WO2008105553A1 - 成形品の製造方法 - Google Patents

成形品の製造方法 Download PDF

Info

Publication number
WO2008105553A1
WO2008105553A1 PCT/JP2008/053725 JP2008053725W WO2008105553A1 WO 2008105553 A1 WO2008105553 A1 WO 2008105553A1 JP 2008053725 W JP2008053725 W JP 2008053725W WO 2008105553 A1 WO2008105553 A1 WO 2008105553A1
Authority
WO
WIPO (PCT)
Prior art keywords
granular material
weight
parts
pellet
molded article
Prior art date
Application number
PCT/JP2008/053725
Other languages
English (en)
French (fr)
Inventor
Seiichi Tanabe
Yoshiaki Abe
Original Assignee
Teijin Chemicals Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd. filed Critical Teijin Chemicals Ltd.
Priority to CNA2008800011174A priority Critical patent/CN101558103A/zh
Priority to US12/449,689 priority patent/US8158747B2/en
Priority to JP2009501330A priority patent/JP5401304B2/ja
Priority to KR1020097017746A priority patent/KR101443409B1/ko
Priority to EP08721145.4A priority patent/EP2128187B1/en
Publication of WO2008105553A1 publication Critical patent/WO2008105553A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • C08G64/406Purifying; Drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a method for producing a molded article having excellent hue and transparency from a powder of a polycarbonate resin resin having excellent heat resistance.
  • Polystrength Ponate resin is a material having relatively high heat resistance among polymer materials.
  • additives such as mold release agents and UV absorbers
  • the heat resistance of the material tends to decrease.
  • a release agent is often mixed in the resin composition, but when an effective amount of these release agents is added,
  • the polycarbonate resin may be colored by decomposition of the mold release agent itself at the time of thermoforming, or the decomposition product induces deterioration of the polycarbonate resin.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 1-0 8 1 3 0 2
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 00 1-1 9 2 5 4 4 Disclosure of the invention
  • An object of the present invention is to provide a method for producing a molded article made of a polycarbonate resin and having excellent hue and transparency.
  • the present inventors diligently studied the cause of coloring when melt-molding a granular material composed of a polystrength Ponate resin. As a result, it was found that when the soot in the tank for blending and storing the powder particles adheres to the powder particles, the melt-formed molded product is colored. In addition, if the granular material is transported in a bag having a polyethylene film containing an amide compound as an additive on its inner surface, the amide compound adheres to the surface of the granular material, and the powder is melt-molded. It has been found that the resulting molded product is colored. The present invention is based on these findings.
  • the present invention is a method for producing a molded product by melting and molding a granular material made of a polycarbonate resin at a temperature of 280 ° C. to 380 ° C.
  • the granular material has the following conditions ( It is a method for producing a molded article characterized by satisfying a).
  • the granular material preferably satisfies the following condition (b) in addition to the condition (a).
  • condition (b) When 100 parts by weight of granular material was washed with 00 parts by weight of MeOH, the total amount of oleic acid amide, erucic acid amide and stearic acid amide eluted in the MeOH cleaning solution was 1 ⁇ 50 ppb.
  • the molded product is an optical lens.
  • the molded product is preferably a spectacle lens.
  • the present invention is a method for preventing coloring of a molded product when molding a granular material made of a polystrength resin, wherein the granular material satisfies the following condition (a): It includes a method for preventing coloring of a molded product as a feature.
  • the granular material preferably satisfies the following condition (b) in addition to the condition (a).
  • condition (b) When 100 parts by weight of granular material was washed with 00 parts by weight of MeOH, the total amount of oleic acid amide, erucic acid amide and stearic acid amide eluted in the MeOH cleaning solution was 1 ⁇ 50 ppb.
  • the molded product is preferably an optical lens.
  • the molded product is preferably a spectacle lens.
  • the granular material used for this invention consists of polycarbonate resin.
  • Polycarbonate resin (hereinafter sometimes referred to simply as “poly-strength Ponate”) is obtained by reacting divalent phenol with a striking Ponate precursor.
  • the reaction method is the interfacial polycondensation method. Examples thereof include a melt transesterification method, a solid phase ester exchange method using a strong Ponate prepolymer, and a ring-opening polymerization method using a cyclic carbonate compound.
  • divalent phenol examples include hydroquinone, resorcinol, 4, 4'-biphenol, 1,1_bis (4-hydroxyphenyl) ethane, 2,2 monobis (4-hydroxyphenyl) propane (common name) "Bisphenol A”;), 2, 2-bis (4-hydroxy-1-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) 1 Monophenyl, 1, 1-bis (4-hydroxyphenyl) cyclohexane, 1, 1-bis (4-hydroxyphenyl) 1, 3, 3, 5-trimethylcyclohexane, 2, 2-bis (4-hydroxyphenyl) pentane, 4, 4, 1 (p-phenylene diisopropylidene) diphenol, 4, 4 '— (m-phenylene diisopropylidene) diphenol, 1, 1 monobis (4-hydride) Loxyphenyl) 1-4 monoisopropyl hexane, bis (4-hydroxyphenyl) oxide
  • a polycarbonate having a bis (4-hydroxyphenyl) alkane, particularly bisphenol A (hereinafter sometimes abbreviated as “BPA”) as a main component is preferable.
  • the content of the BPA component is preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 100 mol% or more.
  • the polycarbonate mainly composed of bisphenol A in addition to the polycarbonate mainly composed of bisphenol A, it is possible to use, as the component A, a special polystrength Ponate produced using other divalent phenols.
  • BPM 4, 4, 1 (m-phenol dirange isopropylidene) diphenol
  • B is—TMC 1, 1 bis (4- Hydroxyphenyl) cyclohexane
  • B is—TMC 1, 1-bis (4-hydroxyphenyl) 1, 3, 3, 5-trimethylcyclohexane
  • BCF 9, 9 —Polystrength using bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • the carbonate precursors include carbonyl halides, strong mononate esters, haloformates, and the like, and specific examples include phosgene, diphenyl carbonate, or dihaloformates of divalent phenol.
  • the polycarbonate may be a branched poly force-ponate obtained by copolymerization of a trifunctional or higher polyfunctional aromatic compound.
  • the trifunctional or higher polyfunctional aromatic compounds used here are 1, 1, 1-tris (4-hydroxyphenyl) ethane, 1, 1, 1 tris (3, 5-dimethyl-4-hydroxy). For example).
  • Polystrength Ponate is a polyester carbonate copolymerized with aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid, and copolymerized with bifunctional alcohol (including alicyclic).
  • Polycarbonate and polyester polyester monoponate obtained by copolymerizing such bifunctional sulfonic acid and bifunctional alcohol together may be used. Also, a mixture obtained by blending two or more of the obtained polycarbonates can be used.
  • the reaction by the interfacial polycondensation method is usually a reaction of divalent phenol and phosgene, and is reacted in the presence of an acid binder and an organic solvent.
  • an acid binder an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is preferably used.
  • an organic solvent halogenated hydrocarbons such as methylene chloride and black benzene are preferably used.
  • a catalyst such as tertiary amine such as triethylamine, tetra-n-butyl monumumbumide, tetra-n-butylphosphonium bromide, quaternary ammonium compound, quaternary phosphonium compound, etc. it can.
  • the reaction temperature is usually 0 to 40
  • the reaction time is preferably about 10 minutes to 5 hours
  • the pH during the reaction is preferably kept at 9 or more.
  • a terminal terminator is usually used.
  • Monofunctional phenols can be used as such terminal terminators.
  • monofunctional phenols such as phenol, p-tert-butylphenol, and p-cumylphenol are preferably used.
  • the organic solvent solution of the polystrength Ponate resin obtained by the interfacial polycondensation method is usually washed with water. This water washing step is preferably performed with water having an electric conductivity of 10 SZ cm or less, such as ion-exchanged water, and more preferably 1 SZ cm or less.
  • the organic solvent solution phase and the aqueous phase are separated using a centrifuge, etc., and the organic solvent solution phase is removed repeatedly to remove water-soluble impurities.
  • the organic solvent solution phase is removed repeatedly to remove water-soluble impurities.
  • the organic solvent solution of the polycarbonate resin is preferably subjected to acid cleaning or alkali cleaning in order to remove impurities such as a catalyst.
  • the organic solvent solution is preferably removed of foreign substances that are insoluble impurities.
  • a method for removing the foreign matter a method of filtering or a method of treating with a centrifuge is preferably employed.
  • the organic solvent solution that has been subjected to water washing is then subjected to an operation of removing the solvent to obtain a polycarbonate resin powder.
  • the discharged slurry can then be subjected to hot water treatment.
  • the slurry is supplied to a hot water treatment vessel containing hot water at 90 to 100 ° C, or the water temperature is adjusted to 90 to 100 by blowing steam after the supply. By setting the temperature to 0 ° C, the organic solvent contained in the slurry is removed.
  • the slurry discharged in the granulation process or the slurry after the hot water treatment is preferably filtered, centrifuged, etc. to remove water and organic solvent, and then dried to form a powder (powder or flake) ) Can be obtained.
  • the drying machine may be a conduction heating system or a hot air heating system, and the granular material may be allowed to stand, transport or agitate.
  • a grooved or cylindrical dryer in which powder particles are stirred by a conductive heating method is preferable, and a grooved dryer is particularly preferable.
  • the drying temperature is preferably in the range of 130 ° C to 150 ° C.
  • the granular material obtained after drying can be pelletized by a melt extruder. This pellet is used for molding.
  • the reaction by the melt transesterification method is usually a transesterification reaction between divalent phenol and carbonate ester, and is produced by mixing divalent phenol and carbonate ester with heating in the presence of an inert gas. This is done by distilling off alcohol or phenol.
  • the reaction temperature depends on the boiling point of the alcohol or phenol produced, etc. In most cases, it is in the range of 120 to 350 ° C.
  • the reaction system is depressurized to about 1.33 X 10 3 to 13.3 Pa to facilitate the distillation of the alcohol or phenol produced.
  • the reaction time is usually about 1 to 4 hours.
  • carbonate ester examples include an ester such as an aryl group having 6 to 10 carbon atoms, an aralkyl group, or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • Ponates are preferred.
  • the molten polystrengthened resin obtained by the melt transesterification method can be pelletized by a melt extruder. This pellet is used for molding.
  • the viscosity-average molecular weight of the polycarbonate resin 1. 0 X 1 0 4 ⁇ 5.
  • 0 X 1 0 4 ranges preferably, 1. 2 X 1 0 4 ⁇ 3 . More preferably 0 X 1 0 4 range, 1 A range of 5 X 10 4 to 2.8 X 10 4 is more preferable. If it is less than 1. 0 X 1 0 4 , the strength and the like will decrease, and if it exceeds 5. OX 1 0 4 , the molding process characteristics will be reduced.
  • Viscosity average molecular weight First, the specific viscosity (7) SP calculated by the following formula is salted at 20 ° C. Obtained from a solution of 0.7 g of polycarbonate resin in 100 ml of methylene chloride using a Ostwald viscometer,
  • Viscosity average molecular weight M is calculated from the obtained specific viscosity (7? SP ) force and the following formula.
  • the viscosity average molecular weight of a granular material when measuring the viscosity average molecular weight of a granular material, it can carry out in the following way. That is, the granular material is dissolved in 20 to 30 times its weight of methylene chloride, the soluble component is collected by Celite filtration, the solution is removed and dried sufficiently, and the solid salt methylene soluble component is solid. Get. Using a Ostwald viscometer, the specific viscosity (7i SP ) at 20 ° C is determined from a solution of 0.7 g of the solid dissolved in 100 ml of methylene chloride, and the viscosity average molecular weight M is calculated by the above equation.
  • the granular material includes shapes such as powder, pellets, and flakes.
  • the shape of the pellet may be a general shape such as a cylinder, a prism, or a sphere, but more preferably a cylinder.
  • the diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and even more preferably 2 to 3.3 mm.
  • the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.
  • the present invention is characterized in that the Fe compound or the amide compound adhering to the surface is reduced to a specific amount or less when the powder is produced, preserved, blended or transported.
  • the granular material satisfies the following condition (a). That is, the powder is: (a) When 100 parts by weight of powder is washed with 100 parts by weight of 1N nitric acid aqueous solution, the Fe compound that elutes in the cleaning solution of 1N nitric acid aqueous solution 1 in conversion ⁇ : L 00 p pb.
  • the amount of the Fe compound is 1 to 5 in terms of Fe atom relative to the powder; L 00 ppb, preferably 1 to 50 ppb, more preferably 1 to 40 ppb, more preferably 1 to 25 ppb, and particularly preferably 1 ⁇ 10 ppb.
  • L 00 ppb preferably 1 to 50 ppb, more preferably 1 to 40 ppb, more preferably 1 to 25 ppb, and particularly preferably 1 ⁇ 10 ppb.
  • the amount in terms of Fe atom exceeds 100 ppb, the heat resistance is lowered, and the hue of the molded product obtained by melt-molding the powder tends to deteriorate. It is not preferable.
  • the amount of Fe compound can be measured by the following method. That is, wash the quartz glass Erlenmeyer flask and quartz glass rod with 1N aqueous nitric acid solution in advance, and confirm that the Fe component is 0.1 ppb or less in the 1N aqueous nitric acid solution. Next, put 100 parts by weight of powder into a conical flask, then add 100 parts by weight of 1N nitric acid aqueous solution, stir for 1 minute with the confirmed glass rod, let stand for 2 hours, stir again for 1 minute, Then, let stand and quantify the Fe by ICP emission analysis.
  • the Fe compound on the surface of the powder increases when it comes into contact with tanks, containers, pipes, etc., which have a powder and stainless steel (SUS) containing Fe on the inner surface.
  • SUS powder and stainless steel
  • the increase in Fe compounds adhering to the surface of the granular material is noticeable due to the occurrence of cracks in the interior of tanks, containers, pipes, etc., and cracks in the welds on the inner surface. Become.
  • the amount of the Fe compound adhering to the surface of the granular material can be reduced by washing the granular material with an aqueous nitric acid solution.
  • the amount of Fe compound on the surface of the granular material stored in the tank is measured periodically, and the granular material with the Fe compound adhering to the standard value has hue and transparency. Do not use for manufacturing products.
  • the granular material to which the Fe compound exceeding the reference value is adhered can be blended with the granular material having a small amount of the Fe compound adhered and used for molding.
  • the granular material used for molding is characterized in that the Fe compound adhering to the surface is in a specific range.
  • the present invention is a method for producing a molded product by melting and molding a granular material made of a polycarbonate resin stored in a tank at a temperature of 280 ° C to 380 ° C, wherein the granular material is Includes a method of forming after confirming that the condition (a) is satisfied.
  • the amide compound adheres to the surface of the granular material, and the granular material is melt-molded. This is based on the finding that the molded product obtained at this time is colored.
  • the powder material satisfies the following condition (b) in addition to the above condition).
  • the amount of the amide compound is preferably 1 to 40 ppb, more preferably 1 to 25 ppb, and still more preferably 1 to 10 ppb relative to the powder. If the amount of the amide compound exceeds 5 O p pb, the heat resistance is lowered, and the hue of the molded product obtained by melt-molding the powder tends to deteriorate. In particular, the presence of the Fe compound force S causes the deterioration of the hue to become obvious. It becomes easy and it is not preferable.
  • the amount of the amide compound adhering to the surface of the granular material can be measured by the following method. That is, a quartz glass Erlenmeyer flask and a quartz glass rod were previously washed with MeOH, and each Eramide compound component was confirmed to be 0.1 l ppb or less in the MeOH cleaning solution. Add 100 parts by weight of powder and then add 00 parts by weight of MeOH. Stir with a glass rod made of quartz glass for 1 minute, let stand for 2 hours, stir again for 1 minute, and then leave it for a liquid layer. Quantify the amide compound using GC / MS. The amide compound is increased when the powder is in contact with a paper bag or the like having an inner surface of a polyethylene film containing the amide compound as an additive.
  • the polyethylene film may be crushed by vibration or the like, and the amide compound adhering to the surface of the granular material The increase is significant.
  • the amount of amide compound adhering to the surface of the granular material can be reduced by washing the granular material with MeOH. Moreover, it can be reduced by using a bag that does not use a polymer film containing an amide compound as an additive on the inner surface.
  • both the amount of the Fe compound and the amount of the amide compound component adhering to the surface of the granular material satisfy the above ranges.
  • the granular material of the present invention is melted and molded at a temperature of 2880 ° C to 3800 ° C. Molding can be performed by methods such as injection molding, compression molding, extrusion compression molding, rotational molding, blow molding, and sheet extrusion.
  • Molded products include eyeglass lenses, camera lenses, binocular lenses, microscope lenses, projector lenses, Fresnel lenses, lenticular lenses, f ⁇ lenses, optical lenses such as headlamp lenses and pickup lenses, automotive window glass, roofs, and headlamps. Covers, buttons for mobile phones, etc., or retardation plates, polarizing plates, light diffusers, various nameplates (instrument protective covers), helmet shields, and windshields for motorcycles, etc. It is done.
  • the production method of the present invention can be suitably used for molding optical lenses, particularly spectacle lenses, because a molded product having excellent heat resistance, hue, and total light transmittance (transparency) can be obtained.
  • a flat plate having a thickness of 5 mm and a hue (YI value) force of preferably 0.3 to 3.0, more preferably 0.5 to 2 by the transmission method according to AS TM D 1 9 25 0 molded products can be obtained.
  • a molded product having a total light transmittance of preferably 90% or more according to ISO 1 3 4 6 8 can be obtained with a flat plate having a thickness of 2 mm.
  • the present invention relates to a method for preventing coloring of a molded product when molding a granular material comprising a polycarbonate resin, wherein the granular material satisfies the above condition)) includes methods.
  • the molded article is preferably an optical lens, particularly a spectacle lens.
  • a release agent In the granular material, a release agent, a heat stabilizer, an ultraviolet absorber, a bluing agent, an antistatic agent, a flame retardant, a heat ray shielding agent, a fluorescent dye (fluorescent whitening) as long as the object of the present invention is not impaired.
  • a release agent In the granular material, a release agent, a heat stabilizer, an ultraviolet absorber, a bluing agent, an antistatic agent, a flame retardant, a heat ray shielding agent, a fluorescent dye (fluorescent whitening) as long as the object of the present invention is not impaired.
  • Pigments, light diffusing agents, reinforcing fillers, other resins, elastomers, and the like Pigments, light diffusing agents, reinforcing fillers, other resins, elastomers, and the like.
  • 90% by weight or more is preferably an ester of alcohol and fatty acid.
  • Specific examples of the ester of alcohol and fatty acid include -ester of alcohol and fatty acid and / or partial ester or total ester of polyhydric alcohol and fatty acid.
  • the ester of monohydric alcohol and fatty acid is preferably an ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • the partial ester or total ester of a polyhydric alcohol and a fatty acid is preferably a partial ester or total ester of a polyhydric alcohol having 1 to 25 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • monohydric alcohol, saturated fatty acid and ester examples include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like, and stearyl stearate is preferable.
  • partial esters or total esters of polyhydric alcohols and saturated fatty acids include stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, behenic acid monoglyceride, pentaerythritol monostearate, Penn erythritol tetrastearate, pentaerythritol 1 ⁇ monotetraperargonate, propylene glycol monostearate, biphenyl biphenate, sorben monostearate, 2- Cylhexyl stearate, dipentaerythritol] All or partial esters of dipentaerythritol such as ruhexa stearate.
  • esters stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and a mixture of stearic acid triglyceride and stearyl stearate are preferably used.
  • the amount of the ester in the release agent is preferably 90% by weight or more, more preferably 95% by weight or more, when the release agent is 100% by weight.
  • the content of the release agent in the granular material is preferably in the range of 0.05 to 2.0 parts by weight with respect to 100 parts by weight of the granular material, and 0.1 to 0.6 parts by weight.
  • the range of parts is more preferable, and the range of 0.02 to 0.5 parts by weight is more preferable.
  • heat stabilizer examples include a phosphorus heat stabilizer, a sulfur heat stabilizer, and a hindered phenol heat stabilizer.
  • Phosphorous heat stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof. Specific examples include triphenyl phosphite, tris (nonylphenyl) phosphite, tris ( 2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphate, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite , Dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl engineered phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite,
  • sulfur-based heat stabilizers examples include pen erythritol monotetrakis (3-lauryl thiopropionate), pen erythritol tetrakis (3-myristyl thiopropionate), pen erythritol monotetrakis (3-stearylthiopropionate), Dilauryl-3,3 'monodipropionate, dimyristyl 3,3' —thiodipropionate, distearyl 1,3,3 'monodipropionate, among others, pen erythritol monotetrakis (3— Laurylthiopropionate), pen erythritol-tetrakis (3-myristylthiopropionate), dilauryl-1,3'-thiodipropionate, dimi Listyl-3,3 'monothiodipropionate is preferred.
  • the zeolite compounds are commercially available from Sumitomo Chemical Co., Ltd. as Sumilizer TP-D (trade name), Sumilizer 1 TPM (trade name), etc., and can be easily used.
  • the content of the sulfur-based heat stabilizer in the powder is preferably 0.001 to 0.2 part by weight with respect to 100 parts by weight of the powder.
  • the ultraviolet absorber is at least one selected from the group consisting of a benzotriazole ultraviolet absorber, a benzophenone ultraviolet absorber, a triazine ultraviolet absorber, a cyclic imino ester ultraviolet absorber and a cyanoacrylate ultraviolet absorber.
  • a UV absorber is preferred.
  • Benzotriazole UV absorbers include 2- (2-hydroxy-5-methylphenyl) benzotriazol, 2- (2-hydroxy-5- tert-year-old), 2- (2— Hydroxy-1,3,5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-3-tert-pentyl-5-methylphenyl) -1-5-clobenzobenzotriazole, 2,2'-methylenebis [4- (1, 1,3,3-tetramethylbutyl) 1 6_ (2N-benzotriazole-2-yl) phenol], 2- (2-hydroxy-1,3,5-benzyl tert-butylphenyl) benzotriazol, 2 2-Hydroxy 1,3,5-Di-tert-butylphenyl) — 5—Clocobenzotriazole, 2 -— (2-Hydroxy-3,5-di-tert-amylphenyl) benzotriazole 2- (2-hydroxy-5_tert-
  • 2- (2-hydroxy-5-methylphenyl) benzotriazole 2- (2-hydroxy-5_ tert-octylphenyl) benzotriazol, 2_ (2-hydroxy-3,5-dicumylphenyl) phenyl benzotriazole , 2— (2-hydroxy-3 _ tert-butyl-5-methylphenyl) 1-5-clobenzobenzoyl, 2, 2′-methylenebis [4 1 (1, 1, 3, 3-tetramethyl Butyl) 1 6- (2 H-benzotriazol-2-yl) phenol], 2- [2-hydroxy 1 3- (3, 4, 5, 6-tetrahydrophthalimidomethyl) —5-methylphenyl] benzo Triazole, more preferably 2- (2-hydroxy-5-tert-octylphenyl) benzotriazol, 2, 2, -methylenebis [4 (1, 1, 3, 3-tetramethylbutane Chill) 1 6- (2 H-benzotriazole-2-yl) phenol].
  • Benzophenone UV absorbers include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzoyloxybenzo.
  • Triazine UV absorbers include 2- (4, 6-diphenyl _ 1, 3, 5-triazine-2-yl) 1-5- [(hexyl) -aged] monophenol, 2- (4, 6- Bis (2,4-dimethylphenyl) — 1, 3, 5 _ ⁇ azine 2-yl) —5— [(Octyl) -year-old] phenol.
  • Cyclic imino ester UV absorbers include 2, 2 'monobis (3, 1 benzoxazine-4 one-on), 2, 2' one p-phenylene bis (3, 1-benzoxazine 4-1one) 2, 2 '1 m—Phenylene bis (3, 1 _Benzoxazine _4 one), 2, 2,-(4, 4, Diphenylene) bis (3, 1—Benzoxazine 4-1) 2, 2, 1 (2, 6-naphthalene) bis (3, 1-benzoxazine 4-one), 2, 2 '-(1, 5-naphthalene) bis (3, 1-benzoxazine 1 4 1), 2, 2 '-(2-methyl-p-phenylene) bis (3,1-benzoxazine 4-one), 2,2'-one (2-nitro-p-phenylene) bis ( 3, 1-benzoxazine-one) and 2, 2'-one (2-chloro-p-phenylene) bis (3,1-benzoxazine-one) Among
  • Cyanacrylate-based UV absorbers include 1,3_bis [(2 '—cyanol 3,, 3, —diphenylacryloyl)], 2,2-bis [(2—cyanol 3, 3) -Diphenylacryloyl) oxy] methyl) propane, and 1,3-bis ([(2-cyano 3,3-diphenylacryloyl) oxy] benzen.
  • the blending amount of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight, more preferably 0.02 to 1.0 parts by weight, more preferably 100 parts by weight of the granular material. From 0.05 to 0.8 parts by weight. Within such a blending amount range, it is possible to impart sufficient weather resistance to the poly-strength Ponate resin molded product depending on the application.
  • the bulging agent examples include Bayrex's Macrolex Violet B and Macrolex Blue RR, Clariant's Bolyslen Blue R L S, and the like.
  • the bluing agent is effective for eliminating the yellowishness of the powder.
  • a certain amount of UV absorber is blended, so there is a reality that the polycarbonate resin molded product tends to be yellowish due to the ⁇ action and color of the UV absorber ''.
  • a blending agent is very effective.
  • the blending amount of the bulging agent is preferably 0.05 to 1.5 ppm, more preferably 0.1 to 1.2 ppm, based on the powder.
  • a 300 ml Erlenmeyer flask made of quartz glass and a quartz glass rod were washed in advance with 100 ml of IN nitric acid aqueous solution, and it was confirmed that the Fe component in the washing solution of 1N nitric acid aqueous solution was 0.1 ppb or less.
  • the quartz glass Erlenmeyer flask was emptied, and 100 g of pellets were added to it, and then 100 g of 1N aqueous nitric acid solution was added, followed by stirring for 1 minute with a quartz glass rod. After standing for 2 hours, stir again for 1 minute, and then let stand to quantify the Fe atom content in the liquid layer by ICP emission spectrometry.
  • F in the Fe compound eluted in the cleaning solution of 1N aqueous nitric acid solution The weight of e-atom was expressed as the concentration (ppb) per pellet weight.
  • the 300 ml 1 Erlenmeyer flask made of quartz glass and the quartz glass rod were washed in advance with 00 ml of MeOH, and it was confirmed that the amide compound in the MeOH washing solution was 0.1 ppb or less.
  • the Erlenmeyer flask made of quartz glass was emptied, and 100 g of pellets were put in it, then 00 g of MeOH was added, and the mixture was stirred with a glass rod made of quartz glass for 1 minute. After standing for 2 hours, stir again for 1 minute, and then let stand to quantify the amide compound in the liquid phase with GCZMS, and the weight of the amide compound eluted in the MeOH cleaning solution Expressed as concentration (ppb).
  • a flat plate with a cylinder temperature of 300 ° C and a mold temperature of 105 ° C was formed with a length of 7 Omm x width 50 mm x thickness 5 mm.
  • the hue (YI value) of this 5 mm thick flat plate was measured according to AS TM D 1925 using a C light source, viewing angle of 2 °, and transmission method, using Co 1 o-Eye 700 OA manufactured by Gray Yu Macbeth.
  • the YI value varies with the amount of additive added. If the additive amount is the same, the lower the YI value, the less discoloration during molding and the better the heat resistance.
  • Polycarbonate resin powders listed in Table 1 and various additives are mixed in the proportions shown in Table 1 (Composition A), and melt-extruded with a twin-screw extruder using a production facility for polycarbonate resin pellets. 36 tons of pellets Got.
  • the obtained pellets were blended in a stainless steel (SUS) blending tank for 8 hours and then transferred to a SUS product tank.
  • the blending tank, product tank and peripheral equipment were used within one month after cleaning their interior.
  • the cleaning operation was performed by circulating the inside of the tank for 5 hours with a 20% nitric acid aqueous solution and a surfactant, followed by washing with pure water and then drying by blowing compressed air. (Pellet bag collection, transportation)
  • the product tank pellets were collected in a 25 kg paper bag made of polyethylene.
  • the pellets (1) were prepared by mixing 500 kg of pellets (20 bags of 25 kg) into the US warehouse for 5 minutes using a V-type blender. Part of the pellet (1) was transferred to a glass jar, sealed and sent back to Japan. By this procedure, the amount of the amide compound adhering to the pellet surface was measured by transporting the pellets stored in the polyethylene inner bag to the United States. There is no amide compound adhesion when returned in a glass bottle.
  • Pellets (2) were obtained in the same manner as in Example 1 except that a blending tank, a product tank and its peripheral equipment that had passed one year after washing were used. Table 2 shows the characteristics of the pellet (2) and the molded product obtained from it. Comparative Example 1
  • Pellets (C 1) were obtained in the same manner as in Example 1 except that a blending tank, a product tank and its peripheral equipment that had passed 3 years after washing were used. Table 2 shows the characteristics of the pellet (C 1) and the molded product obtained from it. Production example A
  • Example 2 Pellet transported to the United States in Example 1 (1) 10 kg was dispensed into a 50 L S US container equipped with a stirrer equipped with an agitator with an agitator blade, added with MeOHl O kg, and stirred for 5 minutes The solution was filtered using a SUS mesh with lmm openings. The pellet was rinsed with 5 kg of MeOH on a SUS net. This rinsing operation was further performed twice, and then dried at 50 ° C. and 133 Pa for 12 hours using a vacuum dryer to obtain pellets (1A). The pellet (1A) was placed in a glass container, sealed, and returned to Japan. The Fe compound and amide compound adhering to the surface of the pellet (1A) were quantified according to the above method. As a result, the amount of Fe compound on the surface of the pellet (1A) was less than 0.1 ppb, and the total amount of amido compound was less than 0.1 ppb.
  • Example 3 Example 3
  • Example 4 The pellet (C1) of Comparative Example 1 and the pellet (1A) of Production Example A were mixed by a blender at a ratio of 5:95 to obtain a pellet (3).
  • Table 2 shows the characteristics of the pellet (3) and the molded product obtained from it.
  • Example 4
  • the pellet (4) was prepared by mixing the pellet (C 1) of Comparative Example 1 and the pellet (1A) of Production Example A in a blender ratio of 40:60. Table 2 shows the characteristics of the pellet (4) and the properties of the molded product obtained from it.
  • Example 5
  • Example 1 The pellet (1) of Example 1 and the pellet (A1) of Production Example A were mixed by a blender at a ratio of 50:50 to obtain a pellet (5).
  • Table 2 shows the characteristics of the pellet (5) and the properties of the molded product obtained from it.
  • Example 2 Same as Example 1 except that blending tank, product tank and its peripheral equipment that passed 3 years after cleaning were used, and 150 kg of pellets were collected in a 200 L container made of SUS instead of paper bags.
  • the pellet (1B) was obtained by the method.
  • the pellet (1B) was not transported to the United States. As a result, the amount of Fe compound on the surface of the pellet (1B) was 96 ppb, and the total amount of amide compounds was less than 0.1 ppb.
  • Example 6 The pellet (1B) was not transported to the United States. As a result, the amount of Fe compound on the surface of the pellet (1B) was 96 ppb, and the total amount of amide compounds was less than 0.1 ppb.
  • Example 7 The pellet (C 1) of Comparative Example 1 and the pellet (1B) of Production Example B were mixed by a blender at a ratio of 5:95 to obtain a pellet (6).
  • Table 2 shows the characteristics of the pellet (6) and the molded product obtained from it.
  • Example 1 pellets (7) were obtained in the same manner as in Example 1 except that the polycarbonate resin composition of Composition B was used instead of Composition A described in Table 1. Table 2 shows the properties of the pellets (7) and the properties of the molded products obtained from them.
  • Example 8
  • Pellets (8) were obtained in the same manner as in Example 7, except that a blending tank, a product tank and its peripheral equipment that had passed 1 year after washing were used. Table 2 shows the characteristics of the pellet (8) and the properties of the molded product obtained from it. Comparative Example 2
  • Pellets (C2) were obtained in the same manner as in Example 7, except that the blending tank, product tank, and peripheral equipment that had passed 3 years after washing were used. Table 2 shows the characteristics of the pellet (C2) and the molded product obtained from it. Production example C
  • Example 10 The pellet (C2) of Comparative Example 2 and the pellet (7C) of Production Example C were mixed by a blender at a ratio of 5:95 to obtain a pellet (9). Table 2 shows the characteristics of the pellet (9) and the properties of the molded product obtained from it.
  • Example 10 The pellet (C2) of Comparative Example 2 and the pellet (7C) of Production Example C were mixed at a ratio of 40:60 by a blender to obtain a pellet (10). Table 2 shows the characteristics of the pellet (10) and the properties of the molded product obtained from it.
  • Example 11 The pellet (C2) of Comparative Example 2 and the pellet (7C) of Production Example C were mixed by a blender at a ratio of 5:95 to obtain a pellet (9). Table 2 shows the characteristics of the pellet (9) and the properties of the molded product obtained from it.
  • Example 10 The pellet (C2) of Comparative Example 2 and the pellet (7C) of Production Example C were mixed at a ratio of 40:60 by a blender to obtain a pellet (10). Table 2 shows the characteristics of the pellet (10)
  • Example 7 The pellet (7) of Example 7 and the pellet (7C) of Production Example C were mixed by a blender at a ratio of 50:50 to obtain a pellet (11).
  • Table 2 shows the characteristics of the pellet (11) and the properties of the molded product obtained from it.
  • Example 12 The same method as in Example 7 except that the blending tank, product tank and its peripheral equipment that were passed 3 years after cleaning were used, and 150 kg of pellets were collected in a SUS 200 L container instead of a paper bag. A pellet (7D) was obtained. The pellet (7D) was not transported to the United States. Fe compounds and amide compounds adhering to the (7D) surface of the pellets were measured. As a result, the amount of Fe compound on the surface of the pellet (7D) was 92 ppb, and the total amount of amide compounds was less than 0.1 ppb.
  • Example 12 The same method as in Example 7 except that the blending tank, product tank and its peripheral equipment that were passed 3 years after cleaning were used, and 150 kg of pellets were collected in a SUS 200 L container instead of a paper bag. A pellet (7D) was obtained. The pellet (7D) was not transported to the United States. Fe compounds and amide compounds adhering to the (7D) surface of the pellets were measured. As a result, the amount of Fe compound on the surface
  • Example 13 The pellet (C2) of Comparative Example 2 and the pellet (7D) of Production Example D were mixed by a blender at a ratio of 5:95 to obtain a pellet (12). Table 2 shows the properties of Perez (12) and the properties of the molded products obtained from it.
  • Example 13 The pellet (C2) of Comparative Example 2 and the pellet (7D) of Production Example D were mixed by a blender at a ratio of 5:95 to obtain a pellet (12).
  • Table 2 shows the properties of Perez (12) and the properties of the molded products obtained from it.
  • the main molding conditions were as follows.
  • PC-1 Polycarbonate resin powder produced by interfacial polymerization from bisphenol A and phosgene with an average molecular weight of 23,900 (manufactured by Teijin Chemicals Ltd .: Panlite (registered trademark) L-1250WP)
  • PC-2 Polystrength Ponate resin powder with viscosity average molecular weight of 22,400 manufactured by interfacial polymerization from bisphenol A and phosgene
  • UVA-1 2-(2'-hydroxy-1,5-tert-octylphenyl) Benzotriazole (Chemipro Chemical Co., Ltd .: Chemisorp 79 (trade name))
  • UVA-2 2— (3-tert-butyl-5-methyl-2-hydroxyphenyl) 15-black mouth benzotriazole (manufactured by Ciba Specialty Chemicals Co., Ltd .: Tinuvin 326 (trade name))
  • HS-1 A mixture of the following P-1 component, P-2 component, and P-3 component 71:15:14 (weight ratio) (manufactured by Clariant Japan Co., Ltd .: Sandstub P-EP Q (Product name))
  • P—1 component Tetrakis (2,4-di-tert-butylphenyl) —4,4'-biphenylendiphosphonite, Tetrakis (2,4-di-tert-butylphenyl) 1,4,3,1 biphenyl Phosphonite, and tetrakis (24 4-di-tert-butylphenyl) — 3, 3, bibiphosphorous diphosphonite 100: 50: 10 (weight ratio) mixture
  • P—2 component of bis (2,4-di-tert-butylphenyl) 1-phenyl 1-phenyl phosphonai 1 and bis (2,4-di-tert 1-butylphenyl) 1 3-phenyl phosphonite 5: 3 (weight ratio) mixture
  • P-3 component ⁇ squirrel (2,4-G-tert-butylphenyl) phosphite (release agent)
  • MR-1 Mixture of stearic acid triglyceride and stearyl stearate (Riken Vitamin Co., Ltd .: Riquemar SL-900 (trade name))
  • MR-2 Stearic acid monoglyceride (Riken Vitamin Co., Ltd .: Riquemar S-10 OA (trade name))
  • BR-1 Anthraquinone compound (manufactured by Bayer: Macrolex Bio Red B (trade name))
  • the powder particles used in the present invention are excellent in heat resistance
  • a molded article made of a polycarbonate resin and excellent in heat resistance, hue and transparency can be produced. According to the present invention, it is possible to produce a molded product excellent in heat resistance, hue and transparency by preventing coloring of the molded product when molding a granular material made of polycarbonate resin.
  • the method for manufacturing a molded product of the present invention can be used for manufacturing various molded products such as optical lenses and sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Eyeglasses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明の目的は、ポリカーボネート樹脂からなり、色相および透明性に優れた成形品を製造する方法を提供することにある。本発明は、ポリカーボネート樹脂からなる粉粒体を280℃~380℃の温度で溶融し、成形して成形品を製造する方法であって、該粉粒体が、下記条件(a)を満足することを特徴とする成形品の製造方法。(a)該粉粒体100重量部を1N硝酸水溶液100重量部で洗浄したときに、1N硝酸水溶液の洗浄液に溶出するFe化合物が、該粉粒体に対しFe原子換算で1~100ppbである。

Description

. 明 細 書 成形品の製造方法 技術分野
本発明は、 耐熱性に優れたポリカーポネ一卜樹脂の粉粒体から、 色相および透 明性に優れた成形品を製造する方法に関する。 背景技術
ポリ力一ポネート樹脂は高分子材料の中では比較的耐熱性に優れる材料である。 また、 材料の高機能化、 高性能化の要求が高まる中で、 ポリ力一ポネート樹脂に 離型剤や紫外線吸収剤などの添加剤を配合して特徴的な特性を付与する試みがな されている。 しかしながら、 一般的にこれら添加剤を配合すると材料の耐熱性が 低下する傾向がある。 例えば、 溶融成形時において樹脂成形品の金型からの離型 性を向上させる為に、 樹脂組成物中に離型剤が配合される場合が多いが、 これら 離型剤を有効量添加すると、 熱成形時に離型剤自体の分解により、 あるいはその 分解物がポリカーボネート樹脂の劣化を誘発することにより、 ポリカーボネート 樹脂を着色させることがある。
ポリカーボネート樹脂の耐熱性を向上させる方法として、 これまでにも数多く 提案がなされてきたが、 その多くはリン系、 硫黄系、 ヒンダードフエノール系等 の熱安定剤をポリカーポネ一ト樹脂に配合する方法である (特許文献 1および特 許文献 2参照)。 これらの熱安定剤を配合する方法はポリカーボネート樹脂の耐 熱性の向上に効果的な方法であるが、 これらの安定剤を添加しても十分に満足で きる耐熱性が得られないことがある。 また、 これらの熱安定剤を多量に使用する とポリ力一ポネート樹脂の機械物性ゃ耐加水分解性などの低下を引き起こす場合 がある。
(特許文献 1 ) 特開 2 0 0 1 - 0 8 1 3 0 2号公報
(特許文献 2 ) 特開 2 0 0 1—1 9 2 5 4 4号公報 発明の開示
本発明の目的は、 ポリカーボネート樹脂からなり、 色相および透明性に優れた 成形品を製造する方法を提供することにある。
本発明者らは、 ポリ力一ポネート樹脂からなる粉粒体を溶融成形する際の着色 の原因について鋭意検討した。 その結果、 粉粒体をブレンド、 貯蔵するタンク内 の鲭が粉粒体に付着すると、 溶融成形した成形品が着色することを見出した。 ま た粉粒体を、 添加剤としてアミド化合物を含むポリエチレンフィルムを内面に有 する袋に入れて運搬すると、 アミド化合物が粉粒体の表面に付着し、 粉粒体を溶 融成形する際に得られる成形品が着色することを見出した。 本発明はこれらの知 見に基づく。
即ち、 本発明は、 ポリカーボネート樹脂からなる粉粒体を 280°C〜380°C の温度で溶融し、 成形して成形品を製造する方法であって、 該粉粒体が、 下記条 件 (a) を満足することを特徴とする成形品の製造方法である。
(a) 該粉粒体 100重量部を 1N硝酸水溶液 100重量部で洗浄したときに、 1 N硝酸水溶液の洗浄液に溶出する F e化合物が、 該粉粒体に対し F e原子換算 で;!〜 l O Opp bである。
該粉粒体が、 条件 (a) に加えて下記条件 (b) を満足することが好ましい。 (b) 粉粒体 100重量部を MeOHl 00重量部で洗浄したときに、 MeOH の洗浄液に溶出するォレイン酸アミド、 エル力酸アミドおよびステアリン酸アミ ドの合計量が該粉粒体に対し 1〜 50 p p bである。
また成形品が光学レンズであること力 S好ましい。 また成形品が眼鏡レンズであ ることが好ましい。
本発明は、 ポリ力一ポネ一ト樹脂からなる粉粒体を成形する際の成形品の着色 を防止する方法であって、 該粉粒体が、 下記条件 (a) を満足することを特徴と する成形品の着色防止方法を包含する。
(a) 該粉粒体 100重量部を 1N硝酸水溶液 100重量部で洗浄したときに、 1 N硝酸水溶液の洗浄液に溶出する F e化合物が、 該粉粒体に対し F e原子換算 で 1〜: L 00 ppbである。
該粉粒体が、 条件 (a) に加えて下記条件 (b) を満足することが好ましい。 (b) 粉粒体 100重量部を MeOHl 00重量部で洗浄したときに、 MeOH の洗浄液に溶出するォレイン酸アミド、 エル力酸アミドおよびステアリン酸アミ ドの合計量が該粉粒体に対し 1〜 50 p p bである。
また成形品が光学レンズであることが好ましい。 また成形品が眼鏡レンズであ ることが好ましい。 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
〈成形品の製造方法〉
(ポリカーボネー卜樹脂)
本発明に用いる粉粒体は、 ポリカーボネート樹脂からなる。 ポリカーボネート 樹脂 (以下、 単に 「ポリ力一ポネート」 と称することがある) は、 二価フエノー ルと力一ポネート前駆体とを反応させて得られるものであり、 反応の方法として は界面重縮合法、 溶融エステル交換法、 力一ポネートプレボリマーの固相エステ ル交換法および環状カーボネート化合物の開環重合法等を挙げることができる。 当該二価フエノールの具体例としては、 ハイドロキノン、 レゾルシノール、 4, 4' —ビフエノール、 1, 1_ビス (4—ヒドロキシフエニル) ェタン、 2, 2 一ビス (4—ヒドロキシフエニル) プロパン (通称 "ビスフエノール A";)、 2, 2—ビス (4ーヒドロキシ一 3—メチルフエニル) プロパン、 2, 2 -ビス (4 ーヒドロキシフエニル) ブタン、 1, 1—ビス (4—ヒドロキシフエニル) 一 1 一フエニルェタン、 1, 1—ビス (4ーヒドロキシフエニル) シクロへキサン、 1, 1—ビス (4ーヒドロキシフエニル) 一3, 3, 5—トリメチルシクロへキ サン、 2, 2—ビス (4—ヒドロキシフエニル) ペンタン、 4, 4, 一 (p—フ ェニレンジイソプロピリデン) ジフエノール、 4, 4' — (m—フエ二レンジィ ソプロピリデン) ジフエノール、 1, 1一ビス (4—ヒドロキシフエニル) 一4 一イソプロビルシクロへキサン、 ビス (4ーヒドロキシフエニル) ォキシド、 ビ ス (4—ヒドロキシフエニル) スルフイド、 ビス (4—ヒドロキシフエニル) ス ルホキシド、 ビス (4—ヒドロキシフエニル) スルホン、 ビス (4—ヒドロキシ フエニル) ケトン、 ビス (4ーヒドロキシフエニル) エステル、 2, 2 -ビス (3, 5—ジブ口モー 4ーヒドロキシフエニル) プロパン、 ビス (3, 5_ジブ 口モー 4—ヒドロキシフエニル) スルホン、 ビス (4ーヒドロキシ _ 3—メチル フエニル) スルフイド、 9, 9—ビス (4ーヒドロキシフエニル) フルオレン、 9, 9_ビス (4—ヒドロキシー 3—メチルフエニル) フルオレン等が挙げられ る。 これらの中でも、 ビス (4ーヒドロキシフエニル) アルカン、 特にビスフエ ノール A (以下 "BPA" と略称することがある) を主たる成分とするポリカー ポネートが好ましい。 BP A成分の含有量は好ましくは 90モル%以上、 より好 ましくは 95モル%以上、 特に好ましくは 100モル%以上である。
本発明では、 ビスフエノール Aを主たる成分とするポリカーボネート以外にも、 他の二価フエノール類を用いて製造した特殊なポリ力一ポネートを A成分として 使用することが可能である。
例えば、 二価フエノール成分の一部または全部として、 4, 4, 一 (m—フエ 二レンジイソプロピリデン) ジフエノール (以下 "BPM" と略称することがあ る)、 1, 1一ビス (4—ヒドロキシフエニル) シクロへキサン、 1, 1—ビス (4—ヒドロキシフエニル) 一 3, 3, 5—トリメチルシクロへキサン (以下 "B i s— TMC" と略称することがある)、 9, 9—ビス (4ーヒドロキシフ ェニル) フルオレンおよび 9, 9一ビス (4—ヒドロキシー 3—メチルフエ二 ル) フルオレン (以下 "BCF" と略称することがある) を用いたポリ力一ポネ ート (単独重合体または共重合体) は、 吸水による寸法変化や形態安定性の要求 が特に厳しい用途に適当である。 これらの BP A以外の二価フエノールは、 該ポ リカーポネ一トを構成する二価フエノール成分全体の 5モル%以上、 特に 10モ ル%以上、 使用することが好ましい。
当該カーボネート前駆体としては、 カルボニルハライド、 力一ポネートエステ ルまたはハロホルメート等が使用され、 具体的にはホスゲン、 ジフエ二ルカーポ ネートまたは二価フエノールのジハロホルメート等カ挙げられる。 このような二価フエノールと力一ポネート前駆体とから界面重合法によってポ リカーポネートを製造するに当っては、 必要に応じて触媒、 末端停止剤、 二価フ ェノールが酸化するのを防止するための酸化防止剤等を使用してもよい。 また、 ポリカ一ポネートは 3官能以上の多官能性芳香族化合物を共重合した分岐ポリ力 —ポネートであってもよい。 ここで使用される 3官能以上の多官能性芳香族化合 物としては、 1, 1 , 1—トリス (4—ヒドロキシフエニル) ェタン、 1, 1, 1ートリス (3, 5—ジメチルー 4ーヒドロキシフエニル) ェ夕ン等が挙げられ る。
また、 ポリ力一ポネートは、 芳香族もしくは脂肪族 (脂環式を含む) の 2官能 性カルボン酸を共重合したポリエステルカーボネート、 2官能性アルコール (脂 環族を含む) を共重合した共重合ポリカーボネート並びにかかる 2官能性力ルポ ン酸および 2官能性アルコールを共に共重合したポリエステル力一ポネートであ つてもよい。 また、 得られたポリカーボネートの 2種以上をブレンドした混合物 でも差し支えない。
ポリカーボネートの重合反応において、 界面重縮合法による反応は、 通常、 二 価フエノールとホスゲンとの反応であり、 酸結合剤および有機溶媒の存在下に反 応させる。 酸結合剤としては、 水酸化ナトリウム、 水酸化カリウム等のアルカリ 金属水酸化物またはピリジン等のアミン化合物が好ましく用いられる。 有機溶媒 としては、 塩化メチレン、 クロ口ベンゼン等のハロゲン化炭化水素が好ましく用 いられる。 また、 反応促進のために、 トリェチルァミン、 テトラ— n—プチルァ ンモニゥムブ口マイド、 テトラー n—ブチルホスホニゥムブロマイド等の 3級ァ ミン、 4級アンモニゥム化合物、 4級ホスホニゥム化合物等の触媒を用いること もできる。 その際、 反応温度は通常 0〜4 0で、 反応時間は 1 0分〜 5時間程度、 反応中の p Hは 9以上に保つのが好ましい。
また、 かかる重合反応においては、 通常、 末端停止剤が使用される。 かかる末 端停止剤として単官能フエノール類を使用することができる。 単官能フエノール 類としては、 フエノール、 p— t e r t —ブチルフエノール、 p—クミルフエノ ール等の単官能フエノ一ル類を用いるのが好ましい。 界面重縮合法により得られたポリ力一ポネート樹脂の有機溶媒溶液は、 通常水 洗浄が施される。 この水洗工程は、 好ましくはイオン交換水等の電気伝導度 1 0 S Z c m以下、 より好ましくは 1 S Z c m以下の水により行われ、 前記有機 溶媒溶液と水とを混合、 攪拌した後、 静置してあるいは遠心分離機等を用いて、 有機溶媒溶液相と水相とを分液させ、 有機溶媒溶液相を取り出すことを繰り返し 行い、 水溶性不純物を除去する。 高純度な水で洗浄を行うことにより、 効率的に 水溶性不純物が除去され、 得られるポリカーボネート樹脂の色相は良好なものと なる。
また、 ポリカーボネート樹脂の有機溶媒溶液は、 触媒等の不純物を除去するた めに酸洗浄やアルカリ洗浄を行うことも好ましい。
また、 有機溶媒溶液は不溶性不純物である異物を除去することが好ましく行わ れる。 この異物を除去する方法は、 濾過する方法あるいは遠心分離機で処理する 方法が好ましく採用される。
水洗浄が施された有機溶媒溶液は、 次いで、 溶媒を除去してポリカーボネート 樹脂の粉粒体を得る操作が行われる。
粉粒体を得る方法 (造粒工程) としては、 操作や後処理が簡便なことから、 粉 粒体および温水 (6 5〜9 0 °C程度) が存在する造粒装置中で、 攪拌しながらポ リカーポネートの有機溶媒溶液を連続的に供給して、 かかる溶媒を蒸発させるこ とにより、 スラリーを製造する方法が使用される。 当該造粒装置としては攪拌槽 やニーダーなどの混合機が使用される。 生成されたスラリーは、 造粒装置の上部 または下部から連続的に排出される。
排出されたスラリーは、 次いで熱水処理を行うこともできる。 熱水処理工程は、 かかるスラリーを 9 0〜1 0 0 °Cの熱水の入った熱水処理容器に供給するか、 ま たは供給した後に蒸気の吹き込みなどにより水温を 9 0〜1 0 0 °Cにすることに よって、 スラリーに含まれる有機溶媒を除去するものである。
造粒工程で排出されたスラリ一または熱水処理後のスラリ一は、 好ましくは濾 過、 遠心分離等によって水および有機溶媒を除去し、 次いで乾燥されて、 粉粒体 (パウダー状やフレーク状) を得ることができる。 乾燥機としては、 伝導加熱方式でも熱風加熱方式でもよく、 粉粒体が静置、 移 送されても攪拌されてもよい。 なかでも、 伝導加熱方式で粉粒体が攪拌される溝 形または円筒乾燥機が好ましく、 溝形乾燥機が特に好ましい。 乾燥温度は 1 3 0°C〜1 50°Cの範囲が好ましく採用される。
乾燥後に得られた粉粒体は、 溶融押出機により、 ペレット化することができる。 このペレツトは成形用に供される。
溶融エステル交換法による反応は、 通常、 二価フエノールとカーボネートエス テルとのエステル交換反応であり、 不活性ガスの存在下に二価フエノールとカー ポネートエステルとを加熱しながら混合して、 生成するアルコールまたはフエノ —ルを留出せしめる方法により行われる。 反応温度は、 生成するアルコールまた はフエノールの沸点等により異なる力 殆どの場合は 1 20〜3 50°Cの範囲内 である。 反応後期には反応系を 1. 3 3 X 1 03〜1 3. 3 P a程度に減圧して、 生成されるアルコールまたはフエノールの留出を容易にさせる。 反応時間は、 通 常、 1〜 4時間程度である。
カーボネートエステルとしては、 置換基を有していてもよい炭素原子数 6〜1 0のァリール基、 ァラルキル基あるいは炭素原子数 1〜4のアルキル基等のエス テルが挙げられ、 中でもジフエ二ルカ一ポネートが好ましい。
溶融エステル交換法により得られた溶融ポリ力一ポネ一ト樹脂は、 溶融押出機 により、 ペレット化することができる。 このペレットは成形用に供される。
ポリカーボネート樹脂の粘度平均分子量は、 1. 0 X 1 04〜 5. 0 X 1 04 の範囲が好ましく、 1. 2 X 1 04〜3. 0 X 1 04の範囲がより好ましく、 1. 5 X 1 04〜2. 8 X 1 04の範囲がさらに好ましい。 1. 0 X 1 04未満である と強度等が低下し、 5. O X 1 04を超えると成形加工特性力 氐下するようにな る。 この場合、 成形性等が維持される範囲内で、 粘度平均分子量が上記範囲外で あるポリカーボネートを混合することも可能である。 例えば、 粘度平均分子量が 5. 0 X 1 04を超える高分子量のポリカーボネート成分を配合することも可能 である。
粘度平均分子量は、 まず、 次式にて算出される比粘度 (7] SP) を 2 0°Cで塩 化メチレン 100mlにポリカーボネート樹脂 0. 7 gを溶解した溶液からォス トワルド粘度計を用いて求め、
比粘度 (77 SP) = ( t - t 0) X t o
[ t oは塩化メチレンの落下秒数、 tは試料溶液の落下秒数]
求められた比粘度 (7?SP) 力、ら次の数式により粘度平均分子量 Mを算出する。
7? Sp/c = [77] +0. 45X [77] 2 c (但し [77] は極限粘度)
[77] =1. 23X 10"4Μ°· 83
c = 0. 7
なお、 粉粒体の粘度平均分子量を測定する場合は、 次の要領で行うことができ る。 即ち、 粉粒体をその 20〜30倍重量の塩化メチレンに溶解し、 可溶分をセ ライト濾過により採取した後、 溶液を除去して十分に乾燥し、 塩ィ匕メチレン可溶 分の固体を得る。 かかる固体 0. 7 gを塩化メチレン 100 m 1に溶解した溶液 から 20°Cにおける比粘度 (7i SP) を、 ォストワルド粘度計を用いて求め、 上 式によりその粘度平均分子量 Mを算出する。
粉粒体は、 パウダー、 ペレット、 フレーク等の形状を包含する。 ペレットの 形状は、 円柱、 角柱、 および球状など一般的な形状を取り得るが、 より好適に は円柱である。 かかる円柱の直径は好ましくは l〜5mm、 より好ましくは 1. 5〜4mm、 さらに好ましくは 2〜3. 3 mmである。 一方、 円柱の長さは、 好ましくは l〜30mm、 より好ましくは 2〜 5 mm、 さらに好ましくは 2. 5〜3. 5 mmである。
本発明は、 粉粒体の製造後、 保存、 ブレント、 運搬する際に、 表面に付着する Fe化合物またはアミド化合物を特定量以下にすることを特徴とする。 成形する 際に表面に付着した F e化合物またはアミド化合物を特定量以下にすることによ り、 熱安定性、 色相、 透明性に優れた成形品を得ることができる。
(Fe化合物)
本発明において、 粉粒体は、 下記条件 (a) を満足する。 即ち粉粒体は、 (a) 粉粒体 100重量部を 1N硝酸水溶液 100重量部で洗浄したときに、 1 N硝酸水溶液の洗浄液に溶出する F e化合物が、 粉粒体に対し F e原子換算で 1 〜: L 00 p pbである。
F e化合物の量は、 粉粒体に対し F e原子換算で 1〜; L 00 ppb、 好ましく は l〜50 ppb、 より好ましくは l〜40ppb、 さらに好ましくは 1〜25 ppb、 特に好ましくは 1〜10 p p bである。 F e原子換算の量が 100 p p bを超えると、 耐熱性が低下し、 粉粒体を溶融成形した成形品の色相が悪化し易 く、 特にアミド化合物が存在すると色相の悪化が顕在化し易くなり好ましくない。
Fe化合物の量は、 次の方法により測定することができる。 即ち、 予め 1N硝 酸水溶液で石英ガラス製三角フラスコおよび石英製ガラス棒を洗浄し、 1 N硝酸 水溶液の洗浄液中に F e成分が 0. 1 p p b以下であることを確認しておく。 次 に確認した三角フラスコに、 粉粒体 100重量部を入れ、 次いで 1N硝酸水溶液 100重量部を加えて、 確認したガラス棒で 1分間攪拌し、 2時間静置した後に 再度 1分間攪拌し、 その後、 静置して液相部分を I C P発光分析により F eを定 量する。
粉粒体の表面の Fe化合物は、 粉粒体と Feを含むステンレス鋼 (SUS) 等 の材質を内面に有するタンク、 コンテナ、 配管等と接触することにより増加する。 特にタンク、 コンテナ、 配管等の内部が一部鯖びを発生することや、 内面の溶接 部等にクラックが発生することにより、 粉粒体の表面に付着する F e化合物の増 加が顕著となる。
粉粒体の表面に付着した F e化合物の量は、 粉粒体を硝酸水溶液で洗浄するこ とにより低減せしめることができる。
また内表面を不動態化処理した貯蔵タンク、 ブレンドタンクを用い粉粒体を、 保存、 ブレンドすること力好ましい。 この場合、 タンクに貯蔵した粉粒体の表面 の F e化合物の量を定期的に測定して、 基準値を超える F e化合物が付着した粉 粒体は色相、 透明性力 S要求される成形品の製造には用いないようにする。 また、 基準値を超える F e化合物が付着した粉粒体は、 F e化合物の付着量の少ない粉 粒体とブレンドして成形に用いることもできる。 本発明においては成形に用いる 粉粒体は、 表面に付着した F e化合物が特定の範囲のものを用いることを特徴と する。 本発明は、 タンクに保存したポリカーボネート樹脂からなる粉粒体を 280°C 〜380°Cの温度で溶融し、 成形して成形品を製造する方法であって、 成形前に 粉粒体が上記条件 (a) を満足することを確認した後に成形を行う方法を包含す る。
(アミド化合物)
また本発明は、 粉粒体を、 添加剤としてアミド化合物を含むポリエチレンフィ ルムを内面に有する袋に入れて運搬すると、 アミド化合物が粉粒体の表面に付着 し、 粉粒体を溶融成形する際に得られる成形品が着色することを見出したことに 基づく。
本発明において、 粉粒体は、 上記条件 ) に加えて下記条件 (b) を満足す ることが好ましい。
( b ) 粉粒体 100重量部を M eOHl 00重量部で洗浄したときに、 M e O Hの洗浄液に溶出するォレイン酸アミド、 エル力酸アミドおよびステアリン酸ァ ミドの合計量が粉粒体に対し 1〜 50 p p bである。 以下、 ォレイン酸アミド、 エル力酸アミドおよびステアリン酸アミドを、 「アミド化合物」 と略すことがあ る。
アミド化合物の量は、 粉粒体に対し、 好ましくは l〜40 ppb、 より好まし くは l〜25ppb、 さらに好ましくは 1〜10 p p bである。 アミド化合物の 量が 5 O p pbを超えると、 耐熱性が低下し、 粉粒体を溶融成形した成形品の色 相が悪化し易く、 特に F e化合物力 S存在すると色相の悪化が顕在化しやすくなり 好ましくない。
また、 粉粒体の表面に付着するアミド化合物の量は次の方法により測定するこ とができる。 即ち、 予め Me OHで石英ガラス製三角フラスコおよび石英製ガラ ス棒を洗浄し、 該 Me OHの洗浄液中に各アミド化合物成分が 0. l ppb以下 であることを確認した石英ガラス製の三角フラスコに粉粒体 100重量部を入れ、 次いで MeOHl 00重量部を加えて、 石英ガラス製のガラス棒で 1分間攪拌し、 2時間静置した後に再度 1分間攪拌し、 その後静置して液層部分を G C/M Sに てアミド化合物を定量する。 アミド化合物は、 粉粒体が、 アミド化合物を添加剤として含むポリエチレンフ ィルム等を内面に有する紙袋等と接触することにより増加する。 特に粉粒体をポ リエチレンフィルム等が内面に施された紙袋に入れて輸送する際には、 振動等に よりポリエチレンフィルムが破砕することがあり、 粉粒体の表面に付着するアミ ド化合物の増加が顕著となる。
粉粒体の表面に付着するアミド化合物の量は、 粉粒体を M e OHで洗浄するこ とにより低減せしめることができる。 また内表面にアミド化合物を添加剤として 含むポリマ一フィルムを用いていない袋を使用することにより低減できる。
粉粒体の表面に付着する F e化合物の量およびアミド化合物成分の量は、 両者 が上記範囲を満足することが好ましい。
(成形)
本発明の粉粒体は、 2 8 0 °C〜3 8 0 °Cの温度で溶融し成形する。 成形は、 射 出成形、 圧縮成形、 押出圧縮成形、 回転成形、 ブロー成形、 シート押出し等の方 法により行うことができる。
成形品としては、 眼鏡レンズ、 カメラレンズ、 双眼鏡レンズ、 顕微鏡レンズ、 プロジェクターレンズ、 フレネルレンズ、 レンチキユラレンズ、 f Θレンズ、 へ ッドランプレンズおよびピックアップレンズ等の光学レンズ、 自動車の窓ガラス、 ルーフ、 ヘッドランプカバー、 携帯電話等のポタン類、 あるいは位相差板、 偏光 板、 光拡散板、 各種銘板 (計器類の保護カバー)、 ヘルメット用シ一ルドおよび 二輪車用風防板等の各種シ一卜等が挙げられる。
なかでも、 本発明の製造方法は、 耐熱性、 色相および全光線透過率 (透明性) に優れた成形品が得られることから、 光学レンズ特に眼鏡レンズの成形に好適に 用いられる。
本発明によれば、 厚さ 5 mmの平板で、 A S TM D 1 9 2 5による透過法で、 色相 (Y I値) 力好ましくは 0 . 3〜3 . 0、 より好ましくは 0 . 5〜2 . 0の 成形品を得ることができる。 また本発明によれば、 厚さ 2 mmの平板で、 I S O 1 3 4 6 8による全光線透過率が好ましくは 9 0 %以上の成形品を得ることがで きる。 〈着色防止方法〉
本発明は、 ポリカーボネート樹脂からなる粉粒体を成形する際の成形品の着色 を防止する方法であって、 該粉粒体が、 上記条件 ) を満足することを特徴と する成形品の着色防止方法を包含する。
該粉粒体が、 条件 (a ) に加えて上記条件 (b ) を満足すること力好ましい。 成形品が光学レンズ、 特に眼鏡レンズであることが好ましい。
(添加剤)
粉粒体には、 本発明の目的を損なわない範囲で、 離型剤、 熱安定剤、 紫外線吸 収剤、 ブルーイング剤、 帯電防止剤、 難燃剤、 熱線遮蔽剤、 蛍光染料 (蛍光増白 剤含む)、 顔料、 光拡散剤、 強化充填剤、 他の樹脂やエラストマ一等を配合する ことができる。
離型剤としては、 その 9 0重量%以上がアルコールと脂肪酸のエステルからな るものが好ましい。 アルコールと脂肪酸のエステルとしては、 具体的にはー価ァ ルコールと脂肪酸のエステルおよび/または多価アルコールと脂肪酸との部分ェ ステルあるいは全エステルが挙げられる。 前記一価アルコールと脂肪酸のエステ ルとは、 炭素原子数 1〜 2 0の一価アルコールと炭素原子数 1 0 - 3 0の飽和脂 肪酸とのエステルが好ましい。 また、 多価アルコールと脂肪酸との部分エステル あるいは全エステルとは、 炭素原子数 1〜2 5の多価アルコールと炭素原子数 1 0〜 3 0の飽和脂肪酸との部分エステルまたは全エステルが好ましい。
具体的に一価アルコールと飽和脂肪酸とエステルとしては、 ステアリルステア レート、 パルミチルパルミテート、 プチルステアレート、 メチルラウレート、 ィ ソプロピルパルミテート等があげられ、 ステアリルステアレート力好ましい。 具体的に多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとし ては、 ステアリン酸モノグリセリド、 ステアリン酸ジグリセリド、 ステアリン酸 トリグリセリド、 ステアリン酸モノソルビテート、 ベへニン酸モノグリセリド、 ペンタエリスリトールモノステアレート、 ペン夕エリスリトールテトラステアレ ート、 ペンタエリスリ 1 ^一ルテトラペラルゴネート、 プロピレングリコ一ルモノ ステアレート、 ビフエ二ルビフエネート、 ソルビ夕ンモノステアレート、 2—ェ チルへキシルステアレート、 ジペン夕エリスリ ] ルへキサステアレート等のジ ペン夕エリスルトールの全エステルまたは部分エステル等が挙げられる。
これらのエステルのなかでも、 ステアリン酸モノグリセリド、 ステアリン酸ト リグリセリド、 ペンタエリスリトールテトラステアレート、 ステアリン酸トリグ リセリドとステアリルステアレートの混合物が好ましく用いられる。
離型剤中の前記エステルの量は、 離型剤を 1 0 0重量%とした時、 9 0重量% 以上が好ましく、 9 5重量%以上がより好ましい。
粉粒体中の離型剤の含有量としては、 粉粒体 1 0 0重量部に対して 0 . 0 0 5 〜 2 . 0重量部の範囲が好ましく、 0 . 0 1〜0 . 6重量部の範囲がより好まし く、 0 . 0 2〜0 . 5重量部の範囲がさらに好ましい。
熱安定剤としては、 リン系熱安定剤、 硫黄系熱安定剤およびヒンダードフエノ 一ル系熱安定剤が挙げられる。
リン系熱安定剤としては、 亜リン酸、 リン酸、 亜ホスホン酸、 ホスホン酸およ びこれらのエステル等が挙げられ、 具体的には、 トリフエニルホスファイト、 ト リス (ノニルフエニル) ホスフアイ卜、 トリス (2, 4ージ一 t e r t—ブチル フエニル) ホスファイト、 トリス (2, 6—ジ— t e r t—ブチルフエニル) ホ スフアイト、 トリデシルホスフアイト、 トリオクチルホスフアイト、 トリオクタ デシルホスフアイト、 ジデシルモノフエニルホスフアイト、 ジォクチルモノフエ ニルホスフアイト、 ジイソプロピルモノフエニルホスフアイト、 モノプチルジフ 工ニルホスフアイト、 モノデシルジフエニルホスフアイト、 モノォクチルジフエ ニルホスフアイト、 ビス (2, 6—ジ— t e r t —ブチル _ 4—メチルフエ二 ル) ペン夕エリスリトールジホスフアイト、 2 , 2—メチレンビス ( 4 , 6—ジ - t e r t一ブチルフエニル) ォクチルホスフアイト、 ビス (ノニルフエニル) ペン夕エリスリトールジホスファイト、 ビス (2, 4—ジ一 t e r t—プチルフ ェニル) ペンタエリスリ 1 ルジホスフアイト、 ジステアリルペン夕エリスリト ールジホスファイト、 トリブチルホスフエ一ト、 トリェチルホスフェート、 トリ メチルホスフェート、 トリフエニルホスフェート、 ジフエ二ルモノオルソキセ二 ルホスフェート、 ジブチルホスフェート、 ジォクチルホスフェート、 ジイソプロ ピルホスフェート、 ベンゼンホスホン酸ジメチル、 ベンゼンホスホン酸ジェチル、 ベンゼンホスホン酸ジプロピル、 テトラキス (2, 4ージー t e r t一プチルフ ェニル) 一 4, 4' ービフエ二レンジホスホナイト、 テトラキス (2, 4ージー t e r t—ブチルフエニル) —4, 3, ービフエ二レンジホスホナイト、 テトラ キス (2, 4ージ一 t e r t—ブチルフエニル) 一3, 3, ービフエ二レンジホ スホナイト、 ビス (2, 4—ジー t e r t—ブチルフエニル) —4—フエニル— フエニルホスホナイトおよびビス (2, 4—ジー t e r t—ブチルフエニル) ― 3—フエ二ルーフェニルホスホナイト等が挙げられる。
なかでも、 1、リス (2, 4—ジー t e r t—ブチルフエニル) ホスファイト、 トリス (2, 6—ジ— t e r t—ブチルフエニル) ホスファイト、 テトラキス (2, 4—ジ一 t e r t—プチルフエニル) 一4, 4' —ビフエ二レンジホスホ ナイト、 テトラキス (2, 4—ジ— t e r t—ブチルフエニル) —4, 3, 一ビ フエ二レンジホスホナイ卜、 テトラキス (2, 4—ジ— t e r t—ブチルフエ二 ル) 一 3, 3 ' —ビフエ二レンジホスホナイト、 ビス (2, 4ージー t e r t— ブチルフエニル) — 4 _フエニル—フエニルホスホナイトおよびビス (2, 4- ジ— t e r t—プチルフエニル) - 3一フエ二ルーフェニルホスホナイトが使用 され、 特に好ましくはテトラキス (2, 4—ジ一 t e r t—ブチルフエニル) 一 4, 4' —ビフエ二レンジホスホナイトが使用される。 粉粒体中のリン系熱安定 剤の含有量としては、 粉粒体 100重量部に対して 0. 001〜0. 2重量部が 好ましい。
硫黄系熱安定剤としては、 ペン夕エリスリト一ルーテトラキス (3—ラウリル チォプロピオネート)、 ペン夕エリスリトールーテトラキス (3—ミリスチルチ ォプロピオネート)、 ペン夕エリスリト一ルーテトラキス (3—ステアリルチオ プロピオネート)、 ジラウリル— 3, 3 ' 一チォジプロピオネート、 ジミリスチ ルー 3, 3' —チォジプロピオネート、 ジステアリル一 3, 3 ' 一チォジプロピ ォネート等が挙げられ、 なかでもペン夕エリスリト一ルーテトラキス (3—ラウ リルチオプロピオネート)、 ペン夕エリスリトールーテトラキス (3—ミリスチ ルチオプロピオネート)、 ジラウリル一 3, 3 ' —チォジプロピオネート、 ジミ リスチル— 3, 3' 一チォジプロピオネートが好ましい。 特に好ましくはペン夕 エリスリト一ルーテトラキス (3—ラウリルチオプロピオネート) である。 該チ ォェ一テル系化合物は住友化学工業 (株) からスミライザ一 TP— D (商品名) およびスミライザ一 TPM (商品名) 等として市販されており、 容易に利用でき る。 粉粒体中の硫黄系熱安定剤の含有量としては、 粉粒体 100重量部に対して 0. 001〜0. 2重量部が好ましい。
ヒンダ一ドフエノ—ル系熱安定剤としては、 トリエチレングリコール一ビス
[3 - (3— t e r t—プチルー 5—メチルー 4—ヒドロキシフエニル) プロピ ォネート]、 1, 6—へキサンジオール—ビス [3— (3, 5—ジ— t e r t— ブチルー 4ーヒドロキシフエニル) プロピオネー卜]、 ペンタエリスリ! ^一ルー テトラキス [3— (3, 5—ジ一 t e r t—ブチル—4—ヒドロキシフエニル) プロピオネート]、 ォクタデシルー 3— (3, 5—ジ— t e r t—ブチル— 4— ヒドロキシフエニル) プロピオネート、 1, 3, 5—トリメチル一2, 4, 6 - トリス (3, 5—ジ一 t e r t—ブチルー 4ーヒドロキシベンジル) ベンゼン、 N, N—へキサメチレンビス (3, 5—ジ一 t e r t—ブチルー 4—ヒドロキシ —ヒドロシンナマイド)、 3, 5—ジ一 t e r t—ブチル一 4—ヒドロキシ一べ ンジルホスホネ一トージェチルエステル、 トリス (3, 5—ジー t e r t—ブチ ルー 4ーヒドロキシベンジル) イソシァヌレートおよび 3, 9—ビス {1, 1一 ジメチル一 2— [3 - (3 - t e r tーブチルー 4ーヒドロキシ一 5—メチルフ ェニル) プロピオニルォキシ] ェチル } -2, 4, 8, 10—テトラォキサスピ 口 (5, 5) ゥンデカンなどが挙げられ、 ォク夕デシルー 3— (3, 5—ジ一 t e r t _ブチル一4ーヒドロキシフエニル) プロピオネートが特に好ましく用い られる。 粉粒体中のヒンダードフエノール系熱安定剤の含有量としては、 粉粒体 100重量部に対して 0. 001〜 0. 1重量部が好ましい。
紫外線吸収剤としては、 ベンゾトリアゾール系紫外線吸収剤、 ベンゾフエノン 系紫外線吸収剤、 トリアジン系紫外線吸収剤、 環状ィミノエステル系紫外線吸収 剤およびシァノアクリレート系紫外線吸収剤からなる群より選ばれた少なくとも 1種の紫外線吸収剤が好ましい。 ベンゾトリァゾール系紫外線吸収剤としては、 2— (2—ヒドロキシ一 5—メ チルフエニル) ベンゾトリアゾ一ル、 2— (2—ヒドロキシー 5— t e r t—才 クチルフエ二ル) ベンゾトリアゾ—ル、 2— (2—ヒドロキシ一 3, 5—ジクミ ルフエニル) フエニルベンゾトリァゾール、 2— (2—ヒドロキシ— 3— t e r t一プチルー 5—メチルフエニル) 一 5—クロ口べンゾトリァゾール、 2, 2 ' ーメチレンビス [4— (1, 1, 3, 3—テトラメチルブチル) 一 6_ (2N- ベンゾトリアゾールー 2—ィル) フエノール]、 2- (2—ヒドロキシ一 3, 5 ージー t e r t—ブチルフエ二ル) ベンゾトリアゾ—ル、 2一 (2—ヒドロキシ 一 3, 5—ジ— t e r t—ブチルフエニル) — 5—クロ口べンゾトリアゾール、 2— (2—ヒドロキシー 3, 5—ジー t e r t—ァミルフエニル) ベンゾトリア ゾ一ル、 2- (2—ヒドロキシ— 5 _ t e r tーォクチルフエニル) ベンゾトリ ァゾ—ル、 2 - (2—ヒドロキシ一 5— t e r t—ブチルフエニル) ベンゾトリ ァゾール、 2― (2—ヒドロキシ _ 4ーォクトキシフエ二ル) ベンゾ卜リアゾー ル、 2, 2 ' ーメチレンビス (4一クミルー 6—ベンゾトリァゾールフエ二ル)、 2, 2 ' 一 p—フエ二レンビス (1, 3一べンゾォキサジン一 4一オン)、 2— [2—ヒドロキシ一 3— (3, 4, 5, 6—テトラヒドロフ夕ルイミドメチル) 一 5—メチルフエニル] ベンゾトリァゾールが挙げられ、 これらを単独あるいは 2種以上の混合物で用いることができる。
好ましくは、 2— (2—ヒドロキシー 5—メチルフエニル) ベンゾトリアゾー ル、 2— (2—ヒドロキシー 5_ t e r t—ォクチルフエ二ル) ベンゾトリアゾ —ル、 2_ (2—ヒドロキシー 3, 5—ジクミルフエニル) フエ二ルペンゾトリ ァゾール、 2— (2—ヒドロキシ— 3 _ t e r t—ブチル— 5—メチルフエ二 ル) 一 5—クロ口べンゾトリァゾ一ル、 2, 2 ' —メチレンビス [4一 (1, 1, 3, 3—テトラメチルブチル) 一 6— ( 2 H—ベンゾトリアゾールー 2—ィル) フエノール]、 2— [2—ヒドロキシ一 3— (3, 4, 5, 6—テトラヒドロフ タルイミドメチル) —5—メチルフエニル] ベンゾトリアゾールであり、 より好 ましくは、 2— (2—ヒドロキシー 5— t e r t—ォクチルフエ二ル) ベンゾト リアゾ一ル、 2, 2, —メチレンビス [4一 (1, 1, 3, 3—テトラメチルブ チル) 一 6— ( 2 H—ベンゾトリァゾールー 2—ィル) フエノール] である。 ベンゾフエノン系紫外線吸収剤としては、 2, 4ージヒドロキシベンゾフエノ ン、 2—ヒドロキシ一 4ーメトキシベンゾフエノン、 2—ヒドロキシ一 4ーォク トキシベンゾフエノン、 2—ヒドロキシ一 4一べンジロキシベンゾフエノン、 2 ーヒドロキシ一 4ーメトキシー 5—スルホキシベンゾフエノン、 2—ヒドロキシ 一 4ーメトキシ一 5—スルホキシトリハイドライドレイトベンゾフエノン、 2, 2, ージヒドロキシー4ーメ卜キシベンゾフエノン、 2, 2 ', 4, 4, ーテ卜 ラヒドロキシベンゾフエノン、 2, 2, ージヒドロキシ一 4, 4' —ジメトキシ ベンゾフエノン、 2, 2 ' ージヒドロキシー 4, 4, ージメトキシー 5 _ソジゥ ムスルホキシベンゾフエノン、 ビス (5—ベンゾィルー 4ーヒドロキシー 2—メ トキシフエ二ル) メタン、 2—ヒドロキシー 4一 n—ドデシルォキシベンソフエ ノン、 2—ヒドロキシ一 4—メトキシ一 2 ' 一カルボキシべンゾフエノン等が挙 げられる。
トリアジン系紫外線吸収剤としては、 2— (4, 6—ジフエニル _ 1, 3, 5 ートリアジン— 2—ィル) 一 5— [(へキシル) 才キシ] 一フエノール、 2― (4, 6—ビス (2, 4ージメチルフエニル) — 1, 3, 5 _卜リアジン一 2— ィル) —5— [(ォクチル) 才キシ] ーフエノ一ル等が挙げられる。
環状ィミノエステル系紫外線吸収剤としては、 2, 2' 一ビス (3, 1一ベン ゾォキサジン— 4一オン)、 2, 2 ' 一 p—フエ二レンビス (3, 1—ベンゾォ キサジン一 4一オン)、 2, 2 ' 一 m—フエ二レンビス (3, 1 _ベンゾォキサ ジン _4一オン)、 2, 2, - (4, 4, ージフエ二レン) ビス (3, 1—ベン ゾォキサジン一 4一オン)、 2, 2, 一 (2, 6一ナフ夕レン) ビス (3, 1― ベンゾォキサジン一4—オン)、 2, 2 ' ― (1, 5—ナフタレン) ビス (3, 1一べンゾォキサジン一 4一オン)、 2, 2 ' - (2—メチルー p—フエニレ ン) ビス (3, 1—ベンゾォキサジン一 4—オン)、 2, 2 ' 一 (2—二トロ一 p—フエ二レン) ビス (3, 1—べンゾォキサジン一 4一オン) および 2, 2 ' 一 (2—クロロー p—フエ二レン) ビス (3, 1一べンゾォキサジン— 4一才 ン) などが例示される。 なかでも 2, 2, 一P—フエ二レンビス (3, 1一ベン ゾォキサジン— 4一オン)、 2, 2, ― (4, 4, ージフエ二レン) ビス (3, 1—ベンゾォキサジン一 4—オン) および 2, 2 ' ― (2, 6—ナフタレン) ビ ス (3, 1一べンゾォキサジン— 4一オン) が好適であり、 特に 2, 2 ' 一 p— フエ二レンビス (3, 1—ベンゾォキサジン一 4一オン) が好適である。 かかる 化合物は竹本油脂 (株) から CE i— P (商品名) として市販されており、 容易 に利用できる。
シァノアクリレート系紫外線吸収剤としては、 1, 3_ビス一 [ (2' —シァ ノー 3, , 3, —ジフエ二ルァクリロイル) 才キシ] 一 2, 2—ビス [ (2—シ ァノー 3, 3—ジフエ二ルァクリロイル) ォキシ] メチル) プロパン、 および 1, 3—ビス一 [ (2—シァノー 3, 3—ジフエ二ルァクリロイル) ォキシ] ベンゼ ンなどが例示される。 当該紫外線吸収剤の配合量は、 粉粒体 100重量部に対し て好ましくは 0. 01〜3. 0重量部であり、 より好ましくは 0. 02〜1. 0 重量部であり、 さらに好ましくは 0. 05〜0. 8重量部である。 かかる配合量 の範囲であれば、 用途に応じ、 ポリ力一ポネート樹脂成形品に十分な耐候性を付 与することが可能である。
ブル Γング剤としては、 バイエル社のマクロレックスバイオレツト Bおよび マクロレックスブルー RR並びにクラリアント社のボリシンスレンブルー R L S 等が挙げられる。 ブル一イング剤は、 粉粒体の黄色味を消すために有効である。 特に耐候性を付与した粉粒体の場合は、 一定量の紫外線吸収剤が配合されている ため 「紫外線吸収剤の作用や色」 によってポリカーボネート樹脂成形品が黄色味 を帯びやすい現実があり、 特にシートやレンズに自然な透明感を付与するために はブル一ィング剤の配合は非常に有効である。
ブル一ィング剤の配合量は、 粉粒体に対して好ましくは 0. 05〜1. 5 pp mであり、 より好ましくは 0. 1〜1. 2ppmである。 実施例
以下、 本発明について実施例によって更に詳しく説明する。 なお部は重量部で あり、 評価は下記の方法で実施した。 ( 1 ) ペレット表面の F e化合物の定量方法
予め IN硝酸水溶液 100mlで石英ガラス製の 300ml三角フラスコおよ び石英製ガラス棒を洗浄し、 1N硝酸水溶液の洗浄液中の Fe成分が 0. 1 pp b以下であることを確認した。 石英ガラス製の三角フラスコを空にし、 それにべ レット 100 gを入れ、 次いで 1 N硝酸水溶液 100 gを加えて、 石英ガラス製 のガラス棒で 1分間攪拌した。 2時間静置した後に再度 1分間攪拌し、 その後、 静置して液層部分の Fe原子含量を I CP発光分析により定量し、 1N硝酸水溶 液の洗浄液中に溶出した F e化合物中の F e原子の重量をペレツト重量あたりの 濃度 (ppb) として表した。
(2) ペレツト表面のアミド化合物 (ォレイン酸アミド、 エル力酸アミドおよび ステアリン酸アミド) の定量方法
予め MeOHl 00mlで石英ガラス製の 300 m 1三角フラスコおよび石英 製ガラス棒を洗浄し、 Me OHの洗浄液中のアミド化合物が 0. 1 p p b以下で あることを確認した。 石英ガラス製の三角フラスコを空にし、 それにペレット 1 00 gを入れ、 次いで MeOHl 00 gを加えて、 石英ガラス製のガラス棒で 1 分間攪拌した。 2時間静置した後に再度 1分間攪禅し、 その後静置して液相部分 のアミド化合物を GCZMSにて定量し、 Me〇Hの洗浄液中に溶出したアミド 化合物の重量をペレツ卜重量あたりの濃度 (ppb) として表した。
(3) 色相 (YI値)
ペレツトを 120°Cで 5時間乾燥した後、 射出成形機によりシリンダー温度 3 00°C、 金型温度 105°Cで縦 7 OmmX横 50 mmX厚み 5 mmの平板を成 形した。 この厚さ 5mmの平板の色相 (YI値) をグレー夕マクベス社製 C o 1 o r -Eye 700 OAを用いて C光源、 視野角 2 ° 、 透過法で AS TM D 1925に従い測定した。 なお、 YI値は添加剤の添加量で変化するが、 添加剤 の添加量が同じであれば Y I値が低いほど成形時の変色が少なく、 耐熱性が良好 となる。
(4) 全光線透過率
ペレツ卜を 120 °Cで 5時間乾燥した後、 射出成形機によりシリンダー温度 3 50°C、 金型温度 80°Cで縦 9 Ommx横 50 mmX厚み 2 mmの平板を成形 した。 この厚さ 2 mmの平板の全光線透過率を I S〇 13468に従い、 日本電 色社製 NDH— 2000を用いて測定した。 実施例 1
(ペレットの製造)
表 1記載のポリカーポネート樹脂パウダーと各種添加剤を表 1記載の割合で配 合し (組成 A)、 ポリカーボネート樹脂ペレットの生産設備を用いて、 二軸押出 機により溶融押出して 36トンのペレツトを得た。
(ペレットのブレンド、 保存)
得られたペレットをステンレス (SUS) 製のブレンド用タンクで 8時間ブレ ンド後、 SUS製の製品タンクに移した。 ブレンド用タンク、 製品タンクおよび その周辺設備は、 それらの内部を洗浄して 1ヶ月以内のものを使用した。 また、 洗浄作業はタンク内部を 20%硝酸水溶液と界面活性剤で 5時間循環洗浄し、 さ らに純水で水洗した後に圧縮空気をブローさせて乾燥する手順で実施した。 (ペレツトの収袋、 運搬)
製品タンクのペレットを 6. 5時間かけて内袋がポリエチレン製の 25 kg入 りの紙袋に収袋した。
紙袋に収袋したペレツ卜の中から 20袋をテスト用ペレツトとし、 日本から米 国の倉庫まで運んだ。 この米国の倉庫まで運んだペレツト 500 kg (25 kg 入りの紙袋 20袋分) を V型プレンダ一で 5分間混合しペレット (1) とした。 ペレット (1) の一部をガラス製の瓶に移しかえ、 密封して日本に送り返した。 この手順で、 ポリエチレン製の内袋に収袋したペレツトを米国に輸送することに よる、 ペレット表面に付着するアミド化合物の量を測定した。 ガラス製の瓶で送 り返す際にはアミド化合物の付着はない。
この日本に返送したペレット (1) の表面に付着している Fe化合物とアミド 化合物を測定した。 またペレット (1) を用いて成形した成形品の色相 (YI 値) および全光線透過率を測定した。 ペレット (1) の特性およびそれから得ら れた成形品の特性を表 2に示す。 実施例 2
洗浄後 1年経過したブレンド用タンク、 製品タンクおよびその周辺設備を用い た以外は実施例 1と同様の方法でペレット (2) を得た。 ペレット (2) の特性 およびそれから得られた成形品の特性を表 2に示す。 比較例 1
洗浄後 3年経過したブレンド用タンク、 製品タンクおよびその周辺設備を用い た以外は実施例 1と同様の方法でペレット (C 1) を得た。 ペレット (C 1) の 特性およびそれから得られた成形品の特性を表 2に示す。 製造例 A
実施例 1で米国まで運んだペレット (1) 10 kgを、 攪拌翼がアンカー型の 攪拌装置を取り付けた 50Lの S US製の容器に分取し、 MeOHl O kgを加 え 5分間攪拌した後、 目開き lmmの SUS製の網を用いてろ過した。 ペレット を S US製の網の上で Me OH5 kgを用いリンスした。 このリンス操作をさら に 2回実施後、 減圧乾燥機を用いて 50°C、 133 P aで 12時間乾燥させペレ ッ卜 (1A) とした。 ペレット (1A) をガラス製の容器に入れ、 密封して日本 に返送した。 ペレット (1A) の表面に付着している Fe化合物とアミド化合物 を上記方法に従って定量した。 その結果、 ペレット (1A) 表面の Fe化合物の 量は 0. 1 p p b未満、 ァミド化合物の合計量は 0. 1 p p b未満であつた。 実施例 3
比較例 1のペレット (C1) と製造例 Aのペレット (1A) を 5 : 95の比で プレンダーにより混合してペレット (3) とした。 ペレット (3) の特性および それから得られた成形品の特性を表 2に示す。 実施例 4
比較例 1のペレット(C 1 )と製造例 Aのぺレット(1A)を 40 : 60の比でブ レンダ一により混合してペレット (4) を作製した。 ペレット (4) の特性およ びそれから得られた成形品の特性を表 2に示す。 実施例 5
実施例 1のペレット (1) と製造例 Aのペレット(A1)を 50 : 50の比でブ レンダーにより混合してペレット (5) とした。 ペレット (5) の特性およびそ れから得られた成形品の特性を表 2に示す。 製造例 B
洗浄後 3年経過したブレンド用タンク、 製品タンクおよびその周辺設備を用い、 且つペレツト 150 k gを紙袋の代わりに S US製の 200 Lの容器に収袋した ことを除き、 実施例 1と同様の方法でペレット (1B) を得た。
また、 このペレット (1B) は米国への輸送は行わなかった。 その結果、 ペレ ッ卜 (1B) 表面の Fe化合物の量は 96ppb、 アミド化合物の合計量は 0. 1 p p b未満であった。 実施例 6
比較例 1のペレット (C 1) と製造例 Bのペレット (1B) を 5 : 9 5の比で プレンダ一により混合してペレット (6) とした。 ペレット (6) の特性および それから得られた成形品の特性を表 2に示す。 実施例 7
実施例 1において、 表 1記載の組成 Aの代わりに組成 Bのポリカーポネ一ト樹 脂組成物を使用する以外は実施例 1と同様の方法で、 ペレット (7) を得た。 ぺ レツ卜 ( 7 ) の特性およびそれから得られた成形品の特性を表 2に示す。 実施例 8
洗浄後 1年経過したブレンド用タンク、 製品タンクおよびその周辺設備を用い た以外は、 実施例 7と同様の方法でペレット (8) を得た。 ペレット (8) の特 性およびそれから得られた成形品の特性を表 2に示す。 比較例 2
洗浄後 3年経過したブレンド用タンク、 製品タンクおよびその周辺設備を用い た以外は、 実施例 7と同様の方法でペレット (C2) を得た。 ペレット (C2) の特性およびそれから得られた成形品の特性を表 2に示す。 製造例 C
実施例 7で米国に送付し V型プレンダ一で混合したペレット (7) 10 kgを、 攪拌翼がアンカー型の攪拌装置を取り付けた 50 Lの S US製の容器に分取し、 MeOHl 0 k gを加え 5分間攪拌した後、 目開き 1 mmの S U S製の網を用い てろ過した。 得られたペレットは、 SUS製の網の上で Me〇H5 k gを用いリ ンスした。 このリンス操作をさらに 2回実施後、 減圧乾燥機を用いて 50°C、 1 33 P aで 12時間乾燥させペレット (7 C) とした。 乾燥後のペレット (7 C) をガラス製の容器に入れ、 密封して日本に返送した。 ペレット (7C) の表 面に付着している F e化合物とアミド化合物を測定した。 その結果、 ペレツ卜 (7 C) 表面の F e化合物の量は 0. 1 ppb未満、 アミド化合物の合計量は 0. 1 P P b未満であった。 実施例 9
比較例 2のペレット (C2) と製造例 Cのペレット (7C) とを 5 : 95の比 でプレンダーにより混合してペレット (9) とした。 ペレット (9) の特性およ びそれから得られた成形品の特性を表 2に示す。 実施例 10 比較例 2のペレット (C2) と製造例 Cのペレット (7C) とを 40 : 60の 比でプレンダ一により混合してペレット (10) とした。 ペレット (10) の特 性およびそれから得られた成形品の特性を表 2に示す。 実施例 11
実施例 7のペレット (7) と製造例 Cのペレット (7C) とを 50 : 50の比 でプレンダーにより混合してペレット(11)とした。 ペレット(11)の特性およ びそれから得られた成形品の特性を表 2に示す。 製造例 D
洗浄後 3年経過したブレンド用タンク、 製品タンクおよびその周辺設備を用い、 且つべレット 150 k gを紙袋の代わりに SUS製の 200Lの容器に収袋した ことを除き、 実施例 7と同様の方法でペレット (7D) を得た。 また、 このペレ ット (7D) は米国への輸送は行わなかった。 ペレットの (7D) の表面に付着 している Fe化合物とアミド化合物を測定した。 その結果、 ペレット (7D) 表 面の F e化合物の量は 92 p p b、 アミド化合物の合計量は 0. 1 p p b未満で あった。 実施例 12
比較例 2のペレット (C2) と製造例 Dのペレット (7D) とを 5 : 95の比 でプレンダーにより混合してペレット (12) を得た。 ペレツ卜(12)の特性お よびそれから得られた成形品の特性を表 2に示す。 実施例 13
実施例 1〜 6のペレットをそれぞれ原料として、 住友重機 (株) 製の射出成形 機 (SYCAPSG220) にコア圧縮金型を用いて下記仕様の眼鏡用凹レンズ の射出圧縮成形を行った。 得られたポリカーボネート樹脂製のマイナス眼鏡レン ズ (凹レンズ)は、 すべて透明性に優れ、 くすみも観察されなかった。 前面曲率半径 293. 00 mm
後面曲率半径 — 73. 25 mm
中心厚み 1. 5 mm
コバ厚み 10. 0 mm
レンズ外径 77. 5 mm
後面頂点焦点距離 一 166. 67mm
また、 主要な成形条件は、 下記の通りであった。
シリンダ一温度 280°C〜300°C
金型温度 125°C
成形サイクル 240秒
なお、 表 1記載のポリカーボネート樹脂、 紫外線吸収剤、 熱安定剤、 離型剤、 ブルーィング剤は下記のものを使用した。
(ポリ力一ポネー卜樹脂)
PC— 1 :ビスフエノール Aとホスゲンから界面重合法により製造された粘度 平均分子量 23, 900のポリカーボネート樹脂パウダー (帝人化成 (株) 製: パンライト (登録商標) L- 1250WP)
PC-2 :ビスフエノール Aとホスゲンから界面重合法により製造された粘度 平均分子量 22, 400のポリ力一ポネート樹脂パウダー (帝人化成 (株) 製: パンライト (登録商標) L-1225WP)
(紫外線吸収剤)
UVA- 1 : 2 - (2 ' ーヒドロキシ一 5, - t e r tーォクチルフエニル) ベンゾトリアゾール (ケミプロ化成 (株) 製:ケミソープ 79 (商品名))
UVA- 2 : 2— (3- t e r t—ブチルー 5—メチル一 2—ヒドロキシフエ ニル) 一 5—クロ口べンゾトリアゾール (チバスべシャリティーケミカルズ (株) 製:チヌビン 326 (商品名))
(熱安定剤)
HS-1 :以下の P— 1成分、 P— 2成分および P— 3成分の 71 : 15 : 1 4 (重量比) の混合物 (クラリアントジャパン (株) 製:サンドスタブ P— EP Q (商品名))
P— 1成分:テトラキス (2, 4ージ— t e r t—プチルフエニル) —4, 4' ービフエ二レンジホスホナイト、 テトラキス (2, 4—ジ— t e r t—プチ ルフエニル) 一 4, 3, 一ビフエ二レンジホスホナイト、 およびテトラキス (2 4ージ一 t e r t—ブチルフエニル) —3, 3, ービフエ二レンジホスホナイト の 100 : 50 : 10 (重量比) 混合物
P— 2成分:ビス (2, 4—ジ— t e r t—ブチルフエニル) 一 4—フエニル 一フエニルホスホナイ 1、およびビス (2, 4—ジー t e r t一ブチルフエニル) 一 3—フエ二ルーフェニルホスホナイトの 5 : 3 (重量比) 混合物
P - 3成分: 卜リス ( 2 , 4—ジー t e r t _ブチルフエニル) ホスファイト (離型剤)
MR- 1 :ステアリン酸トリグリセリドとステアリルステアレートの混合物 (理研ビタミン (株) 製: リケマール SL— 900 (商品名))
MR— 2 :ステアリン酸モノグリセリド (理研ビタミン (株) 製:リケマール S-10 OA (商品名))
(ブル一イング剤)
BR- 1 :アントラキノン系化合物 (バイエル社製:マクロレックス バイオ レッド B (商品名))
表 1
Figure imgf000028_0001
PG— 1丄 1250WP PG - 2:L— 1225WP UVA-1 U2剤、 UVA-2:U4剤、 HS-1 A5剤、 MR-1:L2剤、 MR - 2:1_1剤、 BR-1 H1剤
!S3
表 2
Figure imgf000029_0001
表 3
Figure imgf000030_0001
発明の効果
本発明に用いる粉粒体子は耐熱性に優れるので、 本発明によればポリカーポネ —ト樹脂からなり、 耐熱性、 色相および透明性に優れた成形品を製造することが できる。 本発明によれば、 ポリカーボネート樹脂からなる粉粒体を成形する際の 成形品の着色を防止し、 耐熱性、 色相および透明性に優れた成形品を製造するこ とができる。 産業上の利用可能性
本発明の成形品の製造方法は、 光学レンズ、 シート等の様々な成形品の製造に 用いることができる。

Claims

1. ポリカーボネート樹脂からなる粉粒体を 280 °C〜 380 °Cの温度で溶融 し、 成形して成形品を製造する方法であって、 該粉粒体が、 下記条件 (a) を満 足することを特徴とする成形品の製造方法。
(a) 該粉粒体 100重量部を 1N硝酸水溶液 100重量部で洗浄したときに、
1 N硝酸水溶液の洗浄液に溶出請する F e化合物が、 該粉粒体に対し F e原子換算 で 1〜: L O Opp bである。
Sの
2. 該粉粒体が、 条件 (a) に加えて下記条件 (b) を満足する請求項 1記載 の方法。 囲
(b) 粉粒体 100重量部を MeOHl 00重量部で洗浄したときに、 MeOH の洗浄液に溶出するォレイン酸アミド、 エル力酸アミドおよびステアリン酸アミ ドの合計量が該粉粒体に対し 1〜 50 p p bである。
3. 成形品が光学レンズである請求項 1記載の方法。
4. 成形品が眼鏡レンズである請求項 1記載の方法。
5. ポリカーボネート樹脂からなる粉粒体を成形する際の成形品の着色を防止 する方法であって、 該粉粒体が、 下記条件 (a) を満足することを特徴とする成 形品の着色防止方法。
(a) 該粉粒体 100重量部を 1N硝酸水溶液 100重量部で洗浄したときに、 1 N硝酸水溶液の洗浄液に溶出する F e化合物が、 該粉粒体に対し F e原子換算 で 1〜: L 00 p p bである。
6. 該粉粒体が、 条件 (a) に加えて下記条件 (b) を満足する請求項 1記載 の方法。 (b) 粉粒体 100重量部を MeOHl 00重量部で洗浄したときに、 MeOH の洗浄液に溶出するォレイン酸アミド、 エル力酸アミドおよびステアリン酸アミ ドの合計量が該粉粒体に対し l〜50ppbである。
7. 成形品が光学レンズである請求項 1記載の方法。
8. 成形品が眼鏡レンズである請求項 1記載の方法。
PCT/JP2008/053725 2007-02-27 2008-02-26 成形品の製造方法 WO2008105553A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CNA2008800011174A CN101558103A (zh) 2007-02-27 2008-02-26 成型品的制造方法
US12/449,689 US8158747B2 (en) 2007-02-27 2008-02-26 Method of manufacturing a molded article
JP2009501330A JP5401304B2 (ja) 2007-02-27 2008-02-26 成形品の製造方法
KR1020097017746A KR101443409B1 (ko) 2007-02-27 2008-02-26 성형품의 제조 방법
EP08721145.4A EP2128187B1 (en) 2007-02-27 2008-02-26 Method for producing molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-046786 2007-02-27
JP2007046786 2007-02-27

Publications (1)

Publication Number Publication Date
WO2008105553A1 true WO2008105553A1 (ja) 2008-09-04

Family

ID=39721374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053725 WO2008105553A1 (ja) 2007-02-27 2008-02-26 成形品の製造方法

Country Status (7)

Country Link
US (1) US8158747B2 (ja)
EP (1) EP2128187B1 (ja)
JP (1) JP5401304B2 (ja)
KR (1) KR101443409B1 (ja)
CN (1) CN101558103A (ja)
TW (1) TWI402298B (ja)
WO (1) WO2008105553A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126767A (ja) * 2010-12-13 2012-07-05 Teijin Chem Ltd 輝度上昇フィルム
KR20130138133A (ko) * 2012-06-08 2013-12-18 미츠비시 가스 가가쿠 가부시키가이샤 폴리카보네이트 수지 성형품의 제조 방법, 및 폴리카보네이트 수지 성형품

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090205701A1 (en) * 2006-12-22 2009-08-20 General Electric Company Luminescent solar collector having customizable viewing color
WO2010024363A1 (ja) * 2008-08-26 2010-03-04 帝人化成株式会社 成形品の製造方法
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices
CN104684981B (zh) 2012-09-28 2016-10-19 沙特基础全球技术有限公司 用于生产具有高质量和良好加工性的光学质量产品的聚碳酸酯组合物
US20140094545A1 (en) * 2012-09-28 2014-04-03 Sabic Innovative Plastics Ip B.V. Enhanced polycarbonate extrusion grades
US9243125B2 (en) 2012-09-28 2016-01-26 Sabic Global Technologies B.V. Release polycarbonate compositions
KR101823619B1 (ko) 2013-06-21 2018-01-30 사빅 글로벌 테크놀러지스 비.브이. 고 품질 및 우수한 가공성을 구비한 광학 특성 제품을 제조하기 위한 폴리카보네이트 조성물
KR101948295B1 (ko) 2014-03-06 2019-02-14 사빅 글로벌 테크놀러지스 비.브이. 향상된 폴리카보네이트 압출 등급
US10302267B2 (en) * 2014-10-27 2019-05-28 Ford Global Technologies, Llc Color infused automobile headlamp lens

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383092A (en) * 1980-08-11 1983-05-10 General Electric Company Inhibition of discoloration of transesterification polymers with chromium, nickel, tantalum or glass lined reactor
JPH047328A (ja) * 1990-04-25 1992-01-10 Daicel Chem Ind Ltd ポリカーボネートの製造法
JPH047329A (ja) * 1990-04-25 1992-01-10 Daicel Chem Ind Ltd ポリカーボネートの製造法
JPH0472327A (ja) * 1990-07-12 1992-03-06 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JPH0488017A (ja) * 1990-08-01 1992-03-19 Daicel Chem Ind Ltd ポリカーボネートの製造法
JPH07109343A (ja) * 1993-10-12 1995-04-25 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JPH11106634A (ja) * 1997-09-30 1999-04-20 Ge Plastics Japan Ltd 芳香族ポリカーボネート樹脂組成物
JP2000177845A (ja) * 1998-12-17 2000-06-27 Teijin Chem Ltd 熱可塑性樹脂粉粒状体の輸送方法及び熱可塑性樹脂ペレットの製造方法
JP2000197817A (ja) * 1999-01-07 2000-07-18 Teijin Ltd 芳香族ポリカ―ボネ―ト樹脂の製造方法
JP2001081302A (ja) 1999-09-09 2001-03-27 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2001192544A (ja) 2000-01-05 2001-07-17 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2001302782A (ja) * 2000-04-26 2001-10-31 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法
JP2003034721A (ja) * 2001-07-24 2003-02-07 Asahi Kasei Corp 芳香族ポリカーボネートの製法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973101A (en) 1997-09-30 1999-10-26 General Electric Company Aromatic polycarbonate resin composition
US6410678B1 (en) * 1999-12-03 2002-06-25 Teijin Limited Aromatic polycarbonate, production method and molded products thereof
EP1156071B2 (en) * 2000-05-17 2008-08-06 General Electric Company A method for manufacturing polycarbonate
KR100718857B1 (ko) 2000-06-01 2007-05-16 데이진 가부시키가이샤 방향족 폴리카보네이트, 그의 조성물 및 용도
KR20050019744A (ko) * 2002-06-12 2005-03-03 제너럴 일렉트릭 캄파니 방향족 폴리카보네이트의 제조 방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383092A (en) * 1980-08-11 1983-05-10 General Electric Company Inhibition of discoloration of transesterification polymers with chromium, nickel, tantalum or glass lined reactor
JPH047328A (ja) * 1990-04-25 1992-01-10 Daicel Chem Ind Ltd ポリカーボネートの製造法
JPH047329A (ja) * 1990-04-25 1992-01-10 Daicel Chem Ind Ltd ポリカーボネートの製造法
JPH0472327A (ja) * 1990-07-12 1992-03-06 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JPH0488017A (ja) * 1990-08-01 1992-03-19 Daicel Chem Ind Ltd ポリカーボネートの製造法
JPH07109343A (ja) * 1993-10-12 1995-04-25 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JPH11106634A (ja) * 1997-09-30 1999-04-20 Ge Plastics Japan Ltd 芳香族ポリカーボネート樹脂組成物
JP2000177845A (ja) * 1998-12-17 2000-06-27 Teijin Chem Ltd 熱可塑性樹脂粉粒状体の輸送方法及び熱可塑性樹脂ペレットの製造方法
JP2000197817A (ja) * 1999-01-07 2000-07-18 Teijin Ltd 芳香族ポリカ―ボネ―ト樹脂の製造方法
JP2001081302A (ja) 1999-09-09 2001-03-27 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2001192544A (ja) 2000-01-05 2001-07-17 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2001302782A (ja) * 2000-04-26 2001-10-31 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法
JP2003034721A (ja) * 2001-07-24 2003-02-07 Asahi Kasei Corp 芳香族ポリカーボネートの製法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126767A (ja) * 2010-12-13 2012-07-05 Teijin Chem Ltd 輝度上昇フィルム
KR20130138133A (ko) * 2012-06-08 2013-12-18 미츠비시 가스 가가쿠 가부시키가이샤 폴리카보네이트 수지 성형품의 제조 방법, 및 폴리카보네이트 수지 성형품
JP2014131864A (ja) * 2012-06-08 2014-07-17 Mitsubishi Gas Chemical Co Inc ポリカーボネート樹脂成形品の製造方法、およびポリカーボネート樹脂成形品
KR102103030B1 (ko) 2012-06-08 2020-04-21 미츠비시 가스 가가쿠 가부시키가이샤 폴리카보네이트 수지 성형품의 제조 방법, 및 폴리카보네이트 수지 성형품

Also Published As

Publication number Publication date
TW200848453A (en) 2008-12-16
TWI402298B (zh) 2013-07-21
EP2128187A4 (en) 2014-10-29
EP2128187A1 (en) 2009-12-02
JPWO2008105553A1 (ja) 2010-06-03
US20100076172A1 (en) 2010-03-25
KR20090114415A (ko) 2009-11-03
KR101443409B1 (ko) 2014-09-24
CN101558103A (zh) 2009-10-14
US8158747B2 (en) 2012-04-17
JP5401304B2 (ja) 2014-01-29
EP2128187B1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
WO2008105553A1 (ja) 成形品の製造方法
JP5682516B2 (ja) ポリカーボネート樹脂組成物および成形品
JP6812985B2 (ja) 熱可塑性樹脂組成物およびその成形体
TW200415172A (en) Polycarbonate copolymer, resin composition and molded article
EP3150671B1 (en) Aromatic polycarbonate resin composition, method for producing same, and molded article formed from aromatic polycarbonate resin composition
JP2010037380A (ja) 導光板用芳香族ポリカーボネート樹脂組成物及び導光板
JP5055371B2 (ja) レンズおよびそれを用いた光学ユニット
JP4713750B2 (ja) 共重合ポリカーボネート、その製造方法および樹脂組成物
JP5226173B2 (ja) 芳香族ポリカーボネート樹脂
JP5893856B2 (ja) ポリカーボネート樹脂のゲル化物の生成を低減する方法
JP5294492B2 (ja) 樹脂組成物、その成形品および端末装置のキー
JP2009286850A (ja) 芳香族ポリカーボネート樹脂組成物
JP5555632B2 (ja) 成形品の製造方法
CN113574114B (zh) 红外线屏蔽透明构件用树脂组合物和成型品
JP2002053748A (ja) 樹脂組成物
JP4369208B2 (ja) 芳香族ポリカーボネート樹脂組成物
JP2009119826A (ja) 芳香族ポリカーボネート樹脂ペレットの製造方法
JP2005107379A (ja) 光学部材およびその製造に適した芳香族ポリカーボネート樹脂
JP2005029711A (ja) ポリカーボネート樹脂パウダー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880001117.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009501330

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008721145

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4929/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020097017746

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12449689

Country of ref document: US