物及びそれを成形して得たicトレイ
JP2011063695A (ja) ポリアミド樹脂を用いた透明部材
JP2018076458A (ja) ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法
JP2013095803A (ja) ポリアミド樹脂組成物及びそれを成形して得た耐熱性成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880008631.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009509270

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008739631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008739631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12532875

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE