WO2008106920A1 - Hydrauliksystem zur steuerung eines mit nasskupplungen arbeitenden doppelkupplungsgetriebes - Google Patents

Hydrauliksystem zur steuerung eines mit nasskupplungen arbeitenden doppelkupplungsgetriebes Download PDF

Info

Publication number
WO2008106920A1
WO2008106920A1 PCT/DE2008/000252 DE2008000252W WO2008106920A1 WO 2008106920 A1 WO2008106920 A1 WO 2008106920A1 DE 2008000252 W DE2008000252 W DE 2008000252W WO 2008106920 A1 WO2008106920 A1 WO 2008106920A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
hydraulic system
pressure
cooling
hydraulic
Prior art date
Application number
PCT/DE2008/000252
Other languages
English (en)
French (fr)
Inventor
Marco Grethel
Original Assignee
Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Lamellen Und Kupplungsbau Beteiligungs Kg filed Critical Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority to DE112008000438.2T priority Critical patent/DE112008000438B4/de
Publication of WO2008106920A1 publication Critical patent/WO2008106920A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H2061/0037Generation or control of line pressure characterised by controlled fluid supply to lubrication circuits of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0473Friction devices, e.g. clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches

Definitions

  • Hydraulic system for controlling a wet clutches
  • the invention relates to a hydraulic system for controlling a wet clutch dual-clutch transmission, which system includes a pump for providing system pressure in a supply line, control valve means for individually applying clutch actuators to system pressure-derived operating pressure modulated operating conditions, and a system valve, which, when the system pressure is reached, directs hydraulic fluid delivered by the pump into a return line.
  • a hydraulic system of the type described above is not only for wet clutches, but also for dry kuppl u ngen used where it has worked well.
  • the invention has the object of further developing such a hydraulic system such that the cooling required for wet clutches is possible in a simple manner.
  • a basic idea of the invention is to deliver hydraulic fluid delivered by the pump to the pressure supply of the hydraulic system, which is circulated when the system pressure is reached, that is to say flows back without pressure through a return line, for cooling the clutches.
  • a hydraulic system for controlling a clutch operating with wet clutches, which system comprises a pump for providing a system pressure in a supply line, a control valve means for individually acting on clutch actuators with actuation pressure derived from the system pressure, modulated depending on operating conditions, and a system valve which When the system pressure is reached, hydraulic fluid delivered by the pump enters a return line. conducts line, the hydraulic fluid flowing through the return line is the couplings for the cooling fed.
  • the hydraulic system according to the invention includes a cooling control valve for controlling the hydraulic fluid supplied to the clutches.
  • the pump is driven, for example, by an internal combustion engine contained in a vehicle driveline containing the dual-clutch transmission.
  • the hydraulic system according to the invention additionally contains an auxiliary pump for the demand-oriented conveying of coolant to the clutches.
  • the auxiliary pump is advantageously electrically driven.
  • auxiliary pump is advantageously dimensioned in such a way and integrated into the hydraulic system such that a supply pressure can be generated by means of the auxiliary pump in the supply line.
  • the supply line of the hydraulic system is advantageously connected to a pressure accumulator, which ensures a system pressure in the charged state.
  • FIGS. 1 to 4 show block diagrams of various embodiments of the hydraulic system according to the invention.
  • a dual-clutch transmission designated as a whole by 10 has two clutches K1 and K2, by means of which a drive shaft, not shown, driven by an internal combustion engine, can be selectively coupled in a rotationally fixed manner to input shafts 12 and 14.
  • the input shaft 12 is hollow and the input shaft 14 extends through the input shaft 12.
  • the input shafts 12 and 14 are rotatably connected via switchable wheelsets with a common, not shown, output shaft of the dual-clutch transmission. bindable.
  • the input shaft 12 belongs to a partial transmission, with which the gears 1, 3, 5 and 7 are switchable.
  • the input shaft 14 is part of a partial transmission with which the gears 2, 4, 6 and R are switchable.
  • Gear actuators for engaging the gears are designated 16, 18, 20 and 22.
  • Clutch actuators with which the clutch K1 or the clutch K2 can be actuated are designated 24 and 26.
  • a hydraulic system for actuating the hydraulically actuated actuators, a hydraulic system, generally designated 30, is provided which, for the hydraulic pressure supply, contains a pump 32 which conveys hydraulic fluid into a supply line 38 from a hydraulic fluid reservoir 34 through a filter 36.
  • the pump 32 is driven by an internal combustion engine 40, which also supplies the torque transmitted by the dual-clutch transmission 10.
  • the supply line is connected via a system valve 42 to a supply line 44, in which there is a required for the functioning of the hydraulic system system pressure.
  • a pressure accumulator 46 is connected, which is set to a predetermined system pressure and stores a certain volume of hydraulic fluid upon reaching this system pressure, so that this system pressure is available, even if a certain amount of hydraulic fluid escapes from the supply line 44.
  • the supply line 44 is connected via a valve 50 actuated by a solenoid 48 to a control valve 52 which controls the clutch actuator 24 of the clutch K1, and further connected to a control valve 54 which controls the clutch actuator 26 of the clutch K2 and additionally to a control valve 56, which controls the transmission actuators 16, 18, 20 and 22 with the interposition of a switching valve 58.
  • the control valves 52, 54 and 56 each have proportional solenoids which are energized by outputs 60 of an electronic control device 62 whose inputs 64 are supplied with signals which are relevant to the operation of the dual-clutch transmission 10.
  • the function of the system valve 42 is to switch on reaching the system pressure in the supply line 44 or at full pressure accumulator 46, so that the subsidized by the pump 32 hydraulic fluid in a non-pressurized return line 66 and from there back into the hydraulic fluid reservoir 34 arrives.
  • the return line 66 leads to a cooling control valve 68 which has as output lines a cooling line 72 leading to a clutch cooling device 70 and a return line 74 leading into a fluid reservoir 76 which may be identical to the hydraulic fluid reservoir 34.
  • the system valve 42 controls so that the pumped by the pump 32 hydraulic fluid is conveyed into the return line 66.
  • the cooling control valve 68 is connected to an output of the electronic control device 62, which provides a signal relating to the cooling requirement of the clutches K1 and K2, which is derived for example from the operating conditions of the clutches (slip, torque).
  • the cooling control valve 68 is connected to one or more temperature sensors, which detects the temperatures of the clutches, wherein exceeding predetermined temperatures indicates a cooling demand.
  • the cooling control valve 68 connects the return line 66 with the cooling line 72, so that the clutches can be cooled by means of the known clutch cooling device 70, which consists in particular in that the wet clutches are flowed through by the hydraulic fluid and thereby cooled. If there is no need for cooling, the cooling control valve 68 connects the return line 66 to the return line 74.
  • the cooling element 68 can be designed such that it completely connects the cooling line 72 with the return line 66 and the return line 74 or the cooling line 72 only the supplies each required liquid.
  • the cooling control valve 68 may be missing, so that at full system pressure pumped coolant 66 is constantly used to cool the clutches.
  • a peculiarity of the described arrangement is that the pump 32, so that a sufficient cooling of the couplings is ensured, must be larger sized than required for the supply of actuators, namely so large that the maximum cooling demand can be covered. Another peculiarity is that at high speeds of the internal combustion engine 40 significantly too much hydraulic fluid is promoted. In order to keep the flow losses low, this high line cross sections are required. In order to avoid the aforementioned peculiarities, the system can be modified as shown in FIG. 2:
  • an auxiliary pump 78 is provided which preferably also from the hydraulic fluid reservoir 34 hydraulic fluid via a line 80 to the cooling control valve 68 supplies.
  • the auxiliary pump 78 is, for example, a tandem pump of the pump 32 and is therefore likewise driven by the internal combustion engine 40. If the pump 32 is a vane pump, the auxiliary pump may be formed as a second flow of the vane pump.
  • the auxiliary pump is tuned to the amount of coolant required for maximum cooling of the clutches or, advantageously, to the coolant flow rate required in addition to the hydraulic fluid delivered by the pump 32 through the return line 66.
  • the auxiliary pump 78 may optionally be suction throttled, which is possible without acoustic problems, since the auxiliary pump operates only in a small pressure range, for example with a maximum of 3 bar.
  • the cooling control valve 68 is designed such that it connects the lines 66 and 80 with the cooling line 72 when there is a need for cooling.
  • a check valve is arranged in the return line 66, which prevents a flow of the auxiliary pump 78 promoted coolant in the direction of the system valve 42.
  • the cooling control valve 68 can be omitted, in which case optionally overcooling of the couplings is accepted.
  • FIG. 3 shows an embodiment of the system which is particularly adaptable to the respective cooling requirement and operates with low energy consumption.
  • the auxiliary pump 78 is driven by its own electric motor 81 which is actuated, for example, by the electronic control device 62 or one or more separate temperature sensors for detecting the temperature of the clutches. At high cooling demand of the electric motor 81 is activated, so that the auxiliary pump 78 only and advantageously promotes additional hydraulic fluid as needed.
  • the line 80 could be as well as line 80 of FIG. 2 directly connected to the cooling line 72, wherein in the line 80 then advantageously a check valve is arranged, which prevents a liquid flow to the auxiliary pump 78 toward.
  • FIG. 4 shows an embodiment which is modified compared to FIG. 3 in that hydraulic fluid can be conveyed directly into the supply line 38 from the auxiliary pump 78 via an auxiliary supply line 82.
  • the cooling control valve 68 of FIG. 3 is replaced by a valve device 84, which is preferably also connected to the electronic control device 62.
  • the electric motor 81 and the auxiliary pump 78 are compared to the embodiment of FIG. 3 advantageously designed somewhat stronger, so that by means of the auxiliary pump 78, the dual-clutch transmission 10 can be supplied with the necessary system pressure for its function.
  • the embodiment of FIG. 4 is suitable for vehicles with stop-start systems and for hybrid vehicles, in which the internal combustion engine 40 is automatically turned off automatically in certain phases of operation and is quickly switched back on in case of need.
  • the electric motor 81 When the internal combustion engine 40 is stationary and the system pressure in the supply line 44 drops, the electric motor 81 is activated and the line 80 is connected via the valve device 84 to the auxiliary supply line 82, which opens into the supply line 38.
  • a non-illustrated check valve is disposed between the mouth of the auxiliary supply line 82 in the supply line 38 and the pump 32, which prevents a flow of liquid from the auxiliary supply line 82 through the pump 32 therethrough.
  • the electric motor 81 is advantageously switched off, or runs, if there is cooling demand for the clutches, so that for cooling the clutches hydraulic fluid is provided by the pump 32 through the lines 82, 38, the valve 42 and the line 66 is conveyed to the cooling line 72 or is conveyed directly from the line 80 into the cooling line 72.
  • the function of the arrangement according to FIG. 4 corresponds to that of FIG. 3.

Abstract

Ein Hydrauliksystem zur Steuerung eines mit Nasskupplungen arbeitenden Doppelkupplungsgetriebes enthält eine Pumpe zum Bereitstellen eines Systemdruckes in einer Versorgungsleitung, eine Steuerventileinrichtung zum individuellen Beaufschlagen von Kupplungsaktoren mit aus dem Systemdruck abgeleitetem, in Abhängigkeit von Betriebszuständen moduliertem Betätigungsdruck, und ein Systemventil, welches bei Erreichen des Systemdruckes von der Pumpe geförderte Hydraulikflüssigkeit in eine Rücklaufleitung leitet, wobei die durch die Rücklaufleitung strömende Hydraulikflüssigkeit den Kupplungen für deren Kühlung zuführbar ist.

Description

Hydrauliksvstem zur Steuerung eines mit Nasskupplungen arbeitenden
Doppelkupplungsgetriebes
Die Erfindung betrifft ein Hydrauliksystem zur Steuerung eines mit Nasskupplungen arbeitenden Doppelkupplungsgetriebes, welches System eine Pumpe zum Bereitstellen eines Systemdruckes in einer Versorgungsleitung, eine Steuerventileinrichtung zum individuellen Beaufschlagen von Kupplungsaktoren mit aus dem Systemdruck abgeleitetem, in Abhängigkeit von Betriebszuständen moduliertem Betriebsdruck, und ein Systemventil enthält, welches bei Erreichen des Systemdruckes von der Pumpe geförderte Hydraulikflüssigkeit in eine Rücklaufleitung leitet.
Ein Hydrauliksystem der vorbeschriebenen Art ist nicht nur für Nasskupplungen, sondern auch für Trocken kuppl u ngen einsetzbar, wo es sich gut bewährt hat.
Der Erfindung liegt die Aufgabe zugrunde, ein solches Hydrauliksystem derart weiter zu entwickeln, dass die für Nasskupplungen erforderliche Kühlung in einfacher Weise möglich ist.
Diese Aufgabe wird mit einem Hydrauliksystem gemäß dem Anspruch 1 gelöst.
Die Unteransprüche sind auf vorteilhafte Ausführungsformen und Weiterbildungen des erfindungsgemäßen Hydrauliksystems gerichtet.
Demnach liegt eine Grundidee der Erfindung darin, von der Pumpe zur Druckversorgung des Hydrauliksystems geförderte Hydraulikflüssigkeit, die bei Erreichen des Systemdrucks im Umlauf gefördert wird, das heißt drucklos durch eine Rücklaufleitung rückströmt, zur Kühlung der Kupplungen zu verwenden.
Bei einem erfindungsgemäßen Hydrauliksystem zur Steuerung eines mit Nasskupplungen arbeitenden Kupplungsgetriebes, welches System eine Pumpe zum Bereitstellen eines Systemdrucks in einer Versorgungsleitung, eine Steuerventileinrichtung zum individuellen Beaufschlagen von Kupplungsaktoren mit aus dem Systemdruck abgeleitetem, in Abhängigkeit von Betriebszuständen moduliertem Betätigungsdruck, und ein Systemventil enthält, welches bei Erreichen des Systemdrucks von der Pumpe geförderte Hydraulikflüssigkeit in eine Rücklauf- leitung leitet, ist die durch die Rücklaufleitung strömende Hydraulikflüssigkeit den Kupplungen für deren Kühlung zuführbar.
Vorteilhaft enthält das erfindungsgemäße Hydrauliksystem ein Kühlsteuerventil zum Steuern der den Kupplungen zugeführten Hydraulikflüssigkeitsmenge.
Die Pumpe wird beispielsweise von einer in einem das Doppelkupplungsgetriebe enthaltenen Fahrzeugantriebsstrang enthaltenen Brennkraftmaschine angetrieben.
In einer vorteilhaften Ausführungsform enthält das erfindungsgemäße Hydrauliksystem zusätzlich eine Hilfspumpe zum bedarfsgerechten Fördern von Kühlflüssigkeit zu den Kupplungen.
Die Hilfspumpe ist vorteilhafter Weise elektrisch angetrieben.
Weiter ist die Hilfspumpe vorteilhafter Weise derart dimensioniert und derart in das Hydrauliksystem integriert, dass mittels der Hilfspumpe in der Versorgungsleitung ein Versorgungsdruck erzeugbar ist.
Die Versorgungsleitung des Hydrauliksystems ist vorteilhafter Weise mit einem Druckspeicher verbunden, der im aufgeladenen Zustand einen Systemdruck sicherstellt.
Die Erfindung wird im Folgenden anhand schematischer Zeichnungen beispielsweise und mit weiteren Einzelheiten erläutert.
Die Figuren 1 bis 4 zeigen Blockschaltbilder verschiedener Ausführungsformen des erfindungsgemäßen Hydrauliksystems.
Gemäß Fig. 1 weist ein insgesamt mit 10 bezeichnetes Doppelkupplungsgetriebe zwei Kupplungen K1 und K2 auf, mittels denen eine nicht dargestellte, von einer Brennkraftmaschine angetriebene Antriebswelle selektiv mit Eingangswellen 12 und 14 drehfest kuppelbar sind. Die Eingangswelle 12 ist hohl und die Eingangswelle 14 erstreckt sich durch die Eingangswelle 12 hindurch. Die Eingangswellen 12 und 14 sind über schaltbare Radsätze mit einer gemeinsamen, nicht dargestellten Ausgangswelle des Doppelkupplungsgetriebes drehfest ver- bindbar. Dabei gehört im dargestellten Beispiel die Eingangswelle 12 zu einem Teilgetriebe, mit dem die Gänge 1, 3, 5 und 7 schaltbar sind. Die Eingangswelle 14 gehört zu einem Teilgetriebe, mit dem die Gänge 2, 4, 6 und R schaltbar sind. Getriebeaktoren zum Einlegen der Gänge sind mit 16, 18, 20 und 22 bezeichnet. Kupplungsaktoren, mit denen die Kupplung K1 bzw. die Kupplung K2 betätigt werden können, sind mit 24 und 26 bezeichnet.
Zur Betätigung der hydraulisch betätigten Aktoren ist ein insgesamt mit 30 bezeichnetes Hydrauliksystem vorgesehen, das zur Hydraulikdruckversorgung eine Pumpe 32 enthält, die aus einem Hydraulikflüssigkeitsvorrat 34 durch einen Filter 36 hindurch Hydraulikflüssigkeit in eine Zufuhrleitung 38 fördert. Die Pumpe 32 wird von einer Brennkraftmaschine 40 angetrieben, die auch das vom Doppelkupplungsgetriebe 10 übertragene Drehmoment liefert. Die Zufuhrleitung ist über ein Systemventil 42 mit einer Versorgungsleitung 44 verbunden, in der ein für die Funktionsfähigkeit des Hydrauliksystems erforderlicher Systemdruck herrscht. An die Versorgungsleitung 44 ist ein Druckspeicher 46 angeschlossen, der auf einen vorbestimmten Systemdruck eingestellt ist und bei Erreichen dieses Systemdrucks ein bestimmtes Volumen an Hydraulikflüssigkeit speichert, so dass dieser Systemdruck verfügbar ist, auch wenn aus der Versorgungsleitung 44 eine gewisse Menge an Hydraulikflüssigkeit entweicht. Die Versorgungsleitung 44 ist über ein mittels eines Schaltmagneten 48 betätigtes Ventil 50 mit einem Steuerventil 52 verbunden, das den Kupplungsaktor 24 der Kupplung K1 steuert, und weiter mit einem Steuerventil 54 verbunden, das den Kupplungsaktor 26 der Kupplung K2 steuert, und zusätzlich mit einem Steuerventil 56 verbunden, das unter Zwischenschaltung eines Umschaltventils 58 die Getriebeaktoren 16, 18, 20 und 22 steuert.
Die Steuerventile 52, 54 und 56 weisen jeweils Proportionalmagneten auf, deren Strombeaufschlagung von Ausgängen 60 einer elektronischen Steuereinrichtung 62 erfolgt, deren Eingängen 64 Signale zugeführt werden, die für den Betrieb des Doppelkupplungsgetriebes 10 relevant sind.
Aufbau und Funktion der beschriebenen Anordnung sind an sich bekannt und werden daher nicht weiter erörtert.
In an sich bekannter Weise besteht die Funktion des Systemventils 42 darin, bei Erreichen des Systemdrucks in der Versorgungsleitung 44 bzw. bei vollem Druckspeicher 46 umzuschalten, so dass die von der Pumpe 32 geförderte Hydraulikflüssigkeit in eine drucklose Rücklaufleitung 66 und von dort zurück in den Hydraulikflüssigkeitsvorrat 34 gelangt. Erfindungsgemäß führt die Rückleitung 66 zu einem Kühlsteuerventil 68, das als Ausgangsleitungen eine zu einer Kupplungskühleinrichtung 70 führende Kühlleitung 72 und eine Rückführleitung 74 aufweist, die in einen Flüssigkeitsvorrat 76 führt, der identisch mit dem Hydraulikflüssigkeitsvorrat 34 sein kann.
Die Funktion der beschriebenen Anordnung ist wie folgt:
Bei vollem Druckspeicher 46, das heißt vollem Systemdruck in der Versorgungsleitung 44, steuert das Systemventil 42 um, so dass die von der Pumpe 32 geförderte Hydraulikflüssigkeit in die Rücklaufleitung 66 gefördert wird. Das Kühlsteuerventil 68 ist mit einem Ausgang der elektronischen Steuereinrichtung 62 verbunden, der eine Signal betreffend den Kühlbedarf der Kupplungen K1 und K2 liefert, das beispielsweise aus den Betriebsbedingungen der Kupplungen (Schlupf, Drehmoment) hergeleitet wird. Alternativ ist das Kühlsteuerventil 68 mit einem oder mehreren Temperatursensoren verbunden, der die Temperaturen der Kupplungen feststellt, wobei ein Überschreiten vorbestimmter Temperaturen auf einen Kühlbedarf deutet. Bei bestehendem Kühlbedarf verbindet das Kühlsteuerventil 68 die Rücklaufleitung 66 mit der Kühlleitung 72, so dass die Kupplungen mittels der an sich bekannten Kupplungskühleinrichtung 70 gekühlt werden können, die insbesondere darin besteht, dass die nassen Kupplungen von der Hydraulikflüssigkeit durchströmt und dadurch gekühlt werden. Wenn kein Kühlbedarf besteht, verbindet das Kühlsteuerventil 68 die Rücklaufleitung 66 mit der Rückführleitung 74. Das Kühlelement 68 kann derart ausgebildet sein, dass es bei bestehendem Kühlbedarf die Kühlleitung 72 vollständig mit der Rücklaufleitung 66 verbindet und die Rückführleitung 74 abtrennt oder der Kühlleitung 72 nur die jeweils benötigte Flüssigkeit zuführt.
In einer vereinfachten Ausführungsform kann das Kühlsteuerventil 68 fehlen, so dass bei vollem Systemdruck umgepumpte Kühlflüssigkeit 66 ständig zur Kühlung der Kupplungen verwendet wird.
Eine Eigenart der beschriebenen Anordnung liegt darin, dass die Pumpe 32, damit eine ausreichende Kühlung der Kupplungen gewährleistet ist, größer dimensioniert sein muss als für die Versorgung der Aktoren erforderlich, nämlich so groß, dass der maximale Kühlbedarf abgedeckt werden kann. Eine weitere Eigenart liegt darin, dass bei hohen Drehzahlen der Brennkraftmaschine 40 deutlich zu viel Hydraulikflüssigkeit gefördert wird. Um die Strömungsverluste gering zu halten, sind dazu hohe Leitungsquerschnitte erforderlich. Um die vorgenannten Eigenarten zu vermeiden, kann das System, wie in Fig. 2 dargestellt, abgewandelt werden:
Gemäß Fig. 2 ist eine Hilfspumpe 78 vorgesehen, die vorzugsweise ebenfalls aus dem Hydraulikflüssigkeitsvorrat 34 Hydraulikflüssigkeit über eine Leitung 80 dem Kühlsteuerventil 68 zuführt. Die Hilfspumpe 78 ist beispielsweise eine Tandempumpe der Pumpe 32 und wird somit ebenfalls von der Brennkraftmaschine 40 angetrieben. Wenn die Pumpe 32 eine Flügelzellenpumpe ist, kann die Hilfspumpe als zweite Flut der Flügelzellenpumpe ausgebildet sein. Die Hilfspumpe ist auf die für eine maximale Kühlung der Kupplungen erforderliche Kühlflüs- sigkeitsmenge oder vorteilhaft auf denjenigen Kühlflüssigkeitsdurchsatz abgestimmt, der zusätzlich zu der von der Pumpe 32 durch die Rücklaufleitung 66 geförderten Hydraulikflüssigkeit erforderlich ist. Die Hilfspumpe 78 kann gegebenenfalls sauggedrosselt werden, was ohne akustische Probleme möglich ist, da die Hilfspumpe nur in einem geringen Druckbereich, beispielsweise mit maximal 3 bar arbeitet. Es versteht sich, dass das Kühlsteuerventil 68 derart ausgebildet ist, dass es bei vorhandenem Kühlbedarf die Leitungen 66 und 80 mit der Kühlleitung 72 verbindet. Vorteilhafter Weise ist in der Rücklaufleitung 66 ein Rückschlagventil angeordnet, das ein Strömen von der Hilfspumpe 78 geförderter Kühlflüssigkeit in Richtung auf das Systemventil 42 verhindert. Auch bei der Ausführungsform gemäß Fig. 2 kann das Kühlsteuerventil 68 entfallen, wobei dann gegebenenfalls eine Überkühlung der Kupplungen in Kauf genommen wird.
Fig. 3 zeigt eine Ausführungsform des Systems, die besonders gut an den jeweiligen Kühlbedarf anpassbar ist und mit geringem Energieverbrauch arbeitet.
Bei der Ausführungsform gemäß Fig. 3 wird die Hilfspumpe 78 von einem eigenen Elektromotor 81 angetrieben, der beispielsweise von der elektronischen Steuereinrichtung 62 oder einem oder mehreren gesonderten Temperaturfühlern zur Erfassung der Temperatur der Kupplungen angesteuert wird. Bei hohem Kühlbedarf wird der Elektromotor 81 aktiviert, so dass die Hilfspumpe 78 nur dann und vorteilhafterweise bedarfsgerecht zusätzliche Hydraulikflüssigkeit fördert. Die Leitung 80 könnte ebenso wie Leitung 80 der Fig. 2 unmittelbar mit der Kühlleitung 72 verbunden sein, wobei in der Leitung 80 dann vorteilhafter Weise ein Rückschlagventil angeordnet ist, das eine Flüssigkeitsströmung zu der Hilfspumpe 78 hin verhindert.
Während bei der Ausführungsform gemäß Fig. 1 für die kurzen Zeiträume, für die der Druckspeicher 46 nachgeladen werden muss, zur Kühlung keine Hydraulikflüssigkeit zur Verfügung steht, steht bei den Ausführungsformen gemäß Fig. 2 und 3 ständig Hydraulikflüssigkeit für die Kühlung zur Verfügung.
Fig. 4 zeigt eine Ausführungsform, die gegenüber der Fig. 3 dadurch abgeändert ist, dass von der Hilfspumpe 78 über eine Hilfszufuhrleitung 82 Hydraulikflüssigkeit unmittelbar in die Zufuhrleitung 38 förderbar ist. Zusätzlich ist das Kühlsteuerventil 68 der Fig. 3 durch eine Ventileinrichtung 84 ersetzt, die vorzugsweise ebenfalls mit der elektronischen Steuereinrichtung 62 verbunden ist. Der Elektromotor 81 und die Hilfspumpe 78 sind gegenüber der Ausführungsform gemäß Fig. 3 vorteilhafter Weise etwas stärker ausgelegt, so dass mittels der Hilfspumpe 78 das Doppelkupplungsgetriebe 10 mit dem für seine Funktion notwendigen Systemdruck versorgt werden kann. Die Ausführungsform gemäß Fig. 4 eignet sich für Fahrzeuge mit Stopp-Start-Systemen und für Hybridfahrzeuge, bei denen die Brennkraftmaschine 40 automatisch selbsttätig in bestimmten Betriebsphasen abgestellt wird und im Bedarfsfalle rasch wieder zugeschaltet wird. Bei stillstehender Brennkraftmaschine 40 und abfallendem Systemdruck in der Versorgungsleitung 44 wird der Elektromotor 81 aktiviert und die Leitung 80 über die Ventileinrichtung 84 mit der Hilfszufuhrleitung 82 verbunden, die in die Zufuhrleitung 38 mündet. Vorteilhafter Weise ist zwischen der Mündung der Hilfszufuhrleitung 82 in die Zufuhrleitung 38 und der Pumpe 32 ein nicht dargestelltes Rückschlagventil angeordnet, das eine Flüssigkeitsströmung aus der Hilfszufuhrleitung 82 durch die Pumpe 32 hindurch verhindert. Somit ist in Phasen, in denen die Brennkraftmaschine 40 steht, die Funktionsfähigkeit des Doppelkupplungsgetriebes 10 weiterhin gewährleistet. Bei vorhandenem Systemdruck wird der Elektromotor 81 vorteilhafter Weise abgeschaltet, oder läuft, falls Kühlbedarf für die Kupplungen besteht, weiter, so dass zur Kühlung der Kupplungen Hydraulikflüssigkeit bereitsteht, die von der Pumpe 32 durch die Leitungen 82, 38, das Ventil 42 und die Leitung 66 zur Kühlleitung 72 gefördert wird oder unmittelbar von der Leitung 80 in die Kühlleitung 72 gefördert wird. Im Übrigen entspricht die Funktion der Anordnung gemäß Fig. 4 der der Fig. 3.
Bezugszeichenliste
Doppelkupplungsgetriebe 76 Flüssigkeitsvorrat
Eingangswelle 78 Hilfspumpe
Eingangswelle 80 Leitung
Getriebeaktor 81 Elektromotor
Getriebeaktor 82 Hilfszufuhrleitung
Getriebeaktor 84 Ventileinrichtung
Getriebeaktor
Kupplungsaktor
Kupplungsaktor
Hydrauliksystem
Pumpe
Hydraulikflüssigkeitsvorrat
Filter
Zufuhrleitung
Brennkraftmaschine
System ventil
Versorgungsleitung
Druckspeicher Schalmagnet
Ventil
Steuerventil
Steuerventil
Steuerventil
Umschaltventil
Ausgänge elektronische Steuereinrichtung
Eingänge
Rücklaufleitung
Kühlsteuerventil
Kupplungskühleinrichtung
Kühlleitung
Rückführleitung

Claims

Patentansprüche
1. Hydrauliksystem zur Steuerung eines mit Nasskupplungen (K1 , K2) arbeitenden Doppelkupplungsgetriebes (10), welches System eine Pumpe (32) zum Bereitstellen eines Systemdruckes in einer Versorgungsleitung (44), eine Steuerventileinrichtung (52, 54) zum individuellen Beaufschlagen von Kupplungsaktoren (24 ,26) mit aus dem Systemdruck abgeleitetem, in Abhängigkeit von Betriebszuständen moduliertem Betätigungsdruck, und ein Systemventil (42) enthält, welches bei Erreichen des Systemdruckes von der Pumpe geförderte Hydraulikflüssigkeit in eine Rücklaufleitung (66) leitet, wobei die durch die Rücklaufleitung strömende Hydraulikflüssigkeit den Kupplungen für deren Kühlung zuführbar ist.
2. Hydrauliksystem nach Anspruch 1 , enthaltend ein Kühlsteuerventil (68, 84) zum Steuern der den Kupplungen (K1 , K2) zugeführten Hydraulikflüssigkeitsmenge.
3. Hydrauliksystem nach Anspruch 1 oder 2, wobei die Pumpe (32) von einer in einem das Doppelkupplungsgetriebe (10) enthaltenden Fahrzeugantriebsstrang enthaltenen Brennkraftmaschine (40) angetrieben ist.
4 Hydrauliksystem nach einem der Ansprüche 1 bis 3, enthaltend eine Hilfspumpe (78) zum bedarfgerechten Fördern von Kühlflüssigkeit zu den Kupplungen (K1 , K2).
5. Hydrauliksystem nach einem der Ansprüche 1 bis 4, wobei die Hilfspumpe (78) elektrisch angetrieben ist.
6. Hydrauliksystem nach Anspruch 5, wobei die Hilfspumpe (78) derart dimensioniert und derart in das Hydrauliksystem (30) integriert ist, dass mittels der Hilfspumpe in der Versorgungsleitung (44) ein Versorgungsdruck erzeugbar ist.
7. Hydrauliksystem nach einem der Ansprüche 1 bis 6, wobei die Versorgungsleitung (44) mit einem Druckspeicher (46) verbunden ist.
BERICHTBGTES BLATT (REGEL 91) ISA/EP
PCT/DE2008/000252 2007-03-07 2008-02-11 Hydrauliksystem zur steuerung eines mit nasskupplungen arbeitenden doppelkupplungsgetriebes WO2008106920A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112008000438.2T DE112008000438B4 (de) 2007-03-07 2008-02-11 Hydrauliksystem zur Steuerung eines mit Nasskupplungen arbeitenden Doppelkupplungsgetriebes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US90533807P 2007-03-07 2007-03-07
US60/905,338 2007-03-07
US93653707P 2007-06-21 2007-06-21
US60/936,537 2007-06-21

Publications (1)

Publication Number Publication Date
WO2008106920A1 true WO2008106920A1 (de) 2008-09-12

Family

ID=39400887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000252 WO2008106920A1 (de) 2007-03-07 2008-02-11 Hydrauliksystem zur steuerung eines mit nasskupplungen arbeitenden doppelkupplungsgetriebes

Country Status (3)

Country Link
US (1) US8267233B2 (de)
DE (2) DE102008008454A1 (de)
WO (1) WO2008106920A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453126A (zh) * 2013-08-30 2013-12-18 长城汽车股份有限公司 双离合器变速器冷却润滑系统以及变速器
DE102020105331A1 (de) 2020-02-28 2021-09-02 Schaeffler Technologies AG & Co. KG Druckspeicher mit integriertem Druckbegrenzungsventil

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005754B4 (de) * 2009-01-23 2021-04-15 Daimler Ag Hydraulische Steuerung für ein automatisiertes Zahnräderwechselgetriebe eines Kraftfahrzeugs
DE102009019959A1 (de) 2009-05-05 2010-11-11 Daimler Ag Antriebsstrangvorrichtung
US8475336B2 (en) 2009-07-30 2013-07-02 GM Global Technology Operations LLC Hydraulic control system for a dual clutch transmission
US8225687B2 (en) 2009-09-09 2012-07-24 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8429994B2 (en) 2009-09-09 2013-04-30 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8403792B2 (en) 2009-10-21 2013-03-26 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8192176B2 (en) 2009-12-10 2012-06-05 GM Global Technology Operations LLC Hydraulic fluid supply system having active regulator
US8443687B2 (en) 2009-12-14 2013-05-21 GM Global Technology Operations LLC Electro-hydraulic control system for a dual clutch transmission
US8887498B2 (en) 2009-12-18 2014-11-18 Gm Global Technology Operations, Llc Transmission hydraulic control system having an accumulator bypass valve assembly
US8402855B2 (en) 2010-01-11 2013-03-26 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8567580B2 (en) 2010-01-22 2013-10-29 GM Global Technology Operations LLC Electro-hydraulic control system for a dual clutch transmission
US8413777B2 (en) 2010-02-17 2013-04-09 GM Global Technology Operations LLC High efficiency hydraulic transmission control system
US8234946B2 (en) * 2010-02-17 2012-08-07 GM Global Technology Operations LLC Hydraulic control system for a dual clutch transmission
US8839928B2 (en) 2010-12-02 2014-09-23 Gm Global Technology Operations, Llc Electro-hydraulic control system for a dual clutch transmission
US8733521B2 (en) 2010-12-06 2014-05-27 Gm Global Technology Operations Apparatus for and method of controlling a dual clutch transmission
US8904893B2 (en) * 2010-12-06 2014-12-09 Gm Global Technology Operations, Llc Method of controlling a dual clutch transmission
US8738257B2 (en) 2010-12-08 2014-05-27 Gm Global Technology Operations, Llc Electro-hydraulic control system and method for a dual clutch transmission
US8740748B2 (en) 2010-12-08 2014-06-03 Gm Global Technology Operations, Llc Control system and method for a dual clutch transmission
US8702564B2 (en) 2010-12-09 2014-04-22 GM Global Technology Operations LLC Electro-hydraulic control system and method for a dual clutch transmission
US8942901B2 (en) 2010-12-09 2015-01-27 Gm Global Technology Operations, Llc Method of controlling a hydraulic control system for a dual clutch transmission
JP5500387B2 (ja) * 2011-01-11 2014-05-21 株式会社デンソー 自動変速機用アイドルストップ油圧制御装置
DE102011100837B4 (de) * 2011-05-06 2017-10-12 Audi Ag Kupplungsgetriebe, Verfahren zum Betreiben eines Kupplungsgetriebes
DE102011100862B4 (de) * 2011-05-06 2022-12-15 Audi Ag Doppelkupplungsgetriebe
DE102012203184A1 (de) * 2012-03-01 2013-09-05 Zf Friedrichshafen Ag Vorrichtung, Verfahren und Computerprogramm zur Betätigung einer Trennkupplung
EP2828621B1 (de) 2012-03-23 2017-09-06 Pacific Rim Engineered Products (1987) Ltd. Getriebekupplungsmechanismus für getriebe und zugehörige verfahren
CA2866935A1 (en) 2012-03-23 2013-09-26 Pacific Rim Engineered Products (1987) Ltd. Dual clutch type power transmission with alternative torque transmission path providing alternative ratios
US8955661B2 (en) * 2012-08-27 2015-02-17 GM Global Technology Operations LLC Electro-hydraulic control system using shift valves for a hybrid drive unit
EP2762752B1 (de) * 2013-01-30 2017-06-21 C.R.F. Società Consortile per Azioni Fahrzeuggetriebe
DE102015206785A1 (de) * 2015-04-15 2016-10-20 Volkswagen Aktiengesellschaft Hydrauliksystem eines Kraftfahrzeugs
DE102017115453A1 (de) * 2017-07-11 2019-01-17 Schaeffler Technologies AG & Co. KG Verfahren und System zum fluidischen Betätigen von zwei Teilkupplungen
DE102018214427A1 (de) * 2018-08-27 2020-02-27 Zf Friedrichshafen Ag Hydrauliksystem für ein Doppelkupplungsgetriebe
DE102018007462A1 (de) 2018-09-21 2020-03-26 Fte Automotive Gmbh Hydraulische Vorrichtung zur Getriebeschmierung und Kupplungskühlung für ein Kraftfahrzeug
DE102019100377A1 (de) 2019-01-09 2020-07-09 Schaeffler Technologies AG & Co. KG Hydrauliksystem
DE102019100376A1 (de) 2019-01-09 2020-07-09 Schaeffler Technologies AG & Co. KG Hydrauliksystem
DE102019100356A1 (de) 2019-01-09 2020-07-09 Schaeffler Technologies AG & Co. KG Hydrauliksystem
DE102020119162A1 (de) 2020-07-21 2022-01-27 Schaeffler Technologies AG & Co. KG Hydrauliksystem und Verfahren
DE102020119161B4 (de) 2020-07-21 2022-03-17 Schaeffler Technologies AG & Co. KG Hydrauliksystem und Verfahren zum Betreiben eines Hydrauliksystems
DE102021104960B4 (de) 2021-03-02 2024-03-21 Schaeffler Technologies AG & Co. KG Hydrauliksystem und Verfahren zum Betreiben eines Hydrauliksystems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1276461B (de) * 1961-04-21 1968-08-29 Gen Motors Corp Steuereinrichtung fuer Kraftfahrzeugwechselgetriebe
EP0980995A2 (de) * 1998-08-18 2000-02-23 Honda Giken Kogyo Kabushiki Kaisha Schmiermitteldruckregler
DE10042749A1 (de) * 1999-10-04 2001-04-05 Luk Lamellen & Kupplungsbau Getriebe
DE102005013137A1 (de) * 2005-03-22 2006-09-28 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur Steuerung einer Ölversorgung für ein Automatgetriebe und ein Anfahrelement
DE102005015911A1 (de) * 2005-04-07 2006-10-12 Volkswagen Ag Hydrauliksystem für ein Kraftfahrzeug

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2461218A (en) * 1945-08-10 1949-02-08 Clark Equipment Co Transmission control system
US3872957A (en) * 1973-11-28 1975-03-25 Zahnradfabrik Friedrichshafen Fluid-supply system for hydraulic coupling
US4093051A (en) * 1976-08-02 1978-06-06 Allis-Chalmers Corporation Hydraulic control system for power shift transmission
FR2799255B1 (fr) * 1999-10-04 2006-09-08 Luk Lamellen & Kupplungsbau Boite de vitesses ,notamment boite de vitesses automatique a dispositif de regulation du flux volumique.
DE10148424A1 (de) * 2001-01-12 2002-07-18 Zf Sachs Ag Kraftfahrzeug mit einem eine Mehrfach-Kupplungseinrichtung aufweisenden Antriebsstrang
DE50113710D1 (de) * 2001-01-12 2008-04-17 Volkswagen Ag Kraftfahrzeug mit einem eine Mehrfach-Kupplungseinrichtung aufweisenden Antriebsstrang
DE10143833B4 (de) * 2001-09-07 2013-06-06 Zf Friedrichshafen Ag Kupplungssystem in einem Antriebsstrang zwischen einer Antriebseinheit und einem Getriebe
DE10163404B4 (de) * 2001-12-21 2009-06-04 Zf Sachs Ag Verfahren zur Steuerung eines Kupplungssystem mit wenigstens einer Lamellen-Kupplungsanordnung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1276461B (de) * 1961-04-21 1968-08-29 Gen Motors Corp Steuereinrichtung fuer Kraftfahrzeugwechselgetriebe
EP0980995A2 (de) * 1998-08-18 2000-02-23 Honda Giken Kogyo Kabushiki Kaisha Schmiermitteldruckregler
DE10042749A1 (de) * 1999-10-04 2001-04-05 Luk Lamellen & Kupplungsbau Getriebe
DE102005013137A1 (de) * 2005-03-22 2006-09-28 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur Steuerung einer Ölversorgung für ein Automatgetriebe und ein Anfahrelement
DE102005015911A1 (de) * 2005-04-07 2006-10-12 Volkswagen Ag Hydrauliksystem für ein Kraftfahrzeug

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453126A (zh) * 2013-08-30 2013-12-18 长城汽车股份有限公司 双离合器变速器冷却润滑系统以及变速器
CN103453126B (zh) * 2013-08-30 2016-01-20 长城汽车股份有限公司 双离合器变速器冷却润滑系统以及变速器
DE102020105331A1 (de) 2020-02-28 2021-09-02 Schaeffler Technologies AG & Co. KG Druckspeicher mit integriertem Druckbegrenzungsventil

Also Published As

Publication number Publication date
DE112008000438A5 (de) 2009-12-03
DE102008008454A1 (de) 2008-09-11
US20080223683A1 (en) 2008-09-18
US8267233B2 (en) 2012-09-18
DE112008000438B4 (de) 2017-03-23

Similar Documents

Publication Publication Date Title
DE112008000438B4 (de) Hydrauliksystem zur Steuerung eines mit Nasskupplungen arbeitenden Doppelkupplungsgetriebes
DE102005014654B4 (de) Kraftfahrzeug-Hydraulikpumpe
EP1446590B2 (de) Antriebsstrang für ein kraftfahrzeug
EP2667053B1 (de) Kühlanordnung und Kühlverfahren für KFZ-Antriebsstrang
EP1960681B1 (de) Hydrauliksystem an kraftfahrzeugen
EP3468826B1 (de) Hydraulisches kupplungsbetätigungssystem mit on-demand kupplungsbeölung
EP3134664B1 (de) Getriebevorrichtung mit einem hydrauliksystem
EP2930388B1 (de) Kupplungsanordnung und verfahren zu deren betätigung
WO2015067259A1 (de) Fluidanordnung
DE112007002509B4 (de) Hydraulische Steuerung für ein Doppelkupplungsgetriebe
WO2008055464A2 (de) Hydraulische steuerung für ein doppelkupplungsgetriebe
EP1522754B1 (de) Druckmedium-Notversorgung für ein Kupplungssystem und ein die Druckmedium-Notversorgung aufweisender Kraftfahrzeug-Antriebsstrang
WO2012152386A1 (de) Hydraulikkreis, verfahren zum betreiben
EP3227587A2 (de) Parksperrenvorrichtung
DE102015204673B3 (de) Hydraulikanordnung für eine hydraulisch betätigte Reibkupplung und Verfahren zum Betätigen einer hydraulisch betätigten Reibkupplung
EP2924312B1 (de) Kupplungsanordnung, Kraftfahrzeugantriebsstrang und Kupplungssteuerverfahren
DE102014209856A1 (de) Hydraulische Versorgungsvorrichtung
DE102011100838B4 (de) Doppelkupplungsgetriebe, mit wenigstens einer Pumpe, einem der Pumpe nachgeschalteten Volumensteuerventil, einem der Pumpe nachgeschalteten Kühler und einem dem Kühler nachgeschalteten Schaltventil
DE102006058357A1 (de) Vorrichtung zur Energierückgewinnung
EP3516273A1 (de) Hydraulikmittelaufbereitung mit ölversorgung durch duales pumpensystem
WO2020043235A1 (de) Hydrauliksystem und antriebseinheit
WO2013110526A1 (de) Hydraulikanordnung
DE102017130920B4 (de) Aktuatoranordnung für einen Kraftfahrzeugantriebsstrang und Verfahren zu dessen Betreiben
DE102020205759B3 (de) Hydraulikkreis für ein Doppelkupplungsgetriebe sowie ein Verfahren zum Betreiben des Hydraulikkreises
DE102011100837B4 (de) Kupplungsgetriebe, Verfahren zum Betreiben eines Kupplungsgetriebes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080004382

Country of ref document: DE

REF Corresponds to

Ref document number: 112008000438

Country of ref document: DE

Date of ref document: 20091203

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08715483

Country of ref document: EP

Kind code of ref document: A1