WO2008098972A1 - Dispersionen von polyurethanen, ihre herstellung und verwendung - Google Patents

Dispersionen von polyurethanen, ihre herstellung und verwendung Download PDF

Info

Publication number
WO2008098972A1
WO2008098972A1 PCT/EP2008/051757 EP2008051757W WO2008098972A1 WO 2008098972 A1 WO2008098972 A1 WO 2008098972A1 EP 2008051757 W EP2008051757 W EP 2008051757W WO 2008098972 A1 WO2008098972 A1 WO 2008098972A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
polyisocyanate
compound
pigment
average
Prior art date
Application number
PCT/EP2008/051757
Other languages
English (en)
French (fr)
Inventor
Holger TÜRK
Paul Andrew Simpson
Gernot Diehlmann
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP08716837.3A priority Critical patent/EP2121793B1/de
Priority to US12/527,431 priority patent/US8889788B2/en
Priority to JP2009549827A priority patent/JP5596351B2/ja
Priority to CN2008800052155A priority patent/CN101616946B/zh
Publication of WO2008098972A1 publication Critical patent/WO2008098972A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0004Coated particulate pigments or dyes
    • C09B67/0008Coated particulate pigments or dyes with organic coatings
    • C09B67/0013Coated particulate pigments or dyes with organic coatings with polymeric coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/009Non common dispersing agents polymeric dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to aqueous dispersions comprising a pigment (B) at least partially coated with a polyurethane (A) and furthermore at least one polymerization inhibitor (C), polyurethane (A) being obtainable by reacting
  • the present invention relates to the preparation of at least partially coated pigments according to the invention and aqueous dispersions according to the invention and to their use.
  • inks used in the ink-jet process ink-jet printing processes such as thermal ink jet, piezo ink jet, continuous ink jet, valve jet, transfer printing process. They must have suitable viscosity and surface tension for printing, they must be storage stable, i.e., they should not coagulate or flocculate, and they must not cause clogging of the printer nozzle, which may be particularly problematic for inks containing inks, that is undissolved colorant particles.
  • the storage stability requirements of these recording liquids, and in particular inks include that dispersed colorant particles do not settle.
  • the inks must be stable to the addition of conductive salts and should show no tendency to flocculate when the ion content is increased.
  • the prints obtained must meet the coloristic requirements, i. high brilliance and color depth, and good fastnesses, e.g. Rubbing fastness, lightfastness, waterfastness and wet scrub fastness, optionally after aftertreatment such as fixation, and have good drying behavior.
  • radiation-curable inks usually contain a material that can be cured by irradiating actinic radiation.
  • radiation-curable ink jet inks may be accompanied by a photoinitiator.
  • WO 2006/089933 discloses aqueous dispersions which comprise radiation-curable polyurethanes containing allophanate groups, and the use of the relevant dispersions in ink jet inks. Obtained when printing the disclosed ink jet inks printed after the action of actinic radiation printed substrates with very good fastness properties. In many cases, however, it is not at all desirable to rely on actinic radiation when curing the prints. A uniform curing of prints on non-planar substrates requires an optimized geometry of the radiation sources, which can not always be guaranteed. However, thermal curing of the inks disclosed in WO 2006/089933 is possible only in those cases in which the inks in question are prepared without stabilizer (radical scavenger, polymerization inhibitor). On the other hand, such inks have limited shelf life in some cases.
  • polyurethanes are understood to mean not only those polymers which are linked exclusively by urethane groups but, in a more general sense, polymers which can be obtained by reacting di- or polyisocyanates with compounds which are active hydrogen atoms contain.
  • Polyurethanes for the purposes of the present invention may thus contain, in addition to urethane groups, urea, allophanate, biuret, carbodiimide, amide, ester, ether, uretoneimine, uretdione, isocyanurate or oxazolidine groups.
  • An overview may be mentioned by way of example: Kunststoffhandbuch / Saechtling, 26th edition, Carl-Hanser-Verlag, Kunststoff 1995, page 491 ff.
  • polyurethanes for the purposes of the present invention contain allophanate groups.
  • polyurethane (A) is not hyperbranched polyurethane.
  • Hyperbranched polyurethanes are known as such and described, for example, in J.M.S. - Rev. Macromol. Chem. Phys. 1997, C37 (3), 555.
  • Aqueous dispersions of the invention contain a pigment (B) at least partially coated with a polyurethane (A).
  • pigment at least partially enveloped by at least one polyurethane is understood as meaning a pigment in particulate form whose outer surface is completely or partially covered by polyurethane (A) or mixtures of pigment in particulate form, in which a certain amount of pigment is present Percentage of the pigment particles not enveloped with polyurethane (A) and in which the outer surface of the remaining pigment particles are completely or partially covered by polyurethane (A) fall within the definition of "pigment at least partially coated with a polyurethane (A)".
  • Polyurethane (A) may be one or more polyurethanes (A). If there are several polyurethanes, numbers in connection with polyurethane (A) are always based on the total of polyurethanes (A).
  • At least 10%, preferably at least 20% and particularly preferably at least 30% of the outer surface are covered with polyurethane (A) in at least partially pigmented with at least one polyurethane (A).
  • the degree of cladding can be determined, for example, by measuring the zeta potential, by microscopic methods such as light microscopy or electron microscopy methods (TEM, cryo-TEM, SEM) and more particularly by means of freeze-fracture preparation, NMR spectroscopy or photoelectron spectroscopy determine at least partially coated pigment.
  • microscopic methods such as light microscopy or electron microscopy methods (TEM, cryo-TEM, SEM) and more particularly by means of freeze-fracture preparation, NMR spectroscopy or photoelectron spectroscopy determine at least partially coated pigment.
  • At least partially enveloping pigments (B) are obtained in the context of the present invention by at least partially enveloping in water practically insoluble finely divided organic or inorganic colorants according to the definition in DIN 55944.
  • aqueous dispersions of organic pigments of the invention wherein carbon black is included.
  • particularly suitable pigments (B) are examples of particularly suitable pigments (B).
  • Anthraquinone pigments Cl. Pigment Yellow 147 and 177; Cl. Pigment Violet 31; Anthraquinone pigments: Cl. Pigment Yellow 147 and 177; Cl. Pigment Violet 31;
  • Anthrapyrimidine pigments Cl. Pigment Yellow 108 (CI Vat Yellow 20);
  • Flavanthrone pigments Cl. Pigment Yellow 24 (CI Vat Yellow 1);
  • Isoindoline pigments Cl. Pigment Orange 69; Cl. Pigment Red 260; Cl. Pigment Yellow 139 and 185;
  • Isoviolanthrone pigments Cl. Pigment Violet 31 (Cl. Vat Violet 1);
  • Phthalocyanine pigments Cl. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6 and 16; Cl. Pigment Green 7 and 36;
  • White pigments titanium dioxide (CI Pigment White 6), zinc white, colored zinc oxide, barium sulphate, zinc sulfide, lithopone; White lead;
  • Black pigments iron oxide black (CI Pigment Black 1 1), iron manganese
  • Green 48 Cobalt green (CI Pigment Green 50); Ultramarine green; Cobalt blue (CI Pigment Blue 28 and 36); Ultramarine blue; Iron blue (CI Pigment Blue 27); Manganese blue; Ultramarine violet; Cobalt and manganese violet; Iron oxide red (CI Pigment Red 101);
  • Cadmium sulphoselenide (CI Pigment Red 108); Molybdate red (CI Pigment Red 104); ultramarine;
  • Iron oxide brown, mixed brown, spinel and corundum phases (CI Pigment Brown 24, 29 and 31), chrome orange;
  • Iron oxide yellow (CI Pigment Yellow 42); Nickel titanium yellow (CI Pigment Yellow 53, CI Pigment Yellow 157 and 164); Chromium titanium yellow; Cadmium sulfide and cadmium zinc sulfide (CI Pigment Yellow 37 and 35); Chrome yellow (CI Pigment Yellow 34), zinc yellow, alkaline earth dichromates; Naples yellow; Bismuth vanadate (CI Pigment Yellow 184);
  • Interference pigments metallic effect pigments based on coated metal flakes; Pearlescent pigments based on metal oxide-coated mica platelets; Liquid crystal pigments.
  • Preferred pigments (B) are monoazo pigments (in particular laked BONS pigments, naphthol AS pigments), disazo pigments (in particular diaryl yellow pigments, bisacetacetic acid acetanilide pigments, disazopyrazolone pigments), quinacridone pigments, quinophthalone pigments, perinone pigments, phthalocyanine pigments, triarylcarbonium pigments (alkali lake pigments, laked rhodamines, dye salts with complex anions), isoindoline pigments and carbon blacks.
  • Particular examples of particularly preferred pigments (B) are: carbon black, Cl. Pigment Yellow 138, Cl. Pigment Red 122 and 146, Cl. Pigment Violet 19, Cl.
  • polyurethane (A) has a glass transition temperature, determined for example by differential thermal analysis (DSC), of not more than 50 0 C, preferably a maximum of 40 0 C
  • Polyurethanes (A) in the context of the present invention are obtainable by reaction of
  • R 1 , R 2 are identical or different and are independently selected from hydrogen and C 1 -C 6 -alkyl, such as, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert. Butyl, n-pentyl, iso-pentyl, sec-pentyl, neo-pentyl,
  • a 1 is selected from Ci-C2o-alkylene, preferably C2-Cio-alkylene, for example, -CH2-, - (CH 2) I 2 -, - (CH 2) I 4 -, - (CH 2) I 6 -, - (CHZ) 20 -, preferably - (CH 2 ) 2 -, - (CH 2 ) S-, - (CH 2 ) 4 -, - (CH 2 ) S-, - (CH 2 ) 6 -, - (CH 2 ) 8 -, - (CH 2 ) io, unsubstituted or mono- or polysubstituted with
  • Ci-C 4 -AlkVl for example methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl or tert-butyl, preferably methyl, phenyl or
  • Ci-C 20 alkylene -CH for example, -0-CH3, -0-C 2 H 5, -OnC 3 H 7, -O-CH (CH 3) 2, -OnC 4 H 9, -O- iso-C 4 H 9, -O-sec-C 4 H 9, -0-C (CHs) 3, of substituted Ci-C 20 alkylene -CH be mentioned, for example (CH 3) -, -CH (C 2 H 5 ) -, -CH (C 6 H 5 ) -, - CH 2 -CH (CH 3 ) -, cis- and trans-CH (CH 3 ) -CH (CHs) -, - (CH 2 ) -C (CH 3 ) 2 -CH 2 -, -CH 2 -CH (C 2 H 5 ) -, -CH 2 -CH (nC 3 H 7 ) -, -CH 2 -CH (iso-C 3 H 7 ) - in unsubstituted
  • X 2 selected from NH-R 3 and preferably oxygen
  • R 3 is different or preferably the same and selected from hydrogen, phenyl and
  • Ci-Cio-alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl, neo-pentyl, 1, 2
  • Polyurethane can be prepared in the absence or, preferably, in the presence of at least one catalyst.
  • Suitable catalysts are, for example, all catalysts customarily used in polyurethane chemistry.
  • Catalysts commonly used in polyurethane chemistry are preferably organic amines, especially tertiary aliphatic, cycloaliphatic or aromatic amines, and Lewis acidic organic metal compounds.
  • suitable Lewis acidic organic metal compounds are tin compounds, for example tin (II) salts of organic carboxylic acids, for example tin (II) acetate, tin (II) octoate, tin (II) ethyl hexoate and tin (II ) -Iaurate and the dialkyltin (IV) derivatives of organic carboxylic acids, eg dimethyltin diacetate, dibutyltin diacetate, dibutyltin dibutyrate, dibutyltin bis (2-ethylhexanoate), dibutyltin dilaurate, dibutyltin maleate, dioctyltin dilaurate and diocty
  • Metal complexes such as acetylacetonates of iron, titanium, zinc, aluminum, zirconium, manganese, nickel and cobalt are also possible.
  • Other suitable metal compounds are described by Blank et al. in Progress in Organic Coatings, 1999, 35, 19 et seq.
  • Preferred Lewis-acidic organic metal compounds are dimethyltin diacetate, dibutyltin dibutyrate, dibutyltin bis (2-ethylhexanoate), dibutyltin dilaurate, diocytotin dilaurate, zirconium acetylacetonate and zirconium 2,2,6,6-tetramethyl-3, 5-heptanedionate.
  • Suitable cesium salts include those compounds come into consideration, in which the following anions are used: F, Ch, CIO, "CIO3-, CIO 4 -, Br, J, JO 3 -, CN, OCN," NO2 " NO 3 " , HCO 3 -, CO 3 2" , S 2 " , SH " , HSO 3 -, SO 3 2 " , HSO 4 -, SO 4 2” , S 2 O 2 2 -, S 2 O 4 2 , S 2 O 5 2 -, S 2 O 6 2 “ , S 2 O 7 2" , S 2 O 8 2 " , H 2 PO 2 -, H 2 PO 4 -, HPO 4 2” , PO 4 3 -, P 2 O 7 4 " , (OC n H 2n + I) -, (C n H 2n -IO 2 ) -, (C n H 2n H 2n -IO 2 ) -, (C n H 2n H 2n + I)
  • Zinc and cesium carboxylates are preferred in which the anion conforms to the formulas (C n H 2n -iO 2 ) - as well as (C n + iH 2n - 2 O 4 ) 2 - where n is 1 to 20.
  • Particularly preferred cesium salts have as anions monocarboxylates of the general formula
  • customary organic amines are: triethylamine, 1,4-diazabicyclo [2,2,2] octane, tributylamine, dimethylbenzylamine, N, N, N ', N'-tetramethylethylenediamine, N, N, N ', N'-tetramethylbutane-1,4-diamine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethylcyclohexylamine, dimethyldodecylamine, pentamethyldipropylenetriamine, pentamethyldiethylenetriamine, 3-methyl-6-dimethylamino 3-azapentol, dimethylaminopropylamine, 1,3-bisdimethylaminobutane, bis (2-dimethylaminoethyl) ether, N-ethylmorpholine, N-methylmorpholine, N-cyclohexylmorpholine, 2-di
  • Preferred organic amines are trialkylamines having, independently of one another, two C 1 - to C 4 -alkyl radicals and one alkyl or cycloalkyl radical having 4 to 20 carbon atoms, for example dimethyl-C 4 -C 15 -alkylamine, such as dimethyldodecylamine or dimethyl-C 3 -C 5 -cycloalkylamine.
  • Also preferred organic amines are bicyclic amines which may optionally contain a further heteroatom such as oxygen or nitrogen, such as 1, 4-diazabicyclo [2,2,2] octane.
  • ammonium acetate or triethylamine and very particularly preferably N, N, N-trimethyl-N- (2-hydroxypropyl) ammonium 2-ethylhexanoate.
  • mixtures of two or more of the abovementioned compounds can also be used as catalysts.
  • catalysts selected from the abovementioned compounds which are soluble in organic solvents such as acetone, tetrahydrofuran (THF), N-methylpyrrolidone and / or N-ethylpyrrolidone.
  • Catalyst is preferably used in an amount of 0.0001 to 10 wt .-%, more preferably in an amount of 0.001 to 5 wt .-%, based on diisocyanate (a1).
  • Suitable solvents are water-immiscible solvents such as aromatic or aliphatic hydrocarbons such as toluene, ethyl acetate, hexane and cyclohexane and carboxylic acid esters such as ethyl acetate, further suitable solvents are acetone, THF and N-methylpyrrolidone and N-ethylpyrrolidone.
  • the one or more catalysts in solid or liquid form and most preferably dissolved in organic solvents such as acetone, tetrahydrofuran (THF), N-methylpyrrolidone or N-ethylpyrrolidone to.
  • organic solvents such as acetone, tetrahydrofuran (THF), N-methylpyrrolidone or N-ethylpyrrolidone to.
  • Diisocyanate (a1) is selected, for example, from aliphatic, aromatic and cycloaliphatic diisocyanates.
  • aromatic diisocyanates are: 2,4-tolylene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI) and so-called TDI mixtures (mixtures of 2,4-tolylene diisocyanate and 2, 6-tolylene diisocyanate).
  • aliphatic diisocyanates are: 1,4-butylene diisocyanate, 1,12-dodecamethylene diisocyanate, 1,10-decamethylene diisocyanate, 2-butyl-2-ethylpentamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and in particular hexamethylene diisocyanate (HDI).
  • 1,4-butylene diisocyanate 1,12-dodecamethylene diisocyanate
  • 1,10-decamethylene diisocyanate 1,10-decamethylene diisocyanate
  • 2-butyl-2-ethylpentamethylene diisocyanate 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate
  • HDI hexamethylene diisocyanate
  • cycloaliphatic diisocyanates examples include isophorone diisocyanate (IPDI), 2-isocyanatopropylcyclohexyl isocyanate, 2,4'-methylenebis (cyclohexyl) diisocyanate and 4-methylcyclohexane-1,3-diisocyanate (H-TDI).
  • IPDI isophorone diisocyanate
  • 2,4'-methylenebis (cyclohexyl) diisocyanate 2,4'-methylenebis (cyclohexyl) diisocyanate
  • H-TDI 4-methylcyclohexane-1,3-diisocyanate
  • isocyanates having groups of different reactivity are 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1,5-naphthylene diisocyanate, diphenyl diisocyanate, tolidine diisocyanate and 2,6-toluene diisocyanate.
  • Diisocyanate (a1) and compound (a2) can be used in molar ratios of, for example, 10: 1 to 1: 1, preferably 5: 1 to 5: 4.
  • diisocyanate (a1) and compound (a2) at temperatures ranging from 20 0 C to 150 0 C reacted together, preferably 50 to 130 ° C.
  • diisocyanate (a1) and compound (a2) in solvent, preferably in an organic solvent or a mixture of organic solvents such as toluene, acetone or tetrahydrofuran or mixtures of the aforementioned solvents.
  • solvent is dispensed with in the reaction of diisocyanate (a1) with compound (a2).
  • the reaction conditions for example, the molar ratios of diisocyanate (a1) and compound (a2), are such that diisocyanate (a) 2 isocyanate groups and 1 to 10 Allophanat phenomenon and 1 to 10 CC double bonds, but no O-CO-NH groups has.
  • the reaction conditions for example the molar ratios of diisocyanate (a1) and compound (a2), are such that diisocyanate (a) 2 isocyanate groups and 1 to 9 allophanate groups and 1 to 9 CC double bonds and also one or more O-CO-NH groups.
  • diisocyanate polyisocyanate (a) After completion of the reaction of diisocyanate (a1) with compound (a2), it is possible to isolate diisocyanate polyisocyanate (a), for example by separating off unreacted starting materials such as diisocyanate (a1) or compound (a2).
  • a suitable method of separating unreacted starting materials, such as diisocyanate (a1) and compound (a2), is distilling off, preferably at reduced pressure. Especially suitable are thin-film evaporators. Preference is given to the distilling off unreacted diisocyanate (a1).
  • di- or polyisocyanate (a) has a dynamic viscosity at 23 ° in the range of 500 to 2000 mPa ⁇ s, preferably 600 to 1800 mPa ⁇ s, most preferably 700 to 1500 mPa ⁇ s.
  • di- or polyisocyanate (a) has an NCO content in the range of 8 to 20% by weight, preferably 12 to 17% by weight, determinable for example by titration.
  • di- or polyisocyanate (a) can be reacted with at least one further di- or polyisocyanate (b).
  • Di- or polyisocyanate (b) can be selected from the abovementioned aliphatic, aromatic and cycloaliphatic diisocyanates.
  • di- or polyisocyanate (b) is selected to be different from diisocyanate (a1).
  • di- or polyisocyanate (b) is chosen to be equal to diisocyanate (a1).
  • diisocyanate or polyisocyanate (b) is selected as diisocyanate (a1) by not separating from unused diisocyanate (a1) after the preparation of di- or polyisocyanate (a) has ended ,
  • polyurethane (A) At least one compound is reacted with at least two isocyanate-reactive groups (c), which is also referred to as compound (c) in the context of the present invention.
  • isocyanate-reactive groups c
  • the SH group, the hydroxyl group, the NH 2 group and the NHR 3 group in which R 3 is defined as mentioned above are particularly well-suited for reaction with isocyanate groups.
  • Compound (c) may be hydrophilic or hydrophobic.
  • At least one compound (c) is selected from 1,1,1-trimethylol-C 1 -C 4 -alkylcarboxylic acids, for example 1, 1, 1-trimethylolacetic acid, 1,1,1-trimethylolpropanoic acid, 1,1,1-trimethylolbutyric acid , Citric acid, 1, 1-dimethylol-C 1 -C 4 -alkylcarboxylic acids, for example 1, 1-dimethylolacetic acid, 1, 1-dimethylolpropanoic acid, 1, 1-dimethylol butyric acid, 1, 1 -dimethylol-Ci ⁇ -Alkylsulfonkla,
  • Poly-C 2 -C 3 -alkylene glycols containing on average 3 to 300 alkylene oxide units per molecule, in particular polyethylene glycol having an average (number average) 3 to 300 ethylene oxide units per molecule and polyaddition products of ethylene oxide and propylene oxide with an average (number average) of 3 to 300 ethylene oxide units per Molecule and a molar proportion of ethylene oxide, which is higher than the proportion of propylene oxide;
  • hydrophilic diamines with COOM or SOWM groups for example
  • M is selected in each case from alkali metal ions, in particular Na + , and ammonium ions,
  • Polyester diols which are produced by polycondensation of
  • At least one aliphatic or cycloaliphatic diol preferably ethylene glycol, 1, 4-butanediol, 1, 6-hexanediol, cis- and trans-1,4-cyclohexanediol, cis- and trans-1,4-dihydroxymethylcyclohexane (cyclohexanedimethanol), having at least one aliphatic, aromatic or cycloaliphatic dicarboxylic acid, for example succinic acid, glutaric acid, adipic acid, cyclohexane-1, 4-dicarboxylic acid, terephthalic acid, isophthalic acid.
  • succinic acid for example succinic acid, glutaric acid, adipic acid, cyclohexane-1, 4-dicarboxylic acid, terephthalic acid, isophthalic acid.
  • At least two dicarboxylic acids are used to prepare polyester diol, one being aromatic and the other aliphatic, for example succinic and isophthalic, glutaric and isophthalic, adipic and isophthalic, succinic and terephthalic, glutaric and terephthalic acids , Adipic acid and terephthalic acid.
  • polyesterdiol If it is desired to use two or more dicarboxylic acids for the preparation of polyesterdiol, then one can choose any desired molar ratios. If it is desired to use an aromatic and an aliphatic dicarboxylic acid, a molar ratio in the range from 10: 1 to 1:10 is preferred, in particular a molar ratio in the range from 1.5: 1 to 1: 1.5.
  • polyester diols used as compound (c) have a hydroxyl number in the range of 20 to 200 mg KOH / g, preferably 50 to 180 very particularly preferably 100 to 160 mg KOH / g, determined according to DIN 53240. In one embodiment of the present invention, polyester diols used as compound (c) have a molecular weight M w in the range from 500 to 100,000 g / mol, preferably 700 to 50,000 g / mol, particularly preferably up to 30,000 g / mol.
  • Suitable compounds (c) are ethanolamine, diethanolamine, neopentylglycol, 1,4-butanediol, 1,6-hexanediol, 1,1-dimethylolpropane.
  • At least two compounds (c) are reacted, one of which is selected from ethanolamine, diethanolamine, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, 1,1-dimethylolpropane.
  • compound (d) of the general formula I another compound of the general formula I than for the preparation of diisocyanate or polyisocyanate (a) containing on average from 1 to 10 allophanate groups and on average from 1 to 10 carbon double bonds per molecule contains, used.
  • compound (d) and compound (a2) are identical.
  • Aqueous dispersions according to the invention also contain at least one polymerization inhibitor (C), also called inhibitor (C) or stabilizer (C).
  • Polymerization inhibitors (C) can be selected from UV absorbers and radical scavengers.
  • UV absorbers convert UV radiation into thermal energy. Suitable UV absorbers are, for example, oxanilides, triazines and benzotriazole (the latter obtainable as Tinuvin® brands of Ciba specialty chemicals), benzophenones, hydroxybenzophenones, hydroquinone, hydroquinone monoalkyl ethers, such as, for example, hydroquinone monomethyl ether (MEHQ).
  • Radical scavengers bind intermediately formed radicals.
  • Suitable radical scavengers are, for example, sterically hindered amines, which are known as HALS (hindered amine light stabilizers). Examples of these are 2,2,6,6-tetramethylpiperidine, 2,6-di-tert-butylpiperidine or derivatives thereof, eg. Bis- (2,2,6,6-tetra-methyl-4-piperidyl) sebacinate.
  • HALS hindered amine light stabilizers
  • suitable polymerization inhibitors (C) are substituted phenols, in particular phenols substituted by tert-alkyl radicals, for example
  • a mixture of a plurality of polymerization inhibitors (C) is used, for example a hydroquinone ether and a substituted phenol.
  • a total of up to 15% by weight, based on the sum of (A) and (B), of polymerization inhibitor (C) can be added, more preferably 0.1 to 1% by weight.
  • di- or polyisocyanate (a), further di- or polyisocyanate (b) and compound (c) and optionally further compound of the general formula I (d) can be used in the following weight ratios, in each case based on total polyurethane (A):
  • polyisocyanate (A) in addition to di- or polyisocyanate (a), further di- or polyisocyanate (b) and compound (c) and optionally further compound of general formula I (d) with at least one nucleophilic alcohol or amine, preferably monoalcohol or monoamine, which can also serve as a stopper and is referred to below as stopper (e).
  • suitable stoppers (e) are mono- and di-C 1 -C 4 -alkylamines, in particular diethylamine and N, N-diethanolamine. It is possible to use up to 10% by weight of stopper (s), based on polyurethane (A) to be synthesized.
  • polyurethane (A) from di- or polyisocyanate (a), further di- or polyisocyanate (b), compound (c) and optionally further compound of the general formula I (d) and optionally stopper (e) in one Stage or in several stages.
  • di- or polyisocyanate (a), further di- or polyisocyanate (b) and compound (c) can be reacted in a first stage, preferably by using a catalyst, stopping the reaction and then again di- or polyisocyanate (b) and Compound of general formula I (d) and optionally stopper (s) admit.
  • di- or polyisocyanate (a), further di- or polyisocyanate (b), compound (c) and optionally further compound of general formula I (d) and optionally stopper (s) in solvent preferably in an organic solvent or a mixture of organic solvents such as toluene, acetone or tetrahydrofuran or mixtures of the aforementioned solvents.
  • solvent preferably in an organic solvent or a mixture of organic solvents such as toluene, acetone or tetrahydrofuran or mixtures of the aforementioned solvents.
  • a mixture of organic solvents such as toluene, acetone or tetrahydrofuran or mixtures of the aforementioned solvents.
  • compound (c) and optionally further compound of general formula I (d) and optionally stopper (e ) on the use of solvents.
  • di- or polyisocyanate (a), further di- or polyisocyanate (b) and compound (c) and optionally further compound of general formula I (d) and optionally stopper (e) at temperatures in the range from 20 0 C to 150 0 C together, preferably 20 to 80 ° C.
  • one or more catalysts can be used which is advantageously selected from the catalysts mentioned above.
  • polyurethane (A) After completion of the reaction of di- or polyisocyanate (a), further di- or polyisocyanate (b), compound (c) and optionally further compound of general formula I (d) and optionally stopper (e), it is possible to isolate polyurethane (A), for example by Separation of unreacted starting materials such as di- or polyisocyanate (b), compound (c) and optionally further compound of general formula I (d) and optionally stopper (s).
  • a suitable method for the separation of unreacted starting materials such as (b) and (c) and given In case (d) and (e) is distilling off, preferably at reduced pressure. Especially suitable are thin-film evaporators. Preference is given to the distilling off unreacted di- or polyisocyanate (b).
  • the molecular weight M w of the polyurethanes (A) can be, for example, 500 to a maximum of 50,000 g / mol, preferably 1,000 to 30,000 g / mol, more preferably 2,000 to 25,000 g / mol and very particularly preferably at least 2,000 g / mol, determined for example by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • polyurethane (A) contains no free NCO groups.
  • di- or polyisocyanate (a) After the reaction of di- or polyisocyanate (a), further di- or polyisocyanate (b) and compound (c) and optionally (d) and optionally stopper (s) can be added to water, for example in a weight ratio of polyurethane (A) Water in the range of 1: 1 to 1:10.
  • di- or polyisocyanate (a) further di- or polyisocyanate (b) and compound (c) and optionally (d) and stopper (s) can be groups which have sufficiently acidic H atoms, by treatment with bases in the corresponding salts.
  • bases are hydroxides and bicarbonates of alkali metals or alkaline earth metals or the carbonates of alkali metals.
  • Useful bases are volatile amines, ie amines lamin having a boiling point up to 180 0 C at atmospheric pressure, such as ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylene, ethanolamine, N-methyldiethanolamine or triethanolamine.
  • basic groups with acids such as ⁇ -hydroxycarboxylic acids or ⁇ -amino acids or ⁇ -hydroxysulfonic acids can be converted into the corresponding salts.
  • di- or polyisocyanate (a) After the reaction of di- or polyisocyanate (a), further di- or polyisocyanate (b) and compound (c) optionally (d) and stopper (s) can be separated off any organic solvent used, for example by distillation.
  • pigments (B) and optionally water are added.
  • a solids content in the range of up to 3 to 40%, preferably up to 35%, particularly preferably 5 to 30%.
  • the weight ratio of polyurethane (A) to pigment (B) can be varied within wide limits.
  • the Weight ratio of polyurethane (A) to pigment (B) in a range of 5: 1 to 1: 3, preferably 3: 1 to 1: 2, particularly preferably 2: 1 to 2: 3.
  • polyurethane (A) and pigment (B) are dispersed.
  • the dispersion can be carried out in any suitable apparatus for dispersing.
  • shaking apparatuses such as e.g. called the company Skandex.
  • Poly (A) and pigment (B) are preferably dispersed, for example, in ultrasound apparatuses, high-pressure homogenizers, 2, 3, 4 or 5 roller mills, mini-mills, Henschel mixers, shaking mills, angle grinders, tooth mills, bead mills, wet mills, sand mills, attritors, Colloid mills, ultrasonic homogenizers, with Ultra-Turrax stirrer and in particular by grinding, for example in 2, 3, 4 or 5 roll mills, mini mills, shakers, Angmühlen, tooth mills, bead mills, wet mills, sand mills, colloid mills, ball mills, especially stirred ball mills ,
  • Pressure and temperature conditions during dispersion are generally not critical, for example, normal pressure has proven to be suitable.
  • temperatures for example temperatures in the range of 10 0 C to 100 0 C have proven to be suitable, preferably to 80 ° C.
  • aqueous dispersions according to the invention have a solids content in the range from 3 to 40%, preferably to 35%, particularly preferably 5 to 30%.
  • the average diameter of at least partially coated with polyurethane (A) pigment (B) is after dispersing usually in the range of 20 nm to 1, 5 microns, preferably in the range of 60 to 500 nm, more preferably in the range of 60 to 350 nm and in the context of the present invention generally designates the volume average.
  • Suitable measuring instruments for determining the mean particle diameter are, for example, Coulter Counter, e.g. Coulter LS 230.
  • the particle diameter refers to the mean diameter of the primary particles.
  • Aqueous dispersions according to the invention contain no thermal initiator, ie no compound which has a half-life of at least one hour at 60 ° C. and decomposes into free radicals, for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds such as azobisisobutyronitrile (AIBN) or water-soluble AIBN derivatives, highly substituted, in particular hexa-substituted, ethane derivatives or redox catalysts.
  • AIBN azobisisobutyronitrile
  • aqueous dispersions according to the invention comprise at least one polyurethane (D).
  • Polyurethane (D) is obtainable, for example, by reacting di- or polyisocyanate (b) with compound (c), but preferably contains no allophanate groups.
  • pigment (B) is at least partially coated not only with polyurethane (A), but also with polyurethane (D).
  • aqueous dispersions according to the invention comprise polyurethane (A) and polyurethane (D) in the range from 10: 1 to 1: 2, preferably in the range from 8: 1 to 1: 1 (weight ratio).
  • aqueous dispersions according to the invention contain at least one photoinitiator (E).
  • Photoinitiator (E) can be added either before dispersing or after dispersing.
  • Suitable photoinitiators (E) may be, for example, photoinitiators known to those skilled in the art, e.g. those in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 or K. K. Dietliker, Chemistry and Technology of UV and EB-
  • non-yellowing or slightly yellowing photoinitiators of the phenylglyoxalic acid ester type, as described in DE-A 198 26 712, DE-A 199 13 353 or WO 98/33761.
  • Preferred photoinitiators (E) are, for example, those photoinitiators which decompose on activation, so-called ⁇ -decayers, such as, for example, benzaldialkyl ketal-type photoinitiators, such as, for example, Benzildimethylketal.
  • ⁇ -decayers are derivatives of benzoin, isobutyl benzoin ethers, phosphine oxides, especially mono and bisacyl phosphine oxides, e.g. Benzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ⁇ -hydroxyalkylacetophenones, e.g. 2-hydroxy-2-methylphenylpropanone (E.1),
  • preferred photoinitiators (E) are hydrogen-abstracting photoinitiators, for example of the optionally substituted acetophenone type, anthraquinones, thioxanthones, benzoic acid esters or the optionally substituted benzophenones.
  • Particularly preferred examples are isopropylthioxanthone, benzophenone, phenylbenzyl ketone, 4-methylbenzophenone, halomethylated benzophenones, anthrone, Michler's ketone (4,4'-bis-N, N-dimethylaminobenzophenone), 4-chlorobenzophenone, 4,4'-dichlorobenzophenone, anthraquinone.
  • aqueous dispersions according to the invention are added so much photoinitiator (E) that the weight ratio of polyurethane (A) to photoinitiator (E) is in a range from 3: 1 to 10,000: 1, preferably from 5: 1 to 5,000: 1, most preferably in a weight ratio of 10: 1 to 1,000: 1.
  • the effectiveness of photoinitiators (E) in aqueous dispersions according to the invention can, if desired, be increased by the addition of at least one synergist, for example of at least one amine, in particular of at least one tertiary amine.
  • Suitable amines are, for example, triethylamine, N, N-dimethylethanolamine, N-methylethanolamine, triethanolamine, amino acrylates such as, for example, amine-modified polyether acrylates. If one has used amines such as tertiary amines as a catalyst in the synthesis of polyurethane (A) and not separated after the synthesis, as a catalyst used tertiary amine can act as a synergist.
  • Dispersions according to the invention can be added to one or more further compounds having CC double bonds (F), also referred to below as unsaturated compounds (F).
  • unsaturated compounds (F) are For example, compounds of general formula I.
  • Further particularly suitable unsaturated compounds (F) are those of general formula F.1.
  • R 1 , R 2 are identical or different and are independently selected from hydrogen and C 1 -C 10 -alkyl
  • n is an integer from 0 to 2, preferably 1;
  • R 8 is selected from C 1 -C 4 -alkyl, such as, for example, nC 4 Hg, C 3 H 7 , isoC 3 H 7 and preferably C 2 H 5 and CH 3, or phenyl,
  • a 3 , A 4 , A 5 are the same or different and selected from
  • C 1 -C 20 -alkylene such as -CH 2 -, -CH (CH 3 ) -, -CH (C 2 H 5 ) -, -CH (C 6 H 5 ) -, - (CH 2 ) 2 -, - (CH 2 ) S-, - (CH 2 ) 4 -, - (CH 2 ) S-, - (CH 2 ) 6 -, - (CH 2 ) 7 -, - (CH 2 ) 8 -, - ( CH 2 ) 9 -, - (CH 2 ) io-, -CH (CH 3 ) - (CH 2 ) 2 -CH (CH 3 ) -;
  • cis-or trans-C 4 -C 10 cycloalkylene such as, for example, cis-1,3-cyclopentylidene, trans-1,3-cyclopentylidene cis-1,4-cyclohexylidene, trans-1,4-cyclohexylidene;
  • C 1 -C 2 O-alkylene in which from one to seven non-adjacent C atoms in each case are replaced by oxygen, for example -CH 2 -O-CH 2 -, - (CH 2 ) 2 -O-CH 2 - , - (CH 2 ) 2 -O- (CH 2 ) 2 -, - [(CH 2 ) 2 -O] 2 - (CH 2 ) 2 -, - [(CH 2 ) 2 -O] 3 - (CH 2 ) 2 -;
  • Ci-C 2 o-alkylene substituted with up to 4 hydroxyl groups, wherein in Ci-C 2 o-alkylene of one to seven non-adjacent each C-atoms are replaced by oxygen such as -CH 2 -O-CH 2 -CH (OH) -CH 2 -, -CH 2 -O- [CH 2 -CH (OH) -CH 2 I 2 -, -CH 2 -O- [CH 2 -CH (OH) -CH 2 ] S-;
  • C6-Ci4-arylene such as para-CeH4.
  • Particularly preferred examples of compounds of general formula F.I are trimethylolpropane tri (meth) acrylate, tri (meth) acrylate of triply ethoxylated trimethylolpropane, pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate.
  • unsaturated compounds (F) are ethylene glycol di (meth) acrylate, diethylene glycol (meth) acrylate, triethylene glycol (meth) acrylate, propylene glycol (meth) acrylate, dipropylene glycol di (meth) acrylate and tripropylene glycol di (meth) acrylate.
  • unsaturated compounds (F) are partially or exhaustively (meth) acrylated polyols such as partially or exhaustively (meth) acrylated dimeric trimethylolpropane, partially or exhaustively (meth) acrylated dimeric trimethylolethane, partially or exhaustively (meth) acrylated dimer pentaerythritol.
  • a total of up to 100% by weight, based on the sum of (A) and (B), of unsaturated compound (F) may be added, preferably up to 50% by weight and more preferably up to 25% by weight. %.
  • Aqueous dispersions according to the invention can be used well as or for the preparation of formulations for dyeing or printing substrates, for example for the production of dyeing liquors for pigment dyeing or for the production of printing pastes for pigment printing.
  • An object of the present invention is therefore the use of aqueous dispersions of the invention as or for the preparation of formulations for dyeing or printing substrates.
  • a process for dyeing or printing substrates using at least one aqueous dispersion according to the invention is provided by the present invention.
  • Suitable substrates are:
  • cellulosic materials such as paper, paperboard, cardboard, wood and wood-based materials, which may also be painted or otherwise coated, metallic materials such as foils, sheets or workpieces of aluminum, iron, copper, silver, gold, zinc or alloys of these metals which are lacquered or may otherwise be coated silicate materials such as glass, porcelain and ceramics, which may be coated polymeric materials of all types such as polystyrene, polyamides, polyesters, polyethylene, polypropylene, melamine resins, polyacrylates, polyacrylonitrile, polyurethanes, polycarbonates, polyvinyl chloride, polyvinyl alcohols, polyvinyl acetates, polyvinylpyrrolidones and corresponding copolymers and block copolymers, biodegradable polymers and natural polymers such as gelatin,
  • textile substrates such as fibers, yarns, threads, knits, woven fabrics, non-wovens and made-up articles of polyester, modified polyester, polyester blends, cellulosic materials such as cotton, blended cotton, jute, flax, hemp and ramie, viscose, wool, silk, polyamide, Polyamide blends, polyacrylonitrile, triacetate, acetate, polycarbonate, polypropylene, polyvinyl chloride, blended fabrics such as polyester / polyurethane blends (eg Lycra®), polyethylene-polypropylene blends, polyester microfibers, and glass fiber fabrics.
  • polyester / polyurethane blends eg Lycra®
  • polyethylene-polypropylene blends polyester microfibers, and glass fiber fabrics.
  • Aqueous dispersions according to the invention are particularly suitable as or for the production of inks for the ink-jet process, in particular of aqueous inks for the ink-jet process.
  • Very particularly good aqueous dispersions according to the invention can be used for the preparation of pigment-containing aqueous inks for the ink-jet process.
  • Another object of the present invention is thus the use of aqueous dispersions of the invention for the production of inks for the ink-jet process.
  • Another object of the present invention is a process for the preparation of inks for the ink-jet process using at least one aqueous dispersion according to the invention.
  • inks for the ink-jet process are also referred to as ink-jet inks or in short as inks.
  • inkjet inks according to the invention contain
  • aqueous dispersion according to the invention From 1 to 40% by weight, preferably from 2 to 35% by weight, of aqueous dispersion according to the invention, details in% by weight being based in each case on the total weight of the relevant ink according to the invention.
  • aqueous dispersions according to the invention directly as ink-jet inks.
  • Inks according to the invention for the ink-jet process may in another embodiment contain at least one additive (G).
  • ink-jet inks according to the invention are prepared by diluting the aqueous dispersion according to the invention with water and optionally mixing it with one or more additives (G).
  • the solids content of ink jet inks according to the invention is adjusted to be in the range from 5 to 40%, preferably to 35%, particularly preferably 10 to 30%.
  • inks according to the invention for the ink-jet process may contain one or more organic solvents.
  • Low molecular weight polyethylene glycols are preferred additives (G); they may preferably be used in admixture with one or more organic solvents that are difficult to evaporate, soluble in water or miscible with water.
  • Preferred low molecular weight polyethylene glycols usually have an average molecular weight M n of 100 to 6000 g / mol, in particular up to 1500 g / mol, especially from 150 to 500 g / mol.
  • M n average molecular weight
  • Examples which may be mentioned are di-, tri- and tetraethylene glycol, diethylene glycol monomethyl, -ethyl, -n-, -iso-propyl-propyl and -n-butyl ether, triethylene glycol monomethyl, -ethyl, -n-propyl -, iso-propyl - and n-butyl ether called
  • low molecular weight polyethylene glycols are used in admixture with other organic solvents as an additive (G), are generally used for this difficult to evaporate (ie usually at atmospheric pressure a boiling point> 100 0 C having) and thus a water-retaining effect possessing organic solvent, which are soluble in water or miscible with water.
  • Suitable solvents are polyhydric alcohols, preferably unbranched and branched polyhydric alcohols having 2 to 8, in particular 3 to 6, carbon atoms, such as ethylene glycol, 1, 2- and 1, 3-propylene glycol, glycerol, erythritol, pentaerythritol, pentitols such as arabitol, adonite and XyNt and hexites such as sorbitol, mannitol and dulcitol.
  • polyhydric alcohols preferably unbranched and branched polyhydric alcohols having 2 to 8, in particular 3 to 6, carbon atoms, such as ethylene glycol, 1, 2- and 1, 3-propylene glycol, glycerol, erythritol, pentaerythritol, pentitols such as arabitol, adonite and XyNt and hexites such as sorbitol, mannitol and dulcitol.
  • polypropylene glycols which are to be understood as including the lower polymers (di-, tri- and tetramers), and their mono- (especially Ci-C ⁇ -, in particular Ci-C4-) alkyl ether.
  • Examples are di-, tri- and tetra-1, 2- and -1, 3-propylene glycol and di-, tri- and tetra-1, 2- and -1, 3-propylenglykolmonomethyl-, -ethyl-, -n propyl, iso-propyl and n-butyl ether.
  • low molecular weight polytetrahydrofuran is also suitable as a solvent.
  • Preferably used low molecular weight polytetrahydrofuran usually has an average molecular weight M w of 150 to 500 g / mol, preferably from 200 to 300 g / mol and more preferably about 250 g / mol (corresponding to a molecular weight distribution).
  • Low molecular weight polytetrahydrofuran can be prepared in a known manner via cationic polymerization of tetrahydrofuran. This produces linear polytetra- methylene glycols.
  • pyrrolidone and N-alkylpyrrolidones whose alkyl chain preferably contains 1 to 4, especially 1 to 2, carbon atoms.
  • suitable alkylpyrrolidones are N-methylpyrrolidone, N-ethylpyrrolidone and N- (2-hydroxyethyl) pyrrolidone.
  • solvents 1, 2 and 1, 3-propylene glycol, glycerol, sorbitol, diethylene glycol, polyethylene glycol (M w 300 to 500 g / mol), diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, pyrrolidone, N-methylpyrrolidone and N- ( 2-hydroxyethyl) pyrrolidone.
  • Low molecular weight polyethylene glycol may also be mixed with one or more (e.g., two, three, or four) of the solvents listed above.
  • inks for the ink-jet process according to the invention may be 0.1 to 80% by weight, preferably 2 to 60% by weight, more preferably 5 to 50% by weight and most preferably 10 to 40 wt .-%, non-aqueous solvent.
  • Non-aqueous solvents as additives (G), in particular also the abovementioned particularly preferred solvent combinations, can advantageously be supplemented by urea (as a rule from 0.5 to 3% by weight, based on the weight of the colorant preparation), which has the water-retaining effect of the solvent mixture.
  • urea as a rule from 0.5 to 3% by weight, based on the weight of the colorant preparation
  • Inventive inks for the ink-jet process may contain further additives (G), as are customary in particular for aqueous ink-jet inks and in the printing and coating industry.
  • preservatives such as, for example, 1,2-benzisothiazolin-3-one (available commercially as Proxel brands from Avecia Lim.) And its alkali metal salts, glutardialdehyde and / or tetramethylolacetylenediurea, Protectole®, antioxidants, Degassers / defoamers such as acetylenediols and ethoxylated acetylenediols, which usually contain 20 to 40 moles of ethylene oxide per mole of acetylenediol and at the same time can also act as a dispersant, viscosity regulators, leveling agents, wetting agents (eg, wetting surfactants based on ethoxylated or propoxylated fatty or
  • Hydroxypropyl) heptamethyltrisiloxanes which generally have one block of 7 to 20, preferably 7 to 12, ethylene oxide units and one block of 2 to 20, preferably 2 to 10 propylene oxide units and in quantities of 0.05 to 1 wt. in which colorant preparations may be), anti-settling agents, gloss improvers, lubricants, adhesion promoters, skin preventatives, matting agents, emulsifiers, stabilizers, water repellents, light stabilizers, handle improvers, antistatic agents, bases such as triethanolamine or acids, especially carboxylic acids such as lactic acid or citric acid for regulation of the pH.
  • these agents are constituents of inks according to the invention for the ink-jet process, their total amount is generally 2% by weight, in particular 1% by weight, based on the weight of the colorant preparations according to the invention and in particular of the inks according to the invention for the inkjet process. jet process.
  • AO represents identical or different alkylene oxide units, for example propylene oxide units, butylene oxide units and in particular ethylene oxide units,
  • R 4 , R 5 , R 6 , R 7 are each the same or different and selected from
  • Ci-Cio-alkyl unbranched or branched, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec Pentyl, neo-pentyl, 1,2-dimethylpropyl, iso-amyl, n-hexyl, iso-hexyl, sec-butyl
  • b is the same or different and selected from integers in the range of 0 to 50, preferably 0 or 1 to 30 and particularly preferably 3 to 20.
  • R 5 or R 7 are methyl.
  • R 5 and R 7 are methyl, and R 4 and R 6 are isobutyl.
  • variable b is as defined above.
  • Inventive inks for the ink-jet process may furthermore comprise a further photoinitiator which is not equal to the photoinitiator (E) which can be used in the preparation of aqueous dispersion according to the invention but which is chosen from the abovementioned photoinitiators.
  • a further photoinitiator which is not equal to the photoinitiator (E) which can be used in the preparation of aqueous dispersion according to the invention but which is chosen from the abovementioned photoinitiators.
  • inks for the ink-jet process according to the invention have a dynamic viscosity in the range from 2 to 80 mPa.s, preferably from 3 to 40 mPa.s, particularly preferably to 25 mPa.s, measured at 23 ° C. according to DIN 53018.
  • the surface tension of inks according to the invention for the ink-jet process is 24 to 70 mN / m, in particular 25 to 60 mN / m, measured at 25 ° C. according to DIN 53993.
  • the pH of inks according to the invention for the ink-jet process is from 5 to 10, preferably from 8 to 10.
  • Ink jet inks according to the invention show overall advantageous application properties, above all good write-on behavior and good continuous writing behavior (kogation), and, in particular when using the particularly preferred solvent combination, good drying behavior, and result in high quality printed images, ie. high brilliance and color depth and high friction, light, water and
  • Wetrubfastness are particularly suitable for printing on coated and uncoated paper and textile.
  • Another aspect of the present invention is a process for the preparation of inks for the ink-jet process according to the invention.
  • the process according to the invention for the production of inks for the ink-jet process is characterized in that at least one aqueous dispersion according to the invention, water and if necessary, at least one additive (G) mixed together, for example in one or more steps.
  • Mixturing and intensive shaking, for example, and dispersing, for example in ball mills or stirred ball mills, may be mentioned as suitable mixing techniques.
  • inventive aqueous dispersion water, optionally (C), optionally (D), optionally (E), optionally (F) and optionally (G) is not critical per se.
  • the present invention it is possible first to synthesize at least one polyurethane (A), then to disperse with pigment (B) and then with one or more of the desired additives (C), (D), (E), (F) and / or (G) are mixed and diluted with water before or after mixing.
  • At least one polyurethane (A) is synthesized in the presence of polymerization inhibitor (C) and then dispersed with pigment (B) and at least one of the desired additives polyurethane (D) and (E), (F) and ( G).
  • At least one polyurethane (A) and at least one polyurethane (D) are synthesized in the presence of polymer ion inhibitor (C) and then dispersed with pigment (B) and at least one of the desired additives (E), ( F) and (G).
  • a further aspect of the present invention is a process for printing flat or three-dimensional substrates by the ink-jet process using at least one ink according to the invention for the ink-jet process, also referred to below as printing process according to the invention.
  • at least one ink-jet ink according to the invention is printed onto a substrate.
  • at least one ink-jet ink according to the invention is printed on a substrate and then treated with actinic radiation.
  • the usually aqueous inks are sprayed in small droplets directly onto the substrate.
  • the inks according to the invention for the bubble jet process and for the process by means of a piezoelectric crystal.
  • Inventive inks for the inkjet process can be cured by actinic radiation, for example, actinic radiation having a wavelength range of 200 nm to 450 nm is suitable.
  • actinic radiation having an energy in the range from 70 mJ / cm 2 to 2000 mJ / cm 2 is suitable.
  • Actinic radiation can be useful to introduce, for example, continuously or in the form of lightning.
  • temperatures in the range from 30 to 120 ° C. over a period of time in the range from 10 seconds to 24 hours, preferably one to 30 minutes, particularly preferably up to 5 minutes, are suitable.
  • IR radiation in a wavelength range above 800 nm is suitable as IR radiation.
  • Suitable devices for intermediate drying are, for example, drying ovens or vacuum drying ovens for intermediate thermal drying, furthermore IR lamps.
  • the heat developed by the action of actinic radiation can also have an inter-drying effect.
  • inks and prints prepared by using ink-jet inks according to the invention can also be cured thermally, with or without the action of actinic radiation.
  • substrates for example paper, cardboard, food or parts of foods such as Eggshells, and in particular textile substrates, which were printed according to one of the above-mentioned printing method according to the invention and are characterized by particularly sharp printed images or drawings and excellent grip.
  • printed substrates according to the invention have few "soft spots”.
  • Another object of the present invention are at least partially coated pigments prepared by dispersing at least one pigment (B), at least one polymerization inhibitor (C) and at least one polyurethane (A), wherein polyurethane (A) is obtainable by reacting
  • a special object of the present invention are at least partially coated pigments described above, characterized in that di- or polyisocyanate (a) is prepared by reacting at least one di- or polyisocyanate (a1) with at least one compound of general formula I.
  • R 1 , R 2 are identical or different and are selected independently of one another from hydrogen and C 1 -C 10 -alkyl
  • X 1 selected from oxygen and NR 3 ,
  • X 2 selected from hydroxyl and NH-R 3 ,
  • R 3 is identical or different and selected from hydrogen, C 1 -C 10 -alkyl and phenyl.
  • a special object of the present invention are pigments at least partially coated with polyurethane (A), characterized in that polyurethane (A) is prepared by reacting
  • R 1 , R 2 are identical or different and are independently selected from hydrogen and C 1 -C 10 -alkyl
  • X 1 is selected from oxygen and NR 3
  • a 1 is selected from C 1 -C 20 -alkylene, unsubstituted or monosubstituted or polysubstituted by C4-alkyl, phenyl or OCi -C 4 -alkyl, where one or more nonadjacent CH groups may be replaced by oxygen in Ci-C2o-alkylene;
  • X 2 selected from hydroxyl and NH-R 3 , R 3 is the same or different and selected from hydrogen, Ci-Cio-alkyl and
  • At least partially coated pigments according to the invention can be obtained, for example, from aqueous dispersions according to the invention by removing the water. NEN, for example by drying, freeze-drying, filtration or a combination of the above measures.
  • At least partially coated pigments according to the invention are particularly suitable for the production of inks for the ink jet process.
  • Another object of the present invention are polyurethanes (A), prepared by reacting
  • Polyisocyanate (c) from 5 to 50% by weight, preferably from 30 to 50% by weight, of compound having at least two isocyanate-reactive groups and (d) optionally of at least one compound of general formula I.
  • polyurethane (A) according to the invention has a double bond density of 0.1 to 5 mol / kg (A), preferably 0.5 to 3 mol / kg (A), very particularly preferably 1 to 2 mol / kg ( A), determinable for example by determination of the hydrogenation-iodine number and by 1 H-NMR spectroscopy.
  • polyurethane (A) is added during or immediately after the synthesis with at least one polymerization inhibitor (C).
  • Polyurethanes (A) according to the invention are particularly suitable for the preparation of novel jet inks and for the preparation of aqueous dispersions according to the invention.
  • the NCO content was monitored in each case according to DIN 53185 by titration.
  • the degree of coating of pigments according to the invention was determined by transmission electron microscopy using a freeze-fracture technique.
  • Solids content The percentages in the context of the present invention always refer to% by weight. Solid contents are always determined in the context of the present invention by drying at 150 ° C. for 30 minutes. The dynamic viscosity was determined at room temperature.
  • the reaction was stopped by adding 250 ppm by weight of di (2-ethylhexyl) phosphate, based on (a.1.1). The mixture thus obtained was then freed from unreacted HDI in a thin-film evaporator at 135 ° C. and 2.5 mbar.
  • the diisocyanate (a.1) obtainable in this way had an NCO content of 15% by weight and a dynamic viscosity of 1200 mPa.s at 23 ° C.
  • the residual HDI content was below 0.5% by weight.
  • the CC double bond density was 2 CC double bonds per molecule.
  • polyurethane (A.1) was obtained.
  • the glass transition temperature T 9 of polyurethane (A.1) according to the invention was 36 ° C.
  • inventive polyurethane (A.3) was obtained.
  • the glass transition temperature T 9 of inventive polyurethane (A.2) was 32 ° C.
  • Aqueous dispersions of the invention were prepared on a shaking apparatus (Skandex) with 60 g of glass beads (diameter 0.25-0.5 mm). The formulations are summarized in Table 1. After weighing the ingredients and the glass beads in Skandex, the resulting mixture was shaken for a time according to Table 1. Thereafter, a sample was taken and the average diameter of dispersed pigment determined (Coulter Counter LS230) and the degree of coating measured. The pH was measured and, if necessary, adjusted to 8 to 8.5 with triethanolamine. The aqueous dispersions WD.1 to WD.3 according to the invention were obtained.
  • Table 1 Ingredients and recipe parameters for aqueous dispersions WD.1 to WD.3 according to the invention
  • Biocide 1 20 wt .-% solution of 1, 2-Benziso-thiazolin-3-one in propylene glycol
  • the ink T.1 according to the invention had a pH of 8.9 and a dynamic viscosity of 3.4 mPa.s.
  • the ink T.2 according to the invention had a pH of 8.4 and a dynamic viscosity of 3.7 mPa.s.
  • Ink T.3 according to the invention had a pH of 9.1 and a dynamic viscosity of 3.5 mPa.s.
  • Ink T.1, T.2 or T.3 according to the invention was filled into a respective cartridge and printed with a Mimaki TX2 720 printer at 720 dpi on untreated cotton. Prints were obtained without clogging of nozzles.
  • Variant 1 was an exposure to actinic radiation without thermal drying
  • variant 2 was a thermal drying without subsequent exposure
  • Variant 3 was an exposure to actinic radiation followed by thermal drying.
  • a UV irradiation device from the company IST was used with two different UV emitters: Eta Plus M-400-U2H, Eta Plus M-400-U2HC. It was exposed for 10 seconds and entered an energy of 600 mJ / cm 2 .
  • the printed substrates S1.1 to S1.3, S2.1 to S2.3 and S3.1 to S3.3 according to the invention were obtained according to Table 2 and certain rubfastness according to ISO-105-D02: 1993 and the wash fastness to ISO 105 -C06: 1994th

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Die vorliegende Erfindung betrifft wässrige Dispersionen, enthaltend ein zumindest partiell mit Polyurethan (A) umhülltes Pigment (B) und weiterhin mindestens einen Polymerisationsinhibitor (C), wobei Polyurethan (A) erhältlich ist durch Umsetzung von (a) 15 bis 70 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allophanatgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, und gegebenenfalls (b) 0 bis 60 Gew.-% weiterem Di- oder Polyisocyanat, mit (c) 5 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen, wobei Angaben in Gew.-% auf gesamtes Polyurethan (A) bezogen sind.

Description

Dispersionen von Polyurethanen, ihre Herstellung und Verwendung
Beschreibung
Die vorliegende Erfindung betrifft wässrige Dispersionen, enthaltend ein zumindest partiell mit einem Polyurethan (A) umhülltes Pigment (B) und weiterhin mindestens einen Polymerisationsinhibitor (C), wobei Polyurethan (A) erhältlich ist durch Umsetzung von
(a) 15 bis 70 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allophanatgrup- pen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, und gegebenenfalls
(b) 0 bis 60 Gew.-% weiterem Di- oder Polyisocyanat, mit
(c) 5 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen,
wobei Angaben in Gew.-% auf gesamtes Polyurethan (A) bezogen sind.
Weiterhin betrifft die vorliegende Erfindung die Herstellung von erfindungsgemäßen mindestens partiell umhüllten Pigmenten und erfindungsgemäßen wässrigen Dispersionen sowie ihre Verwendung.
Häufig ist man vor die Aufgabe gestellt, Pigmente in flüssigem und insbesondere wäss- rigem Medium zu dispergieren, um sie beispielsweise zu Aufzeichnungsflüssigkeiten und insbesondere Tinten weiterzuverarbeiten. Besonders strenge Anforderungen stellt man dabei an Tinten, die beim Ink-Jet-Verfahren (Tintenstrahldruckverfahren wie Thermal Ink Jet, Piezo Ink Jet, Continuous Ink Jet, Valve Jet, Transferdruckverfahren) eingesetzt werden. Sie müssen zum Drucken geeignete Viskosität und Oberflächenspannung aufweisen, sie müssen lagerstabil sein, d.h., sie sollen nicht koagulieren oder flokulieren, und sie dürfen nicht zur Verstopfung der Druckerdüse führen, was insbesondere bei dispergierten, also nicht gelöste Farbmittelteilchen enthaltenden Tinten problematisch sein kann. Die Anforderungen an die Lagerstabilität dieser Aufzeichnungsflüssigkeiten und insbesondere Tinten beinhaltet zusätzlich, dass sich dispergier- te Farbmittelteilchen nicht absetzen. Weiterhin müssen die Tinten im Falle des Conti- nuous Ink Jet stabil gegen den Zusatz von Leitsalzen sein und bei Erhöhung des lo- nengehaltes keine Tendenz zum Ausflocken zeigen. Außerdem müssen die erhaltenen Drucke den koloristischen Anforderungen genügen, d.h. hohe Brillanz und Farbtiefe zeigen, und gute Echtheiten, z.B. Reibechtheit, Lichtechtheit, Wasserechtheit und Nassreibechtheit, gegebenenfalls nach Nachbehandlung wie beispielsweise Fixierung, und gutes Trocknungsverhalten aufweisen.
Um besonders gute Echtheiten wie beispielsweise Reibechtheit, Nassreibechtheit und Waschechtheit von bedruckten Substraten zu gewährleisten, kann man Drucke durch sogenannte Strahlungshärtung fixieren. Dazu kann man sogenannte strahlungshärtbare Tinten einsetzen, s. beispielsweise US 5,623,001 und EP 0 993 495. Strahlungshärtbare I nk- Jet-Tinten enthalten üblicherweise ein Material, dass durch Einstrahlung von aktinischer Strahlung gehärtet werden kann. Außerdem kann man strahlungshärt- baren I nk- Jet-Tinten einen Photoinitiator beifügen.
In WO 2006/089933 werden wässrige Dispersionen offenbart, die Allophanatgruppen- haltige strahlungshärtbare Polyurethane enthalten, sowie die Verwendung der betreffenden Dispersionen in I nk- Jet-Tinten. Man erhält, wenn man die offenbarten Ink-Jet- Tinten verdruckt, nach der Einwirkung von aktinischer Strahlung bedruckte Substrate mit sehr guten Echtheiten. In vielen Fällen ist es jedoch gar nicht gewünscht, beim Aushärten der Drucke auf aktinische Strahlung angewiesen zu sein. Eine gleichmäßige Aushärtung von Drucken auf nicht-ebenen Substraten setzt eine optimierte Geometrie der Strahlungsquellen voraus, die nicht immer gewährleistet werden kann. Eine thermi- sehe Aushärtung der in WO 2006/089933 offenbarten Tinten ist jedoch nur in solchen Fällen möglich, in denen die betreffenden Tinten ohne Stabilisator (Radikalfänger, Polymerisationsinhibitor) hergestellt sind. Derartige Tinten hingegen weisen in einigen Fällen eine eingeschränkte Lagerfähigkeit auf.
Es bestand also die Aufgabe, wässrige Dispersionen von Pigmenten bereit zu stellen. Es bestand weiterhin die Aufgabe, Tinten für das Ink-Jet-Verfahren bereit zu stellen, die sich besonders gut durch Einwirkung aktinischer Strahlung und/oder thermisch aushärten lassen und gleichzeitig eine gute Lagerfähigkeit aufweisen. Weiterhin bestand die Aufgabe, Verfahren zur Herstellung von Tinten für das Ink-Jet-Verfahren be- reit zu stellen. Schließlich bestand die Aufgabe, bedruckte Substrate und insbesondere bedruckte textile Substrate bereit zu stellen, die einen besonders guten Griff und gute Echtheiten aufweisen.
Dementsprechend wurden eingangs definierte wässrige Dispersionen gefunden.
Im Rahmen der vorliegenden Erfindung werden die Ausdrücke „Tinten für das Ink-Jet- Verfahren" und „Ink-Jet-Tinten" äquivalent verwendet.
Unter Polyurethanen sind im Rahmen der vorliegenden Erfindung nicht nur solche Po- lymere zu verstehen, die ausschließlich durch Urethangruppen verknüpft sind, sondern in einem allgemeineren Sinne Polymere, die durch Umsetzung von Di- oder Polyisocy- anaten mit Verbindungen erhalten werden können, die aktive Wasserstoffatome enthalten. Polyurethane im Sinne der vorliegenden Erfindung können also neben Urethangruppen auch Harnstoff-, Allophanat-, Biuret-, Carbodiimid-, Amid-, Ester, Ether-, Ure- tonimin-, Uretdion-, Isocyanurat- oder Oxazolidingruppen enthalten. Als Übersicht sei beispielhaft genannt: Kunststoffhandbuch/Saechtling, 26. Auflage, Carl-Hanser-Verlag, München 1995, Seite 491 ff. Insbesondere enthalten Polyurethane im Sinne der vorliegenden Erfindung Allophanatgruppen.
In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei Polyurethan (A) nicht um hyperverzweigtes Polyurethan. Hyperverzweigte Polyurethane sind als solche bekannt und beispielsweise in J. M. S. - Rev. Macromol. Chem. Phys. 1997, C37(3), 555 beschrieben.
Erfindungsgemäße wässrige Dispersionen enthalten ein zumindest partiell mit einem Polyurethan (A) umhülltes Pigment (B).
Dabei wird im Folgenden unter „zumindest partiell mit mindestens einem Polyurethan umhülltem Pigment" solches Pigment in partikulärer Form verstanden, dessen äußere Oberfläche vollständig oder teilweise von Polyurethan (A) bedeckt ist. Auch Mischun- gen von Pigment in partikulärer Form, bei denen ein gewisser Prozentsatz der Pigmentpartikel nicht mit Polyurethan (A) umhüllt ist und bei denen die äußere Oberfläche der übrigen Pigmentpartikel vollständig oder teilweise von Polyurethan (A) bedeckt sind, fallen unter die Definition von „zumindest partiell mit einem Polyurethan (A) umhülltem Pigment".
Dabei kann es sich bei Polyurethan (A) um ein oder mehrere Polyurethane (A) handeln. Wenn es sich um mehrere Polyurethane handelt, so werden Zahlenangaben im Zusammenhang mit Polyurethan (A) stets auf die Gesamtheit an Polyurethanen (A) bezogen.
In einer Ausführungsform der vorliegenden Erfindung sind in zumindest partiell mit mindestens einem Polyurethan (A) umhülltem Pigment mindestens 10%, bevorzugt mindestens 20% und besonders bevorzugt mindestens 30% der äußeren Oberfläche mit Polyurethan (A) bedeckt.
Der Grad der Umhüllung lässt sich beispielsweise durch Messung des Zeta-Potenzials, durch mikroskopische Methoden wie beispielsweise Lichtmikroskopie oder Methoden der Elektronenmikroskopie (TEM, Kryo-TEM, SEM) und ganz speziell mit Hilfe der Ge- frierbruchpräparationstechnik, NMR-Spektroskopie oder Photoelektronenspektroskopie an getrocknetem zumindest partiell umhülltem Pigment bestimmen.
Zumindest partiell zu umhüllende Pigmente (B) erhält man im Rahmen der vorliegenden Erfindung durch zumindest partielles Umhüllen von in Wasser praktisch nicht löslichen feinteiligen organischen oder anorganischen Farbmitteln gemäß der Definition in DIN 55944. Bevorzugt geht man zur Herstellung von erfindungsgemäßen wässrigen Dispersionen von organischen Pigmenten aus, wobei Ruß mit umfasst ist. Im Folgenden sind Beispiele für besonders gut geeignete Pigmente (B) genannt. Organische Pigmente:
- Monoazopigmente: Cl. Pigment Brown 25; Cl. Pigment Orange 5, 13, 36 und 67; Cl. Pigment Red 1 , 2, 3, 5, 8, 9, 12, 17, 22, 23, 31 , 48:1 , 48:2,
48:3, 48:4, 49, 49:1 , 52:1 , 52:2, 53, 53:1 , 53:3, 57:1 , 63, 112, 146, 170, 184, 210, 245 und 251 ; Cl. Pigment Yellow 1 , 3, 73, 74, 65, 97, 151 und 183;
- Disazopigmente: Cl. Pigment Orange 16, 34 und 44; Cl. Pigment Red 144, 166,
214 und 242; Cl. Pigment Yellow 12, 13, 14, 16, 17, 81 , 83, 106, 1 13, 126, 127, 155, 174, 176 und 188;
- Anthanthronpigmente: Cl. Pigment Red 168 (Cl. Vat Orange 3);
- Anthrachinonpigmente: Cl. Pigment Yellow 147 und 177; Cl. Pigment Violet 31 ; - Anthrachinonpigmente: Cl. Pigment Yellow 147 und 177; Cl. Pigment Violet 31 ;
- Anthrapyrimidinpigmente: Cl. Pigment Yellow 108 (Cl. Vat Yellow 20);
- Chinacridonpigmente: Cl. Pigment Red 122, 202 und 206; Cl. Pigment Violet 19;
- Chinophthalonpigmente: Cl. Pigment Yellow 138; - Dioxazinpigmente: Cl. Pigment Violet 23 und 37;
- Flavanthronpigmente: Cl. Pigment Yellow 24 (Cl. Vat Yellow 1 );
- Indanthronpigmente: Cl. Pigment Blue 60 (Cl. Vat Blue 4) und 64 (Cl. Vat Blue 6);
- Isoindolinpigmente: Cl. Pigment Orange 69; Cl. Pigment Red 260; Cl. Pigment Yellow 139 und 185;
- Isoindolinonpigmente: Cl. Pigment Orange 61 ; Cl. Pigment Red 257 und 260; Cl. Pigment Yellow 109, 1 10, 173 und 185;
- Isoviolanthronpigmente: Cl. Pigment Violet 31 (Cl. Vat Violet 1 );
- Metallkomplexpigmente: Cl. Pigment Yellow 1 17, 150 und 153; Cl. Pigment Green 8;
- Perinonpigmente: Cl. Pigment Orange 43 (Cl. Vat Orange 7); Cl. Pigment Red 194 (Cl. Vat Red 15);
- Perylenpigmente: Cl. Pigment Black 31 und 32; Cl. Pigment Red 123, 149, 178, 179 (Cl. Vat Red 23), 190 (Cl. Vat Red 29) und 224; Cl. Pigment Violet 29;
- Phthalocyaninpigmente: Cl. Pigment Blue 15, 15:1 , 15:2, 15:3, 15:4, 15:6 und 16; Cl. Pigment Green 7 und 36;
- Pyranthronpigmente: Cl. Pigment Orange 51 ; Cl. Pigment Red 216 (Cl. Vat Orange 4); - Thioindigopigmente: Cl. Pigment Red 88 und 181 (Cl. Vat Red 1 ); Cl. Pigment Violet 38 (Cl. Vat Violet 3); - Triarylcarboniumpigmente: Cl. Pigment Blue 1 , 61 und 62; Cl. Pigment Green 1 ; Cl.
Pigment Red 81 , 81 :1 und 169; Cl. Pigment Violet 1 , 2, 3 und 27; Cl. Pigment Black 1 (Anilinschwarz); Cl. Pigment Yellow 101 (Aldazingelb); Cl. Pigment Brown 22.
Anorganische Pigmente:
- Weißpigmente: Titandioxid (Cl. Pigment White 6), Zinkweiß, Farbenzinkoxid, Bari- umsulfat, Zinksulfid, Lithopone; Bleiweiß;
- Schwarzpigmente: Eisenoxidschwarz (Cl. Pigment Black 1 1), Eisen-Mangan-
Schwarz, Spinellschwarz (Cl. Pigment Black 27); Ruß (Cl. Pigment Black 7);
- Buntpigmente: Chromoxid, Chromoxidhydratgrün; Chromgrün (Cl. Pigment
Green 48); Cobaltgrün (Cl. Pigment Green 50); Ultramaringrün; Kobaltblau (Cl. Pigment Blue 28 und 36); Ultramarinblau; Eisenblau (Cl. Pigment Blue 27); Manganblau; Ultramarinviolett; Ko- balt- und Manganviolett; Eisenoxidrot (Cl. Pigment Red 101);
Cadmiumsulfoselenid (Cl. Pigment Red 108); Molybdatrot (Cl. Pigment Red 104); Ultramarinrot;
Eisenoxidbraun, Mischbraun, Spinell- und Korundphasen (Cl. Pigment Brown 24, 29 und 31), Chromorange;
Eisenoxidgelb (Cl. Pigment Yellow 42); Nickeltitangelb (Cl. Pigment Yellow 53; Cl. Pigment Yellow 157 und 164); Chromtitangelb; Cadmiumsulfid und Cadmiumzinksulfid (Cl. Pigment Yellow 37 und 35); Chromgelb (Cl. Pigment Yellow 34), Zinkgelb, Erdal- kalichromate; Neapelgelb; Bismutvanadat (Cl. Pigment Yellow 184);
- Interferenzpigmente: Metalleffektpigmente auf der Basis beschichteter Metall- plättchen; Perlglanzpigmente auf der Basis metalloxidbe- schichteter Glimmerplättchen; Flüssigkristallpigmente.
Als bevorzugte Pigmente (B) sind dabei Monoazopigmente (insbesondere verlackte BONS-Pigmente, Naphthol AS-Pigmente), Disazopigmente (insbesondere Diarylgelb- pigmente, Bisacetessigsäureacetanilidpigmente, Disazopyrazolonpigmente), Chinacri- donpigmente, Chinophthalonpigmente, Perinonpigmente, Phthalocyaninpigmente, Tria- rylcarboniumpigmente (Alkaliblaupigmente, verlackte Rhodamine, Farbstoffsalze mit komplexen Anionen), Isoindolinpigmente und Ruße zu nennen. Beispiele für besonders bevorzugte Pigmente (B) sind im einzelnen: Ruß, Cl. Pigment Yellow 138, Cl. Pigment Red 122 und 146, Cl. Pigment Violet 19, Cl. Pigment Blue 15:3 und 15:4, Cl. Pigment Black 7, Cl. Pigment Orange 5, 38 und 43 und Cl. Pigment Green 7. In einer Ausführungsform der vorliegenden Erfindung weist Polyurethan (A) eine Glastemperatur, bestimmbar beispielsweise durch Differentialthermoanalyse (DSC), von maximal 500C auf, bevorzugt maximal 400C
Polyurethane (A) im Sinne der vorliegenden Erfindung sind erhältlich durch Umsetzung von
(a) 15 bis 70 Gew.-%, bevorzugt 30 bis 60 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allophanatgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül aufweist, wobei Mittelwerte sich vorzugsweise jeweils auf das Zah- lenmittel beziehen, mit
(b) null bis 60 Gew.-%, bevorzugt bis 20 Gew.-% weiterem Di- oder Polyisocyanat und
(c) 5 bis 50 Gew.-%, bevorzugt 30 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen.
Bei mindestens einem Di- oder Polyisocyanat (a), das im Mittel 1 bis 10, bevorzugt bis 5 Allophanatgruppen und im Mittel pro Molekül 1 bis 10, bevorzugt bis 5 C-C- Doppelbindungen pro Molekül aufweist, wobei Mittelwerte sich jeweils auf das Gewichtsmittel und bevorzugt auf das Zahlenmittel beziehen, handelt es sich um eine Verbindung, die vorzugsweise in Gegenwart eines Katalysators hergestellt wird aus mindestens einem Diisocyanat (a1) mit mindestens einer Verbindung der allgemeinen Formel I
Figure imgf000007_0001
im Rahmen der vorliegenden Erfindung auch kurz Verbindung (a2) genannt, wobei die
Variablen wie folgt definiert sind:
R1, R2 gleich oder verschieden und unabhängig voneinander gewählt aus Wasserstoff und Ci-Co-Alkyl, wie beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl,
1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt C-CrAlkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl, insbesondere Methyl; X1 gewählt aus Sauerstoff und N-R3,
A1 gewählt aus Ci-C2o-Alkylen, bevorzugt C2-Cio-Alkylen, beispielsweise -CH2-, -(CH2)I2-, -(CH2)I4-, -(CH2)I6-, -(CHZ)20-, bevorzugt -(CH2)2-, -(CH2)S-, -(CH2)4-, -(CH2)S-, -(CH2)6-, -(CH2)8-, -(CH2)io-, unsubstituiert oder ein- oder mehrfach substituiert mit
Ci-C4-AIkVl, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl oder tert.-Butyl, bevorzugt Methyl, Phenyl oder
-O-Ci-C4-Alkyl, beispielsweise -0-CH3, -0-C2H5, -O-n-C3H7, -O-CH(CH3)2, -O-n-C4H9, -O-iso-C4H9, -O-sec-C4H9, -0-C(CHs)3, an substituierten Ci-C20-Alkylen seien beispielsweise genannt -CH(CH3)- , -CH(C2H5)-, -CH(C6H5)-,-CH2-CH(CH3)-, eis- und trans-CH(CH3)-CH(CHs)-, -(CH2)-C(CH3)2-CH2-, -CH2-CH(C2H5)-, -CH2-CH(n-C3H7)-, -CH2-CH(iso-C3H7)-, wobei in unsubstituiertem oder substituiertem Ci -C20-Al kylen eine oder mehrere nicht-benachbarte CH2-Gruppen durch Sauerstoff ersetzt sein können, beispielsweise -CH2-O-CH2-, -(CH2)2-O-(CH2)2-, -[(CH2)2-O]2-(CH2)2-, -[(CH2)2-O]3-(CH2)2-.
X2 gewählt aus NH-R3 und bevorzugt Sauerstoff,
R3 verschieden oder vorzugsweise gleich und gewählt aus Wasserstoff, Phenyl und
Ci-Cio-Alkyl wie beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso- Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2-
Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2- Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt Ci-C4-Alkyl wie Methyl, E- thyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl, insbesondere Methyl.
Ganz besonders bevorzugte Verbindungen der allgemeinen Formel I sind 2-
Hydroxyethyl(meth)acrylat und 3-Hydroxypropyl(meth)acrylat.
Man kann Polyurethan in Abwesenheit oder vorzugsweise in Anwesenheit mindestens eines Katalysators herstellen.
Als Katalysatoren kommen beispielsweise alle in der Polyurethanchemie üblicherweise verwendeten Katalysatoren in Betracht.
Üblicherweise in der Polyurethanchemie verwendete Katalysatoren sind bevorzugt organische Amine, insbesondere tertiäre aliphatische, cycloaliphatische oder aromatische Amine, und Lewis-saure organische Metallverbindungen. Als Lewis-saure organische Metallverbindungen kommen z.B. Zinnverbindungen in Frage, wie beispielsweise Zinn-(ll)-salze von organischen Carbonsäuren, z.B. Zinn(ll)- acetat, Zinn(ll)-octoat, Zinn(ll)-ethylhexoat und Zinn(ll)-Iaurat und die Dialkylzinn(IV)- derivate von organischen Carbonsäuren, z.B.Dimethylzinn-diacetat, Dibutylzinn- diacetat, Dibutylzinn-dibutyrat, Dibutylzinn-bis(2-ethylhexanoat), Dibutylzinn-dilaurat, Dibutylzinn-maleat, Dioctylzinn-dilaurat und Dioctylzinn-diacetat. Auch Metallkomplexe wie Acetylacetonate des Eisens, Titans, Zinks, Aluminiums, Zirkons, Mangans, Nickels und Cobalts sind möglich. Weitere geeignete Metallverbindungen werden von Blank et al. in Progress in Organic Coatings, 1999, 35, 19 ff. beschrieben.
Bevorzugte Lewis-saure organische Metallverbindungen sind Dimethylzinn-diacetat, Dibutylzinn-dibutyrat, Dibutylzinn-bis(2-ethylhexanoat), Dibutylzinn-dilaurat, Diocytzinn- dilaurat, Zirkon-Acetylacetonat und Zirkon-2,2,6,6-tetramethyl-3,5-heptandionat.
Auch Wismut-, Zink- und Cobaltkatalysatoren sowie Cäsiumsalze können als hydrophile Katalysatoren eingesetzt werden. Als Cäsiumsalze kommen dabei solche Verbindungen in Betracht, in denen folgende Anionen eingesetzt werden: F-, Ch, CIO", CIO3-, CIO4-, Br, J-, JO3-, CN-, OCN", NO2 ", NO3 ", HCO3-, CO3 2", S2", SH", HSO3-, SO3 2", HSO4-, SO4 2", S2O2 2-, S2O4 2-, S2O5 2-, S2O6 2", S2O7 2", S2O8 2", H2PO2-, H2PO4-, HPO4 2", PO4 3-, P2O7 4", (OCnH2n+I)-, (CnH2n-IO2)-, (CnH2n_3O2)- sowie (Cn+iH2n_2O4)2-, wobei n für die Zahlen 1 bis 20 steht.
Bevorzugt sind dabei Zink- und Cäsiumcarboxylate, bei denen das Anion den Formeln (CnH2n-i02)- sowie (Cn+iH2n-2O4)2- mit n gleich 1 bis 20, gehorcht. Besonders bevorzug- te Cäsiumsalze weisen als Anionen Monocarboxylate der allgemeinen Formel
(CnH2n-i02)- auf, wobei n für die Zahlen 1 bis 20 steht. Hierbei sind insbesondere zu erwähnen Formiat, Acetat, Propionat, Hexanoat, 2-Ethylhexanoat, n-Octanoat und Neodecanoat.
Als übliche organische Amine seien beispielhaft genannt: Triethylamin, 1 ,4-Diazabi- cyclo-[2,2,2]-octan, Tributylamin, Dimethylbenzylamin, N,N,N',N'-Tetramethyl- ethylendiamin, N,N,N',N'-Tetramethylbutan-1 ,4-diamin, N,N,N',N'-Tetramethylhexan- 1 ,6-diamin, Dimethylcyclohexylamin, Dimethyldodecylamin, Pentamethyldipropylentri- amin, Pentamethyldiethylentriamin, 3-Methyl-6-dimethylamino-3-azapentol, Dimethy- laminopropylamin, 1 ,3-Bisdimethylaminobutan, Bis-(2-dimethylaminoethyl)ether, N- Ethylmorpholin, N-Methylmorpholin, N-Cyclohexylmorpholin, 2-Dimethylaminoethoxy- ethanol, Dimethylethanolamin, Tetramethylhexamethylendiamin, Dimethylamino-N- methylethanolamin, N-Methylimidazol, N-Formyl-N,N'-dimethylbutylendiamin, N-Di- methylaminoethylmorpholin, 3,3'-Bis-dimethylamino-di-n-propylamin und/oder 2,2'-Di- piparazindiisopropylether, Dimethylpiparazin, Tris-(N,N-dimethylaminopropyl)-s- hexahydrotriazin, Imidazole wie 1 ,2-Dimethylimidazol, 4-Chlor-2,5-dimethyl-1-(N- methylaminoethyl)imidazol, 2-Aminopropyl-4,5-dimethoxy-1 -methylimidazol, 1 - Aminopropyl-2,4,5-tributylimidazol, 1 -Aminoethyl-4-hexylimidazol, 1 -Aminobutyl-2,5- dimethylimidazol, 1 -(3-Aminopropyl)-2-ethyl-4-methylimidazol, 1 -(3- Aminopropyl)imidazol und/oder 1 -(3-Aminopropyl)-2-methylimidazol.
Bevorzugte organische Amine sind Trialkylamine mit unabhängig voneinander zwei d- bis C4-AIkVl resten und einem Alkyl- oder Cycloalkylrest mit 4 bis 20 Kohlenstoffatomen, beispielsweise Dimethyl-C4-Ci5-Alkylamin wie Dimethyldodecylamin oder Dimethyl-C3- Cs-Cycloalkylamin. Ebenfalls bevorzugte organische Amine sind bicyclische Amine, die gegebenenfalls ein weiteres Heteroatom wie Sauerstoff oder Stickstoff enthalten kön- nen, wie beispielsweise 1 ,4-Diazabicyclo-[2,2,2]-octan.
Besonders bevorzugt setzt man Ammoniumacetat oder Triethylamin und ganz besonders bevorzugt N,N,N-Trimethyl-N-(2-hydroxypropyl)ammonium-2-ethylhexanoat ein.
Selbstverständlich können auch Gemische aus zwei oder mehreren der vorstehend genannten Verbindungen als Katalysatoren eingesetzt werden.
Besonders bevorzugt verwendet man solche Katalysatoren, gewählt aus den vorstehend genannten Verbindungen, welche in organischen Lösungsmitteln wie Aceton, Tetrahydrofuran (THF), N-Methylpyrrolidon und/oder N-Ethylpyrrolidon lösliche sind.
Katalysator setzt man vorzugsweise in einer Menge von 0,0001 bis 10 Gew.-%, besonders bevorzugt in einer Menge von 0,001 bis 5 Gew.-% ein, bezogen auf Diisocya- nat (a1 ).
Man kann - je nach Beschaffenheit des Katalysators oder der Katalysatoren - den oder die Katalysatoren in fester oder flüssiger Form oder gelöst zusetzen. Geeignete Lösemittel sind mit Wasser nicht mischbare Lösungsmittel wie aromatische oder aliphati- sche Kohlenwasserstoffe wie beispielsweise Toluol, Ethylacetat, Hexan und Cyclohe- xan sowie Carbonsäureester wie beispielsweise Ethylacetat, weiterhin geeignete Lösemittel sind Aceton, THF und N-Methylpyrrolidon und N-Ethylpyrrolidon. Bevorzugt setzt man den oder die Katalysatoren in fester oder flüssiger Form und ganz besonders bevorzugt gelöst in organischen Lösungsmitteln wie Aceton, Tetrahydrofuran (THF), N- Methylpyrrolidon oder N-Ethylpyrrolidon zu.
Diisocyanat (a1 ) wählt man beispielsweise aus aliphatischen, aromatischen und cyc- loaliphatischen Diisocyanaten. Für aromatische Diisocyanate seien beispielhaft genannt: 2,4-Toluylendiisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI) und sogenannte TDI-Gemische (Gemische von 2,4-Toluylendiisocyanat und 2,6- Toluylendiisocyanat). Als aliphatische Diisocyanate seien beispielhaft genannt: 1 ,4-Butylendiisocyanat, 1 ,12- Dodecamethylendiisocyanat, 1 ,10-Decamethylendiisocyanat, 2-Butyl-2- ethylpentamethylendiisocyanat, 2,4,4- oder 2,2,4-Trimethylhexamethylendiisocyanat und insbesondere Hexamethylendiisocyanat (HDI).
Als cycloaliphatische Diisocyanate seien beispielhaft genannt: lsophorondiisocyanat (IPDI), 2-lsocyanatopropylcyclohexylisocyanat, 2,4'-Methylenbis(cyclohexyl)- diisocyanat und 4-Methyl-cyclohexan-1 ,3-diisocyanat (H-TDI).
Weitere Beispiele von Isocyanaten mit Gruppen unterschiedlicher Reaktivität sind 1 ,3- Phenylendiisocyanat, 1 ,4-Phenylendiisocyanat, 1 ,5-Naphthylendiisocyanat, Diphenyl- diisocyanat, Tolidindiisocyanat und 2,6-Toluylendiisocyanat.
Natürlich kann man Mischungen der vorstehend genannten Diisocyanate einsetzen.
Diisocyanat (a1 ) und Verbindung (a2) kann man in Molverhältnissen von beispielsweise 10:1 bis 1 :1 , bevorzugt 5:1 bis 5:4 einsetzen.
In einer Ausführungsform der vorliegenden Erfindung kann man Diisocyanat (a1 ) und Verbindung (a2) bei Temperaturen im Bereich von 200C bis 1500C miteinander umsetzen, bevorzugt 50 bis 130°C.
In einer Ausführungsform der vorliegenden Erfindung kann man Diisocyanat (a1 ) und Verbindung (a2) in Lösungsmittel, vorzugsweise in einem organischen Lösungsmittel oder einem Gemisch von organischen Lösungsmitteln wie beispielsweise Toluol, Aceton oder Tetrahydrofuran oder Mischungen der vorgenannten Lösungsmittel. In einer anderen Ausführungsform der vorliegenden Erfindung verzichtet man bei der Umsetzung von Diisocyanat (a1 ) mit Verbindung (a2) auf den Einsatz von Lösungsmittel.
In einer Ausführungsform der vorliegenden Erfindung wählt man bei der Umsetzung von Diisocyanat (a1 ) mit Verbindung (a2) die Reaktionsbedingungen, beispielsweise die Molverhältnisse von Diisocyanat (a1) und Verbindung (a2), so, dass Diisocyanat (a) 2 Isocyanatgruppen und 1 bis 10 Allophanatgruppen und 1 bis 10 C-C- Doppelbindungen, aber keine O-CO-NH-Gruppen aufweist. In einer anderen Ausfüh- rungsform der vorliegenden Erfindung wählt man bei der Umsetzung von Diisocyanat (a1) mit Verbindung (a2) die Reaktionsbedingungen, beispielsweise die Molverhältnisse von Diisocyanat (a1) und Verbindung (a2), so, dass Diisocyanat (a) 2 Isocyanatgruppen und 1 bis 9 Allophanatgruppen und 1 bis 9 C-C-Doppelbindungen und außerdem eine oder mehrere O-CO-NH-Gruppen aufweist.
Man kann nach beendeter Umsetzung von Diisocyanat (a1 ) mit Verbindung (a2) Dioder Polyisocyanat (a) isolieren, beispielsweise durch Abtrennen von nicht umgesetz- ten Ausgangsmaterialien wie Diisocyanat (a1) oder Verbindung (a2). Eine geeignete Methode der Abtrennung von nicht umgesetzten Ausgangsmaterialien wie Diisocyanat (a1) und Verbindung (a2) ist das Abdestillieren, vorzugsweise bei vermindertem Druck. Ganz besonders geeignet sind Dünnschichtverdampfer. Bevorzugt verzichtet man auf das Abdestillieren von nicht umgesetztem Diisocyanat (a1 ).
In einer Ausführungsform der vorliegenden Erfindung hat Di- oder Polyisocyanat (a) eine dynamische Viskosität bei 23° im Bereich von 500 bis 2000 mPa-s, bevorzugt 600 bis 1800 mPa-s, ganz besonders bevorzugt 700 bis 1500 mPa-s.
In einer Ausführungsform der vorliegenden Erfindung hat Di- oder Polyisocyanat (a) einen NCO-Gehalt im Bereich von 8 bis 20 Gew.-%, bevorzugt 12 bis 17 Gew.-%, bestimmbar beispielsweise durch Titration.
Zur Darstellung von Polyurethan (A) kann man Di- oder Polyisocyanat (a) mit mindestens einem weiteren Di- oder Polyisocyanat (b) umsetzen. Di- oder Polyisocyanat (b) kann man aus den oben genannten aliphatischen, aromatischen und cycloaliphati- schen Diisocyanaten wählen.
In einer Ausführungsform der vorliegenden Erfindung wählt man Di- oder Polyisocyanat (b) so, dass es von Diisocyanat (a1) verschieden ist.
In einer Ausführungsform der vorliegenden Erfindung wählt man Di- oder Polyisocyanat (b) so, dass es gleich Diisocyanat (a1 ) ist. In einer speziellen Ausführungsform der vorliegenden Erfindung geht man so vor, dass man Di- oder Polyisocyanat (b) gleich Diisocyanat (a1 ) wählt, indem man nach beendeter Herstellung von Di- oder Polyisocyanat (a) nicht von nicht verbrauchtem Diisocyanat (a1 ) abtrennt.
Zur Darstellung von Polyurethan (A) setzt man mit mindestens einer Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen (c) um, die im Rahmen der vorliegenden Erfindung auch als Verbindung (c) bezeichnet wird. Besonders gut zur Reaktion mit Isocyanat befähigte Gruppen sind beispielsweise die SH-Gruppe, die Hydroxylgruppe, die NH2-Gruppe und die NHR3-Gruppe, in der R3 wie oben genannt definiert ist.
Verbindung (c) kann hydrophil oder hydrophob sein.
Vorzugsweise wählt man mindestens eine Verbindung (c) aus 1 ,1 ,1 -Trimethylol-Ci-C4-Alkylcarbonsäuren, beispielsweise 1 ,1 ,1 -Trimethylolessig- säure, 1 ,1 ,1-Trimethylolpropansäure, 1 ,1 ,1-Trimethylolbuttersäure, Zitronensäure, 1 ,1-Dimethylol-Ci-C4-Alkylcarbonsäuren, beispielsweise 1 ,1-Dimethylolessigsäure, 1 ,1- Dimethylolpropansäure, 1 , 1-Dimethylolbuttersäure, 1 , 1 -Dimethylol-Ci^-Alkylsulfonsäuren,
Poly-C2-C3-alkylenglykolen mit im Mittel 3 bis 300 Alkylenoxideinheiten pro Molekül, insbesondere Polyethylenglykol mit im Mittel (Zahlenmittel) 3 bis 300 Ethylenoxidein- heiten pro Molekül und Polyadditionsprodukte von Ethylenoxid und Propylenoxid mit im Mittel (Zahlenmittel) 3 bis 300 Ethylenoxideinheiten pro Molekül und einem molaren Anteil von Ethylenoxid, der höher ist als er Anteil an Propylenoxid;
hydrophile Diamine mit COOM- oder SOßM-Gruppen, beispielsweise
H H
H2N' v v ^COOM H2N^ \^"\^ ^SO3M
wobei M jeweils gewählt wird aus Alkalimetallionen, insbesondere Na+, und Ammoniu- mionen,
Polyesterdiolen, die herstellbar sind durch Polykondensation von
mindestens einem aliphatischen oder cycloaliphatischen Diol, bevorzugt Ethylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol, eis- und trans-1 ,4-Cyclohexandiol, eis- und trans-1 ,4- Dihydroxymethylcyclohexan (Cylohexandimethanol), mit mindestens einer aliphatischen, aromatischen oder cycloaliphatischen Dicarbon- säure, beispielsweise Bernsteinsäure, Glutarsäure, Adipinsäure, Cyclohexan-1 ,4- dicarbonsäure, Terephthalsäure, Isophthalsäure.
In einer Ausführungsform der vorliegenden Erfindung wählt man mindestens zwei Di- carbonsäuren zur Herstellung von Polyesterdiol, von denen eine aromatisch und die andere aliphatisch ist, beispielsweise Bernsteinsäure und Isophthalsäure, Glutarsäure und Isophthalsäure, Adipinsäure und Isophthalsäure, Bernsteinsäure und Terephthal- säure, Glutarsäure und Terephthalsäure, Adipinsäure und Terephthalsäure.
Wünscht man zur Herstellung von Polyesterdiol zwei oder mehr Dicarbonsäuren einzusetzen, so kann man beliebige Molverhältnisse wählen. Wünscht man eine aromatische und eine aliphatische Dicarbonsäure einzusetzen, so ist ein Molverhältnis im Be- reich von 10 : 1 bis 1 : 10 bevorzugt, besonders ist ein Molverhältnis im Bereich von 1 ,5 : 1 bis 1 : 1 ,5.
In einer Ausführungsform der vorliegenden Erfindung haben als Verbindung (c) eingesetzte Polyesterdiole eine Hydroxylzahl im Bereich von 20 bis 200 mg KOH/g, bevor- zugt 50 bis 180 ganz besonders bevorzugt 100 bis 160 mg KOH/g, bestimmt nach DIN 53240. In einer Ausführungsform der vorliegenden Erfindung haben als Verbindung (c) eingesetzte Polyesterdiole ein Molekulargewicht Mw im Bereich von 500 bis 100.000 g/mol, bevorzugt 700 bis 50.000 g/mol, besonders bevorzugt bis 30.000 g/mol.
Weitere geeignete Verbindungen (c) sind Ethanolamin, Diethanolamin, Neopentylgly- col, 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,1-Dimethylolpropan.
In einer Ausführungsform der vorliegenden Erfindung setzt man mit mindestens zwei Verbindungen (c) um, von denen eine gewählt wird aus Ethanolamin, Diethanolamin, Neopentylglycol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,1-Dimethylolpropan.
In einer Ausführungsform der vorliegenden Erfindung kann man zur Synthese von Polyurethan (A) (d) weiterhin mindestens eine Verbindung der allgemeinen Formel I zusetzen, und zwar bei der Umsetzung von
Di- oder Polyisocyanat (a), und weiterem Di- oder Polyisocyanat (b), so vorhanden, mit Verbindung (c).
Verbindungen der Formel I sind vorstehend beschrieben.
Dabei kann man als Verbindung (d) der allgemeinen Formel I eine andere Verbindung der allgemeinen Formel I einsetzen als zur Herstellung von Di- oder Polyisocyanat (a), das im Mittel 1 bis 10 Allophanatgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, eingesetzt. Vorzugsweise sind jedoch Verbindung (d) und Verbindung (a2) identisch.
Zur Durchführung der Synthese von Polyurethan (A) kann man nach an sich bekannten Methoden der Polyurethanchemie vorgehen.
Erfindungsgemäße wässrige Dispersionen enthalten weiterhin mindestens einen Polymerisationsinhibitor (C), auch Inhibitor (C) oder Stabilisator (C) genannt. Polymerisationsinhibitoren (C) kann man wählen aus UV-Absorbern und Radikalfängern. UV Ab- sorber wandeln UV-Strahlung in Wärmeenergie um. Geeignete UV-Absorber sind z.B. Oxanilide, Triazine und Benzotriazol (letztere erhältlich als Tinuvin®-Marken der Ciba- Spezialitätenchemie), Benzophenone, Hydroxybenzophenone, Hydroquinon, Hydro- quinonmonoalkylether wie z.B. Hydroquinonmonomethylether (MEHQ). Radikalfänger binden intermedär gebildete Radikale. Geeignete Radikalfänger sind beispielsweise sterisch gehinderte Amine, welche als HALS (Hindered Amine Light Stabilizers) bekannt sind. Beispiele dafür sind 2,2,6,6-Tetramethylpiperidin, 2,6-Di-tert.-butylpiperidin oder deren Derivaten, z. B. Bis-(2,2,6,6-tetra-methyl-4-piperidyl)sebacinat. Weitere geeignete Polymerisationsinhibitoren (C) sind substituierte Phenole, insbesondere mit tert.-Alkylresten substituierte Phenole wie beispielsweise
Figure imgf000015_0001
In einer Ausführungsform der vorliegenden Erfindung setzt man ein Gemisch von mehreren Polymerisationsinhibitoren (C) ein, beispielsweise einen Hydroquinonether und ein substituiertes Phenol.
Beispielsweise kann man insgesamt bis zu 15 Gew.-%, bezogen auf die Summe an (A) und (B), an Polymerisationsinhibitor (C) zusetzen, besonders bevorzugt 0,1 bis 1 Gew.-
%.
Man kann Polymerisationsinhibitor (C) bereits während der Synthese von Polyurethan (A) zusetzen oder nachträglich, beispielsweise beim Dispergieren von Pigment (B).
In einer Ausführungsform der vorliegenden Erfindung kann man Di- oder Polyisocyanat (a), weiteres Di- oder Polyisocyanat (b) und Verbindung (c) und gegebenenfalls weiterer Verbindung der allgemeinen Formel I (d) in folgenden Gewichtsverhältnissen ein- setzen, jeweils bezogen auf gesamtes Polyurethan (A):
15 bis 70 Gew.-%, bevorzugt 30 bis 60 Gew.-% Gew.-% Di- oder Polyisocyanat (a), null bis 60 Gew.-%, bevorzugt bis 20 Gew.-% weiteres Di- oder Polyisocyanat (b), 5 bis 50 Gew.-%, bevorzugt 30 bis 50 Gew.-% Verbindung (c), null bis 20 Gew.-%, bevorzugt bis 10 Gew.-% Verbindung der allgemeinen Formel I (d).
Dabei sind Angaben in Gew.-% jeweils auf gesamtes Polyurethan (A) bezogen.
In einer bevorzugten Variante der vorliegenden Erfindung setzt man zur Herstellung von Polyisocyanat (A) neben Di- oder Polyisocyanat (a), weiterem Di- oder Polyisocyanat (b) und Verbindung (c) und gegebenenfalls weiterer Verbindung der allgemeinen Formel I (d) noch mit mindestens einem nucleophilen Alkohol oder Amin, vorzugsweise Monoalkohol oder Monoamin, um, das bzw. der auch als Stopper dienen kann und im Folgenden als Stopper (e) bezeichnet wird. Beispiele für geeignete Stopper (e) sind Mono- und Di-Ci-C4-alkylamine, insbesondere Diethylamin und N,N-Diethanolamin. Man kann bis zu 10 Gew.-% Stopper (e) einsetzen, bezogen auf zu synthetisierendes Polyurethan (A). Man kann die Herstellung von Polyurethan (A) aus Di- oder Polyisocyanat (a), weiterem Di- oder Polyisocyanat (b), Verbindung (c) und gegebenenfalls weiterer Verbindung der allgemeinen Formel I (d) und gegebenenfalls Stopper (e) in einer Stufe oder in mehreren Stufen durchführen. Beispielsweise kann man Di- oder Polyisocyanat (a), weiteres Di- oder Polyisocyanat (b) und Verbindung (c) in einer ersten Stufe umsetzen, vorzugsweise unter Verwendung eines Katalysators, die Reaktion abstoppen und danach erneut Di- oder Polyisocyanat (b) und Verbindung der allgemeinen Formel I (d) und gegebenenfalls Stopper (e) zugeben. Es ist beispielsweise auch möglich, Di- oder Polyisocyanat (a), weiteres Di- oder Polyisocyanat (b) und Verbindung (c) miteinander umzusetzen, wobei man einen Überschuss an weiterem Di- oder Polyisocyanat (b) wählt, und die Reaktion durch Zugabe von Stopper (e) zu stoppen.
In einer Ausführungsform der vorliegenden Erfindung kann man Di- oder Polyisocyanat (a), weiteres Di- oder Polyisocyanat (b), Verbindung (c) und gegebenenfalls weitere Verbindung der allgemeinen Formel I (d) und gegebenenfalls Stopper (e) in Lösungsmittel, vorzugsweise in einem organischen Lösungsmittel oder einem Gemisch von organischen Lösungsmitteln wie beispielsweise Toluol, Aceton oder Tetrahydrofuran oder Mischungen der vorgenannten Lösungsmittel umsetzen. In einer anderen Ausführungsform der vorliegenden Erfindung verzichtet man bei der Umsetzung von Di- oder Polyisocyanat (a), weiterem Di- oder Polyisocyanat (b), Verbindung (c) und gegebenenfalls weiterer Verbindung der allgemeinen Formel I (d) und gegebenenfalls Stopper (e) auf den Einsatz von Lösungsmittel.
In einer Ausführungsform der vorliegenden Erfindung kann man Di- oder Polyisocyanat (a), weiteres Di- oder Polyisocyanat (b) und Verbindung (c) und gegebenenfalls weiterer Verbindung der allgemeinen Formel I (d) und gegebenenfalls Stopper (e) bei Temperaturen im Bereich von 200C bis 1500C miteinander umsetzen, bevorzugt 20 bis 80°C.
Zur Beschleunigung der Umsetzung von Di- oder Polyisocyanat (a), weiterem Di- oder Polyisocyanat (b), Verbindung (c) und gegebenenfalls weiterer Verbindung der allgemeinen Formel I (d) und gegebenenfalls Stopper (e) kann man einen oder mehrere Katalysatoren einsetzen, den bzw. die man vorteilhaft aus den vorstehend genannten Katalysatoren wählt.
Man kann nach beendeter Umsetzung von Di- oder Polyisocyanat (a), weiterem Dioder Polyisocyanat (b), Verbindung (c) und gegebenenfalls weiterer Verbindung der allgemeinen Formel I (d) und gegebenenfalls Stopper (e) Polyurethan (A) isolieren, beispielsweise durch Abtrennen von nicht umgesetzten Ausgangsmaterialien wie Di- oder Polyisocyanat (b), Verbindung (c) und gegebenenfalls weiterer Verbindung der allgemeinen Formel I (d) und gegebenenfalls Stopper (e). Eine geeignete Methode der Abtrennung von nicht umgesetzten Ausgangsmaterialien wie (b) und (c) und gegebe- nenfalls (d) und (e) ist das Abdestillieren, vorzugsweise bei vermindertem Druck. Ganz besonders geeignet sind Dünnschichtverdampfer. Bevorzugt verzichtet man auf das Abdestillieren von nicht umgesetztem Di- oder Polyisocyanat (b).
Das Molekulargewicht Mw der Polyurethane (A) kann beispielsweise 500 bis maximal 50.000 g/mol betragen, bevorzugt 1.000 bis 30.000 g/mol, besonders bevorzugt 2.000 bis 25.000 g/mol und ganz besonders bevorzugt mindestens 2.000 g/mol, bestimmt beispielsweise durch Gelpermeationschromatographie (GPC).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält Polyurethan (A) keine freien NCO-Gruppen.
Nach erfolgter Umsetzung von Di- oder Polyisocyanat (a), weiterem Di- oder Polyisocyanat (b) und Verbindung (c) und gegebenenfalls (d) und gegebenenfalls Stopper (e) kann man Wasser zugeben, beispielsweise in einem Gewichtsverhältnis Polyurethan (A) zu Wasser im Bereich von 1 : 1 bis 1 : 10.
Nach erfolgter Umsetzung von Di- oder Polyisocyanat (a), weiterem Di- oder Polyisocyanat (b) und Verbindung (c) und gegebenenfalls (d) und Stopper (e) kann man Gruppen, die über ausreichend acide H-Atome verfügen, durch Behandlung mit Basen in die entsprechenden Salze überführen. Gut geeignete Basen sind beispielsweise Hydroxide und Hydrogencarbonate von Alkalimetallen oder Erdalkalimetallen oder die Carbonate von Alkalimetallen. Weitere gut geeignete Basen sind flüchtige Amine, d.h. Amine mit einem Siedepunkt bis 1800C bei Atmosphärendruck, wie beispielsweise Ammoniak, Methylamin, Dimethylamin, Trimethylamin, Ethylamin, Diethylamin, Triethy- lamin, Ethanolamin, N-Methyldiethanolamin oder Triethanolamin. Analog lassen sich basische Gruppen mit Säuren wie beispielsweise α-Hydroxycarbonsäuren oder α- Aminosäuren oder auch α-Hydroxysulfonsäuren in die entsprechenden Salze überführen.
Nach erfolgter Umsetzung von Di- oder Polyisocyanat (a), weiterem Di- oder Polyisocyanat (b) und Verbindung (c) gegebenenfalls (d) und Stopper (e) kann man eventuell eingesetztes organisches Lösungsmittel abtrennen, beispielsweise durch Destillation.
Im Anschluss an die Herstellung von Polyurethan (A) gibt man ein oder mehrere Pigmente (B) und gegebenenfalls Wasser zu. Vorzugsweise stellt man einen Feststoffgehalt im Bereich von bis 3 bis 40%, bevorzugt bis 35%, besonders bevorzugt 5 bis 30% ein.
Das Gewichtsverhältnis von Polyurethan (A) zu Pigment (B) kann man in weiten Grenzen variieren. In einer Ausführungsform der vorliegenden Erfindung liegt das Ge- Wichtsverhältnis von Polyurethan (A) zu Pigment (B) in einem Bereich von 5:1 bis 1 :3, bevorzugt 3:1 bis 1 :2, besonders bevorzugt 2:1 bis 2:3.
Anschließend dispergiert man Polyurethan (A) und Pigment (B). Das Dispergieren kann man in beliebigen zum Dispergieren geeigneten Apparaten durchführen. Beispielhaft seien Schüttelapparaturen wie z.B. der Fa. Skandex genannt. Bevorzugt dispergiert Polyurethan (A) und Pigment (B) beispielsweise in Ultraschallapparaturen, Hochdruckhomogenisatoren, 2-, 3-, 4- oder 5-Walzenmühlen, Minimühlen, Henschel- mischern, Schüttelmühlen, Angmühlen, Zahnmühlen, Perlmühlen, Nassmühlen, Sandmühlen, Attritoren, Kolloidmühlen, Ultraschallhomogenisatoren, mit Ultra-Turrax- Rührer und insbesondere durch Mahlung, beispielsweise in 2-, 3-, 4- oder 5- Walzenmühlen, Minimühlen, Schüttelmühlen, Angmühlen, Zahnmühlen, Perlmühlen, Nassmühlen, Sandmühlen, Kolloidmühlen, Kugelmühlen, speziell Rührwerkskugelmühlen.
Als geeignete Zeitdauer für das Dispergieren haben sich beispielsweise 10 Minuten bis 48 Stunden erwiesen, obwohl auch eine längere Zeitdauer denkbar ist. Bevorzugt ist eine Zeitdauer für das Dispergieren von 15 Minuten bis 24 Stunden.
Druck- und Temperaturbedingungen beim Dispergieren sind im Allgemeinen unkritisch, so hat sich beispielsweise Normaldruck als geeignet erwiesen. Als Temperaturen haben sich beispielsweise Temperaturen im Bereich von 100C bis 1000C als geeignet erwiesen, bevorzugt bis 80°C.
Durch das Dispergieren erhält man erfindungsgemäße wässrige Dispersion. In einer Ausführungsform der vorliegenden Erfindung weisen erfindungsgemäße wässrige Dispersionen einen Feststoffgehalt im Bereich von 3 bis 40%, bevorzugt bis 35%, besonders bevorzugt 5 bis 30% auf.
Während der Durchführung des Dispergierens kann man übliche Mahlhilfsmittel zusetzen.
Der mittlere Durchmesser von zumindest partiell mit Polyurethan (A) umhüllten Pigment (B) liegt nach dem Dispergieren üblicherweise im Bereich von 20 nm bis 1 ,5 μm, bevorzugt im Bereich von 60 bis 500 nm, besonders bevorzugt im Bereich von 60 bis 350 nm und bezeichnet im Zusammenhang mit der vorliegenden Erfindung allgemein das Volumenmittel. Geeignete Messgeräte zur Bestimmung des mittleren Partikeldurchmessers sind beispielsweise Coulter Counter, z.B. Coulter LS 230.
Wünscht man Ruß erfindungsgemäß als Pigment (B) einzusetzen, so bezieht sich der Partikeldurchmesser auf den mittleren Durchmesser der Primärpartikel. Erfindungsgemäße wässrige Dispersionen enthalten keinen thermischen Initiator, d.h. keine Verbindung, die bei 600C eine Halbwertszeit von mindestens einer Stunde aufweist und dabei in freie Radikale zerfällt, wie beispielsweise Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate, Azoverbindungen wie beispielsweise Azobisisobutyro- nitril (AIBN) oder wasserlösliche AIBN-Derivate, hochsubstituierte, insbesondere hexa- substituierte Ethanderivate oder Redoxkatalysatoren.
In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße wässrige Dispersionen mindestens ein Polyurethan (D). Polyurethan (D) ist beispiels- weise erhältlich durch Umsetzung von Di- oder Polyisocyanat (b) mit Verbindung (c), enthält aber vorzugsweise keine Allophanatgruppen. Besonders bevorzugt ist Pigment (B) nicht nur mit Polyurethan (A) zumindest partiell umhüllt, sondern auch mit Polyurethan (D).
In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße wässrige Dispersionen Polyurethan (A) und Polyurethan (D) im Bereich von 10 : 1 bis 1 : 2, bevorzugt im Bereich von 8 : 1 bis 1 : 1 (Gewichtsverhältnis).
In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße wässrige Dispersionen mindestens einen Photoinitiator (E). Photoinitiator (E) kann man entweder vor dem Dispergieren oder aber nach dem Dispergieren zusetzen.
Geeignete Photoinitiatoren (E) können beispielsweise dem Fachmann bekannte Photoinitiatoren sein, z.B. solche in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 oder in K. K. Dietliker, Chemistry and Technology of UV- and EB-
Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerization, P. K. T. Oldring (Eds), SITA Technology Ltd, London, genannten.
In Betracht kommen z.B. Mono- oder Bisacylphosphinoxide, wie sie z.B. in EP-A 0 007 508, EP-A 0 057 474, DE-A 196 18 720, EP-A 0 495 751 und EP-A 0 615 980 beschrieben sind, beispielsweise 2,4,6-Trimethylbenzoyldiphenylphosphinoxid, Ethyl- 2,4,6-trimethylbenzoylphenylphosphinat, Bis-(2,4,6-trimethylbenzoyl)- phenylphosphinoxid, Benzophenon, Hydroxyacetophenon, Phenylglyoxylsäure und ihre Derivate oder Gemische der vorstehend genannten Photoinitiatoren. Als Beispiele seien genannt Benzophenon, Acetophenon, Acetonaphthochinon, Methylethylketon, VaIe- rophenon, Hexanophenon, α-Phenylbutyrophenon, p-Morpholinopropiophenon, Diben- zosuberon, 4-Morpholinobenzophenon, 4-Morpholinodeoxybenzoin, p-Diacetylbenzol, 4-Aminobenzophenon, 4'-Methoxyacetophenon, ß-Methylanthrachinon, tert- Butylanthrachinon, Anthrachinoncarbonysäureester, Benzaldehyd, α-Tetralon, 9-
Acetylphenanthren, 2-Acetylphenanthren, 10-Thioxanthenon, 3-Acetylphenanthren, 3- Acetylindol, 9-Fluorenon, 1-lndanon, 1 ,3,4-Triacetylbenzol, Thioxanthen-9-on, Xanthen-9-on, 2,4-Dimethylthioxanthon, 2,4-Diethylthioxanthon, 2,4-Di-iso- propylthioxanthon, 2,4-Dichlorthioxanthon, Benzoin, Benzoin-iso-butylether, Chloro- xanthenon, Benzoin-tetrahydropyranylether, Benzoin-methylether, Benzoin-ethylether, Benzoin-butylether, Benzoin-iso-propylether, 7-H-Benzoin-methylether, Benz[de]anthracen-7-on, 1-Naphthaldehyd, 4,4'-Bis(dimethylamino)benzophenon, 4- Phenylbenzophenon, 4-Chlorbenzophenon, Michlers Keton, 1-Acetonaphthon, 2- Acetonaphthon, 1-Benzoylcyclohexan-i-ol, 2-Hydroxy-2,2-dimethylacetophenon, 2,2- Dimethoxy-2-phenylacetophenon, 2,2-Diethoxy-2-phenylacetophenon, 1 ,1- Dichloracetophenon, 1-Hydroxyacetophenon, Acetophenondimethylketal, o- Methoxybenzophenon, Triphenylphosphin, Tri-o-Tolylphosphin, Benz[a]anthracen-
7,12-dion, 2,2-Diethoxyacetophenon, Benzilketale, wie Benzildimethylketal, 2-Methyl-1- [4-(methylthio)phenyl]-2-morpholinopropan-1-on, Anthrachinone wie 2- Methylanthrachinon, 2-Ethylanthrachinon, 2-tert-Butylanthrachinon, 1- Chloranthrachinon, 2-Amylanthrachinon und 2,3-Butandion.
Geeignet sind auch nicht- oder wenig vergilbende Photoinitiatoren vom Phenylglyoxal- säureestertyp, wie in DE-A 198 26 712, DE-A 199 13 353 oder WO 98/33761 beschrieben.
Bevorzugte Photoinitiatoren (E) sind beispielsweise solche Photoinitiatoren, die bei Aktivierung zerfallen, sogenannte α-Zerfaller wie beispielsweise Photoinitiatoren vom Benzildialkylketal-Typ wie z.B. Benzildimethylketal. Weitere Beispiele für geeignete α- Zerfaller sind Derivate von Benzoin, Isobutylbenzoinether, Phosphinoxide, insbesondere Mono- und Bisacylphosphinoxide, z.B. Benzoyldiphenylphosphinoxid, 2,4,6- Trimethylbenzoyldiphenylphosphinoxid, α-Hydroxyalkylacetophenone wie z.B. 2- Hydroxy-2-methylphenylpropanon (E.1),
Figure imgf000020_0001
2-Hydroxy-1 -[-4-(2-hydroxyethoxy)phenyl]-2-methyl-1 -propanon (E.2)
Figure imgf000020_0002
Phosphinsulfide und Ethyl-4-dimethylaminobenzoat sowie (E.3)
Figure imgf000021_0001
Weitere Beispiele für bevorzugte Photoinitiatoren (E) sind Wasserstoff-abstrahierende Photoinitiatoren, beispielsweise vom Typ der gegebenenfalls substituierten Acetophe- none, Anthrachinone, Thioxanthone, Benzoesäureester oder der gegebenenfalls sub- stituierten Benzophenone. Besonders bevorzugte Beispiele sind Isopropylthioxanthon, Benzophenon, Phenylbenzylketon, 4-Methylbenzophenon, halogenmethylierte Benzophenone, Anthron, Michlers Keton (4,4'-bis-N,N-dimethylaminobenzophenon), 4- Chlorbenzophenon, 4,4'-Dichlorbenzophenon, Anthrachinon.
In einer Ausführungsform der vorliegenden Erfindung setzt man erfindungsgemäßen wässrigen Dispersionen so viel Photoinitiator (E) zu, dass das Gewichtsverhältnis von Polyurethan (A) zu Photoinitiator (E) in einem Bereich von 3 : 1 bis 10.000 : 1 , bevorzugt von 5 : 1 bis 5.000 : 1 , ganz besonders bevorzugt in einem Gewichtsverhältnis von 10 : 1 bis 1.000 : 1 liegt.
Die Wirksamkeit von Photoinitiatoren (E) in erfindungsgemäßen wässrigen Dispersionen kann man, wenn es gewünscht wird, durch die Zugabe von mindestens einem Synergisten, beispielsweise von mindestens einem Amin, insbesondere von mindestens einem tertiärem Amin erhöhen. Geeignete Amine sind beispielsweise Triethylamin, N,N-Dimethylethanolamin, N-Methylethanolamin, Triethanolamin, Aminoacrylate wie beispielsweise aminmodifizierte Polyetheracrylate. Wenn man Amine wie beispielsweise tertiäre Amine als Katalysator bei der Synthese von Polyurethan (A) eingesetzt und nach der Synthese nicht abgetrennt hat, so kann auch als Katalysator verwendetes tertiäres Amin als Synergist wirken. Weiterhin kann zur Neutralisation von sauren Gruppen wie beispielsweise COOH-Gruppen oder SOsH-Gruppen eingesetztes tertiäres Amin als Synergist wirken. Man kann bis zur doppelten molaren Menge Synergist zusetzen, bezogen auf eingesetzen Photoinitiator (E).
Man kann erfindungsgemäßen Dispersionen eine oder mehrere weitere Verbindungen mit C-C-Doppelbindungen (F) zusetzen, im folgenden auch als ungesättigte Verbindungen (F) bezeichnet. Besonders geeignete ungesättigte Verbindungen (F) sind bei- spielsweise Verbindungen der allgemeinen Formel I. Weitere besonders geeignete ungesättigte Verbindungen (F) sind solche der allgemeinen Formel F.1.
Figure imgf000022_0001
Dabei sind die Variablen wie folgt definiert:
R1, R2 gleich oder verschieden und unabhängig voneinander gewählt aus Wasserstoff und Ci-Cio-Alkyl,
m eine ganze Zahl von 0 bis 2, bevorzugt 1 ;
A2 CH2 oder -CH2-CH2- oder R8-CH oder para-C6H4 für den Fall, dass m = 0,
CH, C-OH, C-O-C(O)-CH=CH2, C-O-CO-C(CHs)=CH2, R8-C oder 1 ,3,5-C6H3 für den Fall, dass m = 1 , und Kohlenstoff für den Fall, dass m = 2;
R8 gewählt aus Ci-C4-AIkVl, wie beispielsweise n-C4Hg, ^C3H7, iso-C3H7 und vorzugsweise C2H5 und CH3, oder Phenyl,
A3, A4, A5 gleich oder verschieden und gewählt aus
Ci-C20-Alkylen, wie beispielsweise -CH2-, -CH(CH3)-, -CH(C2H5)-, -CH(C6H5)-, -(CH2)2-, -(CH2)S-, -(CH2)4-, -(CH2)S-, -(CH2)6-, -(CH2)7-, -(CH2)8-, -(CH2)9-, -(CH2)io-, -CH(CH3)-(CH2)2-CH(CH3)-;
eis- oder trans-C4-Cio-Cycloalkylen, wie beispielsweise cis-1 ,3-Cyclopentyliden, trans-1 ,3-Cyclopentyliden cis-1 ,4-Cyclohexyliden, trans-1 ,4-Cyclohexyliden;
Ci -C2O-AI kylen, in denen von einem bis zu sieben jeweils nicht benachbarte C- Atome durch Sauerstoff ersetzt sind, wie beispielsweise -CH2-O-CH2-, -(CHz)2-O-CH2-, -(CH2)2-O-(CH2)2-, -[(CH2)2-O]2-(CH2)2-, -[(CH2)2-O]3-(CH2)2-;
Ci-C2o-Alkylen, substituiert mit bis zu 4 Hydroxylgruppen, wobei in Ci-C2o-Alkylen von einem bis zu sieben jeweils nicht benachbarte C-Atome durch Sauerstoff er- setzt sind, wie beispielsweise -CH2-O-CH2-CH(OH)-CH2-, -CH2-O-[CH2-CH(OH)-CH2I2-, -CH2-O-[CH2-CH(OH)-CH2]S-;
C6-Ci4-Arylen, wie beispielsweise para-CeH4.
Besonders bevorzugte Beispiele für Verbindungen der allgemeinen Formel F. I sind Trimethylolpropantri(meth)acrylat, Tri(meth)acrylat von dreifach ethoxyliertem Tri- methylolpropan, Pentaerythrittri(meth)acrylat und Pentaerythrittetra(meth)acrylat.
Weitere sehr gut geeignete Vertreter für ungesättigte Verbindungen (F) sind Ethy- lenglycoldi(meth)acrylat, Diethylenglykold(meth)acrylat, Triethylenglykold(meth)acrylat, Propylenglykol(meth)acrylat, Dipropylenglykoldi(meth)acrylat und Tripropylenglykol- di(meth)acrylat.
Weitere sehr gut geeignete Vertreter für ungesättigte Verbindungen (F) sind partiell oder erschöpfend (meth)acrylierte Polyole wie beispielsweise partiell oder erschöpfend (meth)acryliertes dimeres Trimethylolpropan, partiell oder erschöpfend (meth)acryliertes dimeres Trimethylolethan, partiell oder erschöpfend (meth)acrylierter dimerer Pentaerythrit.
Beispielsweise kann man insgesamt bis zu 100 Gew.-%, bezogen auf die Summe an (A) und (B), an ungesättigter Verbindung (F) zusetzen, bevorzugt bis zu 50 Gew.-% und besonders bevorzugt bis zu 25 Gew.-%.
Erfindungsgemäße wässrige Dispersionen lassen sich gut verwenden als oder zur Herstellung von Formulierungen zum Färben oder Bedrucken von Substraten, beispielsweise zur Herstellung von Färbeflotten für das Pigmentfärben oder zur Herstellung von Druckpasten für den Pigmentdruck. Ein Gegenstand der vorliegenden Erfindung ist daher die Verwendung von erfindungsgemäßen wässrigen Dispersionen als oder zur Herstellung von Formulierungen zum Färben oder Bedrucken von Substraten. Ebenso ist Gegenstand der vorliegenden Erfindung ein Verfahren zum Färben oder Bedrucken von Substraten unter Verwendung von mindestens einer erfindungsgemäßen wässrigen Dispersion.
Als Substrate sind geeignet:
cellulosehaltige Materialien wie Papier, Pappe, Karton, Holz und Holzwerkstoffe, die auch lackiert oder anderweitig beschichtet sein können, metallische Materialien wie Folien, Bleche oder Werkstücke aus Aluminium, Eisen, Kupfer, Silber, Gold, Zink oder Legierungen dieser Metalle, die lackiert oder anderweitig beschichtet sein können, silikatische Materialien wie Glas, Porzellan und Keramik, die beschichtet sein können, polymere Materialien jeder Art wie Polystyrol, Polyamide, Polyester, Polyethylen, Polypropylen, Melaminharze, Polyacrylate, Polyacrylnitril, Polyurethane, Polycarbonate, Polyvinylchlorid, Polyvinylalkohole, Polyvinylacetate, Polyvinylpyrrolidone und entsprechende Copolymere und Blockcopolymere, biologisch abbaubare Polymere und natür- liehe Polymere wie Gelatine,
Lebensmittel und Teile von Lebensmittel, insbesondere Eierschalen,
Leder, sowohl Naturleder als auch Kunstleder, als Glatt-, Nappa- oder Velourleder,
Lebensmittel und Kosmetika, und insbesondere
textile Substrate wie Fasern, Garne, Zwirne, Maschenware, Webware, Non-wovens und konfektionierte Ware aus Polyester, modifiziertem Polyester, Polyestermischgewebe, cellulosehaltige Materialien wie Baumwolle, Baumwollmischgewebe, Jute, Flachs, Hanf und Ramie, Viskose, Wolle, Seide, Polyamid, Polyamidmischgewebe, Polyacrylnitril, Triacetat, Acetat, Polycarbonat, Polypropylen, Polyvinylchlorid, Misch- gewebe wie beispielsweise Polyester/Polyurethan-Mischgewebe (z. B. Lycra®), PoIy- ethylen-Polypropylen-Mischgewebe, Polyestermikrofasern und Glasfasergewebe.
Erfindungsgemäße wässrige Dispersionen sind besonders gut geeignet als oder zur Herstellung von Tinten für das Ink-Jet-Verfahren, insbesondere von wässrigen Tinten für das Ink-Jet-Verfahren. Ganz besonders gut lassen sich erfindungsgemäße wässrige Dispersionen verwenden zur Herstellung von Pigment-haltigen wässrigen Tinten für das Ink-Jet-Verfahren. Ein weiterer Gegenstand der vorliegenden Erfindung ist somit die Verwendung von erfindungsgemäßen wässrigen Dispersionen zur Herstellung von Tinten für das Ink-Jet-Verfahren. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Tinten für das Ink-Jet-Verfahren unter Verwendung von mindestens einer erfindungsgemäßen wässrigen Dispersion.
Im Rahmen der vorliegenden Erfindung werden Tinten für das Ink-Jet-Verfahren auch als Ink-Jet-Tinten oder kurz als Tinten bezeichnet.
In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße InkJet-Tinten
1 bis 40 Gew.-%, bevorzugt 2 bis 35 Gew.-% erfindungsgemäße wässrige Dispersion, wobei Angaben in Gew.-% jeweils auf das Gesamtgewicht der betreffenden erfin- dungsgemäßen Tinte bezogen sind.
Man kann erfindungsgemäße wässrige Dispersionen unmittelbar als Ink-Jet-Tinten einsetzen.
Erfindungsgemäße Tinten für das Ink-Jet-Verfahren können in einer anderen Ausführungsform mindestens einen Zuschlagstoff (G) enthalten. In einer Ausführungsform der vorliegenden Erfindung stellt man erfindungsgemäße InkJet-Tinten so her, dass man erfindungsgemäße wässrige Dispersion mit Wasser verdünnt und gegebenenfalls mit einem oder mehreren Zuschlagstoffen (G) vermischt.
In einer Ausführungsform der vorliegenden Erfindung stellt man den Feststoffgehalt von erfindungsgemäßen Ink-Jet-Tinten so ein, dass er im Bereich von 5 bis 40%, bevorzugt bis 35%, besonders bevorzugt 10 bis 30% liegt.
Als Zuschlagstoff (G) können erfindungsgemäße Tinten für das Ink-Jet-Verfahren ein oder mehrere organische Lösungsmittel enthalten. Niedermolekulare Polyethylenglyko- Ie sind bevorzugte Zuschlagstoffe (G), sie können vorzugsweise im Gemisch mit einem oder mehreren schwer verdampfbaren, in Wasser löslichen oder mit Wasser mischbaren organischen Lösungsmitteln eingesetzt werden.
Bevorzugte niedermolekulare Polyethylenglykole haben üblicherweise ein mittleres Molekulargewicht Mn von 100 bis 6000 g/mol, insbesondere bis 1500 g/mol, vor allem von 150 bis 500 g/mol. Als Beispiele seien Di-, Tri- und Tetraethylenglykol, Diethy- lenglykolmonomethyl-, -ethyl-, -n-, -iso-propyl -propyl- und -n-butylether, Triethylengly- kolmonomethyl-, -ethyl-, -n-propyl-, -iso-propyl - und -n-butylether genannt
Wenn niedermolekulare Polyethylenglykole im Gemisch mit weiteren organischen Lösungsmitteln als Zuschlagstoff (G) verwendet werden, werden hierfür im Allgemeinen schwer verdampfbare (d.h. in der Regel bei Normaldruck einen Siedepunkt > 1000C aufweisende) und damit eine wasserrückhaltende Wirkung besitzende organische Lö- sungsmittel eingesetzt, die in Wasser löslich oder mit Wasser mischbar sind.
Als Lösungsmittel eignen sich mehrwertige Alkohole, bevorzugt unverzweigte und verzweigte mehrwertige Alkohole mit 2 bis 8, insbesondere 3 bis 6, Kohlenstoffatomen, wie Ethylenglykol, 1 ,2- und 1 ,3-Propylenglykol, Glycerin, Erythrit, Pentaerythrit, Pentite wie Arabit, Adonit und XyNt und Hexite wie Sorbit, Mannit und Dulcit.
Weitere geeignete Lösungsmittel sind Polypropylenglykole, worunter auch die niederen Polymere (Di-, Tri- und Tetramere) verstanden werden sollen, und deren Mono- (vor allem Ci-Cβ-, insbesondere Ci-C4-)alkylether. Bevorzugt sind Polypropylenglykole mit mittleren Molekulargewichten Mn von 100 bis 6000 g/mol, insbesondere bis 1500 g/mol, vor allem von 150 bis 500 g/mol. Als Beispiele seien Di-, Tri- und Tetra-1 ,2- und -1 ,3-propylenglykol und Di-, Tri- und Tetra-1 ,2- und -1 ,3-propylenglykolmonomethyl-, -ethyl-, -n-propyl-, -iso-propyl- und -n-butylether genannt.
Zudem eignet sich auch niedermolekulares Polytetrahydrofuran als Lösungsmittel. Bevorzugt verwendetes niedermolekulares Polytetrahydrofuran hat üblicherweise ein mittleres Molekulargewicht Mw von 150 bis 500 g/mol, bevorzugt von 200 bis 300 g/mol und besonders bevorzugt von etwa 250 g/mol (entsprechend einer Molekulargewichtsverteilung).
Niedermolekulares Polytetrahydrofuran kann auf bekannte Weise über kationische Polymerisation von Tetra hydrofu ran hergestellt werden. Dabei entstehen lineare PoIy- tetramethylenglykole.
Weiterhin als Lösungsmittel geeignet sind Pyrrolidon und N-Alkylpyrrolidone, deren Alkylkette vorzugsweise 1 bis 4, vor allem 1 bis 2, Kohlenstoffatome enthält. Beispiele für geeignete Alkylpyrrolidone sind N-Methylpyrrolidon, N-Ethylpyrrolidon und N-(2- Hydroxyethyl)pyrrolidon.
Beispiele für besonders bevorzugte Lösungsmittel sind 1 ,2- und 1 ,3-Propylenglykol, Glycerin, Sorbit, Diethylenglykol, Polyethylenglykol (Mw 300 bis 500 g/mol), Diethy- lenglykolmonobutylether, Triethylenglykolmonobutylether, Pyrrolidon, N- Methylpyrrolidon und N-(2-Hydroxyethyl)pyrrolidon.
Niedermolekulares Polyethylenglykol kann auch mit einem oder mehreren (z.B. zwei, drei oder vier) der oben aufgeführten Lösungsmitteln gemischt werden.
In einer Ausführungsform der vorliegenden Erfindung können erfindungsgemäße Tinten für das Ink-Jet-Verfahren 0,1 bis 80 Gew.-%, bevorzugt 2 bis 60 Gew.-%, besonders bevorzugt 5 bis 50 Gew.-% und ganz besonders bevorzugt 10 bis 40 Gew.-%, nicht-wässrige Lösungsmittel enthalten.
Nicht-wässrige Lösungsmittel als Zuschlagstoffe (G), insbesondere auch die genannten besonders bevorzugten Lösungsmittelkombinationen, können vorteilhaft durch Harnstoff (in der Regel 0,5 bis 3 Gew.-%, bezogen auf das Gewicht der Farbmittelzubereitung) ergänzt werden, der die wasserrückhaltende Wirkung des Lösungsmittel- gemisches noch verstärkt.
Erfindungsgemäße Tinten für das Ink-Jet-Verfahren können weitere Zuschlagstoffe (G), wie sie insbesondere für wässrige Ink-Jet-Tinten und in der Druck- und Lackindustrie üblich sind, enthalten. Genannt seien z.B. Konservierungsmittel wie beispiels- weise 1 ,2-Benzisothiazolin-3-on (kommerziell erhältlich als Proxel-Marken der Fa. Ave- cia Lim.) und dessen Alkalimetallsalze, Glutardialdehyd und/oder Tetramethylolacety- lendiharnstoff, Protectole®, Antioxidantien, Entgaser/Entschäumer wie beispielsweise Acetylendiole und ethoxylierte Acetylendiole, die üblicherweise 20 bis 40 mol Ethylen- oxid pro mol Acetylendiol enthalten und gleichzeitig auch dispergierend wirken können, Mittel zur Regulierung der Viskosität, Verlaufshilfsmittel, Netzmittel (z.B. benetzend wirkende Tenside auf der Basis von ethoxylierten oder propoxylierten Fett- oder Oxoal- koholen, Propylenoxid/Ethylenoxid-Blockcopolymeren, Ethoxylaten von Ölsäure oder Alkylphenolen, Alkylphenolethersulfaten, Alkylpolyglycosiden, Alkylphosphonaten, Al- kylphenylphosphonaten, Alkylphosphaten, Alkylphenylphosphaten oder bevorzugt Po- lyethersiloxan-Copolymeren, insbesondere alkoxylierten 2-(3-
Hydroxypropyl)heptamethyltrisiloxanen, die in der Regel einen Block aus 7 bis 20, vor- zugsweise 7 bis 12, Ethylenoxideinheiten und einen Block aus 2 bis 20, vorzugsweise 2 bis 10 Propylenoxideinheiten aufweisen und in Mengen von 0,05 bis 1 Gew.-% in den Farbmittelzubereitungen enthalten sein können), Antiabsetzmittel, Glanzverbesserer, Gleitmittel, Haftverbesserer, Hautverhinderungsmittel, Mattierungsmittel, Emulgatoren, Stabilisatoren, Hydrophobiermittel, Lichtschutzadditive, Griffverbesserer, Antistatikmit- tel, Basen wie beispielsweise Triethanolamin oder Säuren, speziell Carbonsäuren wie beispielsweise Milchsäure oder Zitronensäure zur Regulierung des pH-Wertes. Wenn diese Mittel Bestandteil erfindungsgemäßer Tinten für das Ink-Jet-Verfahren sind, beträgt ihre Gesamtmenge in der Regel 2 Gew.-%, insbesondere 1 Gew.-%, bezogen auf das Gewicht der erfindungsgemäßen Farbmittelzubereitungen und insbesondere der erfindungsgemäßen Tinten für das Ink-Jet-Verfahren.
Weitere geeignete Zuschlagstoffe (G) sind gegebenenfalls alkoxylierte Acetylendiole, beispielsweise der allgemeinen Formel Il
Figure imgf000027_0001
in denen die Variablen wie folgt definiert sind:
AO steht für gleiche oder verschiedene Alkylenoxideinheiten, beispielsweise Propy- lenoxideinheiten, Butylenoxideinheiten und insbesondere Ethylenoxideinheiten,
R4, R5, R6, R7 sind jeweils gleich oder verschieden und gewählt aus
Ci-Cio-Alkyl, unverzweigt oder verzweigt, wie Methyl, Ethyl, n-Propyl, iso- Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec- Pentyl, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec-
Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, besonders bevorzugt Ci-C4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl; und Wasserstoff;
b ist gleich oder verschieden und gewählt aus ganzen Zahlen im Bereich von 0 bis 50, bevorzugt 0 oder 1 bis 30 und besonders bevorzugt 3 bis 20. In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind R5 oder R7 gleich Methyl.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind R5 und R7 gleich Methyl, und R4 und R6 gleich Isobutyl.
Andere bevorzugte Zuschlagstoffe sind gegebenenfalls alkoxylierte Siliziumverbindungen der Formel III
[(CH3)3Si-O]2-Si(CH3)-O-(CH2)3-O(CH2CH2O)b-H III
in der die Variable b wie vorstehend definiert ist.
Erfindungsgemäße Tinten für das Ink-Jet-Verfahren können weiterhin einen weiteren Photoinitiator enthalten, der nicht gleich dem Photoinitiator (E) ist, der bei der Herstellung von erfindungsgemäßer wässriger Dispersion eingesetzt werden kann, aber aus den oben genannten Photoinitiatoren gewählt wird.
In einer Ausführungsform der vorliegenden Erfindung haben erfindungsgemäße Tinten für das Ink-Jet-Verfahren eine dynamische Viskosität im Bereich von 2 bis 80 mPa-s, bevorzugt 3 bis 40 mPa-s, besonders bevorzugt bis 25 mPa-s, gemessen bei 23°C nach DIN 53018.
In einer Ausführungsform der vorliegenden Erfindung beträgt die Oberflächenspannung erfindungsgemäßer Tinten für das Ink-Jet-Verfahren 24 bis 70 mN/m, insbesondere 25 bis 60 mN/m, gemessen bei 25°C nach DIN 53993.
In einer Ausführungsform der vorliegenden Erfindung liegt der pH-Wert erfindungsgemäßer Tinten für das Ink-Jet-Verfahren bei 5 bis 10, vorzugsweise bei 8 bis 10.
Erfindungsgemäße Tinten für das Ink-Jet-Verfahren zeigen insgesamt vorteilhafte Anwendungseigenschaften, vor allem gutes Anschreibverhalten und gutes Dauerschreibverhalten (Kogation) sowie, insbesondere bei Verwendung der besonders bevorzugten Lösungsmittelkombination, gutes Trocknungsverhalten, und ergeben Druckbilder hoher Qualität, d.h. hoher Brillanz und Farbtiefe sowie hoher Reib-, Licht-, Wasser- und
Nassreibechtheit. Besonders geeignet sind sie zum Drucken auf gestrichenes und ungestrichenes Papier sowie Textil.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zur Herstellung von erfindungsgemäßen Tinten für das Ink-Jet-Verfahren. Das erfindungsgemäße Verfahren zur Herstellung von Tinten für das Ink-Jet-Verfahren ist dadurch gekennzeichnet, dass man mindestens eine erfindungsgemäße wässrige Dispersion, Wasser und ge- gebenenfalls mindestens einen Zuschlagstoff (G) miteinander vermischt, beispielsweise in einem oder in mehreren Schritten.
Als geeignete Vermischungstechniken sind beispielsweise Verrühren und intensives Schütteln zu nennen sowie das Dispergieren, beispielsweise in Kugelmühlen oder Rührwerkskugelmühlen.
Die Reihenfolge der Zugabe bei dem Vermischen von erfindungsgemäßer wässriger Dispersion, Wasser, gegebenenfalls (C), gegebenenfalls (D), gegebenenfalls (E), ge- gebenenfalls (F) und gegebenenfalls (G) ist an sich unkritisch.
So ist es in einer Variante der vorliegenden Erfindung möglich, dass man zunächst mindestens ein Polyurethan (A) synthetisiert, danach mit Pigment (B) dispergiert und danach mit einem oder mehreren der gewünschten Zusätze (C), (D), (E), (F) und/oder (G) vermischt und vor oder nach dem Vermischen mit Wasser verdünnt.
In einer anderen Variante der vorliegenden Erfindung synthetisiert man (a) mindestens ein Polyurethan (A) und mindestens ein Polyurethan (D), danach vermischt man mit Polymerisationsinhibitor (C) und dispergiert mit (B), verdünnt mit Wasser und vermischt gegebenenfalls mit einem oder mehreren der gewünschten Zusätze (E), (F) und/oder (G).
In einer anderen Variante der vorliegenden Erfindung synthetisiert man mindestens ein Polyurethan (A) in Gegenwart von Polymeriationsinhibitor (C) und dispergiert danach mit Pigment (B) und mindestens einem der gewünschten Zusätze Polyurethan (D) sowie (E), (F) und (G).
In einer anderen Variante der vorliegenden Erfindung synthetisiert man mindestens ein Polyurethan (A) und mindestens ein Polyurethan (D) in Gegenwart von Polymeristion- sinhibitor (C) und dispergiert danach mit Pigment (B) und mindestens einem der gewünschten Zusätze (E), (F) und (G).
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zum Bedrucken von flächigen oder dreidimensionalen Substraten nach dem Ink-Jet-Verfahren unter Ver- wendung von mindestens einer erfindungsgemäßen Tinte für das Ink-Jet-Verfahren, im Folgenden auch erfindungsgemäßes Druckverfahren genannt. Zur Durchführung des erfindungsgemäßen Druckverfahrens druckt man mindestens eine erfindungsgemäße Ink-Jet-Tinte auf ein Substrat auf. In einer bevorzugten Variante des erfindungsgemäßen Druckverfahrens druckt man mindestens eine erfindungsgemäße Ink-Jet-Tinte auf ein Substrat und behandelt anschließend mit aktinischer Strahlung. Beim Ink-Jet-Verfahren werden die üblicherweise wässrigen Tinten in kleinen Tröpfchen direkt auf das Substrat gesprüht. Man unterscheidet dabei ein kontinuierliches Verfahren, bei dem die Tinte gleichmäßig durch eine Düse gepresst und durch ein e- lektrisches Feld, abhängig vom zu druckenden Muster, auf das Substrat gelenkt wird, und ein unterbrochenes Tintenstrahl- oder "Drop-on-Demand"-Verfahren, bei dem der Tintenausstoß nur dort erfolgt, wo ein farbiger Punkt gesetzt werden soll. Bei dem letztgenannten Verfahren wird entweder über einen piezoelektrischen Kristall oder eine beheizte Kanüle (Bubble- oder Thermo-Jet-Verfahren) Druck auf das Tintensystem ausgeübt und so ein Tintentropfen herausgeschleudert. Solche Verfahrensweisen sind in Text. Chem. Color, Band 19 (8), Seiten 23 bis 29, 1987, und Band 21 (6), Seiten 27 bis 32, 1989, beschrieben.
Besonders geeignet sind die erfindungsgemäßen Tinten für das Bubble-Jet-Verfahren und für das Verfahren mittels eines piezoelektrischen Kristalls.
Erfindungsgemäße Tinten für das Ink-Jet-Verfahren lassen sich durch aktinische Strahlung härten, beispielsweise ist aktinische Strahlung mit einem Wellenlängenbereich von 200 nm bis 450 nm geeignet. Geeignet ist beispielsweise aktinische Strahlung mit einer Energie im Bereich von 70 mJ /cm2 bis 2000 mJ/cm2. Aktinische Strahlung kann man zweckmäßig beispielsweise kontinuierlich oder in Form von Blitzen einbringen.
In einer Ausführungsform der vorliegenden Erfindung kann man nach dem Bedrucken und vor dem Behandeln mit aktinischer Strahlung zwischentrocknen, beispielsweise thermisch oder mit IR-Strahlung. Geeignet sind beispielsweise Temperaturen im Be- reich von 30 bis 1200C über einen Zeitraum im Bereich von 10 Sekunden bis 24 Stunden, bevorzugt eine bis zu 30 min, besonders bevorzugt bis zu 5 min. Als IR-Strahlung ist beispielsweise IR-Strahlung in einem Wellenbereich über 800 nm geeignet. Geeignete Vorrichtungen zum Zwischentrocknen sind beispielsweise Trockenschränke oder Vakuumtrockenschränke für thermische Zwischentrocknung, weiterhin IR-Lampen.
Auch die bei der Einwirkung von aktinischer Strahlung entwickelte Hitze kann zwischentrocknend wirken.
Erfindungsgemäße Tinten und Drucke, die unter Verwendung von erfindungsgemäßen Ink-Jet-Tinten hergestellt werden, lassen sich jedoch auch thermisch härten, und zwar mit oder ohne die Einwirkung von aktinischer Strahlung. So ist beispielsweise möglich, durch Trocknen bei Temperaturen im Bereich von 25 bis 1500C, bevorzugt 100 bis 150 °C, besonders bevorzugt 120 bis 150 0C Drucke zu fixieren, die unter Verwendung von erfindungsgemäßen Ink-Jet-Tinten hergestellt sind.
Eine weitere Ausführungsform der vorliegenden Erfindung sind Substrate, beispielsweise Papier, Pappe, Lebensmittel oder Teile von Lebensmitteln wie beispielsweise Eierschalen, und insbesondere textile Substrate, die nach einem der oben genannten erfindungsgemäßen Druckverfahren bedruckt wurden und sich durch besonders scharf gedruckte Bilder oder Zeichnungen sowie ausgezeichneten Griff auszeichnen. Außerdem weisen erfindungsgemäße bedruckte Substrate wenig „soft spots" auf.
Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung kann man mindestens zwei, bevorzugt mindestens drei verschiedene erfindungsgemäße Tinten für das Ink-Jet-Verfahren zu Sets kombinieren, wobei verschiedene erfindungsgemäße Tinten jeweils unterschiedliche Pigmente mit jeweils unterschiedlicher Farbe enthalten.
Ein weiterer Gegenstand der vorliegenden Erfindung sind zumindest partiell umhüllte Pigmente, hergestellt durch Dispergieren von mindestens einem Pigment (B), mindestens einem Polymerisationsinhibitor (C) und mindestens einem Polyurethan (A), wobei Polyurethan (A) erhältlich ist durch Umsetzung von
(a) 15 bis 70 Gew.-%, bevorzugt 30 bis 60 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allophanatgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, gegebenenfalls
(b) null bis 60 Gew.-%, bevorzugt bis 20 Gew.-% weiterem Di- oder Polyisocyanat mit
(c) 5 bis 50 Gew.-%, bevorzugt 30 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen,
wobei Angaben in Gew.-% auf gesamtes Polyurethan (A) bezogen sind.
Ein spezieller Gegenstand der vorliegenden Erfindung sind zumindest partiell umhüllte vorstehend beschriebene Pigmente, dadurch gekennzeichnet, dass Di- oder Polyisocyanat (a) hergestellt ist durch Umsetzung von mindestens einem Di- oder Polyisocyanat (a1 ) mit mindestens einer Verbindung der allgemeinen Formel I
Figure imgf000031_0001
enthalten, in der die Variablen wie folgt definiert sind:
R1, R2 gleich oder verschieden und unabhängig voneinander gewählt aus Was- serstoff und Ci-Cio-Alkyl,
X1 gewählt aus Sauerstoff und N-R3,
A1 gewählt aus Ci-C2o-Alkylen, unsubstituiert oder ein- oder mehrfach substituiert mit Ci-C4-Alkyl, Phenyl oder O-C-i -C4-AIkVl, wobei in Ci-C2o-Alkylen eine oder mehrere nicht-benachbarte Chb-Gruppen durch Sauerstoff ersetzt sein können;
X2 gewählt aus Hydroxyl und NH-R3,
R3 gleich oder verschieden und gewählt aus Wasserstoff, Ci-Cio-Alkyl und Phenyl.
Ein spezieller Gegenstand der vorliegenden Erfindung sind mit Polyurethan (A) zumindest partiell umhüllte Pigmente, dadurch gekennzeichnet, dass Polyurethan (A) hergestellt ist durch Umsetzung von
(a) 15 bis 70 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allophanatgrup- pen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, und gegebenenfalls
(b) null bis 60 Gew.-% weiterem Di- oder Polyisocyanat, mit (c) 5 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen und (d) mindestens einer Verbindung der allgemeinen Formel I
Figure imgf000032_0001
in der die Variablen wie folgt definiert sind:
R1, R2 gleich oder verschieden und unabhängig voneinander gewählt aus Wasserstoff und Ci-Cio-Alkyl, X1 gewählt aus Sauerstoff und N-R3, A1 gewählt aus Ci-C2o-Alkylen, unsubstituiert oder ein- oder mehrfach substituiert mit Ci-C4-Alkyl, Phenyl oder O-C-i -C4-AIkVl, wobei in Ci-C2o-Alkylen eine oder mehrere nicht-benachbarte Chb-Gruppen durch Sauerstoff ersetzt sein können;
X2 gewählt aus Hydroxyl und NH-R3, R3 gleich oder verschieden und gewählt aus Wasserstoff, Ci-Cio-Alkyl und
Phenyl.
Ein Verfahren zur Herstellung von erfindungsgemäßen zumindest partiell umhüllten Pigmenten ist vorstehend beschrieben und ebenfalls Gegenstand der vorliegenden Erfindung.
Erfindungsgemäße zumindest partiell umhüllte Pigmente lassen sich beispielsweise aus erfindungsgemäßen wässrigen Dispersionen durch Entfernen des Wassers gewin- nen, beispielsweise durch Trocknen, Gefriertrocknen, Filtrieren oder einer Kombination der vorstehend genannten Maßnahmen.
Erfindungsgemäße zumindest partiell umhüllte Pigmente eignen sich besonders gut zur Herstellung von Tinten für das I nk- Jet-Verfahren.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Polyurethane (A), hergestellt durch Umsetzung von
(a) 15 bis 70 Gew.-%, bevorzugt 30 bis 60 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allophanatgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, und (b) gegebenenfalls null bis 60 Gew.-%, bevorzugt bis 20 Gew.-% weiterem Di- oder
Polyisocyanat, (c) 5 bis 50 Gew.-%, bevorzugt 30 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen und (d) gegebenenfalls mindestens einer Verbindung der allgemeinen Formel I.
Dabei sind Angaben in Gew.-% jeweils auf gesamtes erfindungsgemäßes Polyurethan (A) bezogen.
In einer Ausführungsform der vorliegenden Erfindung hat erfindungsgemäßes Polyurethan (A) eine Doppelbindungsdichte von 0,1 bis 5 mol/kg (A), bevorzugt 0,5 bis 3 mol/kg (A), ganz besonders bevorzugt 1 bis 2 mol/kg (A), bestimmbar beispielsweise durch Bestimmung der Hydrier-Iod-Zahl und durch 1H-NMR-Spektroskopie.
Zur Verbesserung der Haltbarkeit von erfindungsgemäßem Polyurethan (A) versetzt man es während oder unmittelbar nach der Synthese mit mindestens einem Polymerisationsinhibitor (C).
Ein Verfahren zur Herstellung von erfindungsgemäßen Polyurethanen (A) ist vorstehend beschrieben und ebenfalls Gegenstand der vorliegenden Erfindung.
Erfindungsgemäße Polyurethane (A) eigenen sich ganz besonders gut zur Herstellung von erfindungsgemäßen I nk- Jet-Tinten und zur Herstellung von erfindungsgemäßen wässrigen Dispersionen.
Die Erfindung wird durch Arbeitsbeispiele erläutert. Allgemeine Vorbemerkungen:
Der NCO-Gehalt wurde jeweils gemäß DIN 53185 titrimetrisch verfolgt. Der Grad der Umhüllung von erfindungsgemäßen Pigmenten wurde durch Transmissi- onselektronenmikroskopie mit Gefrierbruchtechnik bestimmt.
Feststoffgehalt: Die Angaben in % beziehen sich m Rahmen der vorliegenden Erfindung stets auf Gew.-%. Feststoffgehalte werden im Rahmen der vorliegenden Erfindung stets durch 30-minütiges Trocknen bei 1500C ermittelt. Die dynamische Viskosität wurde jeweils bei Zimmertemperatur bestimmt.
I. Herstellung von erfindungsgemäßen zumindest partiell umhüllten Pigmenten 1.1. Herstellung von erfindungsgemäßem Polyurethan (A.1) 1.1.1 Herstellung von Diisocyanat (a.1 ), das Allophanatgruppen und C-C- Doppelbindungen enthält
Es wurde gemäß EP 1 144 476 B1 , Beispiel 1.1 vorgegangen. In einem Rührkolben wurden Hexamethylendiisocyanat (HDI) (a.1.1 ) unter Stickstoffbedeckung mit 2- Hydroxyethylacrylat vermischt und auf 800C erwärmt. Es wurden 200 Gew.-ppm N,N,N-Trimethyl-N-(2-hydroxypropyl)ammonium-2-ethylhexanoat
Figure imgf000035_0001
zugegeben und danach die Temperatur innerhalb einer halben Stunde auf 1200C erhöht. Danach wurde die entstehende Reaktionsmischung unter weiterem Rühren bei 1200C gehalten, bis der titrimetrisch bestimmte NCO-Gehalt 25 Gew.-% betrug, bezogen auf gesamte Reaktionsmischung. Mann stoppte die Reaktion durch Zugabe von 250 Gew.-ppm Di-(2-Ethylhexyl)-phosphat, bezogen auf (a.1.1). Das so erhältliche Gemisch wurde anschließend im Dünnschichtverdampfer bei 135°C und 2,5 mbar von nicht umgesetztem HDI befreit. Das so erhältliche Diisocyanat (a.1 ) hatte einen NCO- Gehalt von 15 Gew.-%, eine dynamische Viskosität von 1200 mPa-s bei 23°C. Der Rest-HDI-Gehalt war unter 0,5 Gew.-%. Die C-C-Doppelbindungsdichte betrug 2 C-C- Doppelbindungen pro Molekül.
1.1.2 Umsetzung von (a.1) zu erfindungsgemäßem Polyurethan (A.1 )
75,7 g eines Polyesterdiols mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4-Dihydroxymethyl- cyclohexan (Isomerengemisch) in einem Molverhältnis von 1 : 1 : 2, wurden auf 120°C erwärmt. Die entstehende Schmelze wurde in einen 2-l-Reaktor gefüllt, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropftrichter, und unter Stickstoff auf 1300C erwärmt. Als das Polyesterdiol als klare Schmelze vorlag, wurde unter Rühren auf 800C abgekühlt. Danach wurden 9,8 g Neopentylglykol und 32,3 g 1 ,1- Dimethylolpropionsäure sowie 0,28 g Polymerisationsinhibitor (C.1 ) und 0,14 g Polymerisationsinhibitor (C.2) zugegeben
Figure imgf000035_0002
mit Me = CH3 und danach auf 6O0C abgekühlt. Danach wurden 278,4 g Tetrahydrofu- ran (THF), 1 11 ,4 g Diisocyanat (a.1 ) und 49,3 g Hexamethylendiisocyanat (HDI) (a.2.1 ) zugesetzt. Anschließend gab man 0,28 g Di-n-butylzinndilaurat zu (1000 ppm, bezogen auf gesamten Feststoffanteil) und rührte bei 6O0C, bis der titrimetrisch bestimmte NCO- Gehalt auf 0,9 Gew.-%, bezogen auf gesamte Reaktionsmischung, gesunken war. Danach wurde mit Hilfe eines Eisbades auf Zimmertemperatur abgekühlt und die Reaktion durch Zugabe von 12,6 g Diethanolamin, gelöst in 12,6 g THF, abgestoppt. Anschließend neutralisierte man die Säuregruppen mit 24,3 g Triethylamin, gelöst in 24,3 g THF. Man erhielt erfindungsgemäßes Polyurethan (A.1 ). Die Glastemperatur T9 von erfindungsgemäßem Polyurethan (A.1 ) betrug 36°C.
1.1.2 Umsetzung von (a.1) zu erfindungsgemäßem Polyurethan (A.2)
63,1 g eines Polyesterdiols mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4-Dihydroxymethyl- cyclohexan (Isomerengemisch) in einem Molverhältnis von 1 : 1 : 2, wurden auf 1200C erwärmt. Die entstehende Schmelze wurde in einen 2-l-Reaktor gefüllt, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropftrichter, und unter Stickstoff auf 1300C erwärmt. Als das Polyesterdiol als klare Schmelze vorlag, wurde unter Rühren auf 8O0C abgekühlt. Danach wurden 8,2 g Neopentylglykol und 26,8 g 1 ,1- Dimethylolpropionsäure sowie 0,3 g Polymerisationsinhibitor (C.1) und 0,15 g Polymerisationsinhibitor (C.2) zugegeben und danach auf 6O0C abgekühlt. Danach wurden 297,5 g Tetrahydrofuran (THF), 185,6 g Diisocyanat (a.1 ) und 13,7 g Hexamethylendii- socyanat (HDI) (a.2.1 ) zugesetzt. Anschließend gab man 0,3 g Di-n-butylzinndilaurat zu (1000 ppm, bezogen auf gesamten Feststoffanteil) und rührte bei 6O0C, bis der titrimetrisch bestimmte NCO-Gehalt auf 0,7 Gew.-%, bezogen auf gesamte Reaktionsmischung, gesunken war. Danach wurde mit Hilfe eines Eisbades auf Zimmertemperatur abgekühlt und die Reaktion durch Zugabe von 10,5 g Diethanolamin, gelöst in 10,5 g THF, abgestoppt. Anschließend neutralisierte man die Säuregruppen mit 20,2 g
Triethylamin, gelöst in 20,2 g THF. Man erhielt erfindungsgemäßes Polyurethan (A.2). Die Glastemperatur T9 von erfindungsgemäßem Polyurethan (A.2) betrug 34°C.
1.1.3 Umsetzung von (a.1) zu erfindungsgemäßem Polyurethan (A.3)
75,7 g eines Polyesterdiols mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4-Dihydroxymethyl- cyclohexan (Isomerengemisch) in einem Molverhältnis von 1 : 1 : 2, wurden auf 1200C erwärmt. Die entstehende Schmelze wurde in einen 2-l-Reaktor gefüllt, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropftrichter, und unter Stickstoff auf 1300C erwärmt. Als das Polyesterdiol als klare Schmelze vorlag, wurde unter Rühren auf 8O0C abgekühlt. Danach wurden 9,8 g Neopentylglykol und 32,3 g 1 ,1- Dimethylolpropionsäure sowie 0,3 g Polymerisationsinhibitor (C.1) und 0,14 g Polymerisationsinhibitor (C.2) zugegeben und danach auf 600C abgekühlt. Danach wurden 278,4 g Aceton, 11 1 ,4 g Diisocyanat (a.1) und 49,3 g Hexamethylendiisocyanat (HDI) (a.2.1) zugesetzt. Anschließend gab man 0,3 g Di-n-butylzinndilaurat zu (1000 ppm, bezogen auf gesamten Feststoffanteil) und rührte bei 600C, bis der titrimetrisch bestimmte NCO-Gehalt auf 0,9 Gew.-%, bezogen auf gesamte Reaktionsmischung, gesunken war. Danach wurde mit Hilfe eines Eisbades auf Zimmertemperatur abgekühlt und die Reaktion durch Zugabe von 12,6 g Diethanolamin, gelöst in 12,6 g Aceton, abgestoppt. Anschließend neutralisierte man die Säuregruppen mit 24,3 g Triethyla- min, gelöst in 24,3 g Aceton. Man erhielt erfindungsgemäßes Polyurethan (A.3). Die Glastemperatur T9 von erfindungsgemäßem Polyurethan (A.2) betrug 32°C.
1.2. Herstellung von erfindungsgemäßen wässrigen Dispersionen von zumindest partiell umhüllten Pigmenten, allgemeine Vorschrift
Erfindungsgemäße wässrige Dispersionen wurden auf einer Schüttelapparatur (Fa. Skandex) mit 60 g Glaskugeln (Durchmesser 0,25 - 0,5 mm) hergestellt. Die Rezepturen sind in Tabelle 1 zusammengefasst. Nach Einwiegen der Ingredienzien und der Glaskugeln im Skandex wurde die resultierende Mischung für eine Zeit nach Tabelle 1 geschüttelt. Danach wurde eine Probe entnommen und der mittlere Durchmesser an dispergiertem Pigment bestimmt (Coulter Counter LS230) sowie Grad der Umhüllungs gemessen. Der pH-Wert wurde gemessen und - falls erforderlich - mit Triethanolamin auf 8 bis 8,5 eingestellt. Man erhielt die erfindungsgemäßen wässrigen Dispersionen WD.1 bis WD.3.
Tabelle 1 : Ingredienzien und Rezeptparameter für erfindungsgemäße wässrige Dispersionen WD.1 bis WD.3
Figure imgf000037_0001
Mengen von Ingredienzien sind stets in g angegeben, wenn nicht ausdrücklich anders angegeben.
(B): P.R. 122 gemäß Cl. (A.2) ist auf den Feststoffgehalt berechnet. Es bedeutet:
Biozid 1 : 20 Gew .-% Lösung von 1 ,2-Benziso-thiazolin-3-on in Propylenglykol
Zuschlagstoffe:
Figure imgf000038_0001
(G.2): Polyethylenglykol, Mn 200 g/mol.
II. Formulierung von erfindungsgemäßen Tinten für das Ink-Jet-Verfahren 11.1 Formulierung der erfindungsgemäßen magenta-farbenen Tinte T.1 für das InkJet-Verfahren
In einem Becherglas wurden durch Verrühren miteinander vermischt:
20 g WD.1 , 1 g Harnstoff,
0,36 g Photoinitiator (E.1 )
3 g Polyethylenglykol mit einem mittleren Molekulargewicht Mn von 200 g/mol
4,5 g 1 ,2-Pentandiol
13 g Glycerin, 0,4 g einer 20 Gew.-% Lösung von Benzisothiazolin-3-on in Propylenglykol,
0,05 g ethoxyliertes Trisiloxan der Formel [(CH3)SSi-O]2-Si(CHs)-O-(CH2)S-
0(CH2CH2O)8-H
0,2 g Triethanolamin
57,49 g destilliertes Wasser.
Man filtrierte über ein Glasfaserfilter (Ausschlussgröße 1 μm) und erhielt die erfindungsgemäße Tinte T.1. Die erfindungsgemäße Tinte T.1 hatte einen pH-Wert von 8,9 und eine dynamische Viskosität von 3,4 mPa-s.
Figure imgf000038_0002
II.2 Formulierung der erfindungsgemäßen magenta-farbenen Tinte T.2 für das InkJet-Verfahren
In einem Becherglas wurden durch Verrühren miteinander vermischt: 20 g WD.2, 1 g Harnstoff,
3 g Polyethylenglykol mit einem mittleren Molekulargewicht Mn von 200 g/mol 4,5 g 1 ,2-Pentandiol 13 g Glycerin, 0,4 g einer 20 Gew.-% Lösung von Benzisothiazolin-3-on in Propylenglykol, 0,05 g ethoxyliertes Trisiloxan der Formel [(CH3)3Si-O]2-Si(CH3)-O-(CH2)3- 0(CH2CH2O)8-H 57,69 g destilliertes Wasser.
Man filtrierte über ein Glasfaserfilter (Ausschlussgröße 1 μm) und erhielt die erfindungsgemäße Tinte T2. Die erfindungsgemäße Tinte T.2 hatte einen pH-Wert von 8,4 und eine dynamische Viskosität von 3,7 mPa-s.
II.3 Formulierung der erfindungsgemäßen magenta-farbenen Tinte T.3 für das Ink- Jet-Verfahren
In einem Becherglas wurden durch Verrühren miteinander vermischt:
20 g WD.3,
1 g Harnstoff, 0,36 g Photoinitiator (E.1 )
3 g Polyethylenglykol mit einem mittleren Molekulargewicht Mn von 200 g/mol
4,5 g 1 ,2-Pentandiol
13 g Glycerin,
0,4 g einer 20 Gew.-% Lösung von Benzisothiazolin-3-on in Propylenglykol, 0,05 g ethoxyliertes Trisiloxan der Formel [(CH3)3Si-O]2-Si(CH3)-O-(CH2)3-
0(CH2CH2O)8-H
0,2 g Triethanolamin
57,49 g destilliertes Wasser.
Man filtrierte über ein Glasfaserfilter (Ausschlussgröße 1 μm) und erhielt die erfindungsgemäße Tinte T.3. Die erfindungsgemäße Tinte T.3 hatte einen pH-Wert von 9,1 und eine dynamische Viskosität von 3,5 mPa-s.
III. Druckversuche mit erfindungsgemäßen Tinten für das I nk- J et- Verfahren
Die erfindungsgemäße Tinte T.1 , T.2 bzw. T.3 wurde in jeweils eine Kartusche gefüllt und mit einem Drucker Mimaki TX2 720 bei 720 dpi auf unbehandelter Baumwolle verdruckt. Man erhielt Drucke ohne Verstopfung von Düsen.
Es jeweils wurde nach drei Varianten fixiert:
Variante 1 war eine Belichtung mit aktinischer Strahlung ohne thermische Trocknung, Variante 2 war eine thermische Trocknung ohne anschließende Belichtung, Variante 3 war eine Belichtung mit aktinischer Strahlung mit anschließender thermischer Trocknung.
Für eine thermische Trocknung trocknete man 5 Minuten in einem Trockenschrank bei 1500C.
Für eine Bestrahlung mit aktinischer Strahlung setzte man ein UV-Bestrahlungsgerät der Fa. IST mit zwei verschiedenen UV-Strahlern: Eta Plus M-400-U2H, Eta Plus M- 400-U2HC ein. Man belichtete 10 Sekunden und trug dabei eine Energie von 600 mJ/cm2 ein.
Man erhielt die erfindungsgemäßen bedruckten Substrate S1.1 bis S1.3, S2.1 bis S2.3 und S3.1 bis S3.3 gemäß Tabelle 2 und bestimmte die Reibechtheit nach ISO-105- D02:1993 und die Waschechtheit nach ISO 105-C06:1994.
Tabelle 2: Echtheiten von erfindungemäß bedruckter Baumwolle
Figure imgf000040_0001

Claims

Patentansprüche
1. Wässrige Dispersion, enthaltend ein zumindest partiell mit einem Polyurethan (A) umhülltes Pigment (B) und weiterhin mindestens einen Polymerisationsinhibitor (C), wobei Polyurethan (A) erhältlich ist durch Umsetzung von
(a) 15 bis 70 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allopha- natgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, und gegebenenfalls (b) 0 bis 60 Gew.-% weiterem Di- oder Polyisocyanat, mit
(c) 5 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen, wobei Angaben in Gew.-% auf gesamtes Polyurethan (A) bezogen sind.
2. Wässrige Dispersion nach Anspruch 1 , dadurch gekennzeichnet, dass Di- oder Polyisocyanat (a) hergestellt ist durch Umsetzung von mindestens einem Dioder Polyisocyanat (a1) mit mindestens einer Verbindung der allgemeinen Formel I
Figure imgf000041_0001
wobei die Variablen wie folgt definiert sind:
R1, R2 gleich oder verschieden und unabhängig voneinander gewählt aus
Wasserstoff und Ci-Cio-Alkyl, X1 gewählt aus Sauerstoff und N-R3,
A1 gewählt aus Ci-C2o-Alkylen, unsubstituiert oder ein- oder mehrfach substituiert mit Ci-C4-AIkVl, Phenyl oder 0-Ci-C4-AIkVl, wobei in Cr
C2o-Alkylen eine oder mehrere nicht-benachbarte Chb-Gruppen durch
Sauerstoff ersetzt sein können; X2 gewählt aus Hydroxyl und NH-R3,
R3 gleich oder verschieden und gewählt aus Wasserstoff, Ci-Cio-Alkyl und Phenyl.
3. Wässrige Dispersion nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man mindestens eine Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen (c) wählt aus 1 ,1 ,1-Trimethylol-Ci-C^AIkylcarbonsäuren, Zitronensäure, 1 , 1 -Dimethylol-d-C^Alkylcarbonsäuren, 1 , 1 -Dimethylol-Ci-C4- Alkylsulfonsäuren, Poly-C2-C3-alkylenglykolen mit im Mittel 3 bis 300 C2-C3- Alkylenoxideinheiten pro Molekül, hydrophilen Polyaminen mit COOM- oder SOsM-Gruppen, wobei M gewählt wird aus Alkalimetallionen und Ammoniumio- nen, Polyesterdiolen, die herstellbar sind durch Polykondensation von mindestens einem aliphatischen oder cycloaliphatischen Diol mit mindestens einer a- liphatischen, aromatischen oder cycloaliphatischen Dicarbonsäure.
4. Wässrige Dispersion nach einem der Ansprüche 1 bis 3, enthaltend weiterhin mindestens ein Polyurethan (D), das durch Umsetzung von Di- oder Polyisocya- nat (b) mit Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen (c) erhältlich ist.
5. Wässrige Dispersion nach Anspruch 4, dadurch gekennzeichnet, dass Pigment (B) partiell mit Polyurethan (D) umhüllt ist.
6. Wässrige Dispersion nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Polyurethan (A) eine Glastemperatur T9 von maximal 600C aufweist.
7. Wässrige Dispersion nach einem der Ansprüche 1 bis 6, enthaltend mindestens einen Photoinitiator (E).
8. Wässrige Dispersion nach einem der Ansprüche 1 bis 7, dadurch gekennzeich- net, dass man Polyurethan (A) herstellt durch Umsetzung von
(a) 15 bis 70 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allopha- natgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, und gegebenenfalls (b) 0 bis 60 Gew.-% weiterem Di- oder Polyisocyanat, mit
(c) 5 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen und
(d) Verbindung der allgemeinen Formel I,
wobei Angaben in Gew.-% auf gesamtes Polyurethan (A) bezogen sind.
9. Verfahren zur Herstellung von wässrigen Dispersionen nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man mindestens ein Pigment (B) mit mindestens einem Polyurethan (A) und mindestens einem Polyme- risationsinhibitor (C) dispergiert und gegebenenfalls vor oder nach dem Disper- gieren mindestens ein Polyurethan (D) zugibt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man das Dispergie- ren in einer Kugelmühle durchführt.
1 1. Verwendung von wässrigen Dispersionen nach einem der Ansprüche 1 bis 8 als oder zur Herstellung von Formulierungen zum Färben oder Bedrucken von Substraten.
12. Verfahren zum Färben oder Bedrucken von Substraten unter Verwendung von mindestens einer wässrigen Dispersion nach einem der Ansprüche 1 bis 8.
13. Substrate, gefärbt oder bedruckt nach einem Verfahren nach Anspruch 12.
14. Verfahren zur Herstellung von Tinten für das Ink-Jet-Verfahren unter Verwendung von mindestens einer wässrigen Dispersion nach einem der Ansprüche 1 bis 8.
15. Tinten für das Ink-Jet-Verfahren, enthaltend mindestens eine wässrige Dispersi- on nach einem der Ansprüche 1 bis 8.
16. Verfahren zum Bedrucken von Substraten unter Verwendung von Tinten für das Ink-Jet-Verfahren nach Anspruch 15.
17. Bedruckte Substrate, erhältlich nach einem Verfahren nach Anspruch 16.
18. Zumindest partiell umhülltes Pigment, hergestellt durch Dispergieren von mindestens einem Pigment (B), mindestens einen Polymerisationsinhibitor (C) und mindestens einem Polyurethan (A), wobei Polyurethan (A) erhältlich ist durch Um- Setzung von
(a) 15 bis 70 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allopha- natgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, und gegebenenfalls (b) 0 bis 60 Gew.-% weiterem Di- oder Polyisocyanat, mit
(c) 5 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen,
wobei Angaben in Gew.-% auf gesamtes Polyurethan (A) bezogen sind.
19. Zumindest partiell umhülltes Pigment nach Anspruch 18, dadurch gekennzeichnet, dass Di- oder Polyisocyanat (a) hergestellt ist durch Umsetzung von mindestens einem Di- oder Polyisocyanat (a1) mit mindestens einer Verbindung der allgemeinen Formel I
Figure imgf000044_0001
enthalten, in der die Variablen wie folgt definiert sind:
R1, R2 gleich oder verschieden und unabhängig voneinander gewählt aus Wasserstoff und Ci-Cio-Alkyl,
X1 gewählt aus Sauerstoff und N-R3,
A1 gewählt aus Ci-C2o-Alkylen, unsubstituiert oder ein- oder mehrfach substituiert mit Ci-C4-AIkVl, Phenyl oder 0-Ci-C4-AIkVl, wobei in Cr C2o-Alkylen eine oder mehrere nicht-benachbarte Chb-Gruppen durch Sauerstoff ersetzt sein können;
X2 gewählt aus Hydroxyl und NH-R3,
R3 gleich oder verschieden und gewählt aus Wasserstoff, Ci-Cio-Alkyl und Phenyl.
20. Zumindest partiell umhülltes Pigment nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass Polyurethan (A) hergestellt ist durch Umsetzung von
(a) 15 bis 70 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allopha- natgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül ent- hält, und gegebenenfalls
(b) 0 bis 60 Gew.-% weiterem Di- oder Polyisocyanat, mit
(c) 5 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen und
(d) Verbindung der allgemeinen Formel I
Figure imgf000044_0002
in der die Variablen wie folgt definiert sind:
R1, R2 gleich oder verschieden und unabhängig voneinander gewählt aus Wasserstoff und Ci-Cio-Alkyl,
X1 gewählt aus Sauerstoff und N-R3,
A1 gewählt aus Ci-C2o-Alkylen, unsubstituiert oder ein- oder mehrfach substituiert mit Ci-C4-Alkyl, Phenyl oder O-Ci-C4-Alkyl, wobei in d- C2o-Alkylen eine oder mehrere nicht-benachbarte Chb-Gruppen durch Sauerstoff ersetzt sein können;
X2 gewählt aus Hydroxyl und NH-R3, R3 gleich oder verschieden und gewählt aus Wasserstoff, Ci-Cio-Alkyl und Phenyl.
21. Polyurethan, hergestellt durch Umsetzung von
(a) 15 bis 70 Gew.-% Di- oder Polyisocyanat, das im Mittel 1 bis 10 Allopha- natgruppen und im Mittel 1 bis 10 C-C-Doppelbindungen pro Molekül enthält, und gegebenenfalls (b) 0 bis 60 Gew.-% weiterem Di- oder Polyisocyanat, mit
(c) 5 bis 50 Gew.-% Verbindung mit mindestens zwei mit Isocyanat zur Reaktion befähigten Gruppen und
(d) mindestens einer Verbindung der allgemeinen Formel I,
wobei Angaben in Gew.-% auf gesamtes Polyurethan bezogen sind.
PCT/EP2008/051757 2007-02-15 2008-02-13 Dispersionen von polyurethanen, ihre herstellung und verwendung WO2008098972A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08716837.3A EP2121793B1 (de) 2007-02-15 2008-02-13 Dispersionen von polyurethanen, ihre herstellung und verwendung
US12/527,431 US8889788B2 (en) 2007-02-15 2008-02-13 Dispersions of polyurethanes, their preparation and use
JP2009549827A JP5596351B2 (ja) 2007-02-15 2008-02-13 ポリウレタン分散液、その製造方法及び用途
CN2008800052155A CN101616946B (zh) 2007-02-15 2008-02-13 聚氨酯分散体及其制备和用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07102502.7 2007-02-15
EP07102502 2007-02-15

Publications (1)

Publication Number Publication Date
WO2008098972A1 true WO2008098972A1 (de) 2008-08-21

Family

ID=39312985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/051757 WO2008098972A1 (de) 2007-02-15 2008-02-13 Dispersionen von polyurethanen, ihre herstellung und verwendung

Country Status (5)

Country Link
US (1) US8889788B2 (de)
EP (1) EP2121793B1 (de)
JP (1) JP5596351B2 (de)
CN (1) CN101616946B (de)
WO (1) WO2008098972A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091797A1 (de) * 2009-02-13 2010-08-19 Bayer Materialscience Ag Wässrige beschichtungssysteme auf basis physikalisch trocknender urethanacrylate
WO2014076073A1 (en) 2012-11-16 2014-05-22 Basf Se Polyurethanes, dispersions thereof, their preparation and use
US10131814B2 (en) 2013-08-26 2018-11-20 Basf Se Radiation-curable water-dispersible polyurethane (meth)acrylates
WO2020083754A1 (de) 2018-10-26 2020-04-30 Basf Se Wässrige bindemittelformulierung auf basis von funktioalisierten polyurethanen
WO2021009351A1 (en) * 2019-07-18 2021-01-21 Basf Se Allophanate based dispersing agent

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201101858D0 (en) 2011-02-03 2011-03-23 Isansys Lifecare Ltd Health monitoring
EP2773700B1 (de) * 2011-11-01 2017-06-21 E. I. du Pont de Nemours and Company Wässrige tintenstrahldrucktinten mit verzweigten polyurethanen als bindemitteln
CN102529469B (zh) * 2012-01-18 2013-07-10 捷荣模具工业(东莞)有限公司 一种橡胶漆表面移印方法及其油墨
CN102924704A (zh) * 2012-10-31 2013-02-13 深圳新宙邦科技股份有限公司 共聚酯与其制备方法及聚合物电解质
JP6117526B2 (ja) * 2012-11-22 2017-04-19 株式会社ミマキエンジニアリング 印刷方法
JP6472947B2 (ja) * 2013-10-25 2019-02-20 セイコーエプソン株式会社 インクジェットインク組成物、記録方法、及び記録物
JP6350028B2 (ja) * 2014-06-27 2018-07-04 Dic株式会社 水性顔料組成物、捺染剤及び布帛物
JP6402977B2 (ja) * 2014-07-07 2018-10-10 Dic株式会社 捺染剤及び布帛物
JP5758040B1 (ja) * 2014-10-27 2015-08-05 第一工業製薬株式会社 ポリウレタン樹脂の水分散体およびそれを用いたプラスチックフィルム用コーティング剤
EP3015485B1 (de) * 2014-10-28 2017-04-12 Basf Se Verfahren zur Herstellung strahlungshärtbarer Urethan(meth)acrylate
JP2017014337A (ja) * 2015-06-29 2017-01-19 株式会社リコー インク、インクカートリッジ、液体吐出装置、及び記録物
WO2017015196A2 (en) 2015-07-23 2017-01-26 Bridgestone Americas Tire Operations, Llc Degradable foam-containing tires, related methods and kits for adding degradable foam to tires
JP6989424B2 (ja) * 2017-03-17 2022-01-05 三洋化成工業株式会社 ポリウレタン樹脂被覆顔料水分散体
WO2018186225A1 (ja) * 2017-04-03 2018-10-11 富士フイルム株式会社 インク組成物及びその製造方法、並びに画像形成方法
CN110475830B (zh) 2017-04-03 2022-03-25 富士胶片株式会社 油墨组合物及其制造方法、以及图像形成方法
JP7159628B2 (ja) * 2018-06-11 2022-10-25 株式会社リコー 印刷方法、印刷装置、インク、及び印刷物の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023453A1 (de) * 1999-09-30 2001-04-05 Basf Aktiengesellschaft Mit uv-strahlung und thermisch härtbare wässrige polyurethandispersionen sowie deren verwendung
EP1144476B1 (de) * 1998-12-23 2003-12-03 Basf Aktiengesellschaft Durch addition an isocyanatgruppen als auch durch strahlungsinduzierte addition an aktivierte c-c-doppelbindungen härtbare beschichtungsmittel
WO2005080484A1 (de) * 2004-02-24 2005-09-01 Basf Aktiengesellschaft Strahlungshärtbare verbundschichtplatte oder -folie
WO2006089935A1 (de) * 2005-02-24 2006-08-31 Basf Aktiengesellschaft Strahlungshärtbare wässrige polyurethandispersionen
WO2006089933A1 (de) * 2005-02-24 2006-08-31 Basf Aktiengesellschaft Mit strahlungshärtbarem polyurethan zumindest partiell umhüllte pigmente, ihre herstellung und verwendung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007508B1 (de) 1978-07-14 1983-06-01 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und ihre Verwendung
DE2909994A1 (de) 1979-03-14 1980-10-02 Basf Ag Acylphosphinoxidverbindungen, ihre herstellung und verwendung
JPS61243815A (ja) * 1985-04-23 1986-10-30 Nippon Synthetic Chem Ind Co Ltd:The 揺変性を有する樹脂組成物
EP0495751A1 (de) 1991-01-14 1992-07-22 Ciba-Geigy Ag Bisacylphosphine
ZA941879B (en) 1993-03-18 1994-09-19 Ciba Geigy Curing compositions containing bisacylphosphine oxide photoinitiators
IL111014A (en) * 1994-09-21 1999-05-09 Scitex Corp Ltd Ink compositions and a method for making same
DE19618720A1 (de) 1995-05-12 1996-11-14 Ciba Geigy Ag Bisacyl-bisphosphine, -oxide und -sulfide
EP0956280B1 (de) 1997-01-30 2002-10-30 Ciba SC Holding AG Nicht-flüchtige phenylglyoxalsäureester
US5739251A (en) * 1997-03-27 1998-04-14 Bayer Corporation Low viscosity, ethylenically unsaturated polyurethanes containing allophanate groups
DE19727767A1 (de) 1997-06-30 1999-01-07 Basf Ag Als Ink-Jet-Tinten geeignete Pigmentzubereitungen mit strahlungshärtbarem Bindemittel
DE19826712A1 (de) 1998-06-16 1999-12-23 Basf Ag Strahlungshärtbare Massen, enthaltend Phenylglyoxylate
DE19913353A1 (de) 1999-03-24 2000-09-28 Basf Ag Verwendung von Phenylglyoxalsäureestern als Photoinitiatoren
JP4899289B2 (ja) * 2003-04-07 2012-03-21 セイコーエプソン株式会社 水性インク組成物およびその製造方法
JP4798532B2 (ja) * 2004-05-13 2011-10-19 日本ポリウレタン工業株式会社 水性印刷インキ用エマルジョン組成物及びそれを用いた水性印刷インキ
US20070156548A1 (en) * 2005-12-09 2007-07-05 Castagno Robert D Systems and methods for minimizing financial loss in a business via article protection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1144476B1 (de) * 1998-12-23 2003-12-03 Basf Aktiengesellschaft Durch addition an isocyanatgruppen als auch durch strahlungsinduzierte addition an aktivierte c-c-doppelbindungen härtbare beschichtungsmittel
WO2001023453A1 (de) * 1999-09-30 2001-04-05 Basf Aktiengesellschaft Mit uv-strahlung und thermisch härtbare wässrige polyurethandispersionen sowie deren verwendung
WO2005080484A1 (de) * 2004-02-24 2005-09-01 Basf Aktiengesellschaft Strahlungshärtbare verbundschichtplatte oder -folie
WO2006089935A1 (de) * 2005-02-24 2006-08-31 Basf Aktiengesellschaft Strahlungshärtbare wässrige polyurethandispersionen
WO2006089933A1 (de) * 2005-02-24 2006-08-31 Basf Aktiengesellschaft Mit strahlungshärtbarem polyurethan zumindest partiell umhüllte pigmente, ihre herstellung und verwendung

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091797A1 (de) * 2009-02-13 2010-08-19 Bayer Materialscience Ag Wässrige beschichtungssysteme auf basis physikalisch trocknender urethanacrylate
CN102414233A (zh) * 2009-02-13 2012-04-11 拜尔材料科学股份公司 基于物理干燥的聚氨酯丙烯酸酯的含水的涂料体系
CN102414233B (zh) * 2009-02-13 2014-05-07 拜尔材料科学股份公司 基于物理干燥的聚氨酯丙烯酸酯的含水的涂料体系
US9034985B2 (en) 2009-02-13 2015-05-19 Bayer Materialscience Ag Aqueous coating systems based on physically drying urethane acrylates
WO2014076073A1 (en) 2012-11-16 2014-05-22 Basf Se Polyurethanes, dispersions thereof, their preparation and use
RU2652782C2 (ru) * 2012-11-16 2018-05-03 Басф Се Полиуретаны, их дисперсии, их получение и применение
US10683426B2 (en) 2012-11-16 2020-06-16 Basf Se Polyurethanes, dispersions thereof, their preparation and use
US10131814B2 (en) 2013-08-26 2018-11-20 Basf Se Radiation-curable water-dispersible polyurethane (meth)acrylates
WO2020083754A1 (de) 2018-10-26 2020-04-30 Basf Se Wässrige bindemittelformulierung auf basis von funktioalisierten polyurethanen
WO2021009351A1 (en) * 2019-07-18 2021-01-21 Basf Se Allophanate based dispersing agent
US11897995B2 (en) 2019-07-18 2024-02-13 Basf Se Allophanate based dispersing agent

Also Published As

Publication number Publication date
CN101616946B (zh) 2012-07-18
JP5596351B2 (ja) 2014-09-24
JP2010518249A (ja) 2010-05-27
EP2121793A1 (de) 2009-11-25
US20100075115A1 (en) 2010-03-25
US8889788B2 (en) 2014-11-18
CN101616946A (zh) 2009-12-30
EP2121793B1 (de) 2016-07-13

Similar Documents

Publication Publication Date Title
EP2121793B1 (de) Dispersionen von polyurethanen, ihre herstellung und verwendung
EP2313451B1 (de) Verwendung von wässrigen polyurethan-dispersionen in druckfarben und entsprechendes druckverfahren
EP1856171A1 (de) Mit strahlungshärtbarem polyurethan zumindest partiell umhüllte pigmente, ihre herstellung und verwendung
WO2006089934A1 (de) Mit strahlungshärtbarem polyurethan zumindest partiell umhüllte pigmente, ihre herstellung und verwendung
DE102005008930A1 (de) Mit strahlungshärtbarem Polyurethan zumindest partiell umhüllte Pigmente, ihre Herstellung und Verwendung
EP1781720A1 (de) Wasserlösliche strahlungshärtbare produkte und ihre verwendung
EP1440100A1 (de) Vernetzbare polyurethan-blockcopolymere und ihre verwendung in dispergierbindemittelsystemen
EP1124874B1 (de) Dispergiermittel
WO2005083017A1 (de) Aufzeichnungsflüssigkeiten
EP1781743B1 (de) Wasserlösliche strahlungshärtbare produkte und ihre verwendung
EP1549690B1 (de) Aufzeichnungsflüssigkeiten
EP2855553B1 (de) Strahlungshärtbare verbindungen
EP1624033B1 (de) Aufzeichnungsflüssigkeiten, enthaltend Polyurethane mit hyperverzweigten Strukturen
DE102005008931A1 (de) Mit strahlungshärtbarem Polyurethan zumindest partiell umhüllte Pigmente, ihre Herstellung und Verwendung
DE10147404A1 (de) Vernetzbare Polyurethan-Blockcopolymere und ihre Verwendung in Dispergierbindemittelsystemen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880005215.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08716837

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008716837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008716837

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009549827

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12527431

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE