WO2008101370A1 - Procédé de production de combustible liquide à partir de biomasse de cellulose et du charbon - Google Patents

Procédé de production de combustible liquide à partir de biomasse de cellulose et du charbon Download PDF

Info

Publication number
WO2008101370A1
WO2008101370A1 PCT/CN2007/001117 CN2007001117W WO2008101370A1 WO 2008101370 A1 WO2008101370 A1 WO 2008101370A1 CN 2007001117 W CN2007001117 W CN 2007001117W WO 2008101370 A1 WO2008101370 A1 WO 2008101370A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
fuel
cellulosic biomass
mixture
gasification
Prior art date
Application number
PCT/CN2007/001117
Other languages
English (en)
French (fr)
Inventor
Hongping Yie
Meg M. Sun
Zuolin Zhu
Original Assignee
China Fuel (Huaibei) Bioenergy Technology Development Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Fuel (Huaibei) Bioenergy Technology Development Co. Ltd. filed Critical China Fuel (Huaibei) Bioenergy Technology Development Co. Ltd.
Priority to US12/527,357 priority Critical patent/US8759596B2/en
Publication of WO2008101370A1 publication Critical patent/WO2008101370A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • C10G3/55Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds
    • C10G3/56Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds suspended in the oil, e.g. slurries, ebullated beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1665Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to a novel production process for preparing a liquid fuel using a cellulosic biomass as a raw material, in particular to a synthesis gas or syngas using biomass and coal for gasification, and a production process for further preparing a liquid fuel. . Background technique
  • fermented biomass fuel ethanol is entering the liquid fuel sector, two conditions limit its application.
  • the technology and the corresponding new production process PCT/CN2006/000120
  • the cost of fermentation cellulosic fuel ethanol may be greatly reduced, but subject to the existing conditions, the cost of fermentation cellulosic fuel ethanol can only reach the level Fermentation starch fuel ethanol is flat.
  • coal liquefaction preparation of liquid fuels includes direct liquefaction and indirect liquefaction.
  • direct liquefaction of coal to produce liquid fuels is harsh, and only a small number of coals can be used for direct liquefaction, so it is usually prepared by indirect liquefaction from coal.
  • Methanol process This is because the existing production process for synthesizing fuel methanol using syngas is relatively mature. The conditions for coal vaporization are relatively easier than the conditions for direct liquefaction of coal, and the methanol produced by indirect liquefaction of coal is less expensive to produce.
  • the production process for indirect liquefaction of methanol from coal mainly involves two major steps.
  • the first step is the gasification of coal to produce syngas
  • the second step is the synthesis gas to form methanol under the action of a catalyst.
  • the more mature coal gasification production processes are mainly two types, one is coal powder solid feed gasification, and the other is coal water slurry liquid feed gasification.
  • the operation process of coal-water slurry liquid feed gasification is easy to homogenize, high in reliability, and easier to gasify under high pressure conditions to increase the yield of syngas.
  • coal-water slurry liquid feed gasification is used more, and there are also defects. Manufacturer of gasification with pulverized coal solid feed.
  • the disadvantages are:
  • the original common solution - one is to build a separate independent production line, supplemented with coal alone to produce hydrogen, and the other is to build a reformer that converts carbon monoxide into hydrogen (that is, carbon monoxide and water react to form carbon dioxide and hydrogen) in the gasification process.
  • the first two solutions are to increase production costs.
  • the production process is more complicated.
  • the amount of water and coal is increased, and the future water will become more and more tense.
  • Some coal types are more difficult for gasification. For example, coal in East China, they are not only rich in carbon and hydrogen, but also have other problems such as high ash content and high ash melting point (1500 °C or even above).
  • the optimum coal gasification operating temperature is generally required to be at least 1550 C, This temperature causes the energy consumption of the coal gasification reaction step to increase rapidly, and the reaction between hydrogen and carbon in the reaction system to form formazan and ethane is accelerated, the unit effective gas yield is lowered, and since the operating temperature is higher than 140 CTC, For every 20 °C increase in temperature, the erosion rate of refractory bricks doubles. At the operating temperature of 155 CTC, the refractory bricks melt quickly, requiring more frequent replacement of refractory bricks, greatly increasing production costs.
  • the method is to add calcium oxide (calcium carbonate), or iron oxide, or magnesium oxide (magnesium carbonate) to reduce the ash melting point, but this method makes the ash yield of the gasification reaction step increase significantly, because the amount of calcium oxide added is generally 8%, coal is about 20% to 25% of the total amount of ash, the cost of using sodium carbonate or potassium carbonate is too high, and the oxygen consumption is increased by about 8%, and the oxygen consumption is increased by about 0.8%. Is increased to about 1.5%, a further increase in production costs, lower specific productivity, addition of oxygen also leads to calcium flux and black water heat exchange system fouling seriously, the overall production cost increases greatly.
  • syngas can also synthesize liquid fuels such as ethanol.
  • the chemical reaction mechanism for preparing ethanol from syngas is similar to that of synthesizing methanol, so a catalyst for synthesizing ethanol can be prepared by using a catalyst for synthesizing methanol, and a catalyst for synthesizing ethanol can be prepared by modifying; and a reaction device for synthesizing ethanol can use a device for synthesizing methanol.
  • the difference between the two is very small, mainly because the reaction heat generated by the synthesis of ethanol is much more than about 2.5 times of the synthesis of methanol, and the reactor needs to be removed as quickly as possible.
  • This new production process effectively combines the characteristics of coal with multiple carbon and less hydrogen, and cellulose biomass with more hydrogen and less carbon, so that one-step gasification can be used to obtain an alcohol product that is close to the optimized proportion of components for the synthesis of A and ethanol. Syngas.
  • Still another object of the present invention is to provide a process for preparing a liquid fuel from a ruthenium conversion cellulose biomass which does not require pretreatment and component separation.
  • One aspect of the invention provides a method of preparing a fuel from cellulosic biomass, comprising the steps of: providing a mixture of cellulosic biomass and coal;
  • a method for preparing a fuel from cellulosic biomass comprises the following steps: First, providing a mixture of a suitable ratio of cellulosic biomass and coal, The proper ratio means that the mixture can give a lower ash melting point, and the calorific value of the mixture can meet the efficiency requirement of the gasifier; the second step is to gasify the mixture obtained in the first step to obtain a syngas, which is synthesized.
  • the sulphur content of the gas is significantly lower than that of the syngas obtained by using coal alone, and can be used alone as a fuel, and can also be called a syngas fuel.
  • the content of the cellulosic biomass in the first step is from 1 to 99% by weight, based on the total weight of the mixture; and/or
  • the mixture in the first step has a particle size of 25-500 mesh, and/or
  • the mixture in the first step contains 25 to 50% by weight of the mixture to obtain a water slurry
  • the temperature of the mixture in the first step is between 200 and 500 ° C; and / or
  • the pressure of the mixture in the first step is from five to sixty atmospheres.
  • the gasification process is carried out in the presence of an oxygen-containing gas selected from the group consisting of air, pure oxygen or a combination thereof, wherein the oxygen content of the oxygen-containing gas is coal and cellulosic biomass. 5 ⁇ ; and/or a carbon content of 0. 8 ⁇ 1.
  • the gasification temperature is between 1000 and 1800 °C.
  • the method further comprises the following steps:
  • the syngas fuel obtained in the second step is converted into a liquid fuel.
  • the liquid fuel in the third step is methanol and/or ethanol; and/or
  • the conversion process described in the third step is carried out in the presence of a catalyst; and/or
  • the synthesis gas fuel of the third step contains hydrogen and carbon monoxide, wherein the molar ratio of hydrogen to carbon monoxide is between 1:10 and 10:1.
  • the catalyst is a catalytic system comprising a component of a molybdenum sulfide and a C-H bond of an activated terpene hydrocarbon product; and/or the catalyst is calcined in an ultrasonic wave.
  • the component of the activated anthracene hydrocarbon product C-H bond is selected from the group consisting of molybdenum, vanadium, niobium, tantalum, niobium, platinum, palladium, cobalt, rhodium, nickel or combinations thereof.
  • the composition of the catalytic system is Mo-S-M-L,
  • M is a component that activates the alkane product C-H bond
  • L is an alkali metal compound and is used as a sensitizing component in a catalytic system
  • the molar content is Mo (100%)-S (175%-200%)-M (10%-l 00%)-L (l 50%-190%).
  • the M is selected from the group consisting of molybdenum, vanadium, niobium, tantalum, niobium, platinum, palladium, cobalt, rhodium, nickel or a combination thereof; and/or;
  • the L is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium Salt; and/or
  • the catalytic system is prepared by a precipitation method
  • the catalytic system is supported on a support.
  • Another aspect of the present invention provides a use of cellulosic biomass by mixing gasification of cellulosic biomass with coal to reduce the ash melting point of coal gasification.
  • Another aspect of the present invention provides a use of cellulosic biomass by mixing gasification of cellulosic biomass with coal to reduce the ash point of coal gasification.
  • the present invention relates to a process for producing syngas gas or syngas using a combination of cellulosic biomass and coal and preparing a liquid fuel.
  • the invention effectively reduces the ash melting point of coal, so that high ash melting point coal can also be used for indirect preparation of liquid fuel.
  • coal and cellulosic biomass vaporize at a certain ratio, effectively overcoming the shortcomings of both, and providing a complete and cost-reduced methanol and ethanol production process.
  • the production process of the invention utilizes a mixture of cellulosic biomass and coal, reduces the ash melting point of the ash in the gasification process, reduces the optimal coal gasification operation temperature of the gasification reaction, and avoids the use of calcium oxide and the like.
  • the flux reduces the energy consumption of the coal gasification reaction step, reduces the reaction of hydrogen and carbon in the reaction system to form methane and acetamidine, and reduces the corrosion rate of the refractory brick; meanwhile, the new production process makes the gasification reaction
  • the ash production of the step is reduced, the oxygen consumption, coal consumption, and production cost are all reduced, the black water treatment and the heat treatment system are reduced, and the overall production cost can be greatly reduced.
  • this new production process uses a lot of cellulosic biomass, which reduces human dependence on fossil energy, reduces carbon dioxide emissions from greenhouse gases, and is conducive to environmental protection and human survival and development.
  • this new production process reduces the ash melting point of the ash during the gasification process, this new production process greatly increases the amount of coal that can be used in the coal indirect liquefaction process.
  • coal with a high ash melting point can be used, such as East China.
  • the coal in the area is used as raw material for gasification to syngas.
  • the ratio of hydrogen and carbon monoxide in the synthesis gas obtained by the invention is ideal.
  • the volume ratio of hydrogen can be between 37 and 60%, calculated as the total volume of syngas.
  • Naturally dry coal and cellulosic biomass can meet the moisture content requirements of the production process of the present invention.
  • the cellulose biomass (Biomass) of the present invention is defined as: cellulose-containing biomass, and the cellulose of the present invention includes, but is not limited to, polysaccharide cellulose and hemicellulose. Biomass refers to other bioenergetic substances that are removed after the edible portion is removed.
  • the biomass used in the present invention includes, but is not limited to, inedible portions of various crops such as corn stover, sorghum straw, wheat straw, soybean straw, and cotton straw, and the like, and other biomass such as reed, bamboo. , all kinds of hardwood, cork, weeds, and so on.
  • Naturally dry biomass typically has a water content of less than 5%.
  • the coal referred to in the present invention is not particularly limited as long as it does not limit the object of the present invention.
  • the method of the invention is applicable to all coal types.
  • the coal used has a ash content of 5-30%, and the production process is not Restricted by the melting point of coal ash.
  • the amount of cellulosic biomass is not less than 25 KJ/K g based on the unit heat of combustion of the solids entering the gasifier.
  • the cellulosic biomass may be present in an amount of from 1 to 99% by weight based on the total weight of the mixture.
  • the weight content of the cellulose biomass used in the gasification production process is preferably between 5 and 25%, based on the total weight of the coal, based on the total weight of the mixture. The above contents all refer to the weight content.
  • the mixture is comminuted.
  • Coal and cellulosic biomass can be comminuted together, or they can be crushed separately.
  • the pulverized particle size is from 25 to 500 mesh, and the preferred particle size is from 125 to 300 mesh.
  • the production process of the present invention can be used for both aqueous slurry feed gasification and powder solid feed gasification. If the coal and cellulosic biomass are separately pulverized and the hydrazine slurry liquid is vaporized, the preparation of the coal water slurry and the cellulosic biomass water slurry can be carried out separately, and then they can be mixed before entering the gasifier, or The coal water slurry is first prepared, and then the cellulose biomass powder is added to the coal water slurry to prepare a shelf liquid for gasification.
  • the content of water in the total weight of the aqueous slurry is generally 50% by weight, the content of the commonly used water in the total weight of the water slurry is 40% by weight, and the content of the minimum water in the total weight of the aqueous slurry is 25% by weight.
  • the commonly used water is not less than 30% by weight based on the total weight of the aqueous slurry.
  • the content of coal and cellulosic biomass in the total weight of the aqueous slurry is generally 75 wt%, and the content of commonly used coal and cellulosic biomass in the total weight of the aqueous slurry is 70 wt%, with the least amount of coal and cellulosic biomass.
  • the content in the total weight of the aqueous slurry was 50 wt/.
  • the commonly used coal and cellulosic biomass is not less than 55 wt% in the total weight of the aqueous slurry. Because for the preparation of water and slurry of coal and cellulose biomass, if the water content is too high, it takes a lot of energy to vaporize the water. If the water content is too low, the viscosity of the slurry is too large, and it is not easy to use the pump. Feeding the gasifier is also not conducive to spraying the slurry through the nozzle.
  • a preheater can be added in front of the gasifier to preheat the slurry of coal and cellulosic biomass to between 200 and 50 CTC, with a pressure of five to sixty. At atmospheric pressure, enter the gasifier.
  • Such a production process can be gasified using air, eliminating the need for pure oxygen and reducing production costs.
  • the mixture is contacted with a gas containing oxygen.
  • the oxygen-containing gas is not particularly limited as long as it does not limit the object of the present invention.
  • air pure oxygen, a mixture of oxygen and inert gas, and the like are used.
  • the amount of oxygen used is preferably 1.5 moles, or not less than 1.1 moles, of the carbon content of the coal-to-cellulosic biomass mixture (e.g., slurry), based on the oxygen in the air. 1 ⁇
  • the amount of pure oxygen used is 1. 1 mole, or not less than 0.8 moles, of the carbon content of the mixture of coal and cellulose biomass (for example, slurry).
  • the vaporization temperature of the present invention is not particularly limited as long as it does not limit the object of the present invention.
  • Gasifier The gasification temperature is generally between 1000 and 1800 ° C.
  • the most commonly used gasification temperature is generally between 1,100 and 1,600 ° C, and the gasification temperature is preferably between 1300 and 1500 ° C.
  • the "syngas fuel” of the present invention means: a gaseous fuel obtained during gasification, which can be used for subsequent synthesis, for example, including hydrogen and carbon monoxide, which can be used for the synthesis of methanol and/or ethanol.
  • the high temperature gas from the gasifier is cooled in the heat exchanger, and the heat of recovery can be reused for other production steps such as drying of the cellulosic biomass.
  • the cooled gas is treated by a gas filter, a water wash column, a scrubber, and a deacidification process to form a synthesis gas that can be used for synthesis, and the synthesis gas is used to synthesize methanol and/or ethanol.
  • the present invention also provides an efficient ethanol production process for converting all organic carbon in cellulosic biomass, including cellulose, hemicellulose, and lignin, into syngas. Syngas is then converted into liquid fuel such as A and ethanol. Compared with the growth and survival of yeast during the fermentation of monosaccharide, organic carbon is consumed. Six carbon sugar loses one-third of organic carbon and five carbon sugar during fermentation. Only xylose, arabinose can not be fermented and lost all.) 60% of organic carbon is lost in the fermentation process.
  • the new production process in the present invention avoids the loss of organic carbon in the monosaccharide in the ethanol production process. Therefore, this production process greatly reduces the loss of organic carbon in the fermentation process, and the production cost of ethanol is significantly lower than that of the fermentation process.
  • the liquid fuel of the present invention is not particularly limited as long as the synthesis gas obtained by gasifying the cellulose biomass and coal can be converted.
  • it is a C1 to C4 alcohol, specifically, for example, methanol and/or ethanol.
  • the catalyst can be used.
  • ethanol is used to synthesize a catalyst using molybdenum sulfide (MoS 2 ) as a main catalyst component because this system has good sulfur tolerance.
  • MoS 2 molybdenum sulfide
  • This catalytic system gives a very high content of terpene hydrocarbons (methane, acethanide, etc.) during the reaction.
  • the catalytic system of the present invention contains a component which activates the CH bond of the hydrazine product.
  • the components used in the present invention for the activation of the CH bond of the alkane product are molybdenum (Mo), vanadium (V), osmium (Os), ruthenium (Re), iridium (Ir), platinum (Pt), palladium (Pd), cobalt. (Co), rhodium (Rh), nickel (M), etc., which may be present in the catalyst alone or in combination.
  • the composition of the catalytic system is Mo-SML
  • M is a component of the CH bond activation of the hydrazine product, and is molybdenum (Mo), vanadium (V), osmium (Os), strontium (Re), strontium (Ir).
  • alkali metal compounds can be used in various Forms, for example, can be used as sensitizing components, generally lithium (Li), sodium (Na), potassium (K), strontium (Rb), cesium (Cs) salts, such as carbonates, halides, etc., in
  • the weight content in the catalytic system is generally between 0.1 and 10%, with alkali metal T N2007/001117 Element calculation.
  • the principle of the catalytic process of the present invention is as follows:
  • the activated hydrogenation of carbon monoxide is followed by the insertion of carbon monoxide, and the activation of the C-H bond of the saturated alkane also occurs with the same metal-activated intermediate, and M is the activation center in the catalyst system.
  • the preparation method of the catalyst of the present invention is not particularly limited as long as it does not limit the object of the invention.
  • molybdenum sulfide in the catalyst is generally prepared by a precipitation method using ammonium molybdate as a starting material.
  • the alkane product C-H bond activated component M may be present as a simple substance, a salt (e.g., a water soluble salt), an oxide, a sulfide, and the like.
  • the catalyst Mo-SM system When the salt of component M used for the CH bond activation of the terpene hydrocarbon product is a water-soluble salt, such as palladium nitrate, ruthenium chloride, cobalt acetate, cesium nitrate, ruthenium chloride, etc., the catalyst Mo-SM system generally adopts coprecipitation.
  • the salt of the component M used for the C-H bond activation of the alkane product is a water-insoluble compound, such as platinum oxide, molybdenum oxide, cerium oxide, etc., it is generally prepared by directly using the oxide solids thereof and the precipitation method.
  • the molybdenum sulfide is pulverized together, and the weight content of the C-H bond activating component in the catalytic system is generally 0. 1- 20. 0%, based on the element weight, in which they appear In the catalyst system, the molar ratio between Mo-SML is between Mo (100%)-S (175%-200%)-M (10%-100%)-L (150%-190%).
  • the catalyst in the present invention may be either unsupported or supported. Unsupported catalysts are often used Their ammonium or potassium salts are prepared together by calcination, while supported catalysts are often selected from silica, alumina, clays such as volcanic ash (Bentonite Clay), and activated carbon as the support, preferably neutral oxidation. Silicon, alumina, and activated carbon; the catalyst is prepared by dry immersion or impregnation. The dry immersion method firstly prepares the solid prepared by the precipitation method or the solid obtained by the mixed grinding method, and calcins at a temperature of 400-800 C, and then grinds the obtained solid under the protection of an inert gas to 140-200 mesh, and the powder is dispersed by shaking. On the carrier.
  • the solution of the sensitizing component and the ammonium molybdate solution are carried on the carrier by dipping, and then dried and calcined.
  • the alkali metal sensitizing component is first impregnated in the preparation process, followed by the molybdenum component, and the impregnation is generally preferably carried out under the action of an ultrasonic field.
  • the catalyst in order to obtain more ethanol in the product, can be calcined in ultrasonic waves.
  • the calcination temperature is preferably 400 to 800 ° C; the calcination time is preferably 1 to 10 hours; and the ultrasonic intensity is not particularly limited as long as the object of the present invention is not limited. Specifically, for example, calcination at 500 ° C for two hours is carried out at 2 kW / 20 kHz.
  • the ratio of hydrogen and carbon monoxide in the synthesis reactor in the synthesis gas can be between 1:10 and 10:1.
  • the ideal ratio of hydrogen and carbon monoxide for the synthesis of methanol and ethanol should be close to 2:1.
  • reaction temperature and reaction pressure of the synthesis gas fuel to be converted into a liquid fuel of the present invention are not particularly limited as long as the object of the present invention is not limited. It can also be carried out in accordance with the methods of the prior art.
  • the synthesis and loading method of the above catalyst, and the conversion method of the synthesis gas are only a synthetic route of the present invention. According to the above examples, those skilled in the art can synthesize the catalyst of the present invention or adjust the synthesis gas by adjusting different methods. Those skilled in the art can also synthesize the catalyst of the present invention or a liquid fuel according to prior art techniques. The synthesized catalyst or liquid fuel can be further purified by various technical means in the prior art.
  • the coal used in the examples has a ash content of 9-11%, a ash melting point of between 1490 and 1530 ° C, and the ash is mainly silica and alumina, and the contents are 50-57% and 30-, respectively. 37%.
  • the gasification reactor is a laboratory Texaco fluidized bed reactor with a feed solid weight of 800-1000 g/hr. The obtained gas is determined by gas chromatography (Hewlett Packard-5890- Series 11).
  • the instrument is calibrated using standard gas, and the obtained gas is purified by standard methods; the ethanol synthesis uses a Fischer-Tropsch tubular reactor equipped with a catalyst for synthesizing ethanol at a reaction temperature of 300 ° C.
  • the pressure is 68 atmospheres and the gas hourly velocity is 5400 per hour.
  • Example 1 Gasification and gasification of cellulosic biomass and coal, respectively, using pure coal, coal containing 5% sorghum straw, coal containing 10% sorghum straw, coal containing 15% sorghum rice straw, and 20
  • the sorghum stalk coal is used as raw material, and the operating temperature is 1580 ° C.
  • the data of each group is the average of six tests.
  • the gas composition of the test is as follows.
  • Example 2 The method of Example 2 is referred to Example 1, except that coal gasification containing 10% sorghum straw is at 1350 ° C. Further studies were carried out at a temperature of 07 001117, and the obtained gas was measured by gas chromatography. Each set of data was an average of six tests, and the gas composition obtained by the test was as follows.
  • the solid product which was vacuum filtered was dried at room temperature for one day.
  • the dried solid is divided into two equal parts, namely CA, CB, under the protection of nitrogen, respectively, calcined at 500 ° C for two hours, and the one calcined in the ultrasonic field of 2 kW / 20 kHz is CA, no The one that is calcined in the ultrasonic field is CB.
  • the solid product which was vacuum filtered was dried at room temperature for one day.
  • the dried solid is divided into two equal parts. 17
  • the temperature is calcined at 500 °C for two hours
  • the MCA is calcined in the ultrasonic field of 2kW/20kHz
  • the MCB is not calcined in the ultrasonic field.
  • the catalyst prepared above catalyzes the ability of the synthesis gas to produce ethanol at a reaction temperature of 300 ° C, a pressure of 68 atm, a gas hour-to-space flow rate of 5400 / hour, and a comparative test under the conditions of a gas chromatography-mass spectrometer.
  • each set of data is the average of six tests, and the product composition obtained by the test is as follows.
  • the catalyst system gives the ethanol selection ability much higher than that currently known.
  • Catalyst system without CH bond activating component ethanol: methanol ⁇ 3 (eg catalyst system of French IFP, ethanol: methanol ⁇ 1).
  • the production process of the present invention can be used for specialized ethanol production, which results in a significant decrease in the cost of ethanol production (because the methanol content of the bulk system is low, by-product methanol can be converted into ethanol after being separated into the reactor).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

纤维素生物质煤化工燃料生产工艺
技术领域
本发明涉及一种全新的使用纤维素生物质为原材料制备液体燃料的生产工艺, 具 体的说是使用生物质和煤炭共同气化制备合成气 (synthesis gas or syngas ) 以及 进一步制备液体燃料的生产工艺。 背景技术
本世纪初, 石油能源已走进其可供应量的峰值, 2005年 06月 29日正式发布的 《BP世界能源统计 2005》 的数据显示: 以目前的开采速度计算, 全球石油储量可供 开釆使用 40多年, 而天然气和煤炭则分别可以供应约 67和 164年。在人类社会的现 有科技条件下, 液体燃料在相当长的时期内是不可取代的, 人类社会面临生存和发展 历史中最重大的转折关头。同时由于大量来自化石能源的温室效应气体二氧化碳造成 了全球变暖, 已被公认为是最近这几年全球灾难性天气现象的元凶。为确保人类的生 存与可持续发展, 开发利用可再生形式的能源极其重要。
虽然发酵法生物质燃料乙醇正在全面进入液体燃料领域, 但是两个条件限制了 它的应用。一是淀粉燃料乙醇所用的原料和人类争粮食, 二是纤维素生产燃料乙醇的 成本现在还远高于淀粉燃料乙醇,虽然我们发明了能在常温常压下对纤维素生物质进 行快速预处理的技术和相应的全新生产工艺 (PCT/CN2006/000120 ) , 发酵法纤维素 燃料乙醇的成本可能大幅下降, 但是受到现有条件的限制, 发酵法纤维素燃料乙醇的 成本能够达到的水平只是和发酵法淀粉燃料乙醇持平。
由于煤炭的储量远高于石油, 从煤炭制备液体燃料将可能会是主要手段。 现在煤炭 液化制备液体燃料包括直接液化和间接液化两种, 但是, 煤炭直接液化制备液体燃料的生 产条件苛刻, 且仅有很少的煤种能够用于直接液化, 因此通常采用从煤炭间接液化制备甲 醇的工艺。 这是由于, 现有的使用合成气制备燃料甲醇的生产工艺相对而言比较成熟, 煤 炭汽化的条件比煤炭直接液化的条件相对容易很多, 且煤炭间接液化制备的甲醇, 其生产 成本不到燃料乙醇的三分之一, 而单位重量的甲醇燃烧值是燃料乙醇的 76. 5%, 并且燃料 甲醇对发动机的腐蚀性应当能够轻易地解决, 所以发展燃料甲醇很具竞争力。 再者, 我们 刚刚研发成功纤维素生物质制备饱和垸烃(柴油和汽油) 的生产工艺, 这项生产工艺离商 业化大规模生产还有较长的一段路要走; 所以, 不远的将来, 从纤维素生物质、 煤炭、 和 天然气制备的燃料甲醇、 乙醇及其衍生物将成为液体燃料的主体, 这是不可避免的发展趋 势现状。
现在,从煤炭出发间接液化制备甲醇的生产工艺主要包括两大步,第一步是煤炭的气 化制备合成气, 第二步是合成气在催化剂的作用下生成甲醇。 比较成熟的煤炭气化生产工 艺主要是两种, 一种是煤粉固体进料气化, 一种是水煤浆液体进料气化。 水煤浆液体进料 气化的操作流程易于均质, 可靠性高, 且更易于在高压条件下气化以增加合成气产率, 一 般较多采用水煤浆液体进料气化, 也有釆用煤粉固体进料气化的生产厂家。但是煤炭间接 液化制备甲醇的生产工艺也还有许多方面需要进一步改善。 其缺点在于:
首先, 对应于合成甲醇的合成气的组分构成要求(氯气: 一氧化碳 =2: 1 ), 绝大多数 煤种产出的合成气都远达不到这个要求, 煤炭基本都是富碳少氢。 原来常用的解决办法- 一是另外单建独立生产线, 使用煤炭单独制氢来补充, 二是气化流程中另外建一个将一氧 化碳转化为氢气(即一氧化碳和水反应生成二氧化碳和氢气) 的转化炉, 这两种解决办法 一是增加了生产成本, 二是生产工艺更加复杂, 三是增加了水和煤炭的用量, 而未来水也 会愈来愈紧张。有些煤种对于气化更是困难,如中国华东地区的煤炭,它们不仅富碳少氢, 还存在着灰份含量大, 灰熔点过高 (1500°C甚至于以上) 等其它问题。
其次, 除了上述不足之处以外,许多煤种采用煤炭间接液化制备甲醇还存在能耗过大 的问题。 煤炭的气化过程一般希望采用液体排渣, 下出式液体排渣易于操作。 液体排渣炉 的最佳操作温度一般为高于灰熔点 30-50° (。 在灰焙点髙于 1500°C甚至于以上时, 最佳煤 炭气化操作温度一般最少约需要为 1550 C, 这个温度使煤炭气化反应步骤的能耗迅速增 力口, 反应体系内的氢气和碳反应生成甲垸与乙烷的速度加快, 单位有效气体产率降低。 并 且由于操作温度高于 140CTC时,温度每升高 20°C, 耐火砖的熔蚀速度增加一倍, 在操作温 度 155CTC时, 耐火砖的熔蚀很快, 需要更频繁地更换耐火砖, 大大地增加了生产成本。传 统的解决办法是添加氧化钙 (碳酸钙)、 或者氧化铁、 或者氧化镁 (碳酸镁) 等来降低灰 熔点, 但是这种方法使得气化反应步骤的灰分产量明显增加, 因为加入的氧化钙的量一般 为灰分总量的百分之 20-25%, 使用碳酸钠或者碳酸钾的成本太高。而灰分含量每增加 1%, 氧耗约则增加 0. 8%, 煤耗则增加约 1. 5%, 生产成本进一步升高, 单位产率更低, 添加氧 化钙助熔剂还导致黑水处理及换热系统结垢严重, 整体生产成本增幅很大。
除了合成甲醇液体燃料以外, 合成气也可以合成乙醇等液体燃料。 从合成气制备乙 醇的化学反应机理类似于合成甲醇,所以合成乙醇的催化剂可以使用合成甲醇的催化剂为 基础, 通过改良来制备合成乙醇的催化剂; 而合成乙醇的反应设备可以使用合成甲醇的设 备, 两者之间的差别很小, 主要是合成乙醇产生的反应热多 (约为合成甲醇的 2. 5倍), 需要反应釜能够尽快的将反应热移走。 除了采用煤炭气化制备液体燃料的工艺亟待改进以外, 直接使用纤维素生物质的气化 制备甲醇也受到不少问题的困扰, 其一是纤维素生物质密度小, 使汽化炉的效率过低, 单 位产品的生产成本高; 其二是纤维素生物质中的氢含量高, 富氢少碳, 制备的合成气中氢 成分过量, 无法全部有效的应用于甲醇的合成, 也造成单位产品的生产成本高这个问题。 发明内容
本发明的目的在于提供一种高效的综合利用煤炭和纤维素生物质生产合成气以及液 体燃料的新生产工艺。这种新的生产工艺有效地结合煤炭的多碳少氢、 纤维素生物质多氢 少碳的特点, 使得通过一步气化就可以得到接近优化比例组成成分应用于合成甲、 乙醇的 醇类产品的合成气。
本发明还有一个目的在于提供一种不需要预处理和组分分离的髙转化率的纤维素生 物质制备液体燃料的方法。 本发明的一个方面提供一种用纤维素生物质制备燃料的方法, 包括以下步骤- 第一步, 提供纤维素生物质和煤炭的混合物;
第二步, 将第一步得到的混合物进行气化, 得到合成气燃料。 在本发明的一个具体实施方式中, 本发明所述的由纤维素生物质制备燃料的方法, 其 包括以下步骤: 第一步, 提供合适配比的纤维素生物质和煤炭的混合物, 所述的合适配比 指混合物能够给出较低的灰熔点, 且混合物的热值能够满足气化炉的效率要求; 第二步, 将第一步得到的混合物进行气化, 得到合成气, 此合成气的含硫量明显较单独使用煤炭所 得的合成气低, 且可以单独作为燃料使用, 也可称为合成气燃料。 优选地, 第一步中所述纤维素生物质的含量为 1-99%的重量含量, 以混合物总重 量计算; 和 /或
第一步中所述混合物的粒度为 25- 500目, 和 /或
第一步中所述混合物中含有以混合物的重量计算 25〜50%的水份, 得到水浆液; 和 / 或
第一步中所述混合物的温度在 200- 500°C之间; 和 /或
第一步中所述混合物的压力为五个到六十个大气压。 优选地, 第二步中, 所述气化过程在含氧气体存在下进行, 所述含氧气体选自空气、 纯氧或其组合, 其中含氧气体的氧气量为煤炭与纤维素生物质的碳含量的 0. 8~1. 5摩尔 当量; 和 /或
第二步中气化温度在 1000-1800°C之间。 进一步地, 所述方法还包括以下步骤: 第三步, 将第二步所得合成气燃料转化为液体 燃料。
' 优选地, 第三步中所述液体燃料为甲醇和 /或乙醇; 和 /或
第三步中所述转化过程在催化剂存在下进行; 和 /或
第三步的合成气燃料中含有氢气和一氧化碳,其中氢气和一氧化碳的摩尔比例为 1 : 10 到 10 : 1之间。 优选地, 所述催化剂为含有硫化钼和活化垸烃产物 C-H键的组分的催化体系; 和 /或 所述催化剂在超声波中进行煅烧。 优选地, 所述活化垸烃产物 C-H键的组分选自钼、 钒、 锇、 铼、 铱、 铂、 钯、 钴、 铑、 镍或其组合。 优选地, 催化体系的组成为 Mo-S-M-L,
M是活化烷烃产物 C- H键的组分;
L是碱金属化合物, 被用作催化体系中的增敏成分;
其中摩尔含量为 Mo(100%)-S(l 75%-200%)-M(10%-l 00%)-L(l 50%-190%)。 优选地, 所述 M选自钼、 钒、 锇、 铼、 铱、 铂、 钯、 钴、 铑、 镍或其组合; 和 /或; 所述 L选自锂、 钠、 钾、 铷、 铯的盐类; 和 /或
所述催化体系采用沉淀法制备; 和 /或
所述催化体系在载体上进行负载。 本发明另一方面提供一种纤维素生物质的用途, 通过纤维素生物质与煤炭进行 混合气化以降低煤炭气化的灰熔点。 本发明的另一方面提供一种纤维素生物质的用途, 其通过纤维素生物质与煤炭 进行混合气化以降低煤炭气化的灰瑢点。 本发明的最佳实施方案
本发明涉及使用纤维素生物质和煤炭共同气化制备合成气(synthesis gas or syngas) 以及制备液体燃料的生产工艺。本发明有效地降低了煤炭的灰熔点,使得高灰熔点的煤炭 也可以用于间接法制备液体燃料。特别地,煤炭和纤维素生物质在一定的比例时汽化,会 有效地克服两者的缺点, 提供完善的、 成本进一步降低的甲醇、 乙醇生产工艺。
本发明的生产工艺由于釆用了纤维素生物质和煤炭的混合物, 降低了气化过程 中灰分的灰熔点, 降低了气化反应的最佳煤炭气化操作温度, 避免了使用氧化钙等 助熔剂, 降低了煤炭气化反应步骤的能耗, 减少了反应体系内的氢气和碳反应生成 甲烷与乙垸, 降低了耐火砖的熔蚀速度; 同时, 这种新的生产工艺使气化反应步骤 的灰分产量减少, 氧耗、 煤耗、 生产成本均降低, 减轻黑水处理及换热系统的结垢, 整体生产成本能够得到较大地降低。 另外, 这种新的生产工艺使用了不少的纤维素 生物质, 减轻了人类对化石能源的依靠, 减少了温室效应气体二氧化碳的排放, 有 利于环境保护和人类的生存与发展。
由于这种新的生产工艺降低了气化过程中灰分的灰熔点,这种新的生产工艺使煤炭间 接液化法可以使用的煤种大为增加, 例如可以使用灰熔点很高的煤炭, 比如华东地区的煤 炭, 为原料用于气化制备合成气。
同时本发明得到的合成气中氢气和一氧化碳比例较为理想。例如氢气体积比例可以介 于 37〜60%之间, 以合成气总体积计算。
自然干燥的煤炭和纤维素生物质可以满足本发明生产工艺对水分含量的要求。 本发明的纤维素生物质 (Biomass ) 的定义是: 含有纤维素的生物质, 本发明的纤维 素包括但不限于多聚糖纤维素和半纤维素。生物质是指剔除可食用部分后其它的富含生物 能的物质。本发明中使用的生物质, 包括但不局限于各种农作物的人不可食用部分, 如 玉米秸秆、高粱秸秆、麦秸、大豆秸、和棉花秸, 等等, 以及其它的生物质如芦苇, 竹子, 各种硬木、 软木, 野草, 等等。 自然干燥的生物质的含水量一般小于 5%。
本发明所说的煤炭没有特别限制, 只要不对本发明的发明目的产生限制即可。 通常, 本发明的方法适用于所有煤种。 具体地例如使用的煤炭的含灰量介于 5-30%, 生产工艺不 再受煤炭灰熔点的限制。
本发明的纤维素生物质与煤炭混合物中,纤维素生物质的用量以进入气化炉的固体的 单位燃烧热不小于 25KJ/Kg为准。 具体地例如纤维素生物质可以是 1-99%的重量含量, 以 混合物总重量计算。 为了更好更有效地利用气化炉, 根据煤炭煤种的不同, 用于气化生产 过程中纤维素生物质的重量含量最好是 5- 25%之间, 以混合物总重量计算。 上述含量均指 重量含量。
优选地, 所述混合物经过粉碎。煤炭和纤维素生物质可以在一起共同粉碎, 也可以分 开粉碎。 粉碎的粒度为 25-500目, 最好使用的粒度为 125-300目。
本发明的生产工艺既可以用于水浆液体进料气化, 也可以用于粉末固体进料气化。 煤炭和纤维素生物质如果是分开粉碎, 并且釆用水浆液体进料气化, 制备水煤浆和纤 维素生物质水浆可以分幵进行, 然后在进入气化炉前将它们混合, 也可以先制备水煤浆, 然后将纤维素生物质粉末加进水煤浆中制备用于气化的架液料。制备的水浆液中, 水在水 浆液总重量中的含量一般是 50wt%, 常用的水在水桨液总重量中的含量是 40wt%, 最少的 水在水浆液总重量中的含量为 25wt%, 常用的水在水浆液总重量中的含量不少于 30wt%。 相对地, 煤炭和纤维素生物质在水浆液总重量中的含量一般是 75wt%, 常用的煤炭和纤维 素生物质在水浆液总重量中的含量是 70wt%, 最少的煤炭和纤维素生物质在水浆液总重量 中的含量为 50wt/。, 常用的煤炭和纤维素生物质在水浆液总重量中的含量不少于 55wt%。 因为对于制备的水和煤炭与纤维素生物质的浆液, 如果水的含量太高, 就需要耗费大量的 能量来汽化水, 如果水的含量太低, 则浆液的粘度太大, 不易于用泵送进气化器, 也不利 于浆液通过喷嘴喷洒。 本发明中新的生产工艺的另一个特点是, 气化炉前可以加一个预热器, 将煤炭与纤维 素生物质的浆液预热到 200- 50CTC之间, 压力为五个到六十个大气压的条件下, 再进入气 化炉。 这样的生产流程可以使用空气进行气化, 不必要使用纯氧气, 降低了生产成本。
本发明的气化过程中, 将混合物与含有氧气的气体接触。所述含有氧气的气体没有特 别限制, 只要不对本发明的发明目的产生限制即可。 例如, 采用空气、 纯氧、 氧气与惰性 气体混合物等等。使用空气时, 以空气中的氧气为准, 使用的氧气量优选是煤炭与纤维素 生物质混合物 (例如是浆液)的碳含量的 1. 5摩尔, 或者不少于 1. 1摩尔量。 当没有预热器 时, 使用的纯氧量为煤炭与纤维素生物质混合物 (例如是浆液)的碳含量的 1. 1摩尔, 或者 不少于 0. 8摩尔量。
本发明的气化温度没有特别限制, 只要不对本发明的发明目的产生限制即可。气化炉 的气化温度一般使用 1000-1800°C之间,最常使用的气化温度一般使用 1100 1600°C之间, 最好使用气化温度为 1300- 1500°C之间。
本发明的"合成气燃料"是指:气化过程中得到的气体燃料,可用于进行后续的合成, 例如, 包括氢气和一氧化碳, 其可用于合成甲醇和 /或乙醇。 具体地例如, 来自气化炉的 高温气体在热交换器内降温, 回收热可以回用于纤维素生物质的干燥等其它生产步骤。 降 温后的气体通过气体过滤器、水洗塔、 油洗塔、 和脱酸工艺处理后, 成为可用于合成的合 成气, 合成气用于合成甲醇和 /或乙醇。 本发明还提供了一种高效的乙醇生产工艺, 这种新的生产工艺将纤维素生物质 中所有的有机碳, 包括纤维素、 半纤维素、 和木质素, 全部用于转化为合成气, 合 成气再被转化为甲、 乙醇等液体燃料, 对比单糖发酵过程中酵母菌的生长和生存需 要消耗有机碳, 六碳糖在发酵过程中损失三分之一的有机碳, 五碳糖 (仅木糖, 阿 拉伯糖还无法发酵而全部损失) 在发酵过程中损失 60%的有机碳, 本发明中的新生 产工艺避免了发酵制备乙醇生产工艺中单糖内有机碳的损失。 因此, 这种生产工艺 极大地降低了发酵法中有机碳的损失, 乙醇生产成本比发酵法大幅降低。
本发明的液体燃料没有特别限制,只要纤维素生物质和煤炭进行气化得到的合成气可 以转化得到即可。 例如为 C1〜C4醇类, 具体地例如甲醇和 /或乙醇。
在转化过程中, 可以釆用催化剂进行。 优选地, 乙醇合成使用硫化钼 (MoS2) 作为 主催化剂组分的催化剂, 因为这个体系有很好的耐硫性。这是由于从煤炭制备的合成气中 常含有较多的硫, 如果要脱硫到使之适用于 Snam, Lurgi , 和 IFP催化剂体系, 纯化要达 到 10— 9的含硫量,操作工艺非常苛刻,生产成本显著升高。但是硫化钼有一个重大的缺陷, 这个催化体系在反应过程中给出很高含量的垸烃产物 (甲烷、 乙垸等)。 本发明的生产工 艺中另一个重点, 是本发明的催化体系中含有活化垸烃产物 C-H键的组分。本发明中用于 烷烃产物 C-H键活化的组分是钼(Mo)、钒(V)、 锇(Os)、 铼(Re)、 铱(Ir)、 铂(Pt)、 钯(Pd)、 钴(Co)、铑(Rh)、 镍(M)等, 它们可以单独地出现在催化剂中, 也可以组 合出现。
优选地, 催化体系的构成组成为 Mo-S-M-L, M是垸烃产物 C-H键活化的组分,是钼 (Mo)、 钒(V)、 锇(Os)、 铼(Re)、 铱(Ir)、 铂 (Pt)、 钯(Pd)、 钴(Co)、 铑(Rh)、 镍 (ND; 而 L是碱金属化合物, 被用作催化体系中的增敏成分, 碱金属化合物可以采用 各种形式, 例如可以作为增敏成分的一般是锂 (Li ), 钠 (Na)、 钾 (K)、 铷 (Rb)、 铯 (Cs)的 盐类, 如碳酸盐, 卤化物, 等, 在催化体系中的重量含量一般是 0. 1- 10%之间, 以碱金属 T N2007/001117 元素计算。 本发明的催化过程的原理如下:
一氧化碳的活化加氢, 然后再插入一氧化碳, 而饱和烷烃的 C-H键活化也会出现相同 的金属活化中间体, M是催化剂体系中的活化中心。
0 HO H
C C
H:
一氧化碳的活化: M + CO
CH3 饱和垸烃的 C- H键活化: CI¾ + M - M 当两者的催化体系有机结合时,通过一氧化碳的插入反应机理和饱和烷烃 C- H键的活 化机理, 就可以减少反应中烃类产物(甲烷、 乙垸等) 的生成, 增加乙醇的产量, 从而实 现合成气制备乙醇的生产目的。 M 51
Figure imgf000009_0001
M + CH3CH2OH
乙醇 本发明的催化剂的制备方法没有特别限制, 只要不对本发明的发明目的产生限制即 可。通常催化剂中硫化钼一般采用钼酸铵作为起始物,通过沉淀法制备。所述烷烃产物 C-H 键活化的组分 M可以是单质、 盐类 (例如水溶性盐)、 氧化物、 硫化物以及其它形式存在。 当用于垸烃产物 C-H键活化的组分 M的盐是水溶性盐时, 如硝酸钯、 氯化铱、 醋酸钴、 硝 酸铑、氯化锇、等,催化剂 Mo-S-M体系一般采用共沉淀法制备,而如果用于烷烃产物 C - H 键活化的组分 M的盐是水不溶性化合物时, 如氧化铂、 氧化钼、 氧化铼、 等, 一般使用它 们的氧化物固体直接和沉淀法制得硫化钼在一起研磨混勾,这些用于垸烃产物 C- H键活化 组分在催化体系中的重量含量一般是 0. 1- 20. 0%之间, 以元素重量计算, 在它们出现在催 化 剂 体 系 中 时 , Mo-S-M-L 之 间 的 摩 尔 比 值 介 于 Mo( 100%)-S(l 75%-200%)-M( 10%- 100%)-L( 150%- 190%)。
本发明中的催化剂既可以是非负载型的, 也可以是负载型的。非负载型催化剂常釆用 它们的铵盐或者钾盐在一起通过锻烧(Calcinated)分解制备, 而负载型催化剂常选氧化 硅、 氧化铝、 粘土类如火山灰 (Bentonite Clay)、 和活性碳为载体, 优选中性的氧化硅、 氧 化铝、 和活性碳; 催化剂的制备采用干浸法或者浸渍法。 干浸法首先将沉淀法制备固体、 或者混合研磨法制得的固体高温锻烧, 锻烧温度 400- 800 C, 然后将所得固体在惰性气体 保护下研磨到 140-200目, 此粉末通过振荡分散到载体上。 浸渍法将增敏成分的溶液、 钼 酸铵溶液上载到载体上, 然后干燥锻烧制得。 制备流程中一般先浸渍碱金属的增敏成分, 然后是钼成分, 浸渍一般优选在超声场的作用下进行。
优选地, 为了在产物中得到更多的乙醇, 可以将催化剂在超声波中进行煅烧。 其煅烧 温度优选地为 400〜800°C ; 煅烧时间优选为 1〜10小时; 超声波强度没有特别限制, 只要 不对本发明的发明目的产生限制即可。 具体地例如是 500°C 温度锻烧两个小时, 在 2kW/20kHz下进行。合成气中氢气和一氧化碳在合成反应器中的比例可以介于 1: 10到 10 : 1 之间, 理想的合成甲醇、 乙醇的氢气和一氧化碳的比例应当接近 2 : 1。
CO + 2H2 - ' CH3OH
2CO + 4H2 - * CH3CH2OH + H20
本发明合成气燃料转化为液体燃料的反应温度和反应压力没有特别限制,只要不对本 发明的发明目的产生限制即可。 也可以按照现有技术的方法进行。
上述催化剂的合成和负载方法、 合成气的转化方法只是本发明部分的合成路线, 根据 上述例子,本领域技术人员可以通过调整不同的方法来合成本发明的催化剂或是促使合成 气进行转化。本领域技术人员也可根据现有公知技术可以合成本发明的催化剂或是液体燃 料。 合成的催化剂或是液体燃料可以进一步通过现有技术中各种技术手段进一步纯化。
本发明的其他方面由于本文的公开内容, 对本领域的技术人员而言是显而易见的。 除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟练人员所 熟悉的意义相同。此外任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法 中。 以下结合具体实施例,进一步阐明本发明。下列实施例中未注明具体条件的实验方法, 通常按照常规条件, 或按照制造厂商所建议的条件。 比例和百分比基于重量, 除非特别说 明。
下面所给出的实施例是为了更好地说明本发明,并不是说本发明所揭示的内容仅限于 下面的实施例。 实施例中使用的煤炭的含灰量介于 9-11%, 灰熔点介于 1490- 1530°C之间, 灰分中主要是二氧化硅和氧化铝, 含量分别为 50- 57%和 30-37%。 气化反应釜是一实验室用德士古流化床反应器, 进料固体重量为 800- 1000克 /小时, 制得的气体使用气相色谱法测定 (Hewlett Packard- 5890- Series 11 ), 色谱仪使用标准 气体标定,制得的气体使用标准方法净化;乙醇合成使用实验室用费托 (Fischer-Tropsch) 管式反应器, 反应器内装载着合成乙醇的催化剂, 反应温度为 300°C, 压力为 68大气压, 气体的时空流速是 5400/小时单位。 实施例 1 : 纤维素生物质和煤炭的气化 气化反应分别使用了纯煤、 含 5%高粱秸秆的煤、 含 10%高粱秸秆的煤、 含 15%高粱稻 秆的煤、和含 20%高粱秸秆的煤为原料, 操作温度 1580°C, 每组数据是六次试验的平均值, 试验所得的气体组成如下。
Figure imgf000011_0001
结果显示, 髙粱秸秆和煤两者共同气化时, 所得的气体组分中氢气的体积百分比明显 提高, 而 C0、 C02均明显降低, 相对地, 硫化氢的含量也有所降低。 每组六次试验反应结束后,单独收集反应产生的灰烬,然后分别测量它们灰份的熔点, 结果列于下表。
Figure imgf000011_0002
结果显示, 高粱秸秆和煤两者共同气化时, 它们的灰熔点明显降低, 当高粱秸秆的使 用量是总气化固体的重量为 10%时, 灰熔点是约为 1300°C, 比单独使用煤炭大幅度降低。 实施例 2: 含 10%高粱秸秆煤的气化
实施例 2的方法参照实施例 1, 不同之处在于, 将含 10%高粱秸秆的煤气化在 1350°C 07 001117 的温度下进行了进一步的研究, 制得的气体使用气相色谱法测定, 每组数据是六次试验的 平均值, 试验所得的气体组成如下。
Figure imgf000012_0001
结果显示, 含 10%高粱秸秆煤的气化, 对比操作温度 1580°C, 甲烷气的产率大幅降低, 而对应的 CO和 的含量均上升。 实施例 3 合成乙醇催化剂的制备
含单一 C- H键活化组分的催化剂:
在搅拌下, 60克的钼酸铵 (ammonium molybdate ( H4)2Mo04) 溶解在 420毫升的硫 化铰 (ammonium sulfide) 水溶液中, 然后在 60°C温度下搅拌 60分钟 (溶液 A)。 54克的 硝酸钯(Palladium nitrate)被溶解在 760毫升的去离子水(deionized water)中制得溶液 B。 在搅拌下, 溶液 A和溶液 B同时向 400毫升的 30wt%的醋酸水溶液内滴加, 耗时约 90分 钟, 并确保滴加过程中混合液的温度控制在 50°C温度。 所得的固体混合物在 50°C温度下 继续搅拌 90分钟后, 真空过滤出的固体产物在室温下干燥一天。 干燥的固体被分成相等 的两份, 即 CA、 CB, 分别在氮气的保护下, 500°C温度锻烧两个小时, 在 2kW/20kHz的 超声波场中锻烧的那一份为 CA, 无超声波场中锻烧的那一份为 CB。
γ -氧化铝 (alumina)浸在水中, 搅拌下用饱和碳酸钾水溶液将混合液的酸碱度调整到 pH=10, 稳定后, 滤出含碳酸钾的 γ-氧化铝后, γ-氧化铝在 150°C温度下干燥 4个小时。
分别取 5克的固体 CA和 10克的含碳酸钾的 γ-氧化铝,细细研磨混匀后得催化剂 CAU; 5克的固体 CB同样处理, 得催化剂 CBNU。 含两种 C- H键活化组分的催化剂:
在搅拌下, 60克的钼酸铵(ammonium molybdate)溶解在 420毫升的硫化铵(ammonium sulfide)水溶液中, 然后在 60°C温度下搅拌 60分钟 (溶液 A); 27克的硝酸钯(Palladium nitrate)被溶解在 380毫升的去离子水 (deionized water)中制得溶液 B; 21克的醋酸钴(cobalt acetate) 被溶解在 380毫升的去离子水 (deionized water) 中制得溶液 C; 在搅拌下, 溶液 A、 溶液 B、 和溶液 C同时向 400毫升的 30^%的醋酸水溶液内滴加, 耗时约 90分钟, 并 确保滴加过程中混合液的温度控制在 50°C温度。 所得的固体混合物在 50°C温度下继续搅 拌 90分钟后, 真空过滤出的固体产物在室温下干燥一天。干燥的固体被分成相等的两份, 17 分别在氮气的保护下, 500°C 温度锻烧两个小时, 在 2kW/20kHz 的超声波场中锻烧的为 MCA, 无超声波场中锻烧的为 MCB。 γ_氧化铝(alumina)浸在水中, 搅拌下用饱和碳酸 钾水溶液将混合液的酸碱度调整到 pH=10, 稳定后, 滤出含碳酸钾的 γ-氧化铝后, γ-氧化 铝在 150°C温度下干燥 4个小时。
分别取 5克的固体 MCA和 10克的含碳酸钾的 γ-氧化铝, 细细研磨混匀后得催化剂 MCAU; 5克的固体 MCB同样处理, 得催化剂 MCBNU。 实施例 4: 催化剂的催化功能对比
上述制备的催化剂催化合成气产生乙醇的能力在反应温度为 300°C, 压力为 68个大气 压, 气体的时空流速是 5400/小时, 等条件下进行了对比测试, 产物组成使用气相色谱- 质谱仪测定, 每组数据是六次试验的平均值, 试验所得的产品组成如下。
Figure imgf000013_0001
结果显示, 所有的催化剂均能给出相当理想的结果, 而在超声条件下锻烧的催化剂
(CAU和 MCAU) 给出更多的乙醇, 对于 Mo-S-Pd-K和 Mo-S-Pd-Co-K体系, 结果差别 不大。 。
对比已知的催化体系, 由于我们在开发此类催化剂时第一次将 C-H键的活化概念引进 到催化剂的开发指导原则, 本催化剂体系给出的乙醇选择能力, 远高于现在已知的、 不含 C-H键活化组分的催化剂体系, 乙醇: 甲醇≥3 (例如法国 IFP的催化剂体系, 乙醇: 甲醇 <1)。 本发明的生产工艺可以用于专门的乙醇生产, 使乙醇生产成本下降明显 (因为本体 系的甲醇含量低, 副产的甲醇通过分离后, 可以再次进入反应釜被转化为乙醇 )。
CH3OH + CO + ¾ CH3CH2OH)

Claims

权 利 要 求
1、 一种用纤维素生物质制备燃料的方法, 其特征在于, 包括以下步骤: 第一步, 提供纤维素生物质和煤炭的混合物;
第二步, 将第一步得到的混合物进行气化, 得到合成气燃料。
2、 如权利要求 1所述的用纤维素生物质制备燃料的方法, 其特征在于, 第一步中所述纤维素生物质的含量为 1-99%的重量含量, 以混合物总重量计算; 和 / 或
第一步中所述混合物的粒度为 25- 500目, 和 /或
第一步中所述混合物中含有以混合物的重量计算 25〜50 %的水份, 得到水浆液; 和 / 或
第一步中所述混合物的温度在 200- 500°C之间; 和 /或
第一步中所述混合物的压力为五个到六十个大气压。
3、 如权利要求 1所述的用纤维素生物质制备燃料的方法, 其特征在于,
第二步中, 所述气化过程在含氧气体存在下进行, 所述含氧气体选自空气、 纯氧或其 组合, 其中含氧气体的氧气量为煤炭与纤维素生物质的碳含量的 0. 8〜1. 5摩尔当量; 和 / 或 ,
第二步中气化温度在 1000- 1800°C之间。
4、 如权利要求 1〜3任一项所述的用纤维素生物质制备燃料的方法, 其特征在 于, 所述方法还包括以下步骤:
第三步, 将第二步所得合成气燃料转化为液体燃料。
5、 如权利要求 4所述的用纤维素生物质制备燃料的方法, 其特征在于,
第三步中所述液体燃料为甲醇和 /或乙醇; 和 /或
第三步中所述转化过程在催化剂存在下进行; 和 /或
第三步的合成气燃料中含有氢气和一氧化碳,其中氢气和一氧化碳的摩尔比例为 1 : 10 到 10 : 1之间。
6、 如权利要求 5所述的用纤维素生物质制备燃料的方法, 其特征在于, 所述催化剂为含有硫化钼和活化烷烃产物 C- H键的组分的催化体系; 和 /或 所述催化剂在超声波中进行煅烧。
7、 如权利要求 6所述的用纤维素生物质制备燃料的方法, 其特征在于,
所述活化垸烃产物 C-H键的组分选自钼、 钒、 锇、 铼、 铱、 铂、 钯、 钴、 铑、 镍或其 组合。
8、 如权利要求 6所述的用纤维素生物质制备燃料的方法, 其特征在于,
催化体系的组成为 Mo-S-M-L,
M是活化烷烃产物 C- H键的组分;
L是碱金属化合物, 被用作催化体系中的增敏成分;
其中摩尔含量为 Mo( 100%)-S(175%-200%)-M(10%- 100%)-L( 150%-190%)。
9、 如权利要求 8所述的用纤维素生物质制备燃料的方法, 其特征在于,
所述 M选自钼、 钒、 锇、 铼、 铱、 铂、 钯、 钴、 铑、 镍或其组合; 和 /或; 所述 L选自锂、 钠、 钾、 铷、 铯的盐类; 和 /或
所述催化体系采用沉淀法制备; 和 /或
所述催化体系在载体上进行负载。
10、 一种纤维素生物质的用途, 其特征在于, 通过纤维素生物质与煤炭进行混 合气化以降低煤炭气化的灰熔点。
PCT/CN2007/001117 2007-02-16 2007-04-06 Procédé de production de combustible liquide à partir de biomasse de cellulose et du charbon WO2008101370A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/527,357 US8759596B2 (en) 2007-02-16 2007-04-06 Liquid fuel production process from cellulosic biomass and coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710084896.6 2007-02-16
CN2007100848966A CN101144021B (zh) 2007-02-16 2007-02-16 纤维素生物质煤化工燃料生产工艺

Publications (1)

Publication Number Publication Date
WO2008101370A1 true WO2008101370A1 (fr) 2008-08-28

Family

ID=39206761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001117 WO2008101370A1 (fr) 2007-02-16 2007-04-06 Procédé de production de combustible liquide à partir de biomasse de cellulose et du charbon

Country Status (3)

Country Link
US (1) US8759596B2 (zh)
CN (1) CN101144021B (zh)
WO (1) WO2008101370A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2363148A1 (es) * 2010-01-11 2011-07-21 Fundación Investigación E Innovación Para El Desarrollo Social Procedimiento para la conversión del carbón en etanol.

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303676B1 (en) 2008-02-19 2012-11-06 Proton Power, Inc. Conversion of C-O-H compounds into hydrogen for power or heat generation
US9698439B2 (en) 2008-02-19 2017-07-04 Proton Power, Inc. Cellulosic biomass processing for hydrogen extraction
CA2751882C (en) * 2009-02-12 2017-03-14 Ichikawa Office Inc. Method for producing ethanol
US8241599B2 (en) * 2009-06-01 2012-08-14 Afton Chemical Corporation Method of using volatile organometallics as biomass gasification catalysts
CN103384713B (zh) * 2011-01-05 2015-08-19 莱斯拉有限公司 有机质的加工
FR2971789B1 (fr) * 2011-02-22 2013-02-22 Areva Methode de production de methanol ou d'hydrocarbures a partir d'une matiere carbonee, avec une etape de reformage dont les conditions de fontionnement sont ajustees selectivement
CN102212380B (zh) * 2011-03-30 2014-06-11 淮北中润生物能源技术开发有限公司 煤炭水解制备液体碳氢燃料生产工艺
WO2012129783A1 (zh) * 2011-03-30 2012-10-04 淮北中润生物能源技术开发有限公司 煤炭水解制备液体碳氢燃料的工艺
EP2530136B1 (en) 2011-05-30 2020-04-01 Neste Oyj Method of producing a hydrocarbon composition
US10005961B2 (en) * 2012-08-28 2018-06-26 Proton Power, Inc. Methods, systems, and devices for continuous liquid fuel production from biomass
WO2014043552A1 (en) * 2012-09-14 2014-03-20 Sundrop Fuels, Inc. Improving renewable carbon content in methanol and other products from gasification of biomass
BR112015005871B1 (pt) 2012-09-18 2021-05-04 Proton Power, Inc método para extrair pelo menos gás de hidrogênio de um composto compreendendo carbono, oxigênio e hidrogênio
WO2014152830A1 (en) * 2013-03-14 2014-09-25 The University Of Wyoming Research Corporation Methods and systems for biological coal-to-biofuels and bioproducts
US10563128B2 (en) 2014-01-10 2020-02-18 Proton Power, Inc. Methods for aerosol capture
US20150307784A1 (en) 2014-03-05 2015-10-29 Proton Power, Inc. Continuous liquid fuel production methods, systems, and devices
US10286385B2 (en) 2014-05-19 2019-05-14 Baoshan Iron & Steel Co., Ltd. Method for producing a catalyst
US9890332B2 (en) 2015-03-08 2018-02-13 Proton Power, Inc. Biochar products and production
CA3075302A1 (en) 2017-09-07 2019-03-14 Mcfinney, Llc Methods for biological processing of hydrocarbon-containing substances and system for realization thereof
CN108387569B (zh) * 2018-01-09 2020-07-14 西安热工研究院有限公司 一种可计量生物质掺混量的燃煤耦合生物质发电方法
CN108587710A (zh) * 2018-04-18 2018-09-28 绍兴化工有限公司 一种煤粉细渣回用的水煤浆制备方法
US11447576B2 (en) 2019-02-04 2022-09-20 Eastman Chemical Company Cellulose ester compositions derived from recycled plastic content syngas
US11286436B2 (en) 2019-02-04 2022-03-29 Eastman Chemical Company Feed location for gasification of plastics and solid fossil fuels
CN111621332B (zh) * 2019-02-28 2023-05-05 中国石油化工股份有限公司 不同性质物料共气化进料方法
WO2020205404A1 (en) 2019-03-29 2020-10-08 Eastman Chemical Company Polymers, articles, and chemicals made from densified textile derived syngas
CN113692391B (zh) * 2019-03-29 2024-04-23 伊士曼化工公司 密实化纺织品和固体化石燃料的气化
CN115141657A (zh) * 2021-03-30 2022-10-04 中国石油化工股份有限公司 一种生物质制粗煤气的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882360A (en) * 1984-07-30 1989-11-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
RU2241904C1 (ru) * 2003-03-26 2004-12-10 Общество с ограниченной ответственностью "ТАЕЖНОЕ" Комплекс для переработки твердого топлива на основе биоресурсов и получения тепловой энергии
CN1631527A (zh) * 2004-11-19 2005-06-29 中国科学院山西煤炭化学研究所 一种合成气制低碳混合醇的催化剂及其制法
CN1654313A (zh) * 2005-01-17 2005-08-17 西安交通大学 煤与生物质共超临界水催化气化制氢装置及方法
CN1230498C (zh) * 2004-01-18 2005-12-07 江苏大学 一种生物质与煤混合流化床气化方法及其装置
CN1865408A (zh) * 2006-06-24 2006-11-22 中国科学院山西煤炭化学研究所 一种生物质与煤流化床共气化制备燃料气的方法
WO2006123158A2 (en) * 2005-05-20 2006-11-23 Bp Chemicals Limited Process for the conversion of synthesis gas to oxygenates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353713A (en) * 1980-07-28 1982-10-12 Cheng Shang I Integrated gasification process
AU6074986A (en) * 1985-08-05 1987-02-12 Dow Chemical Company, The Attrition-resistant sulfides in syngas conversions
US7500997B2 (en) * 2002-02-05 2009-03-10 The Regents Of The University Of California Steam pyrolysis as a process to enhance the hydro-gasification of carbonaceous materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882360A (en) * 1984-07-30 1989-11-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
RU2241904C1 (ru) * 2003-03-26 2004-12-10 Общество с ограниченной ответственностью "ТАЕЖНОЕ" Комплекс для переработки твердого топлива на основе биоресурсов и получения тепловой энергии
CN1230498C (zh) * 2004-01-18 2005-12-07 江苏大学 一种生物质与煤混合流化床气化方法及其装置
CN1631527A (zh) * 2004-11-19 2005-06-29 中国科学院山西煤炭化学研究所 一种合成气制低碳混合醇的催化剂及其制法
CN1654313A (zh) * 2005-01-17 2005-08-17 西安交通大学 煤与生物质共超临界水催化气化制氢装置及方法
WO2006123158A2 (en) * 2005-05-20 2006-11-23 Bp Chemicals Limited Process for the conversion of synthesis gas to oxygenates
CN1865408A (zh) * 2006-06-24 2006-11-22 中国科学院山西煤炭化学研究所 一种生物质与煤流化床共气化制备燃料气的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2363148A1 (es) * 2010-01-11 2011-07-21 Fundación Investigación E Innovación Para El Desarrollo Social Procedimiento para la conversión del carbón en etanol.

Also Published As

Publication number Publication date
CN101144021B (zh) 2011-11-09
CN101144021A (zh) 2008-03-19
US20100186291A1 (en) 2010-07-29
US8759596B2 (en) 2014-06-24

Similar Documents

Publication Publication Date Title
WO2008101370A1 (fr) Procédé de production de combustible liquide à partir de biomasse de cellulose et du charbon
Wang et al. A review of CO2 sorbents for promoting hydrogen production in the sorption-enhanced steam reforming process
Tanksale et al. A review of catalytic hydrogen production processes from biomass
Chan et al. Review of recent developments in Ni-based catalysts for biomass gasification
Chattanathan et al. A review on current status of hydrogen production from bio-oil
Sousa-Aguiar et al. Some important catalytic challenges in the bioethanol integrated biorefinery
US8927781B2 (en) Method for producing ethanol
JP2012001441A (ja) エタノール製造方法、およびエタノール製造システム
Abedi et al. Steam gasification of oat hull pellets over Ni-based catalysts: Syngas yield and tar reduction
JP2011212598A (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
Liu et al. Production of high-pure hydrogen by an integrated catalytic process: Comparison of different lignocellulosic biomasses and three major components
WO2016195599A1 (en) Method and system for converting biomass to fuel products
JP2021104916A (ja) 非晶質シリカの製造方法及び化粧品原料の製造方法
Tian et al. Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives
Fu et al. Comparative study on the catalytic steam reforming of biomass pyrolysis oil and its derivatives for hydrogen production
Zhang et al. CO rich syngas production from catalytic CO2 gasification-reforming of biomass components on Ni/CeO2
JP5574367B2 (ja) 混合ガスの製造方法
JP2013199461A (ja) 1−ブタノールの合成方法
Abidin et al. Recent progress on catalyst development in biomass tar steam reforming: toluene as a biomass tar model compound
JPS62186946A (ja) 触媒及びその使用方法
JP2017119278A (ja) 酸素化物合成用の触媒の製造方法、及び酸素化物の製造方法
JP6183916B2 (ja) 酸素化物合成用の触媒、酸素化物の製造装置、及び酸素化物の製造方法
JP2003246990A (ja) バイオマスのガス化方法、およびそれに用いられる触媒
US20130270483A1 (en) Catalytical gasifier configuration for biomass pyrolysis
CN111215082B (zh) 一种甲烷化催化剂及其制备和低氢碳比合成气甲烷化

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12527357

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 07720690

Country of ref document: EP

Kind code of ref document: A1