WO2008093897A1 - 耐遅れ破壊特性に優れた高張力鋼材並びにその製造方法 - Google Patents

耐遅れ破壊特性に優れた高張力鋼材並びにその製造方法 Download PDF

Info

Publication number
WO2008093897A1
WO2008093897A1 PCT/JP2008/052002 JP2008052002W WO2008093897A1 WO 2008093897 A1 WO2008093897 A1 WO 2008093897A1 JP 2008052002 W JP2008052002 W JP 2008052002W WO 2008093897 A1 WO2008093897 A1 WO 2008093897A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
temperature
transformation point
rolling
Prior art date
Application number
PCT/JP2008/052002
Other languages
English (en)
French (fr)
Inventor
Akihide Nagao
Kenji Oi
Kenji Hayashi
Nobuo Shikanai
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP08704511.8A priority Critical patent/EP2128288B1/en
Priority to US12/524,988 priority patent/US8357252B2/en
Priority to KR1020127021641A priority patent/KR101388334B1/ko
Priority to CN2008800037329A priority patent/CN101600812B/zh
Priority to AU2008211941A priority patent/AU2008211941B2/en
Publication of WO2008093897A1 publication Critical patent/WO2008093897A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to high tensile strength steels having excellent delayed fracture resistance and a method for producing the same.
  • tensile strength is 60 OMPa or more, particularly those having a tensile strength of 90 OMPa or more and excellent delayed fracture resistance.
  • Japanese Patent Laid-Open No. 3-243745 Japanese Patent Laid-Open No. 2003-3-737-7
  • Japanese Patent Laid-Open No. 2003-234091 Japanese Patent Laid-Open No. 2003-3-255376 Opi
  • Japanese Patent Application Laid-Open No. 2003-3 2 743 etc., such as optimization of ingredients, grain boundary strengthening, crystal grain refinement, utilization of hydrogen trap sites, organization morphology control, carbide fine dispersion, etc.
  • the present invention has been made in view of such circumstances, and in the case where the tensile strength is 60 OMPa or more, particularly 90 OMPa or more, a high-strength steel material that is more excellent in delayed smashing resistance than conventional steel materials. It aims at providing the manufacturing method. Disclosure of the invention
  • Delayed rupture accumulates in the so-called diffusible hydrogen force that can diffuse in steel at room temperature, the S stress concentration zone, and reaches its threshold value.
  • the limit value is determined by material strength and structure.
  • High-strength steel lagging generally breaks up along the prior austenite grain, etc., starting from non-metallic inclusions such as MnS There are many cases.
  • one guideline for improving delayed slag resistance is to reduce the amount of non-metallic inclusions such as MnS and to increase the strength of the prior austenite grain boundaries.
  • the present inventors have particularly reduced the content of P and S, which are impurity elements (impurity elements).
  • P and S which are impurity elements (impurity elements).
  • the introduction of grain extensions and deformation bands by rolling in the non-recrystallization region reduces the amount of MnS that is a non-metallic inclusion.
  • the present invention has been made on the basis of the above-described findings and further studies. That is, the present invention
  • the steel composition is mass%, Mo: 1% or less, Nb: 0.1% or less, V: 0.5% or less, T i: 0.1% or less, Cu: 2% or less, N i: 4% or less, Cr: 2% or less, W: 2% or less, one or two or more high tensile strength steel materials with excellent delayed fracture resistance as described in 1 or 2 .
  • the steel composition is one or two of the following: mass%, B: 0.003% or less, Ca: 0.01% or less, REM: 0.02% or less, 1 ⁇ ⁇ : 0.001% or less.
  • the high-tensile steel material having excellent delayed fracture resistance according to 1 to 3, characterized by containing at least a seed.
  • strain rate is 1 X 10- 3 Z seconds or lower
  • the average rate of temperature rise at the center of the thickness from the tempering start temperature to 3700 ° C is set to 2 ° C / s or more. 6.
  • FIG. 1 A schematic diagram of the martensitic structure of the present invention is shown.
  • Fig. 2 Schematic diagram of cementite deposited on the lath interface and low-temperature heat tempering and rapid heat tempering of the present invention, and a transmission electron microscope (TEM) (extracted replica) photo Indicates.
  • TEM transmission electron microscope
  • the C content is limited to 0.02 to 0.25%. More preferably, it is 0.05 to 0.20%.
  • the Si content is limited to 0.01 to 0.8%. More preferably, it is 0.1 to 0.5%.
  • Mn is contained to ensure strength and to concentrate in cementite during tempering, so that the diffusion of Mn, which is a substituted soot atom, controls the growth of cementite and suppresses cementite coarsening.
  • the content is less than 0.5%, the effect is insufficient.
  • the content exceeds 2.0%, the toughness of the heat affected zone is deteriorated and the weldability is remarkably deteriorated. Therefore, the Mn content is limited to 0.5 to 2.0%. More preferably, it is 0.7 to 1.8%.
  • a 1 is added as a deoxidizer, it is also effective in reducing the crystal grain size. However, if it is less than 0.005%, the effect is not sufficient, while it exceeds 0.1%. If included, surface flaws of the steel sheet are likely to occur. Therefore, the content of 1 is limited to 0.005 to 0.1%. More preferably, it is 0.01 to 0.05%.
  • N is added in order to refine the structure by forming a nitride with Ti and the like, and to improve the toughness of the base metal and the weld heat affected zone. Addition of less than 0.005% does not provide a sufficient effect of yarn and weaving, while Excessive addition increases the amount of solute N, which impairs the toughness of the base metal and the weld heat affected zone. Therefore, the N content is limited to 0.0005% to 0.008%. More preferably, it is 0.001 to 0.005%.
  • the P content is limited to 0.02% or less. More preferably, it is 0.015% or less.
  • the impurity element S easily forms MnS, which is a non-metallic inclusion, and if it exceeds 0.004%, the amount of inclusions increases so that the strength of the ductile smash decreases, and the low temperature toughness Deteriorates delayed fracture resistance. Therefore, the S content is limited to 0.004% or less. More preferably, it is 0.003% or less. In the present invention, the following components can be further contained according to desired properties. Mo: 1% or less
  • Mo has the effect of improving the hardenability and strength, and at the same time, by forming carbides, traps diffusible hydrogen and improves the resistance to delayed smashing. In order to obtain the effect, 0.05% or more is preferably added. However, addition exceeding 1% is not economical. Therefore, when adding Mo, its content is limited to 1% or less. More preferably, it is 0.8% or less. However, Mo has the effect of increasing the temper softening resistance, and it is preferable to add 0.2% or more in order to secure the strength of 90 OMPa or more.
  • Nb enhances strength as a micro-aeration element, and at the same time forms traps of diffusible hydrogen by forming carbides, nitrides, and carbonitrides, and improves delayed slag resistance. In order to obtain the effect, it is preferable to add more than 0.01%. However, a filler metal exceeding 0.1% degrades the toughness of the heat affected zone. Therefore, When Nb is added, its content is limited to 0.1% or less. More preferably, it is 0.05% or less.
  • V enhances strength as a micro-aeration element, and at the same time, forms carbides, nitrides, and carbonitrides, thereby trapping diffusible hydrogen and improving delayed slag resistance.
  • it is preferable to add 0.02% or more.
  • addition over 0.5% degrades the toughness of the heat affected zone. Therefore, when V is added, its content is limited to 0.5% or less. More preferably, it is 0.1% or less.
  • T i 0.1% or less
  • Ti generates Ti N during rolling heating or welding, suppresses the growth of austenite grains, improves the toughness of the base metal and weld heat affected zone, and at the same time forms carbide, nitride and carbonitride This traps diffusible hydrogen and improves delayed fracture resistance.
  • it is preferable to add 0.005% or more.
  • addition over 0.1% degrades the toughness of the heat affected zone. Therefore, when Ti is added, its content is limited to 0.1% or less. More preferably, it is 0.05% or less.
  • Cu has the effect of improving strength by solid solution strengthening and precipitation strengthening. In order to obtain the effect, 0.05% or more is preferably added. However, if the Cu content exceeds 2%, hot cracking is likely to occur during slab heating or welding. Therefore, when Cu is added, its content is limited to 2% or less. More preferably, it is 1.5% or less.
  • Ni has the effect of improving toughness and hardenability. In order to obtain the effect, it is preferable to add 0.3% or more. However, if the Ni content exceeds 4%, the economy is inferior. Therefore, when Ni is added, its content is limited to 4% or less. More preferably, it is 3.8% or less. C r: 2% or less
  • Cr has the effect of improving strength and toughness, and is excellent in high temperature strength characteristics. Furthermore, by concentrating in cementite during tempering, the diffusion of Cr, the substitutional atom, controls the growth of cementite and has the effect of suppressing cementite coarsening. Therefore, it is added positively in order to increase the strength and suppress the coarsening of cementite, and it is particularly preferable to add 0.3% or more in order to obtain a characteristic having a tensile strength of 90 OMPa or more. However, if the Cr content exceeds 2%, weldability deteriorates. Therefore, when Cr is added, its content is limited to 2% or less. More preferably, it is 1.5% or less.
  • W has the effect of improving strength. In order to obtain the effect, 0.05% or more is preferably added. However, if it exceeds 2%, weldability deteriorates. Therefore, when W is added, its content is limited to 2% or less.
  • -B has the effect of improving hardenability. In order to obtain the effect, it is preferable to add 0.003% or more. However, if it exceeds 0,003%, the toughness deteriorates. Therefore, when B is added, its content is limited to 0.003% or less.
  • C a is an element indispensable for the morphology control of sulfide inclusions. In order to obtain the effect, it is preferable to add 0.0004 ° / 0 or more. However, addition over 0.01% leads to a decrease in the resistance to delayed slaughter, if cleanliness. Therefore, when Ca is added, its content is limited to 0.01% or less.
  • REM is an abbreviation of RareEarthMeta1, rare earth metal
  • REM oxysulfide is REM (rare-earth metal) '(0, S) in steel
  • the amount of solid solution S in the grain boundary is reduced and the SR relief resistance (stress relief cracking resistance) (or fPWHT cracking characteristics) (post welded heat treatment cracing resistance).
  • SR relief resistance stress relief cracking resistance
  • fPWHT cracking characteristics post welded heat treatment cracing resistance
  • Mg may be used as hot metal desulfurization material. In order to obtain the effect, it is preferable to add 0.001% or more. However, addition exceeding 0.01% causes a decrease in cleanliness. Therefore, when adding Mg, the addition amount is limited to 0.0 1% or less.
  • a typical structure constituting the high-strength steel of the present invention is martensite or bainitic.
  • the martensite structure of the present invention has a plurality of characteristic four structural units (former austenite, prior packet, packet, block) as shown in the schematic diagram of FIG. , Lath) has a fine and complex form of layering.
  • a packet is defined as a region consisting of a group of laths with the same habit plane in parallel, and a block consists of a group of laths in parallel and in the same orientation.
  • the average value of the aspect ratio of prior austenite grains is 3 or more, preferably over the entire plate thickness direction. 4 or more.
  • the aspect ratio of the prior austenite grains By setting the aspect ratio of the prior austenite grains to 3 or more, the grain boundary coverage of P that segregates at the prior austenite grain boundaries and bucket boundaries during tempering is reduced, resulting in low-temperature toughness.
  • the aspect ratio of prior austenite grains can be measured by, for example, using picric acid to reveal prior austenite grains and then evaluating them by image analysis.
  • the simple average value of the aspect ratio of austenite grains can be measured by, for example, using picric acid to reveal prior austenite grains and then evaluating them by image analysis.
  • the average value of the aspect ratio is 3 or more in the entire plate thickness direction, at least 1 mm below the surface of the steel plate, the plate thickness 1Z4, 1/2, 3/4 part, the steel plate
  • the average value of the aspect ratio at each position lmm below the surface of the back of the surface is 3 or more, more preferably 4 or more.
  • the amount of cementite deposited on the interface of many fine laths generated in the block in Fig. 1 (hereinafter referred to as the cementite coverage at the lath interface). It was found that by setting the ratio to 50% or less, the decrease in the strength of the prior austenite grain boundaries was suppressed, and the delayed smash resistance was improved.
  • the cementite coverage at the lath interface is more preferably 30% or less.
  • Figure 2 shows a schematic diagram and TEM photograph of cementite deposited at the lath interface.
  • the cementite coverage at the lath interface was measured using a scanning electron microscope to photograph the tissue revealed using nital (alcohol nitrate solution (nital)).
  • nital alcohol nitrate solution
  • hydrogen is contained in the steel material, and hydrogen in steel is encapsulated by zinc plating, and then a low strain rate tensile test with a strain rate of 1 X 10 ⁇ 3 / sec or less is performed.
  • the delayed fracture resistance index obtained by the following formula is 75% or more, more preferably 80% or more.
  • the delayed fracture resistance index can quantitatively evaluate the superiority or inferiority of delayed fracture resistance of steel. The higher this index, the better the delayed fracture resistance.
  • steel grades with a tensile strength of less than 120 MPa they may be used in severe environments such as corrosive environments and low-temperature environments, and the degree of work may be severe. More preferably, it has a delayed fracture resistance index of 85% or more.
  • the present invention is applicable to a steel sheet (steel plate) s-shaped steel (steel shapes) and bars steel of various shapes such as (steel bar), the temperature specified in the production conditions as those of steel center, steel sheet
  • the center of the plate thickness and the shape steel are the center of the plate thickness at the portion that gives the characteristics according to the present invention, and the center of the steel plate in the radial direction.
  • the temperature history near the center is almost the same, it is not limited to the center itself.
  • the present invention is effective for steel materials produced under any forging conditions, it is not necessary to limit the forging conditions.
  • the steel piece once cooled to the A c 3 transformation point or higher Hot rolling may be started after reheating. This is because if the rolling is started in this temperature range, the effectiveness of the present invention is not lost.
  • the rolling reduction in the non-recrystallized region is set to 30% or more, preferably 40% or more, and the rolling is finished at the Ar 3 transformation point or more.
  • Non-recrystallized zone rolling with a rolling reduction of 30% or more expands austenite grains during hot rolling and simultaneously introduces a deformation zone to reduce P grain boundary coverage during the tempering process. This is to make it happen.
  • formulas for obtaining the A r 3 transformation point (° C) and the Ac 3 transformation point (° C) are not particularly specified.
  • a r 3 910-310 C-8 OMn— 2 OCu— 15Cr— 5 5N i—80Mo
  • Ac 3 854—180C + 44S i—14Mn—17.8 N i 1 1.7Cr.
  • each element is the steel content (% by mass).
  • forced cooling is performed at a cooling rate of 1 ° C / s or higher from a temperature above the Ar 3 transformation point to a temperature of 350 ° C or lower in order to ensure the base metal strength and base metal toughness.
  • the reason why the forcible cooling start temperature is set to the Ar 3 transformation point or more is to cool the steel plate from the austenite single phase state.
  • the hardened structure becomes non-uniform and the toughness and delayed fracture resistance deteriorate.
  • the reason why the steel sheet is cooled to 350 ° C or lower is to complete the transformation from austenite to martensite or bainite, toughen the base metal, and to improve delayed fracture resistance. is there.
  • the cooling rate at this time is 1 ° C / s or more, preferably 2 ° CZs or more.
  • the cooling rate is the average cooling rate obtained by dividing the temperature difference required for cooling from the temperature above the Ar 3 transformation point to a temperature below 350 ° C by the time required for cooling after the hot rolling is completed. It is.
  • Tempering is performed at a predetermined temperature at which the maximum temperature at the center of the plate thickness is below the Ac transformation point.
  • the reason for limiting below the Ac transformation point is that if the Ac transformation point is exceeded, the PT / JP2008 / 052002 This is because it causes knight transformation and the strength is greatly reduced.
  • the rate of temperature increase during tempering is preferably 0.05 ° C. Zs or more. If the temperature is less than 0.05 ° C / s, the amount of P segregated at the prior austenite grain boundaries, packet boundaries, etc. during tempering increases, and low temperature toughness deteriorates delayed fracture resistance. If the heating rate during tempering is a slow heating of 2 ° C / s or less, the holding time at the tempering temperature suppresses the growth of precipitates such as cementite. It is desirable to make it 0 min or less.
  • the preferable tempering condition is that the average rate of temperature rise at the center of the plate thickness from 1370 ° C. to a predetermined tempering temperature below the A c i transformation point is 1. It is preferable that the maximum temperature at the center of the plate thickness is tempered to 400 ° C. or higher as a rapid heating of J / s or more.
  • the reason for setting the average heating rate to l ° CZ s or more is that the grain boundary coating density of P, an impurity element that segregates at the prior austenite grain boundaries and bucket boundaries, is reduced, and the slow speed of this effort is shown in Fig. 2.
  • a comparison of the schematic diagram of the cementite deposited on the lath interface and the TEM image in the case of heat tempering and rapid heat tempering is shown in order to achieve a reduction in the amount of cementite deposited on the lath interface.
  • the thickness center from the above 3700 ° C to a predetermined tempering temperature below the Aci transformation point
  • rapid heating at an average temperature rise of 1 ° C / s or more rapid heating at an average temperature rise of 2 ° CZ s or more at the center of the plate thickness from the tempering start temperature to 3700 ° C I like it.
  • the flatness at the center of the plate thickness from 3700 ° C to a predetermined tempering temperature below the A c transformation point. Soaking rate is 1. In the case of C / s or more, if the average heating rate at the center of the thickness from the tempering start temperature to 3700 ° C is 2 ° C / s or more, the holding time at the tempering temperature is productivity or cementite. In order to prevent the deterioration of delayed slag resistance due to the coarsening of precipitates such as The rate of temperature increase was divided by the time required to reheat the temperature difference required for reheating to a predetermined temperature at which the maximum temperature reached at the center of the plate thickness was below the Ac transformation point after cooling. Average heating rate.
  • the average cooling rate from the tempering temperature to 20 ° C. is set to 0.05 ° C. Zs or more in order to prevent coarsening of precipitates during cooling.
  • heating for tempering is induction heating (electric heating)
  • any method such as (.energization heating), infrared ray
  • the tempering device uses a heating device installed directly on the same production line as the rolling mill and direct quenching device, even if a heating device installed on a separate production line from the rolling mill and direct quenching device is used. May be. Even if it is the heating apparatus arrange
  • Example 1
  • Tables 1 and 2 show the chemical composition of the steel used in the examples, and Tables 3 and 4 show the steel sheet production conditions and the aspect ratio of the prior austenite grains.
  • the average heating rate at the center of the plate thickness was controlled by the plate feed rate.
  • the steel sheet is reciprocated in the solenoid induction heating device to heat it up to the target heating temperature. Holding was performed within the range of C.
  • Cooling after tempering heating was air cooling as shown in Tables 3 and 4.
  • the temperature at the center of the plate thickness such as tempering temperature and quenching temperature
  • Tables 5 and 6 show the yield strength, tensile strength, and fracture appearance transition temperature (vT rs, ltD3 ⁇ 4ft fracture safety index) of the steel sheets obtained.
  • the cooling rate was the average cooling rate at the center of the plate thickness between the direct quenching start temperature and the direct quenching stop temperature.
  • test pieces used in the following tests were sampled from three quarters in the width direction of the central steel sheet in the longitudinal direction of the steel sheet.
  • the aspect ratio of the prior austenite grains is 1 mm below the surface of the surface of the steel sheet, etched by picric acid using an optical microscope, and the thickness is 1/4, 1/2, 3/4 part, 1 mm below the surface of the back of the steel plate, was photographed, the aspect ratio of about 500 old austenite grains was measured, and the average value was calculated. .
  • Yield strength and tensile strength were measured with full-thickness tensile test pieces in accordance with JIS Z 2 2 4 1, and toughness was collected from the center of the plate thickness in accordance with JIS Z 2 2 4 2.
  • the VT rs obtained by the Charpy impact test using the test piece was evaluated.
  • the delayed smashing safety index is approximately 0.5 massppm when a rod-shaped test piece is used and the amount of diffusible hydrogen in the test piece is determined by the cathodic hydrogen charging method.
  • x 1 iris specimens containing diffusible hydrogen
  • the target of vTr s was set to 40 ° C or less for steel types with a tensile strength of less than 120 OMPa, and to 30 ° C or less for steel types with a tensile strength of 120 OMPa or more.
  • the target of the delayed fracture safety index is 80% or more for steel types with a tensile strength of less than 120 OMPa, and 75% or more for steel types with a tensile strength of 120 OMPa or more.
  • steel plate Nos. 18 to 20 whose unrecrystallized zone reduction ratio is outside the scope of the present invention also have a prior austenite grain aspect ratio outside the scope of the present invention.
  • steel plates Nos. 1 to 17 and Steel plates Nos. 33 to 39 (invention examples) manufactured by the method of the present invention are chemical components, manufacturing methods, and old austenite grains.
  • the pect ratio is within the range of the present invention, and a good vTr s and a delayed rupture safety index can be obtained.
  • At least one of V T rs and the delayed rupture resistance index does not reach the target value.
  • the aspect ratio of the prior austenite grains was determined in the same manner as in Example 1, and was the average value of the aspect ratios of about 550 prior austenite grains.
  • the cementite coverage of the lath interface was measured using a scanning electron microscope, and the structure etched with nital was photographed at a thickness of 1/4 and the cementite interface deposited on approximately 60 lath interfaces.
  • the length along the lath interface (L Cement i te ) and the length of the lath interface (L th ) is measured, and the total length along the lath interface of cementite is divided by the total length of the lath interface. , Multiplied by 100.
  • the target of vTr s is set to 40 ° C or less for steel types with a tensile strength of less than 120 OMPa, and to 30 ° C or less for steel types with a tensile strength of 120 OMPa or more.
  • the target of the delayed fracture safety index is 85% or more for steel types with a tensile strength of less than 120 OMPa, and 8 for steel types with a tensile strength of 120 OMPa or more.
  • Tables 9 and 10 show the steel sheet manufacturing conditions, the aspect ratio of the prior austenite grains, and the cementite coverage of the lath.
  • Tables 11 and 12 show the yield strength, tensile strength, Indicates fracture surface transition temperature (VT rs) and delayed fracture safety index.
  • the examples satisfying the requirements of the invention described in claim 8 are those of the present invention, and those not satisfying are the comparative examples.
  • Nos. 1 to 17 and 41 to 47 are examples in which the heating rate from the tempering start temperature to 370 ° C is set to 2 ° C / s or more.
  • Nos. 35 and 36 do not satisfy the requirement of the heating rate from the tempering base temperature to 370 ° C to 2 ° C / s or higher among the requirements of the invention described in claim 9.
  • This example is an example of the present invention in the category.
  • steel plate Nos. 18 to 20 whose unrecrystallized zone reduction ratio is out of the scope of the present invention have both the aspect ratio of the prior austenite grains and the cementite coverage of the lath. Out of light range.
  • Steel sheets Nos. 26 to 28 whose tempering temperature is out of the range of the present invention have a cementite coverage of lath that is out of the range of the present invention.
  • the average temperature rise rate at the center of the plate thickness from the tempering start temperature to 370 ° C is at least one of the average temperature rise rate at the center of the plate thickness from 70 ° C to the tempering temperature.
  • Steel plates No. 30 and 32 to 34 that are out of the range have a cementite coverage of lath that is out of the scope of the present invention.
  • the steel sheets No. 1 to 17 35 and 36 (invention examples) produced by the method of the present invention have chemical components, production methods, and old austenite grains.
  • the spect ratio and lath cementite coverage were within the scope of the present invention, and good VT rs and delayed fracture safety index could be obtained.
  • the steel plates No. 4 and No. 35, and the steel plates No. 12 and No. 12 differed only in the average rate of temperature rise during the thickness of the tempering start temperature to 370 ° C.
  • steel plate No. 36 steel plates with an average temperature increase rate of 2 ° C / s or more at the center of the thickness from the tempering start temperature to 370 ° C are higher for steel plates N o. o. It can be seen that it has a VT rs better than 35 36 and a delayed refractory safety index.
  • comparative steel plates Nos. 18 to 34 and 37 to 40, 48 to 52 shows that at least one of vT rs and the delayed anti-degradability index is outside the above target range.
  • ratio Comparative example
  • Steel plates Nos. 21 to 23 whose direct quenching start temperature is out of the scope of the present invention have at least one of V T rs and delayed rupture resistance index not reaching the target value.
  • Steel plates No. 24 and 25, whose direct quenching stop temperatures are outside the scope of the present invention, have not reached the target value for V T rs.
  • N o.. 29 to 34 is at least one but goals vTr s and resistance to hydrogen embrittlement safety index The value has not been reached.
  • Direct quenching stop temperature 350 ° C or less, cooling rate C or more, tempering temperature Ac, transformation point or less
  • Direct quenching stop temperature 350 ° C or less, cooling rate C / S or more, tempering temperature A C1 transformation point or less
  • Range of the present invention 1.Thickness center vTrs (° C) Tensile strength less than 1200MPa-40 ° C or less Tensile strength 1200MPa or more-303 ⁇ 4 or less 2. Delayed fracture safety index Tensile strength Less than 1200MPa 80% or more Tensile strength 1200MPa or more 75% or more
  • Ar 3 (.C) 910-310C-80Mn-20Cu-1 5Cr ⁇ 55N ⁇ 80Mo
  • Scope of the present invention 1.Thickness center vTrs (° C) Tensile strength Less than 1200 MPa -40 ° C or less

Abstract

引張強度が600MPa以上の、建設産業機械用などとして好適な耐遅れ破壊特性に優れる高張力鋼材とその製造方法を提供する。 具体的には、C、Si、Mn、Al、N、P、Sを含有し、必要に応じて、Mo、Nb、V、Ti、Cu、Ni、Cr、W、B、Ca、REM、Mgの一種または二種以上の元素を含有し、残部がFeおよび不可避的不純物からなり、旧オーステナイト粒のアスペクト比の平均値が板厚方向全体に亘って、3以上であり、あるいは、さらに、ラスの界面におけるセメンタイト被覆率が50%以下であり、あるいは、さらに、耐遅れ破壊安全度指数が75%以上である鋼である。また、上記鋼を鋳造後、Ar3変態点以下に冷却することなく、あるいはAc3変態点以上に再加熱後、未再結晶域における圧下率が30%以上の熱間圧延を行い、引続きAr3変態点以上から冷却速度1℃/s以上で350℃以下の温度まで冷却した後、Ac1変態点以下で焼戻す耐遅れ破壊特性に優れた高張力鋼材の製造方法である。

Description

明細書
耐遅れ破壊特性に優れた高張力鋼材並びにその製造方法 技術分野
本発明は、 耐遅れ破壌特性(delayed fracture resistance)に優れた高張力鋼材 (high tensile strength steels)ならびにその製造方法に関し、 引張強度
(tensile strength)が 60 OMP a以上、 特に引張強度が 90 OMP a以上にお レ、て耐遅れ破壊特性に優れるものに関する。 背景技術
近年、 建設産業機械 (例えば、 クレーン (crane) のムーブ (move)やクレーンの シャーシー (chassis)) ·タンク (tank) ·ペンストツク (penstock) ·パイプライン (pipeline)等の鋼材使用分野では、 構造物(structure)の大型化を背景として、 使 用する鋼材の高強度化が指向されると共に、 鋼材の使用環境 (use environment)の 苛酷化が進んでいる。
し力 し、 このような鋼材の高強度化および使用環境の苛酷ィ匕は、 一般的に鋼材 の遅れ破壌感受性を高めることが知られており、 例えば高力ボルト(high tensile bolt)の分野では J I S (Japanese Industrial Standards) B 1 1 8 6にて F 1 I T級ボルト (引張強さ 1 1 00〜1 30 ON/mm2) についてはなるべく使 用しないとの記載がなされている等、 高強度鋼材の使用は限定的である。
このため、 特開平 3— 243 74 5号公報、 特開 200 3— 7 3 7 3 7号公報、 特開 200 3— 23 9 04 1号公報、 特開 200 3— 2 5 3 3 76号公報おょぴ、 特開 2003— 3 2 1 743号公報等で、 成分の適正化、 粒界強化、 結晶粒の微 細化、 水素トラップサイトの活用、 組織形態制御、 炭化物の微細分散化等の様々 な技術を利用する、 耐遅れ破壊特性に優れた鋼板の製造方法が提案されてきた。 しかしながら、 上記特開平 3— 243 745号公報、 特開 200 3— 73 73 7号公報、 特開 200 3— 23 904 1号公報、 特開 2003— 2 53 3 76号 公報おょぴ、 特開 2003— 3 2 1 743号公報等に記載されている方法によつ ても、 強度レベルが高くなると、 厳しい腐食環境下で使用される場合に要求され るレベルの耐遅れ破壌特性を得ることは困難であり、 特に引張強度が 9 0 O M P a以上の高いレベルで、 より耐遅れ破壌特性に優れた高張力鋼材ならびにその製 造方法が求められていた。
本発明はかかる事情に鑑みてなされたものであって、 引張強度が 6 0 O M P a 以上、 特に 9 0 O M P a以上において、 従来の鋼材より耐遅れ破壌特性に優れた 高張力鋼材ならぴにその製造方法を提供することを目的とする。 発明の開示
遅れ破壌は、 室温で鋼中を拡散可能ないわゆる拡散性水素(di f f us ible hydrogen)力 S応力集中部 (stress concentration zone)に集積し、 その量力材料の 限界値(threshold limit value)に到達すると発生するとされており、 その限界値 は、 材料強度や組織等によって決定される。
高強度鋼の遅れ破壌は、 一般的には、 M n S等の非金属介在物(non- metallic inclusion)などを起点として、 旧オーステナイト粒界 (prior austenite grain) 等に沿 て破壌することが多い。
このため、 耐遅れ破壌特性を向上させる一つの指針として、 M n S等の非金属 介在物量を減らすことや旧オーステナイト粒界の強度を上昇させることが挙げら れる。
本発明者らは、 上記の観点で鋼材の耐遅れ破壌特性を向上させるために鋭意研 究を重ねた結果、 特に不純物元素(impurity elements)である Pおよび Sの含有量 の低下およぴ未再結晶域(non- recrystallization region)における圧延加工によ る結晶粒の展伸(extension)および変形帯 (deformation band) の導入によって、 非金属介在物である M n Sの生成量が低下し、 更に、 旧オーステナイト粒界に偏 析する不純物元素である Pの粒界の被覆密度 (covering density) の低下あるい は、 さらにラス(lath)の界面に析出するセメンタイト(cementite)量の低下により 旧オーステナイト粒界の強度低下が抑制され、 従来材ょりも優れた耐遅れ破壊特 性を有する高張力鋼材が得られることを見出した。 本発明は、 以上に示した知見に基づき、 更に検討を加えてなされたものであつ て、 すなわち、 本発明は、
1. 質量%で、 C: 0. 02— 0. 25%、 S i : 0. 01〜 0. 8 %、 Mn : 0. 5〜2. 0%、 Α 1 ·· 0. 005〜0. 1%、 Ν : 0. 0005〜0. 00 8%、 Ρ : 0. 02%以下、 S : 0. 004%以下の元素を含有し、 残部が F e および不可避的不純物からなり、 旧オーステナイト粒のァスぺクト比(aspect ratio)の平均値が板厚方向全体に亘つて、 3以上であることを特徴とする、 耐遅 れ破壊特性に優れた高張力鋼材。
2. 更に、 S : 0. 003%以下であり、 さらに、 ラスの界面におけるセメンタ ィト被覆率が 50 %以下である 1に記載の高張力鋼材。
3. 更に、 鋼組成が、 質量%で、 Mo : 1%以下、 Nb : 0. 1%以下、 V: 0. 5%以下、 T i : 0. 1%以下、 Cu : 2%以下、 N i : 4%以下、 C r : 2% 以下、 W : 2%以下の一種または二種以上を含有することを特徴とする 1または、 2に記載の耐遅れ破壌特性に優れた高張力鋼材。
4. 更に、 鋼組成が、 質量%で、 B : 0. 003%以下、 C a : 0. 01 %以下、 REM: 0. 02%以下、 1^§ : 0. 01%以下の一種または二種以上を含有す ることを特徴とする 1乃至 3に記載の耐遅れ破壊特性に優れた高張力鋼材。
5. 更に、 鋼材に水素を含有させてから、 亜鈴めつき(zinc galvanizing)によつ て鋼中水素を封入し、 その後、 歪速度(strain rate)が 1 X 10— 3Z秒以下の低ひ ずみ速度引張試験 (slow strain rate test) を行い、 下記式にて求める耐遅れ破 壌の安全度指数 (safety index of delayed fracture resistance) 力 S 75 %以上 であることを特徴とする 1乃至 4のいずれか一つに記載の耐遅れ破壊特性に優れ た高張力鋼材。
耐遅れ破壌の安全度指数 (%) =10 O X (Xノ X。)
ここで、 X。:実質的に拡散性水素を含まない試験片の絞り
X1:拡散性水素を含む試験片の絞り
6. 上記 5において、 前記破壊安全度指数が 80%以上である高張力鋼材。 7 . 1乃至 4のいずれか一つに記載の組成を有する鋼を铸造後、 A r 3変態点 (transformation temperature)以下に冷却することなく、 あるいは A c 3変態点以 上に再加熱後、 熱間圧延を開始し、 未再結晶域における圧下率 (rolling reduction)が 3 0 %以上の圧延を含む熱間圧延 (hot rolling)によつて所定の板厚 とし、 引続き A r 3変態点以上から冷却速度(cooling rate) 1 °C/ s以上で 3 5 0 °C以下の温度まで冷却した後、 A c i変態点以下で焼戻すことを特徴とする 5に 記載の耐遅れ破壌特性に優れた高張力鋼材の製造方法。
8 . 上記 7に記載の、 A c 変態点以下で焼戻す方法において、 圧延機おょぴ冷却 装置と同一の製造ライン上に設置された加熱装置を用いて、 3 ァ から八じ 変 態点以下の所定の焼戻し温度までの板厚中心部の平均昇温速度を 1。じ/ s以上と して、 板厚中心部の最高到達温度を 4 0 0 °C以上に焼戻すことを特徴とする 6に 記載の耐遅れ破壌特性に優れた高張力鋼材の製造方法。
9 . 上記 8において、 A cェ変態点以下で焼戻す方法において、 さらに、 焼戻し開 始温度から 3 7 0 °Cまでの板厚中心部の平均昇温速度を 2 °C/ s以上とすること を特徴とする 6に記載の耐遅れ破壊特性に優れた高張力鋼材の製造方法。
本発明によれば、 引張強度が 6 0 O M P a以上、 特に 9 0 O M P a以上にお いて、 耐遅れ破壌特性に極めて優れた高張力鋼材の製造が可能となり、 産業上極 めて有用である。 図面の簡単な説明
図 1 :本発明のマルテンサイト組織の模式図を示す。
図 2 :本発明の低速加熱焼戻しおよぴ急速加熱焼戻しの場合のラスの界面に析出 するセメンタイトの模式図と透過型電子顕微鏡(transmission electron microscope, TEM) (抽出レプリカ(extracted replica) ) の写真を示す。 発明を実施するための最良の形態
(成分組成) 本発明における成分の限定理由について述べる.。 化学成分組成を示す%は、 何 れも質量%である。
C: 0. 02〜0. 25%
Cは、 強度を確保するために含有するが、 0. 02%未満ではその効果が不十分 であり、 一方、 0. 25%を超えると母材および溶接熱影響部の靭性が劣化する とともに、 溶接性が著しく劣化する。 従って、 C含有量を 0. 02~0. 25% に限定する。 さらに好ましくは、 0. 05〜0. 20%である。
S i : 0. 01〜 0. 8 %
S i'は、 製鋼段階の脱酸材および強度向上元素として含有するが、 0. 01%未 満ではその効果が不十分であり、 一方、 0. 8%を超えると粒界が脆化し、 遅れ 破壌の発生を促進する。 従って、 S i含有量を 0. 01〜0. 8%に限定する。 さらに好ましくは、 0. 1〜0. 5%である。
Mn : 0. 5〜2. 0%
Mnは、 強度を確保し、 かつ焼戻しに際して、 セメンタイト中に濃縮することに よって、 置換犁原子である Mnの拡散がセメンタイトの成長を律速し、 セメンタ イトの粗大化が抑制されるために含有するが、 0. 5%未満ではその効果が不十 分であり、 一方、 2. 0%を超えると溶接熱影響部の靱性が劣化するとともに、 溶接性が著しく劣化する。 従って、 Mn含有量を 0. 5〜2. 0%に限定する。 さらに好ましくは、 0. 7〜1. 8%である。
A 1 : 0. 005〜0. 1%
A 1は、 脱酸材として添加すると同時に、 結晶粒径の微細化にも効果があるが、 0. 005%未満の場合にはその効果が十分でなく、 一方、 0. 1%を超えて含 有すると、 鋼板の表面疵が発生し易くなる。 従って、 1含有量を0. 005〜 0. 1%に限定する。 さらに好ましくは、 0. 01〜0. 05%である。
N: 0. 0005〜 0. 008%
Nは、 T iなどと窒化物を形成することによって組織を微細化し、 母材ならびに 溶接熱影響部の靭性を向上させる効果を有するために添加する。 0. 0005% 未満の添加では糸且織の微細化効果が充分にもたらされず、 一方、 0. 008%を 超える添加は固溶 N量が増加するために母材および溶接熱影響部の靭性を損なう。 従って、 N含有量を 0. 0005〜0. 008%に限定する。 さらに好ましくは、 0. 001〜0. 005%である。
P : 0. 02 %以下
不純物元素である Pは、 焼戻し処理時に旧オーステナイト粒界等の結晶粒界に偏 祈しやすく、 0. 02%を超えると隣接結晶粒の接合強度を低下させ、 低温靭性 ゃ耐遅れ破壊特性を劣化させる。 従って、 P含有量を 0. 02%以下に限定する。 さらに好ましくは、 0. 015 %以下である。
S : 0. 004 %以卞
不純物元素である Sは、 非金属介在物である MnSを生成しやすく、 0. 00 4%を超えると、 介在物の量が多くなりすぎて延性破壌の強度が低下し、 低温靭 性ゃ耐遅れ破壊特性を劣化させる。 従って、 S含有量を 0. 004%以下に限定 する。 さらに好ましくは、 0. 003%以下である。 本発明では、 所望する特性に応じて更に以下の成分を含有することができる。 Mo : 1%以下
Moは、 焼入れ性おょぴ強度を向上する作用を有すると同時に、 炭化物を形成す ることによって、 拡散性水素をトラップし、 耐遅れ破壌特性を向上させる。 その 効果を得るために 0. 05%以上添加することが好ましい。 しかし、 1%を超え る添加は経済性が劣る。 従って、 Moを添加する場合には、 その含有量を 1%以 下に限定する。 さらに好ましくは、 0. 8%以下である。 ただし、 Moは焼戻し 軟化抵抗を大きくする作用を有し、 強度を 90 OMP a以上確保するために 0. 2 %以上添加することが好ましい。
Nb : 0. 1%以下
Nbは、 マイクロア口イング元素として強度を向上させると同時に、 炭化物ゃ窒 化物、 炭窒化物を形成することによって、 拡散性水素をトラップし、 耐遅れ破壌 特性を向上させる。 その効果を得るために 0. 01%以上添加することが好まし レ、。 しかし、 0. 1%を越える添カ卩は溶接熱影響部の靭性を劣化させる。 従って、 Nbを添加する場合には、 その含有量を 0. 1%以下に限定する。 さらに好まし くは、 0. 05%以下である。
V: 0. 5 %以下
Vは、 マイクロア口イング元素として強度を向上させると同時に、 炭化物や窒ィ匕 物、 炭窒化物を形成することによって、 拡散性水素をトラップし、 耐遅れ破壌特 性を向上させる。 その効果を得るために 0. 02%以上添加することが好ましレ、。 しかし、 0. 5%を超える添加は溶接熱影響部の靭性を劣化させる。 従って、 V を添加する場合には、 その含有量を 0. 5%以下に限定する。 さらに好ましくは、 0. 1%以下である。
T i : 0. 1 %以下
T iは、 圧延加熱時あるいは溶接時に T i Nを生成し、 オーステナイト粒の成長 を抑制し、 母材ならびに溶接熱影響部の靭性を向上させると同時に、 炭化物ゃ窒 化物、 炭窒化物を形成することによって、 拡散性水素をトラップし、 耐遅れ破壊 特性を向上させる。 その効果を得るために 0. 005%以上添加することが好ま しい。 しかし、 0. 1%を超える添加は溶接熱影響部の靭性を劣化させる。 従つ て、 T iを添加する場合には、 その含有量を 0. 1%以下に限定する。 さらに好 ましくは、 0. 05%以下である。
Cu : 2%以下
Cuは、 固溶強化および析出強化により強度を向上する作用を有している。 その 効果を得るために 0. 05%以上添加することが好ましい。 しかしながら、 Cu 含有量が 2%を超えると、 鋼片加熱時や溶接時に熱間での割れを生じやすくする。 従って、 Cuを添加する場合には、 その含有量を 2%以下に限定する。 さらに好 ましくは、 1. 5%以下である。
N i : 4 %以下
N iは、 靭性および焼入れ性を向上する作用を有している。 その効果を得るため に 0. 3%以上添加することが好ましい。 しかしながら、 N i含有量が 4%を超 えると、 経済性が劣る。 従って、 N iを添加する場合には、 その含有量を 4%以 下に限定する。 さらに好ましくは、 3. 8%以下である。 C r : 2 %以下
C rは、 強度およぴ靭性を向上する作用を有しており、 また高温強度特性に優れ る。 更に、 焼戻しに際して、 セメンタイト中に濃縮することによって、 置換型原 子である C rの拡散がセメンタイトの成長を律速し、 セメンタイトの粗大化を抑 制する効果も持つ。 従って、 高強度化し、 かつセメンタイトの粗大化を抑制する 場合に積極的に添加し、 特に引張強度 90 OMP a以上の特性を得るために 0. 3%以上添加することが好ましい。 しかしながら、 C r含有量が 2%を超えると、 溶接性が劣化する。 従って、 C rを添加する場合には、 その含有量を 2%以下に 限定する。 さらに好ましくは、 1. 5%以下である。
W: 2 %以下
Wは、 強度を向上する作用を有している。 その効果を得るために 0. 05%以上 添加することが好ましい。 しかしながら、 2%を超えると、 溶接性が劣化する。 従って、 Wを添加する場合は、 その含有量を 2%以下に限定する。
B : 0. 003 %以下
-Bは、 焼入れ性を向上する作用を有している。 その効果を得るために 0. 000 3%以上添加する.ことが好ましい。 しかしながら、 0, 003%を超えると、 靭 性を劣化させる。 従って、 Bを添加する場合には、 その含有量を 0. 003%以 下に限定する。
C a : 0. 01 %以下
C aは、 硫化物系介在物の形態制御に不可欠な元素である。 その効果を得るため に 0. 0004°/0以上添カロすることが好ましい。 しかしながら、 0. 01%を超 える添加は、 清浄度ゃ耐遅れ破壌特性の低下を招く。 従って、 C aを添加する場 合には、 その含有量を 0. 01%以下に限定する。
REM: 0. 02°/。以下
REM (注: REMとは R a r e E a r t h M e t a 1の略、 希土類金属) は、 鋼中で REM (rare - earth metal)' (0、 S) として REM酸硫化物
(oxysulfide)を生成することによつて結晶粒界の固溶 S量を低減して耐 S R割れ 特性(stress relief cracking resistance) (あるいは、 fPWHT割れ特性 (post welded heat treatment crac ing resistance)とも目つ) を改善する。 そ の効果を得るために 0 . 0 0 1 %以上添加することが好ましい。 し力 しながら、 0 . 0 2 %を超える添加は、 沈殿晶帯に R EM酸硫化物が著しく集積し、 材質の 劣化を招く。 従って、 R EMを添加する場合には、 その添加量を 0 . 0 2 %以下 に限定する。
M g : 0 . 0 1 %以下
M gは、 溶銑脱硫材として使用する場合がある。 その効果を得るために 0 . 0 0 1 %以上添加することが好ましい。 しかしながら、 0 . 0 1 %を超える添加は、 清浄度の低下を招く。 従って、 M gを添加する場合には、 その添加量を 0 . 0 1 %以下に限定する。
[ミクロ組織]
本発明におけるミクロ組織の限定理由について述べる。 本発明の高強度鋼を構成する代表的な組織は、 マルテンサイトもしくはべイナ ィトである。 特に、 本発明のマルテンサイト組織は、 図 1の組織の模式図に示す ような複数の特徴的な 4つの組織単位 (旧オーステナイト粒 (prior austenite) 、 パケット(packet;)、 ブロック(block;)、 ラス (lath) ) が階層的に重なる微細で複 雑な形態を持つ。 ここで、 パケットとは、 平行に並んだ同じ晶癖面 (habit plane) を持つラスの集団から成る領域と定義され、 ブロックは、 平行でかつ同じ方位の ラスの集団から成る。
本発明では、 旧オーステナイト粒のアスペクト比 (図 1において、 旧オーステ ナイト粒の長軸 a と短軸 bの比 a/b) の平均値を板厚方向全体に亘つて、 3以上、 好ましくは 4以上とする。
旧オーステナイト粒のァスぺクト比を 3以上とすることによって、 焼戻し処理 時に旧オーステナイト粒界やバケツト境界等に偏析する Pの粒界被覆率を低減さ せて低温靭性(low- temperature toughness)およぴ耐遅れ破壊特性を向上させ、 当 該ミク口組織 (microstructure)を板厚方向全体に亘つて備えることにより、 これ らの特性を備えた均質な鋼材とする。
旧オーステナイト粒のァスぺクト比の測定は、 例えば、 ピクリン酸 (picric acid)を用いて旧オーステナイト粒を現出後、 画像解析(image analysis)にて評価 し、 例えば、 500個以上の旧オーステナイト粒のァスぺクト比の単純平均値と する。
本発明で、 アスペクト比の平均値が、 板厚方向全体に亘つて 3以上とは、 少な くとも、 鋼板の表面の表面下 1 mm, 板厚 1Z4, 1/2, 3/4部, 鋼板の裏 面の表面下 lmmの各位置におけるァスぺクト比の平均値が 3以上、 さらに好ま しくは、 4以上である場合を指す。
著者らは、 上記に加えて、 さらに詳細な研究の結果、 特に、 図 1のブロック内 に生成している多数の微細なラスの界面に析出するセメンタイト量 (以降、 ラス 界面のセメンタイト被覆率と言う) を 50%以下とすることによって、 旧オース テナイト粒界の強度低下が抑制されて、 耐遅れ破壌特性を向上させることを見出 した。 ラスの界面のセメンタイト被覆率は、 さらに好適には、 3 0%以下である。 図 2にラス界面に析出したセメンタイトの模式図と TEM写真を示す。
図 2に示すように、 ラスの界面のセメンタイト被覆率は、 ナイタル (硝酸アル コール溶液 (nital) ) を用いて現出させた組織を走査電子顕微鏡にて写真撮影し、 その写真を用いて、 例えば、 50個以上のラスの界面上に析出したセメンタイト の界面に沿った長さ (LCemen t i t e) とラスの界面 (LLa th) の長さを測定し、 セメンタイトのラスの界面に沿った長さの総和をラス界面の長さの総和で除し、 1 00を掛けた数値とする。
[耐遅れ破壊安全度指数]
本発明では、 更に、 鋼材に水素を含有させてから、 亜鉛めつきによって鋼中水 素を封入し、 その後、 歪速度が 1 X 1 0—3/秒以下の低歪速度引張試験を行い、 下記式にて求める耐遅れ破壊安全度指数が 7 5 %以上、 さらに好ましくは、 8 0 %以上であることを規定することができる。
記 耐遅れ破壌安全度指数 (%) = 1 0 0 X (Χ , /Χ ο)
ここで、 X。:実質的に拡散性水素を含まない試験片の絞り
χ χ:拡散性水素を含む試験片の絞り
耐遅れ破壌安全度指数により、 鋼材の耐遅れ破壊特性の優劣を定量的に評価す ることができ、 本指数が高ければ高い程、 耐遅れ破壊特性に優れると言えるが、 通常の大気環境下での鋼材使用に当たっては、 耐遅れ破壌安全度指数を 7 5 %以 上、 さらに好ましくは、 8 0 %以上とすることによって実用的に充分良好な耐遅 れ破壌特性を得ることができる。 ただし、 引張強度が 1 2 0 0 M P a未満の鋼種 に関しては、 腐食環境や低温環境等の厳しい環境下で使用される場合や、 加工度 も厳しくなる場合もあることから、 8 0 %以上、 さらに好ましくは 8 5 %以上の 耐遅れ破壊安全度指数を有することが望ましい。
[製造条件]
本発明は、 鋼板(steel plate) s 形鋼(steel shapes)および棒鋼(steel bar)など 種々の形状の鋼材に適用可能であり、 製造条件における温度規定は鋼材中心部で のものとし、 鋼板は板厚中心、 形鋼は本発明に係る特性を付与する部位の板厚中 心、 棒鋼では径方向の中心とする。 但し、 中心部近傍はほぼ同様の温度履歴とな るので、 中心そのものに限定するものではない。
鎳造条件 (cast condition)
本発明は、 いかなる鋒造条件で製造された鋼材についても有効であるので、 特に 錡造条件を限定する必要はない。 溶鋼から鎳片を製造する方法や、 錄片を圧延し て鋼片を製造する方法は特に規定しない。 転炉法 ·電気炉法等で溶製された鋼や、 連続铸造 ·造塊法等で製造されたスラブが利用できる。
熱間圧延条件
铸片を圧延して鋼片を製造する際、 A r 3変態点以下に冷却することなく、 そのま ま熱間圧延を開始しても、 一度冷却した铸片を A c 3変態点以上に再加熱した後に 熱間圧延を開始しても良い。 これは、 この温度域で圧延を開始すれば、 本発明の 有効性は失われないためである。 また、 未再結晶域における圧下率を 30%以上、 好ましくは 40%以上とし、 圧延は A r 3変態点以上で終了するものとする。 圧下率 30 %以上の未再結晶域圧 延は、 熱間圧延時にオーステナイト粒を展伸させると同時に変形帯を導入し、 焼 戻し処理時に粒界に偏祈する Pの粒界被覆率を低減させるためである。
旧オーステナイト粒のァスぺクト比が高い程、 有効結晶粒径 (破面単位となる結 晶粒の粒径 (effective grain size) 具体的には、 パケット) が微細化し、 かつ Pの旧オーステナイト粒界やバケツト境界等の粒界被覆率が小さくなるため、 耐 遅れ破壌特性が向上する。
本発明では A r 3変態点 (°C) および Ac 3変態点 (°C) を求める式は特に規定 しないが、 例えば A r 3 = 910-310 C- 8 OMn— 2 OCu— 15Cr— 5 5N i— 80Mo、 Ac3=854— 180C+44S i— 14Mn— 17. 8 N i一 1. 7Crとする。 これらの式において各元素は鋼中含有量 (質量%) とす る。
熱間圧延後の冷却条件
熱間圧延終了後、 母材強度および母材靭性を確保するため、 A r 3変態点以上の温 度から 350°C以下の温度まで冷却速度 l°C/s以上で、 強制冷却を行う。 強制' 冷却開始温度を A r 3変態点以上とする理由は、 オーステナイト単相の状態から鋼 板を冷却するためである。 A r 3変態点未満の温度域から冷却した場合には、 焼入 組織が不均一となり、 靭性ゃ耐遅れ破壊特性の劣化を招く。 鋼板の温度が 35 0°C以下になるまで冷却する理由は、 オーステナイトからマルテンサイトもしく はべイナイトへの変態を完了させ、 母材を強靱化し、 かつ耐遅れ破壌特性を向上 するためである。 このときの冷却速度は l°C/s以上、 好ましくは 2°CZs以上 とする。 なお、 冷却速度は、 熱間圧延終了後、 A r 3変態点以上の温度から 35 0°C以下の温度まで冷却に必要な温度差をその冷却するに要した時間で割った平 均冷却速度である。
焼戻し条件
板厚中心部での最高到達温度が Ac 変態点以下となる所定の温度にて焼戻し処 理を行う。 Acェ変態点以下に限定する理由は、 Ac 変態点を超えるとオーステ P T/JP2008/052002 ナイト変態を生じ、 強度が大きく低下し、 するためである。 なお、 焼戻しは、 圧 延機およぴ冷却装置と同一の製造ライン上で冷却装置の下流側に設置されたオン ライン加熱装置を用いるのが、 好ましい。 圧延 '焼入れ処理から焼戻し処理まで に要する時間を短くすることが可能となり、 生産性の向上がもたらされるためで ある。
また、 焼戻し時の昇温速度は、 0 . 0 5 °CZ s以上が好ましい。 0 . 0 5 °C/ s未満では、 焼戻し処理時に Pが旧オーステナイト粒界やパケット境界等に偏析 する量が多くなり、 低温靭性ゃ耐遅れ破壊特性が劣化するためである。 なお、 焼 戻し時の昇温速度は 2 °C/ s以下の低速加熱であれば、 焼戻し温度における保持時 間は、 セメンタイト等の析出物の成長を抑制し、 さらに生産性の観点から、 3 0 m i n以下とすることが望ましい。
さらに、 好ましい焼戻し条件は、 3 7 0 °Cから A c i変態点以下の所定の焼戻し 温度までの板厚中心部の平均昇温速度を 1。じ/ s以上の急速加熱として、 板厚中 心部の最高到達温度を 4 0 0 °C以上に焼戻すことが、 好ましい。
平均昇温速度を l °CZ s以上とする理由は、 旧オーステナイト粒界やバケツト 境界等に偏析する不純物元素である Pの粒界被覆密度を低下させ、 かつ、 図 2に 本努明の低速加熱焼戻しおよび急速加熱焼戻しの場合のラスの界面に析出したセ メンタイトの模式図と T EM写真の比較を示すが、 ラス界面に析出するセメンタ ィト量の低下を達成するためである。
Pの旧オーステナイト粒界やバケツト境界等への粒界偏祈をより効果的に防止 する場合、 更に、 上記の 3 7 0 °Cから A c i変態点以下の所定の焼戻し温度までの 板厚中心部の平均昇温速度を 1 °C/ s以上の急速加熱に加えて、 焼戻し開始温度 から 3 7 0 °Cまでの板厚中心部の平均昇温速度を 2 °CZ s以上の急速加熱が好ま しい。
焼戻し開始温度から 3 7 0 °Cまでの板厚中心部の平均昇温速度を 2 °C/ s以上 とした理由は、 特にこの温度域において Pが旧オーステナイト粒界やパケット境 界等に偏析しゃすいためである。
また、 3 7 0 °Cから A c 変態点以下の所定の焼戻し温度までの板厚中心部の平 均昇温速度を 1。C/ s以上の場合、 さらに焼戻し開始温度から 3 7 0 °Cまでの板 厚中心部の平均昇温速度を 2 °C/ s以上の場合は、 焼戻し温度における保持時間 は、 生産性やセメンタイト等の析出物の粗大化に起因する耐遅れ破壌特性の劣化 を防止すべく、 6 0 s以下とすることが望ましい。 なお、 昇温速度は、 冷却後、 板厚中心部での最高到達温度が A c 変態点以下となる所定の温度までの再加熱に 必要な温度差を再加熱するに要した時間で割った平均昇温速度である。
焼戻し後の冷却速度は、 冷却中における析出物の粗大化を防止すべく、 焼戻し 温度〜 2 0 0 °Cまでの平均冷却速度を 0 . 0 5 °CZ s以上とすることが望ましい。 更 、 焼戻しのための加熱は、 誘導加熱(induction heating) , 通電加熱
(.energization heating) 、 赤外線 |g射カロ熱 (infra - red radiant heating)、 囲 気加熱 (furnace heating) 等のいずれの方式でも良い。
焼戻し装置は、 圧延機および直接焼入れ装置と別の製造ライン上に設置された 加熱装置を用いても、 圧延機および直接焼入れ装置と同一の製造ライン上に直結 して設置された加熱装置を用いても良い。 いずれに配置した加熱装置であっても、 本発明の効果が損なわれることはない。 実施例 1
表 1および 2に実施例で用いた鋼の化学成分を示し、 表 3および 4に鋼板製造 条件、 旧オーステナイト粒のァスぺクト比を示す。
表 1および 2に示す化学成分の鋼 A Z AA I Iを溶製してスラブ (スラ ブ寸法: 1 0 0 高さ x l 5 0 幅 x l 5 0 長さ) に铸造し、 加熱炉で、 表 3 および 4に示す加熱温度に加熱後、 表 3および 4に示す未再結晶域の圧下率で熱 間圧延を行い鋼板とした。 熱間圧延後、 引続き表 3および 4に示す直接焼入れ開 始温度と直接焼入れ停止温度と冷却速度で、 直接焼入れし、 次いで、 ソレノイド 型誘導加熱装置(solenoido type induction heating)を用いて表 3および 4に示 す焼戻し開始温度と焼戻し温度と保持時間で、 焼戻し処理を行った。 直接焼入れ (direct quenching)は冷却速度 1 °CZ s以上で、 3 5 0 °C以下の温度までの強制 冷却 (水冷) により行った。 また、 板厚中心部の平均昇温速度は、 鋼板の通板速度によって制御 眷慕した。 なお、 焼戻し温度にて保持する場合には、 鋼板をソレノイド型誘導加熱装置内で 往復させて加熱することによって、 目標加熱温度に対して土 5。Cの範囲内で保持 を行った。
また、 焼戻し加熱後の冷却は表 3および 4に示すように空冷 (air cooling)とし た。 焼戻し温度や焼入れ温度などの板厚中心部における温度は、 放射温度計
(emission pyrometer)による表面の逐次における温度測定結果から、 伝熱計算 (heat transfer calculation)によつ—し めた。
表 5および 6に得られた鋼板の降伏強度 (yield strength)、 引張強度、 破面遷 移温度 (fracture appearance transition temperature) ( v T r s 、 ltD¾ftれ破 壊安全度指数を示す。
冷却速度は、 直接焼入れ開始温度から直接焼入れ停止温度の間の板厚中心部に おける平均冷却速度とした。
以下の試験に用いた試験片は、 鋼板の長手方向の中央部おょぴ鋼板の幅方向の 1 / 4位置から試験片を各 3個採取した。
旧オーステナイト粒のァスぺクト比は、 光学顕微鏡(optical microscope)を用 いて、 ピクリン酸によってエッチング (etching)した組織を鋼板の表面の表面下 1 mm, 板厚 1 / 4 , 1 / 2, 3 / 4部、 鋼板の裏面の表面下 1 mmの各位置にお いて写真撮影し、 それぞれ約 5 0 0個の旧オーステナイト粒のァスぺクト比を測 定し、 その平均値を求めた。
また、 降伏強度および引張強度は、 JIS Z 2 2 4 1に準拠して、 全厚引張試験 片により測定し、 靭性は、 JIS Z 2 2 4 2に準拠して、 板厚中心部より採取した試 験片を用いたシャルピー衝撃試験によって得られる V T r sで評価した。
更に、 耐遅れ破壌安全度指数は、.棒状試験片を用いて、 陰極水素チャージ法 (cathodic hydrogen charging) によって、 試験片中の拡散性水素量(amount of diffusible hydrogen)が約 0 . 5 m a s s p p mになるように水素をチャージ後、 試験片表面に亜鉛めつきを施すことによって水素を封入し、 その後、 1 X 1 0一6 /秒の歪速度にて引張試験を行い、 破断した試験片の絞り(reduction of area)を 求め、 更に同様の歪速度にて水素チャージを行わない試験片の引張試験も行い、 下記の式に従つて評価した。
耐遅れ破壊安全度指数 (%) =100X (Xノ x0)
ここで、 X。:実質的に拡散性水素を含まない試験片の絞り
x1:拡散性水素を含む試験片の絞り
vTr sの目標は、 引張強度 120 OMP a未満の鋼種に関しては、 一 40°C 以下とし、 引張強度 120 OMP a以上の鋼種に関しては、 一 30°C以下とした。 一方、 耐遅れ破壊安全度指数の目標は、 引張強度 120 OMP a未満の鋼種に関 しては、 80%以上とし、 引張強度 120 OMP a以上の鋼種に関しては、 7 5%以上とした。
表 3および 4から明らかなように、 未再結晶域圧下率が本発明範囲から外れて いる鋼板 No. 18〜20は、 旧オーステナイト粒のァスぺクト比も本発明範囲 から外れている。
また、 表 5および 6から明らかなように、 本発明法により製造した鋼板 No. 1〜 17および鋼板 No. 33〜39 (本発明例) は、 化学成分、 製造方法、 旧 オーステナイト粒のァスぺクト比が本発明の範囲であり、 良好な vTr sおよび 耐遅れ破壌安全度指数を得ることができた。
これに対して、 比較鋼板 No. 18〜32および鋼板 No. 40〜44 (比較 例) は、 vTr sおよぴ耐遅れ破壊安全度指数の少なくとも 1つが上記目標範囲 を外れている。 以下、 これらの比較例を個別に説明する。
成分が本発明範囲から外れている鋼板 No. 29〜32および鋼板 No. 40 〜 44は、 V T r sおよぴ耐遅れ破壌安全度指数の少なくとも 1つが目標値に達 していない。
未再結晶域圧下率が本努明範囲から外れている鋼板 N o. 18〜 20は、 耐遅 れ破壌安全度指数が目標値に達していない。
直接焼入れ開始温度が本発明範囲から外れている鋼板 N o . 21〜 23は、 V T r sおよぴ耐遅れ破壌安全度指数のいずれもが目標値に達していない。
直接焼入れ停止温度が本発明範囲から外れている鋼板 N o. 24は、 V T r s およぴ耐遅れ破壌安全度指数のレ、ずれもが目標値に達していない。
冷却速度おょぴ直接焼入れ停止温度が本発明範囲から外れている鋼板 N o . 2 5は、 vTr sおよぴ耐遅れ破壊安全度指数のいずれもが目標値に達していなレ、。 焼戻し温度が本努明範囲から外れている鋼板 No. 26〜 28は、 vTr sお よぴ耐遅れ破壌安全度指数の ヽずれもが目標値に達していない。 実施例 2
表 7および 8に示す化学成分の鋼 A〜Z、 AA~ I Iを溶製して、 実施例 1と 同様の製造条件で、 スラブに錶造し、 加熱炉で加熱後、 熱間圧延を行い鋼板とし た。 熱間圧延後、 引続き直接焼入れし、 次いで、 ソレノイド型誘導加熱装置を用 いて焼戻しを行つた。 直接焼入れは冷却速度 1。 / s以上で、 350 °C以下の温 度までの強制冷却 (水冷) により行った。
旧オーステナイト粒のァスぺクト比は、 実施例 1と同様にして求め、 約 550 個の旧オーステナイ ト粒のァスぺク ト比の平均値とした。
ラスの界面のセメンタイト被覆率は、 走査電子顕微鏡を用いて、 ナイタルによ つてエッチングした組織を板厚 1/4の位置において写真撮影し、 約 60個のラ ス界面上に析出したセメンタイトの界面に沿った長さ (LCement i te) とラス界 面 (L th) の長さを測定し、 セメンタイトのラス界面に沿った長さの総和をラ スの界面の総和の長さで除し、 100を掛けた数値とした。
また、 降伏強さおよび引張強さと耐遅れ破壌安全度指数は、 実施例 1と同様に して求めた。
vTr sの目標は、 引張強さ 120 OMP a未満の鋼種に関しては、 一 40°C 以下とし、 引張強さ 120 OMP a以上の鋼種に関しては、 一 30°C以下とした。 一方、 耐遅れ破壊安全度指数の目標は、 引張強さ 120 OMP a未満の鋼種に関 しては、 85%以上とし、 引張強さ 120 OMP a以上の鋼種に関しては、 8
0%以上とした。
表 9および 10に鋼板製造条件、 旧オーステナイト粒のアスペクト比、 ラスの セメンタイト被覆率を、 表 11および 12に得られた鋼板の降伏強さ、 引張強さ、 破面遷移温度 ( V T r s ) 、 耐遅れ破壊安全度指数を示す。
尚、 表 9〜12に示す実施例での区分は、 請求項 8記載の発明の要件を満たす ものを本発明例、 満たさないものを比較例とした。 No. 1〜17および 41〜 47は、 焼戻し開始温度から 370 °Cまでの加熱速度を 2 °C/ s以上とするもの で、 請求項 9記載の発明例である。
No. 35, 36は請求項 9記載の発明の要件のうち、 焼戻し開台温度から 3 70°Cまでの加熱速度を 2 °C/s以上とする要件を満たしていないが、 請求項 8 記載の発明の要件を満足しているため、 区分において本発明例である。
表 9および 10から明らかなように、 未再結晶域圧下率が本発明範囲から外れ ている鋼板 No. 18〜20は、 旧オーステナイト粒のアスペクト比およびラス のセメンタイト被覆率のいずれもが本努明範囲から外れている。
また、 焼戻し温度が本発明範囲から外れている鋼板 No. 26〜28は、 ラス のセメンタイト被覆率が本発明範囲から外れている。
更に、 焼戻し開始温度から 370°Cまでの板厚中心部の平均昇温速度おょぴ 3 70°Cから焼戻し温度までの板厚中心部の平均昇温速度の少なくとも 1つが本発 明範囲から外れている鋼板 No. 30、 32〜34は、 ラスのセメンタイト被覆 率が本発明範囲から外れている。
また、 表 11および 12から明らかなように、 本発明法により製造した鋼板 N o. 1〜17ぉょび35, 36 (本発明例) は、 化学成分、 製造方法、 旧オース テナイト粒のァスぺクト比、 ラスのセメンタイト被覆率が本発明の範囲であり、 良好な V T r sおよぴ耐遅れ破壊安全度指数を得ることができた。
更に、 本発明の範囲内で、 焼戻し開始温度〜 370°Cまでの板厚中 、部の平均 昇温速度のみが異なる鋼板 N o . 4と鋼板 N o . 35、 および鋼板 N o . 12と. 鋼板 N o. 36を比較すると、 焼戻し開始温度〜 370°Cまでの板厚中心部の平 均昇温速度が 2 °C/ s以上の鋼板 N o. 4, 12の方がそれぞれ鋼板 N o . 35 36よりも優れた V T r sおよぴ耐遅れ破壌安全度指数を有していることが分か る。
これに対して、 比較鋼板 No. 18〜34および 37〜40、 48〜52 (比 較例) は、 v T r sおよぴ耐遅れ破壌安全度指数の少なくとも 1つが上記目標範 囲を外れている。 以下、 これらの比較例を個別に説明する。
成分が本発明範囲から外れている鋼板 No. 37〜40および 48〜52は、 vT r sおよぴ耐遅れ破壌安全度指数のいずれもが目標値に達していない。 未再結晶域圧下率が本発明範囲から外れている鋼板 N o. 18〜 20は、 耐遅 れ破壌安全度指数が目標値に達していない。
直接焼入れ開始温度が本発明範囲から外れている鋼板 N o . 21〜 23は、 V T r sおよび耐遅れ破壌安全度指数の少なくとも 1つが目標値に達していない。 直接焼入れ停止温度が本発明範囲から外れている鋼板 No. 24, 25は、 V T r sが目標値に達していない。
焼戻し温度が本発明範囲から外れている鋼板 No. 26〜28は、 vT r sお ょぴ耐水素脆化安全度指数のいずれか 1つが目標値に達していない。
370DC〜焼戻し温度までの板厚中心部の平均昇温速度が本発明範囲から外れ ている鋼板 N o. 29〜 34は、 vTr sおよび耐水素脆化安全度指数の少なく とも 1つが目標値に達していない。 産業上の利用可能性
本努明によれば、 引張強度が 60 OMP a以上、 特に 90 OMP a以上におい て、 耐遅れ破壊特性に極めて優れた高張力鋼材の製造が可能となり、 産業上極め て有用である。 ― '
Figure imgf000022_0002
Figure imgf000022_0001
Figure imgf000023_0002
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0002
注 1:*印は本発明範囲外であることを示す
注 2:本発明範囲 未再結晶域圧下率 30%以上、 直接焼入れ開始温度 Ar3変態点以上
直接焼入れ停止温度 350°C以下、 冷却速度 C 以上、 焼戻し温度 Ac,変態点以下
Figure imgf000025_0001
Figure imgf000025_0002
注 1:*印は本発明範囲外であることを示す
注 2:本発明範囲 未再結晶域圧下率 30%以上、 直接焼入れ開始温度 Ar3変態点以上
直接焼入れ停止温度 350°C以下、 冷却速度 C/S以上、 焼戻し温度 AC1変態点以下
表 5
Figure imgf000026_0001
注 1:*印は本発明範囲外であることを示す
注 2:本発明範囲 1.板厚中心部 vTrs(°C) 引張強度 1200MPa未満 - 40°C以下 引張強度 1200MPa以上 - 30¾以下 2.耐遅れ破壊安全度指数 引張強度 1200MPa未満 80%以上 引張強度 1200MPa以上 75%以上
表 6
Figure imgf000027_0001
注 1:*印は本発明範囲外であることを示す
注 2:本発明範囲 1.板厚中心部 vTrs(°C) 引張強度 1200MPa未満 -40°C以下 引張強度 1200MPa以上 -30°C以下 2.耐遅れ破壊安全度指数 引張強度 1200MPa未満 80%以上 引張強度 1200MPa以上 75%以上
Figure imgf000028_0001
Figure imgf000028_0003
注 2:Ar3(°C)=910- 310G- 80Mn- 20Gu- 15Gr~55N卜 80Mo
Figure imgf000028_0002
Figure imgf000029_0001
Figure imgf000029_0002
注 2:Ar3(。C)=910- 310C- 80Mn-20Cu-1 5Cr~55N卜 80Mo
Figure imgf000030_0001
Figure imgf000031_0001
2008/052002
表 1 1
Figure imgf000032_0001
注: *印は本発明範囲外であることを示す
注 2:本発明範囲 1.板厚中心部 vTrs(°C) 引張強度 1200MPa未満 -40°C以下
引張強度 1200MPa以上 -30°C以下
2.耐遅れ破壊安全度指数 引張強度 1200MPa未満 85%以上
引張強度 1200MPa以上 80%以上 P T/JP2008/052002
表 1 2
Figure imgf000033_0001
引張強度 1200MPa以上 -30°C以下 2.耐遅れ破壊安全度指数 引張強度 1200MPa未満 85¾以上 引張強度 1200MPa以上 80%以上

Claims

請求の範囲
1. 質量0 /。で、 C: 0. 02〜 0 · 25 %、 S i : 0. 01〜 0. 8 %、 M n : 0. 5〜2. 0%、 A1 : 0. 005— 0. 1%、 N : 0. 0005— 0. 008%、 P : 0. 02%以下、 S : 0. 004%以下の元素を含有し、 残部が F eおよび不可避的不純物からなり旧オーステナイト粒のァスぺクト比の平均値 が板厚方向全体に亘つて、 3以上である高張力鋼材。
2. 請求項 1において、 S : 0. 003%以下であり、 さらに、 ラスの界面にお けるセメンタイト被覆率が 50%以下である高張力鋼材。
3. 請求項 1または、 2において、 更に、 鋼組成が、 質量%で、 Mo : 1%以下、 N b : 0. 1 %以下、 V: 0. 5 %以下、 T i : 0. 1 %以下、 C u : 2 %以下、 N i : 4%以下、 C r : 2%以下、 W: 2%以下の一種または二種以上を含有す る高張力鋼材。
4. 請求項 1乃至 3のいずれか一つの請求項において、 更に、 鋼組成が、 質量% で、 B : 0. 003 %以下、 C a : 0. 01 %以下、 REM: 0. 02 %以下、 Mg : 0. 01%以下の一種または二種以上を含有する高張力鋼材。
5. 請求項 1乃至 4のいずれか一つの請求項において、 更に、 鋼材に水素を含有 させてから、 亜鉛めつきによって鋼中水素を封入し、 その後、 1 X 10— 3/秒以 下の低歪速度引張試験を行い、 下記式にて求める耐遅れ破壊安全度指数が 75% 以上である高張力鋼材。 ·
耐遅れ破壌安全度指数 (%) =100X (Χχ0)
ここで、 X。:実質的に拡散性水素を含まない試験片の絞り
X, :拡散性水素を含む試験片の絞り
6. 請求項 5において、 前記破壌安全度指数が 80%以上である高張力鋼材。
7. 請求項 1乃至 4のいずれか一つに記載の組成を有する鋼を铸造後、 Ar 3変態 点以下に冷却することなく、 あるいは Ac 3変態点以上に再加熱後、 熱間圧延を開 始し、 未再結晶域における圧下率が 30°/0以上の圧延を含む熱間圧延によって所 定の板厚とし、 引続き Ar 3変態点以上から冷却速度 l°C/s以上で 3 50°C以下 の温度まで冷却した後、 A c i変態点以下で焼戻す請求項 5に記載の高張力鋼材の 製造方法。
8. 請求項 7において、 A c 変態点以下で焼戻す方法において、 圧延機および 冷却装置と同一の製造ライン上に設置された加熱装置を用いて、 3 70°Cから A c i変態点以下の所定の焼戻し温度までの板厚中心部の平均昇温速度を 1°C/ s以 上として、 板厚中心部の最高到達温度を 400°C以上に焼戻す請求項 6に記載の 高張力鋼材の製造方法。
9. 請求項 8において、 Ac i変態点以下で焼戻す方法において、 さらに、 焼戻 し開始温度から 3 70°Cまでの板厚中心部の平均昇温速度を 2°CZ s以上とする 請求項 6に記載の高張力鋼材の製造方法。
1 0. 質量%で、 C: 0. 0 2〜 0. 2 5%、 S i : 0. 0 1〜 0. 8 %、 M n : 0. 5〜2. 0%、 A 1 : 0. 00 5〜0. 1%、 N : 0. 0005〜0. 008%、 P : 0. 02%以下、 S : 0. 004% 下の元素を含有し、 残部が F eおよび不可避的不純物からなり旧オーステナイト粒のァスぺクト比の平均値 が板厚方向全体に!:つて、 3以上である高張力鋼材。
1 1. 更に、 銅組成が、 質量%で、 Mo : 1%以下、 Nb : 0. 1%以下、 V: 0. 5%以下、 T i : 0. 1%以下、 Cu : 2%以下、 N i : 4%以下、 C r : 2%以下、 W : 2%以下の一種または二種以上を含有する請求項 1 0に記載の高 張力鋼材。
12. 更に、 鋼組成が、 質量%で、 B : 0. 003%以下、 Ca : 0. 01 %以 下、 REM : 0. 02%以下、 Mg : 0. 01%以卞の一種または二種以上を含 有する請求項 10または 11に記載の高張力鋼材。
13. 更に、 鋼材に水素を含有させてから、 亜鉛めつきによって鋼中水素を封入 し、 その後、 1 X 1 (Γ3/秒以下の低歪速度引張試験を行い、 下記式にて求める 耐遅れ破壌安全度指数が 75%以上である請求項 10乃至 12のいずれか一つに 記載の高張力鋼材。
記 .
耐遅れ破壌安全度指数 (%) = 100 X (XiZXo)
ここで、 X。:実質的に拡散性水素を含まない試験片の絞り
X1:拡散性水素を含む試験片の絞り
14. 請求項 10乃至 12のいずれか一つに記載の組成を有する鋼を鎵造後、 A r 3変態点以下に冷却することなく、 あるいは A c 3変態点以上に再加熱後、 熱間 圧延を開始し、 未再結晶域における圧下率が 30%以上の圧延を含む熱間圧延に よって所定の板厚とし、 引続き Ar 3変態点以上から冷却速度 l°CZs以上で 35 0 °C以下の温度まで冷却した後、 A c 変態点以下で焼戻す請求項 13に記載の高 張力鋼材の製造方法。
15. 質量0 /。で、 C: 0. 02〜 0. 25%、 S i : 0. 01〜 0. 8 %、 M n : 0. 5〜2. 0%、 A 1 : 0. 005〜0. 1ο/ο、 Ν : 0. 0005〜0. 008%、 Ρ : 0. 02%以下、 S : 0. 003%以下の元素を含有し、 残部が F eおよび不可避的不純物からなり、 旧オーステナイト粒のァスぺクト比の平均 値が板厚方向全体に亘つて、 3以上であり、 かつ、 ラスの界面におけるセメンタ ィト被覆率が 50%以下である高張力鋼材。
16. 更に、 鋼組成が、 質量%で、 Mo : 1%以下、 Nb : 0. 1%以下、 V: 0. 5%以下、 T i : 0. 1%以下、 Cu : 2%以下、 N i : 4%以下、 C r :
2%以下、 W : 2%以下の一種または二種以上を含有することを特徴とする請求 項 15に記載の高張力鋼材。
17. 更に、 鋼組成が、 質量。/。で、 B : 0. 003%以下、 Ca : 0. 01 %以 下、 REM : 0. 02%以下、 Mg : 0. 01%以下の一種または二種以上を含 有することを特徴とする請求項 15または 16に記載の高張力鋼材。
18. 更に、 鋼材に水素を含有させてから、 亜鉛めつきによって鋼中水素を封入 し、 その後、 1 X 10_3Z秒以下の低歪速度引張試験^行い、 下記式にて求める 耐遅れ破壊安全度指数が 80%以上であることを特徴とする、 請求項 15乃至 1 7のいずれか一つに記載の高張力鋼材。
耐遅れ破壊安全度指数 (%) =100 X (Χχ0)
ここで、 X。:実質的に拡散性水素を含まない試験片の絞り
X!:拡散性水素を含む試験片の絞り
19. 請求項 15乃至 17のいずれか一つに記載の組成を有する鋼を铸造後、 A r 3変態点以下に冷却することなく、 あるいは A c 3変態点以上に再加熱後、 熱間 圧延を開始し、 未再結晶域における圧下率が 30%以上の圧延を含む熱間圧延に よって所定の板厚とし、 引続き Ar 3変態点以上から冷却速度 l°CZs以上で 35 0。C以下の温度まで冷却した後、 圧延機および冷却装置と同一の製造ライン上に 設置された加熱装置を用いて、 370°Cから Ac i変態点以下の所定の焼戻し温度 までの板厚中心部の平均昇温速度を 1 °CZ s以上として、 板厚中心部の最高到達 温度を 4 0 0 °C以上に焼戻す請求項 1 8に記載の高張力鋼材の製造方法。
2 0 . 請求項 1 5乃至 1 7のいずれか一つに記載の組成を有する鋼を铸造後、 A r 3変態点以下に冷却することなく、 あるいは A c 3変態点以上に再加熱後、 熱間 圧延を開始し、 未再結晶域における圧下率が 3 0 %以上の圧延を含む熱間圧延に ' よって所定の板厚とし、 引続き A r 3変態点以上から冷却速度 l °C/ s以上で 3 5 0 °C以下の温度まで冷却した後、 圧延機および冷却装置と同一の製造ライン上に 設置された加熱装置を用いて、 焼戻し開始温度から 3 7 0 °Cまでの板厚中心部の 平均昇温速度を 2 °C/ s以上で、 かつ 3 7 0 °Cから A c 変態点以下の所定の焼戻 し温度までの板厚中心部の平均昇温速度を 1。CZ s以上として、 板厚中心部の最 高到達温度を 4 0 0 °C以上に焼戻す請求項 1 8に記載の高張力鋼材の製造方法。
PCT/JP2008/052002 2007-01-31 2008-01-31 耐遅れ破壊特性に優れた高張力鋼材並びにその製造方法 WO2008093897A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08704511.8A EP2128288B1 (en) 2007-01-31 2008-01-31 High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
US12/524,988 US8357252B2 (en) 2007-01-31 2008-01-31 High tensile strength steel having favorable delayed fracture resistance and method for manufacturing the same
KR1020127021641A KR101388334B1 (ko) 2007-01-31 2008-01-31 내지연 파괴 특성이 우수한 고장력 강재 그리고 그 제조 방법
CN2008800037329A CN101600812B (zh) 2007-01-31 2008-01-31 耐延迟断裂特性优良的高张力钢材及其制造方法
AU2008211941A AU2008211941B2 (en) 2007-01-31 2008-01-31 High tensile strength steel having favorable delayed fracture resistance and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-021573 2007-01-31
JP2007021573 2007-01-31
JP2007-086296 2007-03-29
JP2007086296 2007-03-29

Publications (1)

Publication Number Publication Date
WO2008093897A1 true WO2008093897A1 (ja) 2008-08-07

Family

ID=39674193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052002 WO2008093897A1 (ja) 2007-01-31 2008-01-31 耐遅れ破壊特性に優れた高張力鋼材並びにその製造方法

Country Status (6)

Country Link
US (1) US8357252B2 (ja)
EP (1) EP2128288B1 (ja)
KR (2) KR20090098909A (ja)
AU (1) AU2008211941B2 (ja)
RU (1) RU2442839C2 (ja)
WO (1) WO2008093897A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106287A (ja) * 2008-10-28 2010-05-13 Jfe Steel Corp 疲労特性に優れた高張力鋼材およびその製造方法
JP2010159466A (ja) * 2009-01-09 2010-07-22 Jfe Steel Corp 疲労特性に優れた高張力鋼材およびその製造方法
WO2021080291A1 (ko) * 2019-10-22 2021-04-29 주식회사 포스코 고온 용접후열처리 저항성이 우수한 압력용기용 강판 및 그 제조방법

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101035707B1 (ko) * 2010-01-29 2011-05-19 현대제철 주식회사 열처리형 고강도 강판 및 열처리형 고강도 강판을 제조하는 방법
RU2496906C2 (ru) * 2011-09-02 2013-10-27 Открытое акционерное общество "ОМК-Сталь" (ОАО "ОМК-Сталь") Низкоуглеродистая сталь и прокат из низкоуглеродистой стали повышенной стойкости к водородному растрескиванию и повышенной хладостойкости
FR2987621B1 (fr) 2012-03-02 2014-08-22 Autoliv Dev Generateur de gaz pour airbag
RU2495149C1 (ru) * 2012-03-06 2013-10-10 Общество с ограниченной ответственностью "Северсталь-Проект" (ООО "Северсталь-Проект") Высокопрочная хладостойкая свариваемая сталь
RU2495148C1 (ru) * 2012-03-27 2013-10-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Низкоуглеродистая низколегированная сталь для изготовления крупного горячекатаного сортового и фасонного проката
RU2525874C2 (ru) * 2012-12-19 2014-08-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Трубная сталь
DE102013106990B4 (de) * 2013-07-03 2018-05-30 J. D. Theile Gmbh & Co. Kg Kettenglied oder Kettenbauteil für Bergbauanwendungen
EP2789699B1 (en) * 2013-08-30 2016-12-28 Rautaruukki Oy A high-hardness hot-rolled steel product, and a method of manufacturing the same
WO2015039763A2 (en) * 2013-09-19 2015-03-26 Tata Steel Ijmuiden B.V. Steel for hot forming
WO2015115086A1 (ja) * 2014-01-28 2015-08-06 Jfeスチール株式会社 耐摩耗鋼板およびその製造方法
CN105586543A (zh) * 2014-10-22 2016-05-18 镇江忆诺唯记忆合金有限公司 一种能提高热疲劳性能的耐热合金钢
KR101758497B1 (ko) * 2015-12-22 2017-07-27 주식회사 포스코 Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
KR101899687B1 (ko) * 2016-12-22 2018-10-04 주식회사 포스코 고경도 내마모강 및 이의 제조방법
KR101978074B1 (ko) * 2017-12-22 2019-05-13 현대제철 주식회사 고강도 강재 및 그 제조방법
CN113862567A (zh) * 2021-09-18 2021-12-31 天津钢管制造有限公司 用于制备tp110ps抗硫射孔枪管的钢管

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236223A (ja) * 1989-03-07 1990-09-19 Nippon Steel Corp 遅れ破壊特性の優れた高強度鋼の製造法
JPH03243745A (ja) 1990-02-20 1991-10-30 Sumitomo Metal Ind Ltd 耐遅れ破壊性に優れた機械構造用鋼
JPH0978193A (ja) * 1995-09-13 1997-03-25 Nippon Steel Corp 遅れ破壊特性の優れた高強度pc鋼棒およびその製造方法
JPH0978191A (ja) * 1995-09-13 1997-03-25 Nippon Steel Corp 遅れ破壊特性の優れた高強度pc鋼棒およびその製造方法
JP2003073737A (ja) 2001-08-31 2003-03-12 High Frequency Heattreat Co Ltd 高強度・高耐力コイルばねの製造方法
JP2003239041A (ja) 2002-02-14 2003-08-27 Nippon Steel Corp 高強度ボルト及びその製造方法
JP2003253376A (ja) 2002-02-26 2003-09-10 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度鋼
JP2003321743A (ja) 2002-04-26 2003-11-14 Nkk Bars & Shapes Co Ltd 耐遅れ破壊特性に優れた高強度ボルトおよびその製造方法
JP2006206942A (ja) * 2005-01-26 2006-08-10 Jfe Steel Kk 耐水素脆性特性に優れた高張力鋼材の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2033459C1 (ru) * 1990-04-09 1995-04-20 Паршин Владимир Андреевич Сталь
CA2295586C (en) * 1997-07-28 2007-05-15 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
JP3812108B2 (ja) * 1997-12-12 2006-08-23 住友金属工業株式会社 中心部特性に優れる高張力鋼およびその製造方法
KR20060032139A (ko) 2003-08-26 2006-04-14 제이에프이 스틸 가부시키가이샤 고장력 냉연강판 및 그 제조방법
RU2281338C2 (ru) * 2004-11-05 2006-08-10 Открытое акционерное общество "Северсталь" Способ производства холоднокатаной стали для глубокой вытяжки

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236223A (ja) * 1989-03-07 1990-09-19 Nippon Steel Corp 遅れ破壊特性の優れた高強度鋼の製造法
JPH03243745A (ja) 1990-02-20 1991-10-30 Sumitomo Metal Ind Ltd 耐遅れ破壊性に優れた機械構造用鋼
JPH0978193A (ja) * 1995-09-13 1997-03-25 Nippon Steel Corp 遅れ破壊特性の優れた高強度pc鋼棒およびその製造方法
JPH0978191A (ja) * 1995-09-13 1997-03-25 Nippon Steel Corp 遅れ破壊特性の優れた高強度pc鋼棒およびその製造方法
JP2003073737A (ja) 2001-08-31 2003-03-12 High Frequency Heattreat Co Ltd 高強度・高耐力コイルばねの製造方法
JP2003239041A (ja) 2002-02-14 2003-08-27 Nippon Steel Corp 高強度ボルト及びその製造方法
JP2003253376A (ja) 2002-02-26 2003-09-10 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度鋼
JP2003321743A (ja) 2002-04-26 2003-11-14 Nkk Bars & Shapes Co Ltd 耐遅れ破壊特性に優れた高強度ボルトおよびその製造方法
JP2006206942A (ja) * 2005-01-26 2006-08-10 Jfe Steel Kk 耐水素脆性特性に優れた高張力鋼材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2128288A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106287A (ja) * 2008-10-28 2010-05-13 Jfe Steel Corp 疲労特性に優れた高張力鋼材およびその製造方法
JP2010159466A (ja) * 2009-01-09 2010-07-22 Jfe Steel Corp 疲労特性に優れた高張力鋼材およびその製造方法
WO2021080291A1 (ko) * 2019-10-22 2021-04-29 주식회사 포스코 고온 용접후열처리 저항성이 우수한 압력용기용 강판 및 그 제조방법

Also Published As

Publication number Publication date
EP2128288A4 (en) 2010-03-10
KR20090098909A (ko) 2009-09-17
AU2008211941B2 (en) 2011-06-02
US20100024926A1 (en) 2010-02-04
AU2008211941A1 (en) 2008-08-07
RU2442839C2 (ru) 2012-02-20
EP2128288A1 (en) 2009-12-02
KR20120099160A (ko) 2012-09-06
US8357252B2 (en) 2013-01-22
RU2009132480A (ru) 2011-03-10
KR101388334B1 (ko) 2014-04-22
EP2128288B1 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5277648B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板並びにその製造方法
WO2008093897A1 (ja) 耐遅れ破壊特性に優れた高張力鋼材並びにその製造方法
EP3000905B1 (en) Hot-rolled steel sheet and manufacturing method thereof
TWI412605B (zh) 高強度鋼板及其製造方法
JP5277672B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板ならびにその製造方法
JP5433964B2 (ja) 曲げ加工性および低温靭性に優れる高張力鋼板の製造方法
JP6149368B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板の製造方法
JP5303856B2 (ja) 低温靭性に優れ、かつ強度異方性が小さい高張力鋼材の製造方法
JP4848966B2 (ja) 厚肉高張力鋼板およびその製造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
JP5181775B2 (ja) 曲げ加工性および低温靭性に優れる高張力鋼材ならびにその製造方法
JP4529549B2 (ja) 延性と穴広げ加工性に優れた高強度冷延鋼板の製造方法
CN108315637B (zh) 高碳热轧钢板及其制造方法
JP7226598B2 (ja) 耐摩耗鋼板およびその製造方法
JP2007009325A (ja) 耐低温割れ性に優れた高張力鋼材およびその製造方法
JP5287553B2 (ja) 降伏強度885MPa以上の非調質高張力厚鋼板とその製造方法
JP2013108168A (ja) 溶接性および耐遅れ破壊特性に優れた引張強さ780MPa以上の高張力鋼板の製造方法
JP6051735B2 (ja) 溶接性および耐遅れ破壊特性に優れた高張力鋼板の製造方法
JP6028759B2 (ja) 鋼板表面における圧延方向のヤング率が高い高張力厚鋼板およびその製造方法
JP6673320B2 (ja) 厚鋼板および厚鋼板の製造方法
JP4026443B2 (ja) 溶接性に優れた高強度高靭性鋼管素材およびその製造方法
JP6631702B2 (ja) 低温靭性に優れた高張力鋼板
JP3870840B2 (ja) 深絞り性と伸びフランジ性に優れた複合組織型高張力冷延鋼板およびその製造方法
JP3975920B2 (ja) 低降伏比高強度高靱性鋼板及びその製造方法
CN114402089B (zh) 厚钢板和厚钢板的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880003732.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008211941

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008704511

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008211941

Country of ref document: AU

Date of ref document: 20080131

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097015874

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12524988

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009132480

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020127021641

Country of ref document: KR