WO2008075594A1 - 半導体装置およびそのアダプタ - Google Patents

半導体装置およびそのアダプタ Download PDF

Info

Publication number
WO2008075594A1
WO2008075594A1 PCT/JP2007/073931 JP2007073931W WO2008075594A1 WO 2008075594 A1 WO2008075594 A1 WO 2008075594A1 JP 2007073931 W JP2007073931 W JP 2007073931W WO 2008075594 A1 WO2008075594 A1 WO 2008075594A1
Authority
WO
WIPO (PCT)
Prior art keywords
card
adapter
semiconductor device
terminal
view
Prior art date
Application number
PCT/JP2007/073931
Other languages
English (en)
French (fr)
Inventor
Hirotaka Nishizawa
Hideo Koike
Hironori Iwasaki
Junichiro Osako
Minoru Shinohara
Tamaki Wada
Takashi Totsuka
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to US12/517,385 priority Critical patent/US20100072284A1/en
Priority to JP2008550112A priority patent/JPWO2008075594A1/ja
Publication of WO2008075594A1 publication Critical patent/WO2008075594A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • G06K19/07732Physical layout of the record carrier the record carrier having a housing or construction similar to well-known portable memory devices, such as SD cards, USB or memory sticks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07737Constructional details, e.g. mounting of circuits in the carrier the record carrier consisting of two or more mechanically separable parts
    • G06K19/07741Constructional details, e.g. mounting of circuits in the carrier the record carrier consisting of two or more mechanically separable parts comprising a first part operating as a regular record carrier and a second attachable part that changes the functional appearance of said record carrier, e.g. a contact-based smart card with an adapter part which, when attached to the contact card makes the contact card function as a non-contact card
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/714Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit with contacts abutting directly the printed circuit; Button contacts therefore provided on the printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/82Coupling devices connected with low or zero insertion force
    • H01R12/85Coupling devices connected with low or zero insertion force contact pressure producing means, contacts activated after insertion of printed circuits or like structures
    • H01R12/87Coupling devices connected with low or zero insertion force contact pressure producing means, contacts activated after insertion of printed circuits or like structures acting automatically by insertion of rigid printed or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted

Definitions

  • the present invention relates to a semiconductor device, and more particularly to an IC card capable of separating a card into an adapter and a card body.
  • SIM card Subscriber Identity Module Card
  • a SIM card is an IC card that records subscriber information that is inserted into a mobile phone and used to identify users. By using the same IC power even with different types of telephones, it is possible to take over the telephone number and billing information as they are, and use GSM (Global System for Mobile Communications) As a card, it is implemented on GSM mobile phones.
  • the dimensions of the SIM card use the ID-000 format of 15 mm x 25 mm x 0.76 mm. That is, the plane dimension is 15 mm x 25 mm, and the thickness is about 0.76 mm.
  • External interface terminals IS07816 interface terminals
  • ISO / IEC781 6-3 terminal positions and functional standards are arranged on the surface.
  • Fig. 1 (a) is a block diagram showing the configuration of a plug-in SIM (ID-000) smart card studied as a premise of the present invention
  • Fig. 1 (b) shows the pin assignment in IS07816. It is a figure
  • the SIM card is equipped with a microcomputer (SIC) including a CPU, ROM, RAM, EEPROM, etc. as a secure IC chip.
  • SIC microcomputer
  • the LA and LB antenna coils and non-contact interface are optional and can be omitted.
  • Fig. 1 (b) there are 8 terminals of IS07816 interface terminal force C;!-C8 on the back side of the SIM card.
  • Power C2 is RES (reset)
  • C3 is CLK (clock)
  • C4, C6, C8 are RSV (reserved) B)
  • C5 is VSS (ground)
  • C7 is ⁇ / ⁇ (input / output).
  • the reserve terminal is a USB interface, MMC (registered trademark of Multi Media Card, Infine on Technologies AG), serial interface, or non-contact (contactless force) function. It can be used as an extended terminal.
  • FIG. 2 (a) is a structural view of the SIM card examined from the SIC chip mounting side (opposite side of FIG. 1 (b)) studied as a premise of the present invention.
  • 2 (b) is a cross-sectional view taken along the line AA 'in FIG. 2 (a)
  • FIG. 2 (c) is a cross-sectional view taken along the line BB' in FIG. 2 (a).
  • a broken line is shown in order to clarify the correspondence between the IS078 16 interface terminals C1 to C8, the cavity of the interface shown in FIG. 1 (b), and the position where the SIC chip is arranged. This is shown in the figure.
  • an SIC chip is mounted on a substrate having an IS07816 electrode (IS07816 interface terminal) on the back surface, and the SIC chip terminal and the IS07816 electrode are connected to each other. Wire bonding is performed through an opening on the substrate.
  • the SIC chip on the board is sealed with a resin mold, and the plastic that forms the outline of the card and the board are connected with double-sided adhesive tape.
  • the RSV terminal should be connected to the terminals of the SIC chip in Fig. 2 (b) and Fig. 2 (c).
  • Patent Document 1 describes an IC card module having a microcomputer, a memory card controller, and a flash memory.
  • the IC card module exposes a plurality of first external connection terminals and a plurality of second external connection terminals on one surface of the card board, and connects the first external connection terminals to the first external connection terminals.
  • a memory card controller connected to the external connection terminal and a flash memory connected to the memory card controller.
  • the shape of the card board and the layout of the first external connection terminal are ETSI—TS—102-221-V4.4.0 (2001—10) Plug—in—UICC (Universal Integrated Circuit)
  • Non-Patent Document 1 describes a technology related to a general smart card.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-322109
  • Non-Patent Document 1 W. Raukl & W. Effing, "Smart Card Handbook", 2nd edition, WILEY, P. 27-3 Disclosure of Invention
  • the SIC is equipped with a nonvolatile memory such as an EEPROM, and the memory capacity may be insufficient depending on the usage.
  • a flash memory as an extended memory as in Patent Document 1.
  • S it is necessary to install a flash memory with a fixed memory capacity for all users. This is not only suitable for users who do not need flash memory capacity and users who need a larger capacity, but it is also very costly.
  • a non-volatile expansion memory such as a flash memory, it is desirable that the memory capacity is suitable for the user's demand and the memory capacity is suitable for the expansion of the memory capacity.
  • a semiconductor device that is a removable memory card (card body) is obtained by separating a necessary area of a memory such as a flash memory from a SIM card.
  • the removable memory card (card body) can be inserted into a Plug-in SIM (Subscriber Identity Module) 7-after mini UICC (Universal Integrated Circuit Card) adapter, which will be described later.
  • SIM Subscriber Identity Module
  • mini UICC Universal Integrated Circuit Card
  • the first problem is the problem of electrical shorting of terminals.
  • FIG. 3 is a diagram showing a state where a card is inserted into a connector portion mounted on or formed on the above-mentioned adapter, where (a) shows before insertion and (b) shows after insertion.
  • the connector casing for the card A of the adapter has a connector terminal for electrical connection with the terminal of the card A.
  • the width of the card slot in the connector housing for card A is W1.
  • a plurality of card terminals for electrical connection with the connector terminals are formed at the end of the card.
  • Card A with adjusted fit with connector width W1 does not have unnecessary rattle, so if Card A is inserted into the Card A connector, the target is The terminal and connector are electrically connected, and no unnecessary electrical short-circuit between other terminals and the connector does not occur.
  • FIG. 4 is a diagram showing an example of an electrical short circuit when a card B narrower than W1 is inserted into the adapter card A connector housing so as to affect the corresponding terminal pitch dimensions.
  • Yes shows an example of card B inserted into the card A connector
  • (b) is a plan view of the enlarged view of part a shown in (a)
  • (c) is an enlarged view of part a.
  • the card B having a terminal at the end of the card is inserted. If inserted, the connector terminal may be located in the gap of the card terminal. At this time, one or both of the card terminals may be electrically short-circuited or a chattering contact failure that repeats short-circuiting and opening may occur.
  • Figures 4 (b) and 4 (c) show that the card B is displaced and the connector terminals (power supply terminals VCC, VSS) are located between the two card terminals. The connector terminals are in contact. At this time, the connector terminal is connected to both terminals, causing a short circuit between the power supply terminals VCC and VSS.
  • the power supply pins VCC and VSS This phenomenon is the same for signal terminals connected only by a power supply.
  • FIG. 5 shows the electrical when a narrow card B is inserted into a connector having a double contact power terminal designed to connect two connector terminals to one card terminal. It is a figure which shows the example of occurrence of a short circuit, (a) shows a state where card B is inserted into the connector for card A, (b) is a plan view of the enlarged view of part a shown in (a), (c) Is a perspective view of an enlarged view of part a.
  • card B when card B has a narrower width W2 (Wl> W2) than card insertion width W1 of card A connector housing, card A has a double contact connector terminal. If card B with a terminal at the end of the card is inserted into the connector, short-circuiting between terminals or contact failure may occur.
  • FIGS. 5 (b) and 5 (c) show that the card B is displaced and the connector pins (power supply terminals VCC and VSS) of the same signal are located between the two card terminals.
  • the contact terminals of the same signal are in contact with each other. At this time, a short circuit occurs between the power supply pins VCC and VSS.
  • this is more conspicuous than the contact failure due to card misalignment (translation, rotation misalignment).
  • FIG. 6 is a diagram showing an example of occurrence of an electrical short when a card C having a terminal at the rear end of the adapter is inserted into the adapter card A connector housing of the adapter, and (a) FIG. 4B shows a state in which the card C is reversely inserted into the connector for card A, (b) is a plan view of the a part enlarged view shown in (a), and (c) is a perspective view of the a part enlarged view.
  • Figs. 6 (b) and 6 (c) show that the card C is displaced and the connector terminals (power supply terminals VCC and VSS) are located between the two card terminals. The connector terminals are in contact. At this time, a short circuit has occurred between the power supply terminals VCC and VSS.
  • the power supply terminals VCC and VSS are shown, but this phenomenon is the same for signal terminals that are connected to only the power supply.
  • the case of 180 degree rotation The force S shown in Fig. 1 is not limited to 180 ° rotation, but a short circuit may occur even with ⁇ rotation.
  • the second issue is the problem of connector terminal destruction and card mechanical damage during card insertion.
  • FIG. 7 is a diagram showing an example of destruction of the connector terminal when the card is inserted into the connector housing of the adapter, (a) is a side view of the thick card C1, and (b) is a side view. Card with a card thickness of 0.76mm or less (hereinafter referred to as a thin card) C2 side view, (c) is a diagram showing the state before the thin card C2 is inserted into the connector housing, (d) FIG. 6 is a diagram showing a state after the thin card C2 is inserted into the connector housing.
  • a thin card Card with a card thickness of 0.76mm or less
  • a sufficient chamfering of the fillet surface can be formed on the C surface (provided that tccl ⁇ tcl).
  • the C surface means chamfering of the card edge
  • the fillet surface means that a surface inclined in terms of a phase is formed.
  • FIGS. 7 (c) and 7 (d) show the state of the insertion failure when a sufficient C-plane is not formed.
  • the lower part of the connector is a wiring board, plastic or the like, and the fulcrum of the connector terminal is bonded or soldered to the lower part of the connector.
  • tl is the height of the card C from the bottom of the connector
  • t2 is the height of the connector terminal from the bottom of the connector.
  • the third problem is that IC chips cannot be stacked in thin cards.
  • FIG. 8 is a cross-sectional view of a thin card on which a plurality of IC chips are mounted and an adapter inlet.
  • (A) shows a case where IC chips are not stacked, and
  • (b) shows a case where a plurality of IC chips are stacked.
  • the IC chip mounted in the card is schematically shown in cross-section, only the wiring board is displayed, and the card outline is not displayed.
  • chip A is a flash memory chip and chip B is a controller chip.
  • the limit of the thickness that can be inserted into the connector is when the card thickness is smaller than the insertion opening height t between the upper surface of the adapter and the lower surface of the adapter.
  • the sealing height increases, the card thickness increases, and the card cannot be inserted into the connector.
  • the sealed area (card outline) on chip B does not exceed t.
  • the thickness of a thin card has a certain thickness limit to protect the chip, so that it is difficult to insert the IC chip by increasing the thickness when stacking IC chips. This phenomenon becomes prominent when chip B is stacked when the area of chip A increases as the flash memory capacity increases.
  • the fourth problem is the problem of deflection after inserting a thin card connector.
  • FIG. 9 is a diagram showing an example of the deflection of the card, (a) is a plan view showing the outer shape of the card (terminal portion is indicated by a broken line), (b) is a plan view showing the outer shape of the adapter, (C) is a plan view showing the card inserted into the adapter, (d) is a cross-sectional view of the A—A ′ surface in (b), and (e) is a cross-sectional view of the B—B ′ surface in (c). Sectional view (in case of thick card), (f) is a cross-sectional view of BB 'plane in (c) (in case of thin! /, Card).
  • the adapter shown in FIG. 9 (b) has a structure in which the end (guide portion) of the card is pressed.
  • the broken lines indicate the card edge and connector terminal.
  • the portion indicated by the broken triangle mark indicates the card presser (guide part), that is, the supporting fulcrum.
  • ta indicates the thickness of card A
  • tb indicates the thickness of card B
  • the relationship between them is tb ⁇ ta.
  • Card B in Fig. 9 (f) is a thin card B that can be mounted on an IC card adapter.
  • the fifth problem is that the chip size is limited due to the notch that shows the directionality in the corner of the card.
  • the card shown in the fifth problem means a normal card that is not a thin card (card body).
  • FIG. 10 is a diagram showing an example of mounting an IC chip on a card.
  • A is a plan view of a card (for example, miniUICC) on which a chip A2 having a large width w is mounted on a substrate.
  • FIG. 5 is a plan view of a card (for example, miniUICC) in which a chip A3 having a long length 1 is mounted on a substrate.
  • Chip A is a plan view of a card (for example, miniUICC) on which a chip A3 having a long length 1 is mounted on a substrate.
  • chip A3 is an IC chip with a long length 1. Corner cutouts indicate card orientation.
  • the mounting area of a rectangular chip or module is limited by the notch in a shape having a notch in a part of a card such as a mini UICC.
  • FIGS. 10 (a) and 10 (b) a force chip showing an example in which the chip is smaller than the substrate can be made larger.
  • the outer size of the card is a X b.
  • the lengths of the sides that are shortened by the notch in the corner of the card are L and W, respectively.
  • the adapter has a notch from the card outer shape, so that the shape of the thin card is greatly limited by the notch.
  • a card terminal is arranged at the center of the card.
  • the fulcrum (adhesion point) of the adapter connector terminal is directed toward the card slot entrance side of the adapter.
  • an increase in card thickness due to chip stacking is positioned at the back end of the card insertion, compared to the insertion destination side. ⁇ ⁇ ⁇ Make a card structure with a thicker card on the back side.
  • a card structure having a pressing structure immediately above a contact terminal is provided.
  • the curvature of the corner near the notch is not provided with the notch. Less than the corner curvature.
  • FIG. L (a) is a block diagram showing the configuration of a smart card of Plug-inSIM (ID-000) examined as a premise of the present invention, and (b) shows terminal assignment in IS07816.
  • FIG. 1 (a) is a block diagram showing the configuration of a smart card of Plug-inSIM (ID-000) examined as a premise of the present invention, and (b) shows terminal assignment in IS07816.
  • FIG. L (a) is a block diagram showing the configuration of a smart card of Plug-inSIM (ID-000) examined as a premise of the present invention, and (b) shows terminal assignment in IS07816.
  • FIG. 2 (a) shows the SIC chip mounting side of the SIM card studied as a premise of the present invention
  • FIG. 1 (b) (B) is a cross-sectional view taken along the line AA ′ in FIG. 2 (a)
  • (c) is a cross-sectional view taken along the line BB ′ in FIG. 2 (a).
  • FIG. 3 Diagrams showing how the card is inserted into the connector part of the adapter, (a) before insertion and (b) after insertion.
  • A is a diagram showing a case where card B is inserted into the card A connector.
  • B is a plan view of the a part enlarged view shown in (a), and
  • (c) is a perspective view of the a part enlarged view.
  • FIG. 5 is a diagram showing an example of an electrical short when a narrow card B is inserted into a connector having a double-contact power supply terminal.
  • A is a diagram showing a case where the card B is connected to the card A connector.
  • B is a plan view of the a part enlarged view shown in (a), and
  • c) is a perspective view of the a part enlarged view.
  • FIG. 6 A diagram showing an example of the occurrence of an electrical short when a card having a terminal at the rear end of the card is inserted back into the adapter card A connector housing, and (a) is a card A connector.
  • Fig. 7 shows a state in which the card C is reversely inserted,
  • (b) is a plan view of the a part enlarged view shown in (a), and
  • (c) is a perspective view of the a part enlarged view.
  • FIG. 7 This figure shows an example of destruction of the connector terminal when a card is inserted into the connector housing of the adapter.
  • A is a front view of a thick card C1
  • (b) is a thin card C2.
  • C is a diagram showing the state before the thin card C2 is inserted into the connector housing.
  • D is a diagram showing the state after the thin card C2 is inserted into the connector housing. It is.
  • a cross-sectional view of a thin card with multiple IC chips and the adapter inlet (a) when there is no stack of IC chips, (b) when multiple IC chips are stacked .
  • FIG. 9 is a diagram showing an example of card deflection, (a) is a plan view showing the outer shape of the card, (b) is a plan view showing the outer shape of the adapter, and (c) is a card inserted into the adapter.
  • (D) is a cross-sectional view of the A—A ′ plane in (b)
  • (e) is a cross-sectional view of the B—B ′ plane in (c) (in the case of a thick card)
  • (f) Is a cross-sectional view (in the case of a thin card) of the BB 'plane in (c).
  • FIG. 10 A diagram showing an example of mounting an IC chip on a card.
  • A shows a chip A2 with a large width W.
  • a plan view of the mounted card (miniUICC)
  • (b) is a plan view of a card (miniUIC C) on which a chip A3 having a large length L is mounted.
  • FIG. 11 A diagram showing an example of the central arrangement of card terminals, (a) when the card is inserted correctly, (b) when the card is inserted backward, and (c) the card terminal where the connector terminal and card terminal do not short-circuit. Arrangeable area, (d) shows an example of card terminal arrangement.
  • FIG. 12 is a diagram showing an example of a central terminal arrangement that is Z or more away from both directions, where (a) shows the card inserted correctly and (b) shows the card inserted backward.
  • FIG. 13 It is a diagram showing an example of the center arrangement of the card terminals when inserting in the reverse direction, (a) is the outer shape of the adapter and connector, (b) is an example of short-circuit occurrence in the case of card D, (c) is Card terminal layout area 1301 where the connector terminal and card terminal do not short-circuit, (d) shows an example of card terminal layout.
  • a diagram showing an example of preventing the destruction of a connector terminal when a card is inserted (a) shows card dimensions, (b) before card insertion, and (c) after card insertion.
  • FIG. 15 (a), (b) and (c) are diagrams showing a card structure capable of stacking multiple layers of chips.
  • a diagram showing an adapter having a structure for suppressing deflection and an example of a card structure (a) is a plan view showing the shape of the card, (b) is a plan view showing an adapter structure according to the present invention, ( (c) is a view showing a state where the card is inserted into the adapter, (d) is a cross-sectional view taken along the plane A-A 'in (b), and (e) is a cross-sectional view taken along the plane BB'.
  • FIG. 17 It is a diagram showing the shape of a card that is mounted or inserted into a card (adapter) that has a notch in a corner such as miniUICC.
  • FIG. 18 A block diagram showing a configuration of an IC card according to an embodiment of the present invention.
  • FIG. 19 A diagram showing an example of terminal signals of the thin memory card 1802.
  • FIG. 20 (a) is an example of Vcc pin assignment, and (b) is a timing chart.
  • FIG. 21 is a diagram showing an example of assignment of RSV (reserve) terminals.
  • FIG. 22 is a block diagram showing a configuration of a first embodiment (an example of a memory stick interface) of a thin memory card 1802.
  • FIG. 23 is a block diagram showing a configuration of a second embodiment (an example of a memory stick interface) of a thin memory card 1802.
  • FIG. 24 is a block diagram showing a configuration of a third embodiment (an example of a memory stick interface) of a thin memory card 1802.
  • FIG. 25 is a block diagram showing a configuration of a fourth embodiment (an example of a memory stick interface) of a thin memory card 1802.
  • FIG. 26 It is a diagram showing the outer shape of a thin memory card 1802 according to an embodiment of the present invention, (a) is a plan view, (b) is a front view, (c) is a rear view, and (d) is a left side view. (E) is a right side view and (f) is a back view.
  • FIG. 27 A perspective view showing the outer shape of a thin memory card 1802 according to an embodiment of the present invention, where (a) is a view from above and (b) is a view from below.
  • FIG. 28 is a diagram showing mounting of a chip of a thin memory card 1802 according to an embodiment of the present invention, in which (a) shows a basic example, (b) shows an application example 1, and (c) shows an application example 2.
  • FIG. 29 A diagram showing mounting of a chip of a thin memory card 1802 according to an embodiment of the present invention, in which (a) shows application example 3 and (b) shows application example 4.
  • FIG. 29 A diagram showing mounting of a chip of a thin memory card 1802 according to an embodiment of the present invention, in which (a) shows application example 3 and (b) shows application example 4.
  • FIG. 29 A diagram showing mounting of a chip of a thin memory card 1802 according to an embodiment of the present invention, in which (a) shows application example 3 and (b) shows application example 4.
  • FIG. 29 A diagram showing mounting of a chip of a thin memory card 1802 according to an embodiment of the present invention, in which (a) shows application example 3 and (b) shows application example 4.
  • FIG. 29 A diagram showing mounting of a chip of a thin memory card 1802 according to an embodiment of the present invention, in which (a) shows application example 3 and (b) shows application example 4.
  • FIG. 30 is a diagram showing the outer shape of a Plug-in SIM conversion adapter (SIM card adapter 1801) according to an embodiment of the present invention, where (a) is a plan view, (b) is a front view, and (c) is a rear view. (D) is a left side view, (e) is a right side view, and (f) is a back view.
  • SIM card adapter 1801 SIM card adapter 1801
  • FIG. 31 is a perspective view showing the outer shape of a Plug-in SIM conversion adapter (SIM card adapter 1801) according to an embodiment of the present invention, where (a) is a view from above and (b) is a view from below. It is a figure.
  • SIM card adapter 1801 SIM card adapter 1801
  • FIG. 32 is a plan view showing the outer shape after the thin memory card 1802 is inserted into the Plug—in SIM conversion adapter (SIM card adapter 1801).
  • FIG.33 A vertical cross-sectional view of the configuration before and after the thin memory card 1802 is inserted into the Plug—inSIM conversion adapter. (A) is before the thin memory card 1802 is inserted (b ) Shows after the thin memory card 1802 is inserted.
  • FIG. 34 is a plan view showing a wiring configuration of the Plug-in SIM conversion adapter.
  • FIG. 35 It is a cross-sectional view showing a wiring configuration of a Plug—inSIM conversion adapter.
  • miniUICC adapter corresponding to SIM card adapter 1801 by one embodiment of the present invention
  • (a) is a top view
  • (b) is a front view
  • (c) is a rear view
  • ( d) is a left side view
  • (e) is a right side view
  • (f) is a back view.
  • FIG. 37 is a perspective view showing the external appearance of a mini UICC adapter 3601 (corresponding to SIM card adapter 1801), (a) is a view from above, and (b) is a view from below.
  • a mini UICC adapter 3601 corresponding to SIM card adapter 1801
  • FIG. 38 is a diagram showing the internal connection of the thin memory card external shape conversion adapter 1 (M2 adapter) and M2 adapter according to one embodiment of the present invention, (a) is a thin memory card 1802, (b) is a conversion Adapters 3801, (c) are cross-sectional views of the conversion adapter 3801 before card insertion, and (d) are cross-sectional views of the conversion adapter 3801 after card insertion.
  • FIG. 40 is a diagram showing the internal connection of an external shape conversion adapter 2 (M2 adapter) for a thin memory card and an M2 adapter according to an embodiment of the present invention, (a) is a thin memory card 1802,
  • (b) is a conversion adapter 3801
  • (c) is a sectional view of the conversion adapter 3801 before card insertion
  • (d) is a sectional view of the conversion adapter 3801 after card insertion.
  • FIG. 41 It is a figure which shows the external shape of the thin memory card 2 with a SIM function by one embodiment of this invention, (a) is a top view, (b) is a front view, (c) is a rear view, (d) Is a left side view, (e) is a right side view, and (f) is a back side view.
  • FIG.42 Card terminal layout example of thin memory card 2 with SIM function (MS I / F + IS07816
  • FIG. 44 is a diagram showing an example of assignment of RSV (reserve) terminals.
  • FIG. 45 is a diagram showing an example of assignment of RSV (reserve) terminals.
  • FIG. 46 is a diagram showing the outer shape of the Plug-in SIM conversion adapter 2 (SIM card adapter 1801) according to one embodiment of the present invention, (a) is a plan view, (b) is a front view, and (c) is a front view. (D) is a left side view, (e) is a right side view, and (f) is a back view.
  • SIM card adapter 1801 SIM card adapter 1801
  • FIG. 47 is a plan view showing an outer shape after a thin memory card 18 02 is inserted into a Plug-in SIM conversion adapter (SIM card adapter 1801).
  • FIG. 48 is a longitudinal sectional view showing the configuration before and after the thin memory card 1802 is inserted into the Plug—inSIM conversion adapter 2, and (a) is before the thin memory card 1802 is inserted (b ) Is thin This is after the memory card 1802 is inserted.
  • FIG. 49 is a diagram showing the external appearance of a mini UICC adapter 2 (corresponding to SIM card adapter 180 1) according to one embodiment of the present invention, (a) is a plan view, (b) is a front view, and (c) is a rear view. (D) is a left side view, (e) is a right side view, and (f) is a back side view.
  • FIG. 50 is a perspective view showing the outer shape of the mini UICC adapter 2, wherein (a) is a view from above, and (b) is a view from below.
  • FIG. 51 is a view showing the outer shape of a thin memory card 3 with a cutout according to an embodiment of the present invention, where (a) is a plan view, (b) is a front view, (c) is a rear view, (d ) Is a left side view, (e) is a right side view, and (f) is a back side view.
  • FIG. 52 is a view showing the outer shape of a thin memory card 4 with a cutout according to an embodiment of the present invention, where (a) is a plan view, (b) is a front view, (c) is a rear view, (d ) Is a left side view, (e) is a right side view, and (f) is a back side view.
  • FIG. 53 (a) and (b) are diagrams showing an example of the central arrangement of card terminals.
  • FIG. 54 is a diagram showing an example of the central arrangement of card terminals.
  • the first embodiment mainly solves the first problem, and in brief, the card terminal is arranged at the center of the card, which is a semiconductor device (hereinafter referred to as “the semiconductor device”).
  • the semiconductor device is called a card or a thin card).
  • FIG. 11, FIG. 53 and FIG. 54 have a card having a card terminal arranged in the center of the card and a connector terminal which can be electrically connected to the card terminal of the card when the card is inserted.
  • the adapter to be shown is shown.
  • the adapter here is an adapter for other cards and is not intended to be used by inserting the card shown here.
  • Fig. 11 (a) is when the card is inserted correctly, (b) is when the card is inserted backward, and (c) is the connector terminal and card edge. Card terminal placement area where the child does not short-circuit or is difficult to perform, (d) shows an example of card terminal placement.
  • reference numeral 1101 denotes a stroke area in which a so-called Push-Push connector is ejected by pushing a card.
  • Z is an area where the connector terminal slides the card.
  • the hatched portion 1102 is a card terminal arrangement area where the connector terminal and the card terminal do not short-circuit. Place card terminals in this area.
  • the position of the card terminal can be shown as a central region, for example, as shown in FIG. 11 (d), FIG. 53 (a), and FIG. 53 (b).
  • the position of the card terminal is the distance B1 from one side of the correct card insertion force side to one end of the card terminal in the longitudinal direction of the card. Is also shorter than the distance C1 to the other end of the card terminal.
  • the position of the card terminal is such that the distance B2 from one side of the card on the correct card insertion side to one end of the card terminal is an intermediate position in the longitudinal direction of the card.
  • the distance from the other end of the card terminal is greater than C2. Since the direction from the middle position of the card toward one side of the correct card insertion side is the positive direction and the opposite direction is the negative direction, C2 is a negative value.
  • FIG. 53 (a) shows an example in which the card terminal is slightly shifted from the intermediate position, and C3 is a positive value.
  • B3 is larger than C3, and the problem of short circuit can be suppressed.
  • the card terminal positions are represented separately. This indicates the position when the card is divided into quarters with respect to the longitudinal direction of the card.
  • the correct force of the card The force that is within 1/4 of the side of the card on the insertion side is the conventional example, and the force that is within 2/4 to 3/4 is Example 3.
  • the card terminal When the card terminal is long or the position is not adjusted, it does not fit in each 1/4 area. However, if the ratio of the area of the card terminal in the 2/4 to 3/4 area is higher than the ratio in the other area, the establishment of a short circuit can be lowered compared with the case where the ratio in the other area is high. .
  • the length of the card terminal in the longitudinal direction is about 1 cm to 2 cm, and the length of the card terminal in the longitudinal direction is about 2 mm to 4 mm.
  • the card terminals are arranged in a single row, the card terminals are arranged in a repeating pattern in which one terminal is shifted, a multi-row arrangement in which IS07816 terminals and card terminals are arranged, An example of a multi-row zigzag arrangement in which a zigzag arrangement and a multi-row arrangement are mixed, and a multi-row grid arrangement in which card terminals and card terminals, for example, test voltage terminals and voltage terminals inside the card, are arranged. .
  • card terminals and other terminals are provided in the 2/4 to 3/4 region.
  • the area ratio of terminals in the 2/4 to 3/4 area is higher than the area ratio of terminals such as card terminals in the 1/4 area.
  • the terminal density is higher in the 2/4 to 3/4 region than in the 1/4 region.
  • the 4/4 region may be the same as the 1/4 region.
  • the electrodes of IS07816 are terminals determined by the standard, they are not limited to the above-described area arrangement, and only the card terminals may satisfy the above requirements.
  • FIGS. 12A and 12B are diagrams showing an example of the center terminal arrangement that is Z or more away from both directions, where FIG. 12A shows the time of card insertion, and FIG. 12B shows the time of card insertion backward.
  • FIG. 13 is a diagram showing an example of the central arrangement of the card terminals at the time of forward / reverse insertion, (a) Is the card and connector outline, (b) is an example when card D is inserted upside down, (c) is the card terminal placement area 1301 where the connector terminal and card terminal are not easily shorted, and (d) is the card An example of the terminal arrangement is shown.
  • FIG. 13 (a) when the card width and length are smaller than the connector insertion width W1, that is, Wl (A card connector)> L2 and Wl (A card connector)> W2.
  • Wl A card connector
  • Fig. 13 (b) a short circuit may occur when the card is inserted correctly, when the card is inserted backward, or when the card is rotated 90 degrees.
  • FIG. 13 (c) a card terminal is arranged in a card terminal arrangement area 1301 in which the connector terminal and the card terminal are not easily short-circuited.
  • Fig. 13 (d) shows an example of the card terminal arrangement in one row arrangement, staggered arrangement, and grit arrangement.
  • a terminal that is important for card detection or a terminal that induces latch-up failure in operation such as a data terminal that inputs or outputs data, or a control signal that controls the operation of the card is input. Focusing on the control terminal, the clock terminal to which the clock signal is input, and the like, it may be arranged in the center.
  • the connector terminal and the card terminal may come into contact with each other before the card is turned on, and the present invention may be applied to those in which an abnormal current may flow due to latch-up or the like.
  • the card terminal is arranged at the center of the card.
  • the distance force S from one side of the correct card insertion side card to one end of the card terminal is set to be larger than the distance from the middle position in the longitudinal direction of the card to the other end of the card terminal.
  • a card terminal is provided in the 2/4 to 3/4 area from one side of the card on the correct card insertion side when divided into 1/4 in the longitudinal direction of the card.
  • the area ratio occupied by 2/4 or 3/4 area card terminals is higher than 1/4 area. [0101] Or, increase the density of the card terminals in the 2/4 or 3/4 area compared to the 1/4 area.
  • the second embodiment mainly solves the second problem.
  • the adapter connector terminal fulcrum (adhesion point) faces the card card inlet side of the adapter. It is.
  • Fig. 14 is a diagram showing an example of preventing damage to the connector terminal when a card is inserted.
  • A is a chamfer dimension indicating the height of the chamfered portion of the card (height of the card C surface) tcc2 and the card Thickness tc2
  • b is a diagram showing the positional relationship between the card and the connector terminal before card insertion
  • c shows the card after insertion.
  • tl is the height from the card insertion side surface at the bottom of the connector to the card C surface
  • t2 is the distance between the upper end of the connector terminal and the card insertion side surface at the bottom of the connector
  • t3 is the fulcrum part of the connector terminal.
  • tl is the sum of the gap between the card and connector and the chamfer dimension tcc2.
  • the fulcrum is fixed to the lower part of the connector by bonding or soldering.
  • the lower part of the connector is a wiring board, plastic or the like.
  • the solution to the connector terminal buckling failure when tcc2 is 0 or very small is as follows. If the connector fixing position (in this example, the fulcrum) is located in front of the connector terminal contact position from the card insertion direction, the height of the fulcrum will not contact the card (the gap between the card and the connector). Connector terminals do not buckle under the condition that they are larger than the fulcrum thickness of the connector terminals and do not collide with each other. At this time, the card chamfer tcc2 can be 0. In this case, it is desirable to repeatedly design the connector terminals so that they are within the elastic deformation range after inserting the card. The connector terminal does not buckle even if the C side is not taken. Because the fulcrum of the connector terminal is below the bottom of the card, that is, toward the bottom of the connector, the deformation of the connector terminal is always designed to follow the card insertion. It is the power that can move.
  • FIG. 7 Another difference from Fig. 7 is that in Fig. 7, the connector terminal tip is located closer to the card cage entrance, and the connector terminal fulcrum is located farther away, while in Fig. 14, the card cage Close to the entrance Use the side as the connector terminal fulcrum and the side as the connector terminal tip.
  • the fulcrum of the connector terminal of the adapter is provided below the bottom of the card, so that destruction of the connector terminal of the adapter when the card is inserted is prevented.
  • Embodiment 3 mainly solves the third problem.
  • the increase in card thickness due to chip stacking is positioned at the back end of the card insertion. To make a thick card structure.
  • FIG. 15 is a diagram showing a card structure capable of stacking multiple layers of chips.
  • chip A is a flash memory chip with a large chip size mounted on a wiring board
  • chip B is a controller chip that controls the flash memory.
  • the controller chip has a smaller chip size than flash memory! /.
  • the entire card is covered with a mold part made of plastic resin or the like for protecting the chip surface.
  • t is the maximum card thickness that can be inserted into the adapter.
  • the card has a two-step staircase structure with two thicknesses, and the chip stack is brought to the rear end of the insert.
  • the lower and upper connectors of the card are guided or held by the thin part of the card, and the thick part of the card (the part where chip B is mounted in Fig. 15) is exposed.
  • the exposed part of this card can be handled by pulling the card out of the connector as a part that is handled directly when the card is inserted or removed. It is also possible to print and print force recognition markings on this thick exposed part.
  • the size of the controller chip is not more than half the size of the substrate. For this reason, the plane area of the thick card portion is smaller than that of the thin card portion. This increases the amount of insertion into the connector and increases the stability after insertion.
  • the two-stage structure can be applied as long as the chip size is smaller than the flash memory.
  • a card having a two-step staircase structure by combining three or more chips depending on the force substrate shown in the example of two chips or a case where the chip can be made thinner.
  • a multi-step structure with three or more steps may be used.
  • the semiconductor chip mounted on the card may be mounted with a chip having other functions not limited to the flash memory chip or the controller chip, for example, DRAM, SRAM, microcomputer, etc. good.
  • Fig. 15 (a) the force is such that the boundary between the thick and thin portions of the card is almost vertical, as shown in Figs. 15 (b) and (c) The part and the thin part may be connected.
  • the shape of the adapter may be matched.
  • the force adapter described so far centering on the multi-stage structure of the card is also a new structure.
  • the adapter top surface is shorter than the adapter bottom surface from the card entry end to the card entry entrance (UL and DL).
  • the thickness of the card gradually increases from the card insertion side to the card insertion rear side, the height of the adapter inlet is increased. This makes it possible to stack IC chips in cards where the card thickness is limited.
  • the embodiment 4 mainly solves the fourth problem. To briefly explain the outline, a card structure having a pressing structure directly above the contact terminals is provided.
  • FIG. 16 is a diagram showing an example of a card and an adapter having a structure that suppresses the deflection of the card.
  • A is a plan view showing the shape of the card and the area of the card terminal on the back surface, and this card.
  • (B) is a plan view showing an adapter structure according to the present invention,
  • (c) is a view showing a state where a force force is inserted into the adapter, and
  • (d) is a view in (b).
  • Sectional view of A—A ′ plane, (e) is a section view of BB ′ plane.
  • the plate-like structure that is the upper surface portion of the adapter excluding the region with diagonal lines It has become.
  • the upper surface of the adapter that overlaps the card on the plane is used as a guide.
  • the guide part covers the connector terminal part in which a plurality of terminals are arranged.
  • 1601 shows a state where the connector terminal portion and the card terminal portion are in contact with each other.
  • the guide portion since the guide portion which is the upper surface portion of the adapter is provided so as to face each connector terminal, the guide portion has a plurality of fulcrum points (a broken triangle in the figure, a rough outline). The fulcrum is shown for convenience and does not actually appear.
  • a plate-shaped example is shown as a guide portion.
  • the vicinity of the connector terminal contact portion is directly above or immediately above.
  • the guide portion may have a plurality of holes, slits, or the like. In other words, the in-plane tension of the plate structure can be transmitted even if it is partially open.
  • the card terminal that contacts the connector terminal is disposed in the thin card area. Is possible.
  • the holding plate (guide part) at the top of the card should cover at least the card terminal part of the thin card area.
  • the guide portion which is the upper surface portion of the adapter so as to cover the connector terminal portion of the adapter, the deflection of the card when the card is inserted is suppressed. Is done.
  • the fifth embodiment mainly solves the fifth problem.
  • the curvature of the corner portion of the card is larger at the non-notch portion than at the notch portion. To do.
  • Fig. 17 shows a substrate on which a chip is mounted on a card having a notch in a corner such as miniUICC.
  • the shape of the card or the shape of the card inserted into the adapter is shown as an example.
  • R2 is formed to cut the connector at the corner of the thin card when inserting the thin card into the adapter, or to reduce the bow of the insertion and promote smooth insertion.
  • the corner near the notch is made to have a smaller curvature than that of the corner not having the notch.
  • area reduction of the thin card due to the corner notch is alleviated.
  • FIG. 18 is a block diagram showing a configuration of a SIM card according to the sixth embodiment of the present invention.
  • the thin memory card (hereinafter also simply referred to as “card”) 1802 of the present invention to the SIM card adapter (hereinafter also simply referred to as “adapter”) 1801 via the connector 1808, the SM card with built-in flash memory 1806 and It can be done.
  • FIG. 18 also shows an example of the function explanation of the ISO 7816 terminal.
  • SIM card adapter 1801 includes SIM card secure microcomputer (SIC1) 1803, IS07 816 terminal 1804, memory card connector 1808, and the like.
  • the thin memory card 1802 inserted into the adapter is connected to the card terminal provided on the card and the connector terminal (not shown) of the connector 1808 provided on the adapter to exchange data and signals. Is done.
  • the thin memory card 1802 includes a controller 1805, a flash memory 1806 controlled by the controller, and a secure microcomputer (SIC2) 1807 as necessary.
  • connector 1808 has an interface with secure microcomputer 1803 and can communicate with each other.
  • the connector 1808 may be connected to part or all of the IS07816 terminal 1804 as necessary.
  • the connector 1808 is connected to the controller 1805 inside the thin memory card via the MS I / F which is a memory card interface, for example, a Memory Stick (trademark, MEMORY STICK registered trademark) interface.
  • the secure microcomputer 1807 provided accordingly or a circuit that realizes the function may be connected via the extension I / F.
  • the MS I / F may also have a secure function.
  • the extension I / F may be provided with more than three forces from RSV1 to RSV3 in the figure.
  • SIM card secure microcomputer (SIC1) 1803 is connected to the IS07816 terminal 1804 via the IS07816 I / F (interface).
  • the empty IS07816 terminal (C4 and C8 are used as an example in Fig. 18) may be used for USB. Furthermore, as another example of use of empty terminals, it may be used for SD card I / F, MMC I / F, non-contact communication I / F, and the like.
  • SIM card adapter 1801 has a connector 1808 for the thin memory card 1802, and communicates between the thin memory card 1 802 and the secure microcomputer 1803 in the SIM card adapter 1801 via the connector 1808. It is also possible to provide a path for directly accessing the IS07816 terminal 1804 as described above.
  • FIG. 19 is a diagram showing an example of terminal signals of the thin memory card 1802.
  • FIG. 20 is a diagram showing an example of Vcc terminal assignment.
  • FIG. 21 is a diagram showing an example of assignment of RSV (reserve) terminals.
  • the card terminal of the thin card shown in FIG. This is a case of adapting to Memory Stick Micro trademark).
  • the card terminal receives INS, which is a terminal for detecting whether or not a thin card is inserted into the adapter, BS, which is a terminal indicating the bus status, and a serial clock used for controlling data input / output of the card.
  • SCLK which is a data input / output terminal
  • DATA0-DATA3 which is a terminal for data input / output
  • Vccl which is a power supply voltage terminal
  • Vss which is a ground voltage terminal.
  • the thin memory card 1802 shown here is compatible with 1.8V and 3.3V power supplies and signal interfaces.
  • the expansion terminal VCC2 is used when a device that operates only at 3.3V is mounted on some of the elements inside the card.
  • 1.8V means a voltage that ensures a normal operation even when a voltage rise or voltage drop of about 10% from 1.8V occurs.
  • 3.3V means a voltage that guarantees operation with a voltage fluctuation of about 10% from 3.3V!
  • Vcc2 is the power supply pin that can supply 3.3V from the outside.
  • the reserve terminal may be used for power control of a power source used in the thin card.
  • RSV3 an example using RSV3 will be described.
  • FIG. 20 (b) shows a timing chart.
  • RSV3 is also capable of bidirectional communication that obtains a response S from the adapter, which is basically based on the output from the thin card to the adapter.
  • Vccl If a flash memory that operates only at 8V is used for this thin card, Vccl must be 3
  • Figure 21 shows another application example of the reserve terminal.
  • 3 pins function as MMC and SD-I / F CM D (command), CLK (clock), DAT (data) pins and additional IS07816 I / O, RES (reset), CLK (clock), 2 pins
  • the USB mode I / F can be installed.
  • this switching may be done by providing a register inside the card by a command (command) in the memory card interface or the expansion terminal interface, and switching the mode by the data in this register.
  • FIG. 22 is a block diagram showing the configuration of the first embodiment (example of a memory stick interface) relating to the power supply of the thin memory card 1802.
  • FIG. 22 is a block diagram showing the configuration of the first embodiment (example of a memory stick interface) relating to the power supply of the thin memory card 1802.
  • Fig. 22 shows a connection example when the controller and flash support both 3.3V and 1.8V power supplies. In this case, it can operate with only Vccl power. Internal power circuit capacitors and power stabilization capacitors are optional.
  • memory S, NOR type and AND type flash memory, ROM, RAM, or a mixture of these are shown for NAND flash memory as an example.
  • FIG. 23 is a block diagram showing the configuration of a second embodiment (an example of a memory stick interface) relating to the power supply of the thin memory card 1802.
  • a second embodiment an example of a memory stick interface
  • Figure 23 shows a connection example when the controller supports both 3.3V and 1.8V power supplies and the flash supports only 3.3V power supplies.
  • the controller requests Vcc2 supply timing at an appropriate time after starting up with the power supply of VCC1 via the RSV3 pin.
  • Capacitors for internal power supply circuit and power supply stabilization are optional.
  • the controller may stop the card operation.
  • the controller can do this by monitoring the voltage of Vcc2.
  • FIG. 24 shows a third embodiment (memory stick interface) relating to the power supply of the thin memory card 1802.
  • FIG. 6 is a block diagram illustrating a configuration of an example of a face.
  • Figure 24 shows a connection example when the controller supports both 3.3V and 1.8V power supplies and the flash supports only 3.3V power supplies.
  • a signal to control the power supply IC is input from the controller to the boost power supply IC (1.8V ⁇ 3.3V). Vcc2 and the controller may be connected.
  • the capacitor for the internal power supply circuit is optional.
  • the controller 1805 When 1.8 V is supplied to Vccl, the controller 1805 outputs a signal instructing the generation of 3.3 V to the boost power supply IC 2401 incorporated in the thin card.
  • the controller may operate the thin card stably by monitoring the output voltage and input voltage of the boost power supply IC.
  • card operation may be stopped in the event of an abnormality.
  • FIG. 25 is a block diagram showing a configuration of a fourth embodiment (an example of a memory stick interface) relating to power supply of the thin memory card 1802.
  • a fourth embodiment an example of a memory stick interface
  • Figure 25 shows an example connection when the controller supports both 3.3V and 1.8V power supplies, and the flash supports only 1.8V power supplies.
  • 3.3V is supplied as an external voltage, it is input to the step-down power supply IC (3.3V ⁇ 1.8V) from the signal power controller that controls the step-down power supply IC2501.
  • the capacitor for the internal power supply circuit is optional.
  • the controller can monitor the voltage of the step-down power supply IC, judge it, and shift to the appropriate card operation or mode. If the overall current capacity from the external power supply seems to be insufficient, the controller may slow down the card operation and suppress the average current consumption for the purpose of leveling the current consumption of the voltage monitor and step-down power supply IC.
  • FIG. 26 is a view showing the outer shape of a thin memory card 1802 according to Embodiment 7 of the present invention, where (a) is a plan view, (b) is a front view, (c) is a rear view, and (d) is a rear view. The left side view, (e) is the right side view, and (f) is the back view.
  • Figure 26 shows an example of a Memory Stick microinterface.
  • the upper side of the substrate 2601 is covered with a mold 2602, and a plurality of connector terminals 2603 are formed on the exposed surface on the back side of the substrate 2601.
  • Thin memory card 1802 The portion of the mold 2602 on the front side has a two-stage configuration with different thicknesses. In addition, more IC chips can be stacked on the thick part than on the thin part.
  • the connector terminal 2603 on the back side of the thin memory card 1802 is arranged at the center of the card or at a distance from the front and rear ends of the card.
  • the corner 2604 on the insertion side of the adapter is chamfered with a large radius of curvature R in accordance with the notch position of the adapter. If there is no notch restriction, the minimum R (for example, 0.05mm or more) and chamfering amount that can smoothly insert the card are sufficient.
  • FIG. 27 is a perspective view showing the outer shape of a thin memory card 1802 according to an embodiment of the present invention, where (a) is a view seen from the upper oblique front, and (b) is a view seen from the lower oblique front. It is a figure.
  • FIG. 28 is a diagram showing a chip mounting arrangement of a thin memory card 1802 according to an embodiment of the present invention.
  • (A) is a basic example in the case of stacking chips, and
  • (b) is an application example 1.
  • (C) shows application example 2.
  • the flash memory is aligned when placed on the substrate with the other largest chip on the card.
  • a flash memory 1806 is mounted on the substrate, and a controller 1805 for controlling the flash memory is stacked on the left side (the thick part of the mold). Even if the flash memory and other chips are arranged, if the area is smaller than the area of the substrate, the flash memory and the controller may be arranged on the substrate.
  • chip capacitors used for power stabilization in the card chip capacitors used for power stabilization in the card, chip resistors used for impedance matching of force terminals, chip inductors used for DC / DC converters, and power control
  • a chip component 2 801 such as a transistor used for the above is mounted.
  • the card thickness La on the left side is thicker than the card thickness Lb on the right side at the part with the mold step.
  • a DC / DC converter 280 is a power supply IC that boosts or steps down the external power supply voltage. 2.
  • a chip component 2801 or the like may be mounted.
  • a secure microcomputer 1807 may be mounted on the thick left side of the card, on the force of controller 1805 and DC / DC converter 2802. .
  • the power supply IC 2802, secure microcomputer 1807 and chip part 2801 in FIG. 28 are optional, and the necessity of mounting is determined according to the performance required for the card.
  • the connection between the chip and the wiring provided on the board is shown by wire bonding, but the chip (in this case, the flash memory) directly above the substrate can be connected in a face-down flip chip.
  • what is mounted on the flash memory can be a stack of wiring boards having wiring on a board that is only a chip, and this wiring board can be used as an interposer (intermediate wiring board).
  • FIG. 29 is a diagram showing mounting of a chip of the thin memory card 1802 according to the seventh embodiment of the present invention.
  • (A) shows application example 3 and (b) shows application example 4.
  • Fig. 29 (a) two flash memories 1806 and 1806a are stacked as application column 3, and controller 1805 and DC / DC converter 2802 are stacked on the thick left side of the card. Then, it may be mounted by stacking three stages.
  • a flash memory 1806 is loaded with one or more memories 2901 such as flash memory, SRAM, DRAM, etc.
  • the controller 1805, DC / DC converter 2802, etc. may be mounted on the thick left side.
  • FIG. 30 is a view showing the outer shape of a Plug-in SIM conversion adapter (SIM card adapter 1801) according to Embodiment 8 of the present invention, where (a) is a plan view, (b) is a front view, and (c) is a rear view. (D) is a left side view, (e) is a right side view, and (f) is a back view.
  • SIM card adapter 1801 SIM card adapter 1801
  • FIG. 31 is a perspective view showing the outer shape of the Plug-in SIM conversion adapter (SIM card adapter 1801) according to the eighth embodiment of the present invention, where (a) is a view from above, and (b) is a bottom view. It is a view from the side.
  • SIM card adapter 1801 SIM card adapter 1801
  • FIG. 32 is a plan view showing the outer shape after the thin memory card 1802 is inserted into the Plug-in SIM conversion adapter (SIM card adapter 1801).
  • the thin memory card 1802 is inserted from the left side of the SIM card adapter 1801, and the card terminal and the connector terminal come into contact with each other.
  • the SIM card adapter 1801 there is a holding structure directly above the contact terminals above the connector terminals of the thin memory card 1802.
  • Fig. 33 is a longitudinal sectional view showing the configuration before and after the thin memory card 1802 is inserted into the Plug-inSIM conversion adapter, and (a) is a diagram before the thin memory card 1802 is inserted. (B) shows after the thin memory card 1802 is inserted.
  • Fig. 33 (a) here, in the Plug-inSIM conversion adapter, there is an IC chip 3301 with SIC (Secure Microcomputer) and memory card interface function on the board 3002, passive elements A chip component 3302 such as an active element is mounted.
  • SIC Secure Microcomputer
  • a connector terminal 3303 is bonded to a portion in contact with the connector terminal of the thin memory card 1802 by soldering or welding.
  • the connector terminal is prevented from being destroyed when the card is inserted.
  • the upper holding plate 3003 is provided above the connector terminal 3303 to prevent the card from being bent.
  • connector terminals 3001 which are IS07816 electrodes are formed.
  • the thin memory card 1802 is inserted into the Plug-in SIM conversion adapter, and the connector terminal 3303 and the card terminal are connected.
  • FIG. 34 is a plan view showing a wiring configuration in a state where a thin memory card is inserted into the Plug-in SIM conversion adapter.
  • a thin memory card 1802 is inserted into the SIM card adapter 1801.
  • the card terminal 2603 of the card and the connector terminal 3303 of the adapter are connected.
  • SIM On the substrate 3002 of the card adapter 1801, a chip component 3302 is connected by an electrical connection pad 3401 (in the case of solder mounting) using solder, silver paste or the like.
  • an IC chip 3301 having an SIC and memory card interface function is connected to a bonding pad 3403 on the substrate by wire bonding 3402.
  • the bonding pad 3403 is connected to the surface wiring 3404 provided on the substrate surface.
  • the front surface self-insulating line 3404 is connected to the back surface wiring 3406 provided on the back surface of the substrate via the VIA wiring 3405.
  • the back surface wiring 3406 is connected to a connector terminal 3001 provided on the back surface of the substrate.
  • the IC chip 3301 is connected to the connector terminal 3303 on the surface of the substrate via the bonding wire 3402b, the bonding pad 303b, and the surface wiring 3404b.
  • FIG. 35 is a cross-sectional view showing a wiring configuration of the Plug-in SIM conversion adapter.
  • the IC chip 3301 and the wire bond 3402 are molded with an epoxy resin or the like for sealing.
  • the holding plate 3003 and this mold resin may be integrated in the adapter by bonding or the like at an appropriate place in the structure.
  • FIG. 36 shows a mini UICC adapter (SIM card adapter 18) according to Embodiment 9 of the present invention.
  • the mini UICC adapter 3601 shown in Fig. 36 corresponds to the Plug-in SIM conversion adapter, has the same configuration, and is inserted with a thin memory card 1802.
  • FIG. 37 is a perspective view showing the outer shape of the mini UICC adapter 3601 (corresponding to the SIM card adapter 1801), where (a) is a view from above and (b) is a view from below.
  • Figure 30
  • the mini UICC adapter in Fig. 36 corresponding to the Plug in SIM adapter is the same as the electrical circuit diagram.
  • the mini UICC has a small card area. It is desirable to embed 301 and other parts 3302 in the wiring board to reduce the mounting area or reduce the mounting thickness! This method of reducing the mounting area and mounting thickness can be achieved by polishing the IC chip thickness thinly and using gold bump or solder bump connection technology.
  • the connector connection structure with the thin card 1802 is the same as the connector contact terminal of FIG.
  • FIG. 38 is a diagram showing an internal connection of a Memory Stick Micro (M2) (M2: trademark) adapter and an M2 adapter as an outline conversion adapter for a thin memory card according to Embodiment 10 of the present invention.
  • the thin memory card 180 2 (b) conversion adapter 3801, a cross-sectional view, (d) the cross-sectional view of a conversion adapter 3801 after the card ⁇ of (c) the card ⁇ input before conversion adapter 3801.
  • a power supply IC 3803 is mounted in the conversion adapter 3801.
  • the power supply IC described in Fig. 24 and Fig. 25 is a power supply IC that supplies power to the thin memory card 1802 in order to support the 1.8V / 3.3.3V dual power supply of the M2 card.
  • a thin card 1802 equipped with a flash memory that operates with a 3.3V power supply (a power supply of about 3.3V and 3.3V) and a controller that operates with 1.8V / 3.3V both voltages .
  • Via Vcc2 3.3V is supplied to the thin memory card 1802 according to the control signal of the controller in the thin card.
  • the control signal receives a timing request from the thin memory card 1802 via RSV3.
  • 1 ⁇ 8V is supplied to Vcc2 by the control signal of the controller. Can be realized.
  • the power supply IC of this M2 adapter can be used with two types of voltage-generating multi-power supplies that supply voltages of 1.8V and 3.3V for the power supply voltages of 3.3V and 1.8V, respectively. Good.
  • the wiring on the front surface and the back surface is connected through the through hole 3804.
  • a thin memory card 1802 is inserted into the adapter housing 3802, and a connector terminal 3303 is connected to the power IC and M2 signal / power terminals via wiring and through holes on the board.
  • the power supply IC of 3803 is connected with wire bond in the figure, and it is sealed with epoxy resin (not shown).
  • the retainer plate 3802 forms an outer shape by integral molding or bonding with the resin mold region.
  • FIG. 39 is a view showing the outer shape of the outer shape conversion adapter 1 (M2 adapter) for a thin memory card, where (a) is a plan view, (b) is a bottom view, and (c) is a side view.
  • M2 adapter outer shape conversion adapter 1
  • notch 3901 on the side surface of the conversion adapter. This notch is used to prevent inadvertent removal of the force mode and to use it as the operating area of the card insertion detection switch on the host device.
  • FIG. 40 shows an outline conversion adapter for a thin memory card according to Embodiment 11 of the present invention.
  • FIG. 6 is a diagram showing the internal fountain of another Memory Stick Micro (M2) adapter and another M2 adapter, (a) is a thin memory card 180 2 , (b) is a conversion adapter 3801, (c) is a card ⁇ Sectional view of conversion adapter 3801 before insertion, (d) is a sectional view of conversion adapter 3801 after card insertion.
  • M2 Memory Stick Micro
  • a power supply IC 3803 is mounted in the conversion adapter 3801.
  • the power supply IC is a power supply IC that supplies power to the thin memory card 1802 in order to support the 1 / 8V / 3.3.3V dual power supply of the M2 card.
  • 3.3V is supplied to the thin memory card 1802 via Vcc2.
  • the control signal receives a timing request from the thin memory card 1802 via RSV3. This operation is the same at 1.8V described above.
  • the wiring on the front surface and the back surface is connected through the through hole 3804.
  • the thin memory card 1802 is inserted into the adapter housing 3802 and the connector terminal 3303 is connected.
  • the power supply IC can be omitted according to the power supply capability of the thin card 1802 (also according to Figs. 24 and 25).
  • FIG. 41 is a diagram showing the outline of a thin memory card with SIM function according to the twelfth embodiment of the present invention, where (a) is a plan view, (b) is a front view, (c) is a rear view, (d ) Is a left side view, (e) is a right side view, and (f) is a back view.
  • Figure 41 shows an example of a Memory Stick microinterface.
  • the upper side of the substrate 2601 is covered with a mold 2602, and a plurality of connector terminals 2603 are formed on the exposed surface on the back side of the substrate 2601.
  • the portion of the mold 2602 on the front side of the thin memory card 1802 has a two-stage structure with different thicknesses.
  • the connector terminal 2603 on the back side of the thin memory card 1802 is arranged in the center.
  • the corner 2604 on the insertion side of the adapter is chamfered with a large radius of curvature R in accordance with the notch position of the adapter. However, if the notch limit is small, the radius of curvature R (both R1 and R2 in Fig. 17) may be the minimum required.
  • FIG. 42 is a diagram showing an example of the force terminal arrangement (example of MS I / F + IS07816I / F) of the thin memory card 2 that can be electrically provided with the SIM function or the IS07816 function.
  • FIG. 43 shows an example of Vcc pin assignment.
  • FIG. 42 is a diagram similar to FIGS. 44 and 21 and showing an example of assignment of RSV (reserve) terminals as an extended function.
  • Fig. 45 is a signal layout diagram of the terminals that are newly provided this time and that electrically expand the IS07816 function.
  • RSV3 is assigned. After 1.8V is supplied to Vccl and the controller inside this card is activated, RSV3 is assigned as a control signal pin that instructs 3.3V supply to Vcc2 at an appropriate timing. Output is the basic force Bidirectional communication that obtains a response from the host is also possible. As a method of supplying 1.8V to the operating parts of only 1.8V inside the thin card when 3.3V is supplied to Vccl, 3.3V can be operated to Vcc2 using RSV3 as a control pin.
  • Vcc2 power supply may be automatically supplied at an appropriate timing when the Vccl power is turned on.
  • Vccl is 1.8V
  • Vcc2 is 3.3V
  • Vcc2 is 1.8V. It is not always necessary to supply both power supplies according to the purpose! /.
  • FIGS. 46A and 46B are views showing the outer shape of the Plug-in SIM conversion adapter 2 (SIM card adapter 1801) according to the thirteenth embodiment of the present invention.
  • FIG. 46A is a plan view
  • FIG. 46B is a front view
  • FIG. (D) is a left side view
  • (e) is a right side view
  • (f) is a back view.
  • FIG. 46 As shown in Figure 46, on the board 3002 on the lower side of the adapter, there are openings for multiple connector terminals. A mouth (through window) 4601 is formed. Then, the IS07816 expansion terminal shown in FIG. 45 of the connector terminal 2603 of the thin memory card 1802 shown in FIG. 42 is exposed through the opening 4601.
  • FIG. 47 is a plan view showing the outer shape after the thin memory card 1802 shown in FIG. 42 is inserted into the Plug-in SIM conversion adapter (SIM card adapter 1801).
  • the thin memory card 1802 is inserted from the left side of the SIM card adapter 1801, and the IS07816 terminal 4701 ( Corresponds to connector terminal 2603).
  • the Memory Stick microinterface terminal and RSV1 to RSV3 in Fig. 42 are covered inside the adapter and not exposed to the outside. In this way, the unused terminals are insulated and separated by the force S.
  • Fig. 48 is a longitudinal sectional view showing the configuration before and after the thin memory card 1802 is inserted into the Plug-inSIM conversion adapter 2, and (a) is before the thin memory card 1802 is inserted. (B) shows the state after the thin memory card 1802 is inserted. In particular, (b) shows the plug-in SIM adapter with a thin memory card connected to the IS07816 connector terminal of the host device at the same time.
  • the connector terminal of the host side socket 4801 and the IS07816 terminal 4701 of the thin memory card with SIM function 1802 are connected through the opening 4601.
  • the insulating plate is sufficiently thin and wide enough! /, So the connector terminal of the host socket passes through the opening and the inside of the thin card inside It is characterized by direct contact with the expanded IS 07816 terminal. This makes it possible to realize a SIM adapter that is very inexpensive, has a simple structure, and is thin.
  • FIGS. 49A and 49B are diagrams showing the external appearance of a mini UICC adapter 2 (corresponding to SIM card adapter 1801) according to Embodiment 14 of the present invention, where FIG. 49A is a plan view, FIG. 49B is a front view, and FIG. 49C is a rear view. , (D) is a left side view, (e) is a right side view, and (f) is a back side view.
  • the mini UICC adapter 2 shown in Fig. 49 corresponds to the Plug-in SIM conversion adapter 2 and has the same configuration, and a thin memory card 1802 is inserted. And through the opening 4601 Thus, the connector terminal of the thin memory card 1802 is exposed. This is the same function as the Plug-in SIM adapter shown in Fig. 46.
  • Fig. 50 is a perspective view showing the external appearance of the mini UICC adapter 2, and (a) is a view from above.
  • FIG. 51 is a view showing the outer shape of the notched thin memory card 3 according to the fourteenth embodiment of the present invention, where (a) is a plan view, (b) is a front view, (c) is a rear view, (d ) Is a left side view, (e) is a right side view, and (f) is a back view.
  • the 01 has a notch structure that does not penetrate for the purpose of card removal prevention and position locking. By not penetrating the notch, the area of the substrate 2601 can be maximized, and a chip (for example, a flash memory chip) that is not limited by the notch with the wide width w can be mounted.
  • a chip for example, a flash memory chip
  • FIG. 52 is a view showing the outer shape of the thin memory card 4 with a cutout according to the sixteenth embodiment of the present invention, where (a) is a plan view, (b) is a front view, (c) is a rear view, d) is a left side view, (e) is a right side view, and (f) is a back view.
  • the side surface of the mold 2602 has a notch 5201 force S. This cutout 51
  • 01 has a notch structure that penetrates for the purpose of card removal prevention and position locking. This is advantageous when a mechanically strong locking mechanism or latching strength is realized by penetrating.
  • the present invention can be used in the manufacturing industry of IC cards, electronic devices, and the like.

Abstract

 薄型ICカードにおいて、ICカード挿入時における、端子の電気的ショート、コネクタ端子の破壊およびICカードのたわみを防止し、ICチップの積層およびチップサイズの有効利用を可能とする技術を提供する。薄型メモリカード1802の中央部にコネクタ端子を配置することにより、端子の電気的ショートを防止する。薄型メモリカード1802に段差を設け厚い部分にICチップを積層できるようにする。基板3002上において、コネクタ端子3303の接着部分をカード挿入口側に設けることにより、カード挿入時のコネクタ端子破壊を防止する。コネクタ端子3303の上部に上押さえ蓋3003を設けることにより、カードのたわみを防止する。

Description

明 細 書
半導体装置およびそのアダプタ
技術分野
[0001] 本発明は、半導体装置に関し、特に、カードをアダプタとカード本体に分離可能な I Cカードに関するものである。
背景技術
[0002] 本発明者が検討した技術として、例えば、 ICカードにおいては、以下の技術が考え られる。
[0003] 例えば、 ICカードの一種に SIMカード(Subscriber Identity Module Card)と 呼ばれるものがある。 SIMカードは、携帯電話機に差し込んで利用者の識別に使う、 契約者情報を記録した ICカードである。異なる方式の電話機であっても共通の IC力 ードを差し替えて使用することで、電話番号や課金情報をそのまま引き継いで使用 するとことを可能にするものであり、 GSM (Global System for Mobile Communications )カードとして GSM携帯電話機で実現されている。 SIMカードの外形寸法は、 15m m X 25mm X 0. 76mmの ID— 000フォーマットを使用している。すなわち、平面寸 法が 15mm X 25mmであり、厚さが 0. 76mm程度である。表面には ISO/IEC781 6— 3の端子位置と機能の規格で定められる外部インターフェイス端子(IS07816ィ ンターフェイス端子)が配列される。
[0004] 図 1 (a)は、本発明の前提として検討した Plug— inSIM (ID— 000)のスマートカー ドの構成を示すブロック図、図 1 (b)は、 IS07816での端子割り当てを示す図である
[0005] 図 1 (a)に示すように、 SIMカードは、セキュア ICチップとして、 CPU, ROM, RA M, EEPROMなどを含むマイクロコンピュータ(SIC)を搭載する。なお、 LA, LBの アンテナコイルや非接触インターフェイスはオプションであり、省略可能である。
[0006] 図 1 (b)に示すように、 SIMカードの裏側に、 IS07816インターフェイス端子力 C ;!〜 C8の 8個の端子が配置されており、 IS07816端子の割り当ては、 C1が VCC ( +電源)、 C2が RES (リセット)、 C3が CLK (クロック)、 C4, C6, C8が RSV (リザー ブ)、 C5が VSS (グランド)、 C7が ΐ/θ (入出力)である。ここで、リザーブ端子は、 U SBインターフェイスの実現、 MMC (Multi Media Card, Infine on Technolgies AGの 登録商標である)、シリアルインターフェイスの実現、または、非接触(コンタクトレス力 ード)機能の実現等の拡張端子として使用することができる。
[0007] 図 2 (a)は、本発明の前提として検討した SIMカードの SICチップ搭載側(図 1 (b) の反対側)から見た構造図である。図 2 (b)は図 2 (a)の A— A'の断面図であり、図 2 ( c)は図 2 (a)の B— B'の断面図である。なお、図 2 (a)では、図 1 (b)で示した IS078 16インターフェイス端子 C1〜C8、キヤビディの溝、及び、 SICチップの配置される位 置との対応関係を明確にするため、破線で図示している。
[0008] 図 2 (b)および図 2 (c)に示すように、裏面に IS07816の電極(IS07816インター フェイス端子)を有する基板に SICチップが搭載され、 SICチップの端子と IS07816 の電極とが基板上の開口部を通り抜けてワイヤボンディングされている。基板上の SI Cチップはレジンモールドにより封止され、カードの外形を形成するプラスチックと基 板とが両面接着テープで接続されている。なお、 RSV端子は、図 2 (b)および図 2 (c )ぉレ、ては、 SICチップの端子と接続して!/、な!/、。
[0009] なお、このような ICカードに関する技術としては、例えば、特許文献 1に記載される 技術などが挙げられる。
[0010] 特許文献 1には、マイクロコンピュータとメモリカードコントローラとフラッシュメモリと を有する ICカードモジュールについて記載がある。この ICカードモジュールは、カー ド基板の一表面に、複数の第 1の外部接続端子と複数の第 2の外部接続端子とを露 出し、第 1の外部接続端子に接続するマイクロコンピュータ、第 2の外部接続端子に 接続するメモリカードコントローラ、及びそのメモリカードコントローラに接続するフラッ シュメモリを有する。カード基板の形状と第 1の外部接続端子の配置は ETSI— TS— 102- 221 -V4. 4. 0 (2001— 10)の Plug— in— UICC (Universal Integrated
Circuit Card)の規格に準拠され、若しくは互換性を有する。第 2の外部接続端 子は第 1の外部接続端子の前記規格による端子配置の最小範囲の外に配置され、 第 1及び第 2の外部接続端子は信号端子が電気的に分離されている。これにより、 SI Mカードとの互換性及び高速メモリアクセスへの対応を実現している。 [0011] また、非特許文献 1には、一般的なスマートカードに関する技術の記載がある。 特許文献 1 :特開 2005— 322109号公報
非特許文献 1 :ラウクル'エフイング(W. Raukl&W. Effing)著、「スマート'カード' ハンドブック(Smart Card Handbook)」 、第 2版、ウィリー(WILEY)、 P. 27— 3 発明の開示
発明が解決しょうとする課題
[0012] ところで、前記のような ICカードの技術について、本発明者が検討した結果、以下 のようなことが明らかとなった。
[0013] 例えば、 SICには、 EEPROM等の不揮発性メモリが搭載されている力 S、利用の仕 方によっては、メモリ容量が不足する。メモリ容量を拡張するため、特許文献 1のよう に拡張メモリとしてフラッシュメモリを搭載することも考えられる力 S、全ての利用者に対 して一律に固定化したメモリ容量のフラッシュメモリを搭載するのは、フラッシュメモリ 容量を必要としないユーザやもっと大きい容量を必要とするユーザにとって適切でな いばかりでなぐ多大なコスト負担となる。フラッシュメモリ等の不揮発性の拡張メモリと して、メモリ容量の拡張性が大きぐ利用者の要求に合わせたメモリ容量、適切なコス トとなるものであることが望ましレ、。
[0014] また、個人情報の保護等の目的でメモリ領域のセキュリティ機能を強化、改竄防止 機能の強化、および、異なる形状の ICカードへの移植を可能とすることが望まれる。
[0015] そこで、以上の要求を満たすため、次の解決手段を考えた。
[0016] すなわち、フラッシュメモリ等のメモリの必要領域を SIMカードから分離してリムーバ ブルなメモリカード(カード本体)である半導体装置とする。そして、そのリムーバブル なメモリカード(カード本体)は、後述する Plug— inSIM (Subscriber Identity M odule) 7ダフタゃ miniUICC (Universal Integrated Circuit Card)ァタプタ に揷入可能とする。そのリムーバブルなメモリカード(カード本体)が、 SIMアダプタや miniUICCアダプタに揷入されることにより、 SIMアダプタや miniUICCアダプタ(以 下、単に「アダプタ」という)とリムーバブルなメモリカード(カード本体)(以下、単に「力 ード」とレ、う)とが一体となって拡張メモリ付き SIM又は拡張メモリ付き miniUICCまた は従来の plug-in SIMや miniUICCとして動作するようにするものである。
[0017] しかし、以上の技術を検討した結果、次の複数のそれぞれ独立した主な課題が明 らかとなつた。以下、これらの課題につき、図 3〜図 10を用いて説明する。
[0018] <第 1の課題〉
まず、第 1の課題は、端子の電気的ショートの問題である。
[0019] 図 3は、前述のアダプタに搭載または形成されたコネクタ部分へのカードの揷入の 様子を示す図であり、(a)は揷入前、(b)は揷入後を示す。
[0020] 図 3 (a)に示すように、アダプタのカード A用コネクタ筐体にはカード Aの端子と電気 的接続するためのコネクタ端子が付いている。カード A用コネクタ筐体のカード揷入 口の幅は W1である。また、カード Aの表面には、コネクタ端子と電気的に接続するた めの複数のカード端子がカード端部に形成されている。
[0021] 図 3 (b)に示すように、コネクタ幅 W1とのはめ合いを調整したカード Aは不要なガタ つきがないので、カード A用コネクタにカード Aを揷入した場合、 目的とする端子とコ ネクタが電気的に接続し、不要な他の端子とコネクタとの電気的ショートは発生しない
[0022] 図 4は、アダプタのカード A用コネクタ筐体に、端子ピッチの対応寸法に影響がでる ほど W1より幅の狭いカード Bが揷入された場合の電気的ショート発生例を示す図で あり、(a)はカード A用コネクタにカード Bが揷入された一例の様子を示し、(b)は(a) に示した a部拡大図の平面図、(c)は a部拡大図の斜視図である。
[0023] 図 4 (a)に示すように、カード A用コネクタ筐体のコネクタ揷入幅 W1よりカード Bの幅 W2が狭いとき (W1〉W2)、カード端部に端子を有するカード Bを揷入すると、コネク タ端子がカード端子の隙間に位置したりする。このときコネクタ端子を介してどちらか または両方のカード端子が電気的ショートやショートとオープンを繰り返すチヤタリン グの接触不具合が発生する場合がある。
[0024] 図 4 (b) , (c)は、カード Bが位置ずれを起こし、コネクタ端子(電源端子 VCC, VSS )が 2つのカード端子の間に位置して、 2つのカード端子に 1つのコネクタ端子が接触 している状態を示している。この時、コネクタ端子が両方の端子に接続され電源端子 VCC—VSS間でショートが発生している。図 4 (b) , (c)では、電源端子 VCC, VSS について示しているが、この現象は電源だけでなぐ信号端子においても同様である
[0025] 図 5は、一つのカード端子に二つのコネクタ端子が接続するように設計されたダブ ルコンタクトの電源端子を有するコネクタに、幅の狭いカード Bが揷入された場合の電 気的ショート発生例を示す図であり、 (a)はカード A用コネクタにカード Bが揷入される 様子を示し、(b)は(a)に示した a部拡大図の平面図、(c)は a部拡大図の斜視図であ
[0026] 図 5 (a)に示すように、カード A用コネクタ筐体のコネクタ揷入幅 W1よりカード Bの幅 W2が狭いとき(Wl >W2)、ダブルコンタクトのコネクタ端子を有するカード A用コネ クタに、カード端部に端子を有するカード Bを揷入すると、端子間のショートやチヤタリ ングの接触不具合が発生する場合がある。
[0027] 図 5 (b) , (c)は、カード Bが位置ずれを起こし、同一信号のコネクタ端子(電源端子 VCC, VSS)力 ¾つのカード端子の間に位置して、 2つのカード端子に同一信号のコ ネクタ端子が接触している状態を示している。この時、電源端子 VCC—VSS間でシ ョートが発生して!/、る。電源ラインの接触確実性を向上したダブルコンタクト(または複 数コンタクト)の電源端子を有したコネクタにおいては、カードの位置ずれ (並進、回 転ズレ)による接触不具合力 より顕著になる。
[0028] 図 6は、アダプタのカード A用コネクタ筐体に、カード後端部に端子を有するカード Cが逆揷入された場合の電気的ショート発生例を示す図であり、 (a)はカード A用コ ネクタにカード Cが逆揷入される様子を示し、 (b)は(a)に示した a部拡大図の平面図 、(c)は a部拡大図の斜視図である。
[0029] 図 6 (a)に示すように、カード後端部に端子を有するカード Cを逆揷入すると(180 度回転)、ショートが発生する場合がある。
[0030] 図 6 (b) , (c)は、カード Cが位置ずれを起こし、コネクタ端子(電源端子 VCC, VSS )が 2つのカード端子の間に位置して、 2つのカード端子に 1つのコネクタ端子が接触 している状態を示している。この時、電源端子 VCC—VSS間でショートが発生してい る。図 4 (b) , (c)では、電源端子 VCC, VSSについて示しているが、この現象は電 源だけでなぐ信号端子においても同様である。また、図 6では、 180度回転の場合 を示した力 S、 180度回転に限らず、 Θ度回転でもショートが発生する場合がある。
[0031] <第 2の課題〉
次に、第 2の課題は、カード揷入時におけるコネクタ端子の破壊やカードの機械的 ダメージの問題である。
[0032] 図 7は、アダプタのコネクタ筐体に、カードが揷入された時のコネクタ端子の破壊例 を示す図であり、(a)は厚みのあるカード C1の側面図、(b)はカードの厚みが 0.76m m以下のカード(以下、薄型カードと呼ぶ) C2の側面図、(c)は薄型カード C2がコネ クタ筐体に揷入される前の状態を示す図、(d)は薄型カード C2がコネクタ筐体に揷 入された後の状態を示す図である。
[0033] 図 7 (a)に示すように、厚みのあるカード C1の場合(tclの値が十分にある場合)、 十分な C面ゃフィレット面の面取りを形成できている(但し、 tccl <tcl)。ここで、 C面 とは、カード端部の面取りのことで、フィレット面とは局面的に傾斜した面を形成するこ とを意味する。
[0034] しかし、今回の試作でわかったことによれば、図 7 (b)に示すように、薄型カード C2 の場合 (tc2の値が少ない場合)は、コンタ外端子を目的の弾性変形動作するだけ の案内をする高さの C面ゃフィレット面を形成できな!/、(tcc2〜0)。
[0035] 図 7 (c) , (d)は、十分な C面が形成されない場合の揷入不具合の様子を示してい る。図 7 (c) , (d)において、コネクタ下部は、配線基板、プラスチック等であり、コネク タ端子の支点は、コネクタ下部に接着または半田付け等されている。また、 tlをコネ クタ底面からカード C面の高さ、 t2は、コネクタ底面からコネクタ端子先端の高さであ る。 t2≥tlのとき、コネクタ端子がカード先端部の C面高さ以上の垂直な端面にぶつ かり、コネクタ端子が目的の弾性変形することができず破壊が発生する。すなわち、 十分な C面のない薄型カード C2の場合、カードがアダプタに揷入される時、コネクタ 端子力、カードエッジにぶつ力、つたまま押されるので塑性変形の坐屈によりコネクタ 接点が破壊される。
[0036] <第 3の課題〉
第 3の課題は、薄型カードにおける ICチップ積層不可の問題である。
[0037] 図 8は、複数の ICチップが搭載された薄型カードとアダプタ揷入口の断面図であり 、 (a)は ICチップ同士の積層がない場合、(b)は複数の ICチップが積層された場合 を示す。図 8では、カード内に実装された ICチップを断面的に模式化し、配線基板と のみを表示し、カード外形は非表示にして説明する。図 8において、例えば、チップ Aはフラッシュメモリチップ、チップ Bはコントローラチップである。
[0038] 図 8 (a)に示すように、コネクタへの揷入可能な厚みの限界はアダプタ上面とァダプ タ下面との揷入開口部高さ tよりカード厚さが薄い場合である。
[0039] 図 8 (b)に示すように、複数の ICチップを積層するカードではその封止高さが厚くな りカード厚みが増加しコネクタに揷入できなくなる。図 8では問題点を明らかにするた め、チップ Bの領域がカード揷入高さを超えて表示している力 実際にはチップ B上 の封止エリア(カード外形)が tを超えることはできない。すなわち、薄型カードの厚さ にはチップを保護するため一定の厚さ制限があるため、 ICチップを積層して行く場合 厚み増加により揷入することが困難である。この現象はフラッシュメモリの大容量化に 伴いチップ Aの面積が大きくする場合チップ Bを積層するとき顕著になる。
[0040] <第 4の課題〉
第 4の課題は、薄型カードのコネクタ揷入後のたわみの問題である。
[0041] 図 9は、カードのたわみの一例を示す図であり、 (a)はカードの外形を示す平面図( 端子部は破線で表示)、(b)はアダプタの外形を示す平面図、(c)はカードがァダプ タに揷入された状態を示す平面図、(d)は (b)における A— A'面の断面図、(e)は (c )における B— B'面の断面図(厚いカードの場合)、 (f)は(c)における B— B'面の断 面図(薄!/、カードの場合)である。
[0042] 図 9 (b)のアダプタは、カードの端 (ガイド部)を押さえた構造である。図 9 (c)におい て、破線はカード端部とコネクタ端子部を示す。図 9 (e) , (f)において、破線の三角 形の印で示した部分はカード押さえ(ガイド部)、つまり押さえている支点を示す。 ta はカード Aの厚さ、 tbはカード Bの厚さを示し、両者の関係は tb<taである。図 9 (f) のカード Bは ICカードアダプタに搭載可能な薄いカード Bである。
[0043] 図 9 (f)に示すように、アダプタにカードが揷入された時、薄いカード Bの場合、ァダ プタ上のコンタクト端子の力で押し上げられてたわみが発生することがわかった。厚 いカードの場合はカード全体の剛性が高ぐ支点が端にあってもカード端子全体に 力、かるコネクタコンタクト端子の押し上げ力に対し、実用上の大きな反りは生じない。 し力、し、図 9 (f)の薄いカード Bの場合は、端のガイド部の押さえではコンタクト端子か らの全体的なカードが押し上げ力により、カードのたわみが大きく発生し、不十分な 電気的接触性の不具合やアダプタとたわんだカードを含んだ総合的な厚み増加で 不良が生じる。
[0044] <第 5の課題〉
第 5の課題は、カードのコーナにある方向性を示す切り欠きのため、搭載チップサイ ズが限定される問題である。
[0045] 第 5の課題で示すカードとは、薄型カード (カード本体)ではなぐ通常のカードを意 味する。
[0046] 図 10は、カードへの ICチップ搭載例を示す図であり、(a)は幅 wの大きいチップ A2 が基板上に搭載されたカード(例えば miniUICC)の平面図、(b)は長さ 1の大きいチ ップ A3が基板上に搭載されたカード(例えば miniUICC)の平面図である。チップ A
2は幅 wが大きい ICチップ、チップ A3は長さ 1が大きい ICチップである。コーナ切り欠 きは、カードの方向を示す。
[0047] 図 10 (a) , (b)に示すように、 miniUICC等のカードの一部に切り欠きを有する形状 では矩形上のチップやモジュールの搭載面積が切り欠きの影響で制限される。
[0048] 図 10 (a) , (b)では、基板よりチップが小さい例を示している力 チップが大きくでき
、基板とチップが同一サイズになった場合を例にして以下、説明する。
[0049] カードの外形サイズは a X bである力 カードのコーナの切り欠きにより短くなる側の 辺の長さをそれぞれ、 L,Wとする。
[0050] 切欠きのため、下記のチップサイズ範囲でカードに搭載できない場合がでてくる。
[0051] すなわち、図で明らかなように Lを超える長さ l (L<l< a)を有し幅 wが大きい A2チッ プのときは、 W≤w≤b、 Wを超える幅 w (W<w<b)を有し長さ 1が大きい A3チップの ときは、 L≤l≤aでチップが搭載できない場合がある。
[0052] また、アダプタと薄型カード(カード本体)との構成とした場合も、アダプタがカード 外形より切り欠きを有するので、薄型カードの形状が切り欠きにより大きく制限される ことになる。 [0053] 本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図
Figure imgf000011_0001
課題を解決するための手段
[0054] 本願において開示される発明のうち、代表的なものとして、一実施の形態を例に用
V、て概要を簡単に説明すれば、次のとおりである。
[0055] 前記第 1の課題を解決する手段として、カード端子をカードの中央に配置する。
[0056] また、別の一実施の形態によれば、前記第 2の課題を解決する手段として、ァダプ タのコネクタ端子の支点 (接着点)をアダプタのカード揷入口側に向ける。
[0057] また、別の一実施の形態によれば、前記第 3の課題を解決する手段として、チップ 積層によるカード厚みの増加をカードの揷入後ろ端に位置させ、揷入先側に比べ揷 入後ろ側のカードの厚みを厚くしたカード構造にする。
[0058] また、別の一実施の形態によれば、前記第 4の課題を解決する手段として、コンタク ト端子直上に押さえ構造を有するカード構造とする。
[0059] さらに、別の一実施の形態によれば、前記第 5の課題を解決する手段として、カード の 2つのコーナのうち、切り欠き部近辺のコーナの曲率を切り欠き部を有しない方の コーナの曲率より小さくする。
発明の効果
[0060] 本願において開示される各発明のうち、代表的なものによって得られる、それぞれ の発明の効果を簡単に説明すれば、以下のとおりである。
[0061] (1)端子間の電気的ショートが生じに《なる。
[0062] (2)カード揷入時のアダプタのコネクタ端子の破壊が防止される。
[0063] (3)薄型カードにおいて、 ICチップの積層化が可能となる。
[0064] (4)カード揷入時のコネクタ端子の押し付け力によるカードたわみが抑制される。
[0065] (5)コーナ切り欠きによる搭載チップ等の面積抑制が緩和される。
図面の簡単な説明
[0066] [図 l] (a)は、本発明の前提として検討した Plug— inSIM (ID— 000)のスマートカー ドの構成を示すブロック図、(b)は、 IS07816での端子割り当てを示す図である。
[図 2] (a)は、本発明の前提として検討した SIMカードの SICチップ搭載側(図 1 (b) の反対側)から見た構造図、(b)は図 2 (a)の A— A'の断面図、(c)は図 2 (a)の B— B'の断面図である。
[図 3]アダプタのコネクタ部分へのカードの揷入の様子を示す図であり、 (a)は揷入前 、(b)は挿入後を示す。
園 4]アダプタのカード A用コネクタ筐体に、幅の狭いカード Bが揷入された場合の電 気的ショート発生例を示す図であり、 (a)はカード A用コネクタにカード Bが揷入される 様子を示し、(b)は(a)に示した a部拡大図の平面図、(c)は a部拡大図の斜視図であ
[図 5]ダブルコンタクトの電源端子を有するコネクタに、幅の狭いカード Bが揷入され た場合の電気的ショート発生例を示す図であり、 (a)はカード A用コネクタにカード B が揷入される様子を示し、(b)は(a)に示した a部拡大図の平面図、(c)は a部拡大図 の斜視図である。
園 6]アダプタのカード A用コネクタ筐体に、カード後端部に端子を有するカードじが 逆揷入された場合の電気的ショート発生例を示す図であり、 (a)はカード A用コネクタ にカード Cが逆揷入される様子を示し、(b)は(a)に示した a部拡大図の平面図、(c) は a部拡大図の斜視図である。
園 7]アダプタのコネクタ筐体に、カードが揷入された時のコネクタ端子の破壊例を示 す図であり、(a)は厚みのあるカード C1の正面図、(b)は薄型カード C2の正面図、( c)は薄型カード C2がコネクタ筐体に揷入される前の状態を示す図、(d)は薄型カー ド C2がコネクタ筐体に揷入された後の状態を示す図である。
園 8]複数の ICチップが搭載された薄型カードとアダプタ揷入口の断面図であり、 (a) は ICチップの積層がない場合、(b)は複数の ICチップが積層された場合を示す。
[図 9]カードのたわみの一例を示す図であり、(a)はカードの外形を示す平面図、(b) はアダプタの外形を示す平面図、(c)はカードがアダプタに揷入された状態を示す 平面図、(d)は(b)における A— A'面の断面図、(e)は(c)における B— B'面の断面 図(厚いカードの場合)、 (f)は(c)における B— B'面の断面図(薄いカードの場合) である。
[図 10]カードへの ICチップ搭載例を示す図であり、 (a)は幅 Wの大きいチップ A2が 搭載されたカード(miniUICC)の平面図、(b)は長さ Lの大きいチップ A3が搭載さ れたカ一ド(miniUIC C)の平面図である。
園 11]カード端子の中央配置例を示す図であり、(a)はカード正揷入時、(b)はカー ド逆揷入時、(c)はコネクタ端子とカード端子がショートしないカード端子配置可能領 域、(d)はカード端子配置例を示す。
[図 12]両方向から Z以上離れた中央端子配置例を示す図であり、 (a)はカード正揷 入時、(b)はカード逆揷入時を示す。
園 13]正逆上下揷入時におけるカード端子の中央配置例を示す図であり、 (a)はァ ダプタとコネクタの外形、(b)はカード Dの場合のショート発生例、(c)はコネクタ端子 とカード端子がショートしないカード端子配置可能領域 1301、 (d)はカード端子配置 例を示す。
園 14]カード揷入時のコネクタ端子の破壊防止例を示す図であり、 (a)はカード寸法 、(b)はカード揷入前、(c)はカード揷入後を示す。
[図 15] (a) , (b) , (c)は、チップ多層積層可能なカード構造を示す図である。
園 16]たわみを抑制するための構造を有するアダプタとカード構造例を示す図であり 、(a)はカードの形状を示す平面図、(b)は本発明によるアダプタ構造を示す平面図 、(c)はカードがアダプタに揷入された状態を示す図、(d)は (b)における A— A'面 の断面図、(e)は B— B'面の断面図である。
園 17]miniUICC等コーナに切り欠きを有するカード(アダプタ)に実装又は揷入さ れるカードの形状を示す図である。
園 18]本発明の一実施の形態による ICカードの構成を示すブロック図である。
園 19]薄型メモリカード 1802の端子信号例を示す図である。
[図 20] (a)は Vcc端子の割当例、(b)はタイミングチャートを示す図である。
園 21]RSV (リザーブ)端子の割当例を示す図である。
[図 22]薄型メモリカード 1802の第 1実施例(メモリスティックインターフェースの例)の 構成を示すブロック図である。
[図 23]薄型メモリカード 1802の第 2実施例(メモリスティックインターフェースの例)の 構成を示すブロック図である。 [図 24]薄型メモリカード 1802の第 3実施例(メモリスティックインターフェースの例)の 構成を示すブロック図である。
[図 25]薄型メモリカード 1802の第 4実施例(メモリスティックインターフェースの例)の 構成を示すブロック図である。
園 26]本発明の一実施の形態による薄型メモリカード 1802の外形を示す図であり、 ( a)は平面図、 (b)は正面図、 (c)は背面図、(d)は左側面図、(e)は右側面図、 (f)は 裏面図である。
園 27]本発明の一実施の形態による薄型メモリカード 1802の外形を示す斜視図で あり、(a)は上側から見た図、(b)は下側から見た図である。
園 28]本発明の一実施の形態による薄型メモリカード 1802のチップの搭載を示す図 であり、(a)は基本例、(b)は応用例 1、(c)は応用例 2を示す。
園 29]本発明の一実施の形態による薄型メモリカード 1802のチップの搭載を示す図 であり、(a)は応用例 3、(b)は応用例 4を示す。
[図 30]本発明の一実施の形態による Plug— inSIM変換アダプタ(SIMカードァダプ タ 1801)の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面図、(d)は 左側面図、(e)は右側面図、(f)は裏面図である。
[図 31]本発明の一実施の形態による Plug— inSIM変換アダプタ(SIMカードァダプ タ 1801)の外形を示す斜視図であり、(a)は上側から見た図、(b)は下側から見た図 である。
[図 32]Plug— inSIM変換アダプタ(SIMカードアダプタ 1801)に薄型メモリカード 18 02が揷入された後の外形を示す平面図である。
[図 33]Plug— inSIM変換アダプタに薄型メモリカード 1802が揷入される前と後の構 成を示す縦断面図であり、(a)は薄型メモリカード 1802が揷入される前、(b)は薄型 メモリカード 1802が揷入された後を示す。
[図 34]Plug— inSIM変換アダプタの配線構成を示す平面図である。
園 35]Plug— inSIM変換アダプタの配線構成を示す断面図である。
園 36]本発明の一実施の形態による miniUICCアダプタ(SIMカードアダプタ 1801 に対応) 3601の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面図、( d)は左側面図、(e)は右側面図、(f)は裏面図である。
[図 37]miniUICCアダプタ 3601 (SIMカードアダプタ 1801に対応)の外形を示す斜 視図であり、(a)は上側から見た図、(b)は下側から見た図である。
園 38]本発明の一実施の形態による薄型メモリカード用外形変換アダプタ 1 (M2ァ ダプタ)及び M2アダプタの内部結線を示す図であり、 (a)は薄型メモリカード 1802、 (b)は変換アダプタ 3801、(c)はカード揷入前の変換アダプタ 3801の断面図、(d) はカード揷入後の変換アダプタ 3801の断面図である。
園 39]薄型メモリカード用外形変換アダプタ 1 (M2アダプタ)の外形を示す図であり、
(a)は平面図、(b)は下面図、(c)は側面図である。
園 40]本発明の一実施の形態による薄型メモリカード用外形変換アダプタ 2 (M2ァ ダプタ)及び M2アダプタの内部結線を示す図であり、 (a)は薄型メモリカード 1802、
(b)は変換アダプタ 3801、(c)はカード揷入前の変換アダプタ 3801の断面図、(d) はカード揷入後の変換アダプタ 3801の断面図である。
園 41]本発明の一実施の形態による SIM機能付き薄型メモリカード 2の外形を示す 図であり、(a)は平面図、 (b)は正面図、 (c)は背面図、(d)は左側面図、(e)は右側 面図、(f)は裏面図である。
[図 42]SIM機能付き薄型メモリカード 2のカード端子配置例(MS I/F + IS07816
I/Fの例)を示す図である。
園 43]Vcc端子の割当例を示す図である。
園 44]RSV (リザーブ)端子の割当例を示す図である。
園 45]RSV (リザーブ)端子の割当例を示す図である。
[図 46]本発明の一実施の形態による Plug— inSIM変換アダプタ 2 (SIMカードァダ プタ 1801)の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面図、(d) は左側面図、(e)は右側面図、(f)は裏面図である。
[図 47]Plug— inSIM変換アダプタ(SIM力一ドアダプタ 1801)に薄型メモリ力ード 18 02が揷入された後の外形を示す平面図である。
[図 48]Plug— inSIM変換アダプタ 2に薄型メモリカード 1802が揷入される前と後の 構成を示す縦断面図であり、(a)は薄型メモリカード 1802が揷入される前、(b)は薄 型メモリカード 1802が揷入された後を示す。
[図 49]本発明の一実施の形態による miniUICCアダプタ 2 (SIMカードアダプタ 180 1に対応)の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面図、(d) は左側面図、(e)は右側面図、(f)は裏面図である。
[図 50]miniUICCアダプタ 2の外形を示す斜視図であり、(a)は上側から見た図、(b) は下側から見た図である。
[図 51]本発明の一実施の形態による切り欠き付き薄型メモリカード 3の外形を示す図 であり、(a)は平面図、 (b)は正面図、 (c)は背面図、(d)は左側面図、(e)は右側面 図、(f)は裏面図である。
[図 52]本発明の一実施の形態による切り欠き付き薄型メモリカード 4の外形を示す図 であり、(a)は平面図、 (b)は正面図、 (c)は背面図、(d)は左側面図、(e)は右側面 図、(f)は裏面図である。
[図 53] (a) , (b)はカード端子の中央配置例を示す図である。
[図 54]カード端子の中央配置例を示す図である。
発明を実施するための最良の形態
[0067] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態 を説明するための全図において、同一部材には原則として同一の符号を付し、その 繰り返しの説明は省略する。
[0068] <実施の形態 1〉
実施の形態 1に示すものは、主に第 1の課題を解決するものであり、概要を簡単に 説明すれば、カード端子を半導体装置であるカードの中央に配置するものである(以 下、半導体装置をカードもしくは薄型カードと呼ぶ)。
[0069] 図 11、図 53及び図 54にはカード端子がカード中央部に配置されたカードと、カー ドが揷入されることでカードのカード端子と電気的に接続可能なコネクタ端子を有す るアダプタが示されている。
[0070] なお、ここでのアダプタは他のカード用のアダプタであり、ここで示すカードを揷入し て本来は使用するものではなレ、。
[0071] 図 11 (a)はカード正揷入時、 (b)はカード逆揷入時、 (c)はコネクタ端子とカード端 子がショートしないもしくはしにくいカード端子配置可能領域、(d)はカード端子配置 例を示す。
[0072] 図 11 (a)において、 1101はカードを押すことで排出されるいわゆる Push— Pushコ ネタクのスライドするストローク領域である。図 11 (a) , (b) , (c)において、 Zは、コネク タ端子がカードをスライドする領域である。図 11 (c)において、 1102のハッチ部は、 コネクタ端子とカード端子がショートしないカード端子配置可能領域である。この領域 にカード端子を配置する。
[0073] なお、図 11 (c)の Zは、アダプタサイズやカードサイズにより変わるものであるが、力 ードの両端領域でなぐ中央領域 1102にカード端子を設けることで、ショートの確立 が下げられることを意味する。
[0074] カード端子の位置を、中央領域として、例えば図 11 (d) ,図 53 (a) ,図 53 (b)のよう に示すことができる。
[0075] 図 11 (d)では、従来であれば、カード端子の位置は、正しいカードの揷入先側の力 ードの一辺からカード端子の一方端までの距離 B1が、カードの長手方向の中間位置 力もカード端子他端までの距離 C1より短い。
[0076] これに対し、本実施の形態では、カード端子の位置は、正しいカードの揷入先側の カードの一辺からカード端子の一方端までの距離 B2が、カードの長手方向の中間位 置からカード端子他端までの距離 C2より大きい。なお、カードの中間位置から正しい カードの揷入先側のカードの一辺に向けた方向を正方向、その逆方向を負方向とす るので、 C2はマイナス値となる。
[0077] 図 53 (a)では、カード端子が中間位置から少しずれた例、 C3が正の値の例である。
[0078] この場合も、 B3が C3より大きくなつており、ショートの問題が抑制できる。
[0079] 図 53 (b)では、カード端子位置を別表現したものである。カードの長手方向に対し 、 1/4づつに区切った場合のどの位置にあるかを示すものである。正しいカードの揷 入先側のカードの一辺から 1/4内にあるの力 従来例であり、 2/4から 3/4内にあるの が例 3である。
[0080] この位置にあることで、ショートの発生が抑制されやすくなる。
[0081] なお、カード端子が長い場合や位置の調整により、各 1/4領域内に収まらない場合 もあるが、カード端子の面積が 2/4から 3/4領域内に占める率がその他の領域に占め る率より高ければ、その他の領域に占める率が高い場合よりもショートの確立を下げ られる。
[0082] なお、具体的な数値の例としては、カード端子の長手方向の長さが lcmから 2cm 程度であり、カード端子の長手方向の長さが 2mmから 4mm程度である。
[0083] 図 54では、カード端子が 1列の配置の 1列配置、カード端子が 1端子づっずらした 繰り返しパターンで配置される千鳥配置、 IS07816端子とカード端子とが配列された 複数列配置、千鳥配置と複数列配置が混ぜられた複数列千鳥配置、カード内部の 電圧や信号測定端子である、例えばテスト端子となるグリッド端子とカード端子が配 列された複数列グリッド配置の例を示した。
[0084] 各カードに示された破線は、図 53 (b)と同様にカードを 1/4領域づつに区切ったも のである。
[0085] これらから言えることは、 2/4から 3/4領域にカード端子やその他の端子が設けられ ていることである。また、別の見方をすれば、 1/4領域に占めるカード端子等の端子の 面積率に比べ、 2/4から 3/4領域に占める端子の面積率が高いことである。
[0086] さらに別の見方をすれば、端子密度が、 1/4領域よりも 2/4から 3/4領域の方が高い といえる。
[0087] なお、 4/4領域については、 1/4領域と同様にしてよい。
[0088] 以上のように、端子面積率または端子密度の工夫により、従来よりもショートの問題 を抑制できる。
[0089] なお、 IS07816の電極は規格により決められた端子であるため、上述した領域配置 に制限されず、カード端子のみ上記要件を満たすようにしても良い。
[0090] これによつても、少なくともカード端子のショートの問題は抑制できるからである。
[0091] 図 12は、両方向から Z以上離れた中央端子配置例を示す図であり、(a)はカード正 揷入時、(b)はカード逆揷入時を示す。
[0092] 図 12 (a) , (b)に示すように、端子が中央配置している場合、正揷入 ·逆挿入の場 合もカード端子とコネクタ端子はショート (接触)しにくい構造となる。
[0093] 図 13は、正逆上下揷入時におけるカード端子の中央配置例を示す図であり、 (a) はカードとコネクタの外形、(b)はカード Dを正逆上下揷入した場合の例、(c)はコネ クタ端子とカード端子がショートしにくいカード端子配置可能領域 1301、(d)はカー ド端子配置例を示す。
[0094] 図 13 (a)のように、カードの幅も長さもコネクタ揷入幅 W1より小さい場合、すなわち Wl (Aカード用コネクタ)〉L2、かつ、 Wl (Aカード用コネクタ)〉W2の場合につい て検討する。この場合は、図 13 (b)に示すように、カード正揷入時、カード逆揷入時 、カード 90度回転時のショート発生が考えられる。この場合の対策として、図 13 (c) に示すように、コネクタ端子とカード端子がショートしにくいカード端子配置可能領域 1301にカード端子を配置する。図 13 (d)では、カード端子配置例として 1列配置、 千鳥配置、グリット配置の例を示した。以上のように、適合しないコネクタに誤挿入さ れたカードにおいて電源や信号のショートを生じに《する例を示した。しかしカード によっては、全てのカード上の端子に中央配列を適用しなければならないわけでは ない。例えば、カードの検出上重要となる端子や動作上ラッチアップ不良を誘発する 端子等、具体的には、データの入出力が行われるデータ端子や、カードの動作を制 御する制御信号が入力される制御端子や、クロック信号が入力されるクロック端子等 に限定着目して、中央に配置するようにしても良い。
[0095] これらの端子の中で、カードへの電源投入前にコネクタ端子とカード端子が接触す ることで、ラッチアップ等により異常電流が流れる可能性のあるものに適用するとして も良い。
[0096] また、アダプタとの関係で一定の排他構造のカード形状とすることで、逆揷入禁止 にできる場合もある力 例えば他のアダプタでも排他構造となる力^、なかの問題も考 えられることから、これらの場合でもカード後ろ端からの Zの制限を設けてもよい。
[0097] 以上のように、第 1の実施の形態によれば、カード端子をカード中央部に配置する。
[0098] または、正しいカードの揷入先側のカードの一辺からカード端子の一方端までの距 離力 S、カードの長手方向の中間位置からカード端子他端までの距離より大きくする。
[0099] または、カードの長手方向に対し、 1/4づつに区切った場合の、正しいカードの揷 入先側のカードの一辺から 2/4から 3/4領域内にカード端子を設ける。
[0100] または、 1/4領域に比べ、 2/4または 3/4領域のカード端子の占める面積率が高くす [0101] または、 1/4領域に比べ、 2/4または 3/4領域のカード端子の密度が高くする。
[0102] これにより、アダプタに誤挿入されたカードにおいて電源や信号のショートを生じに くくすること力でさる。
[0103] <実施の形態 2〉
実施の形態 2に示すものは、主に第 2の課題を解決するものであり、概要を簡単に 説明すれば、アダプタのコネクタ端子の支点 (接着点)をアダプタのカード揷入口側 に向けるものである。
[0104] 図 14は、カード揷入時のコネクタ端子の破壊防止例を示す図であり、(a)はカード の面取り部の高さを示す面取り寸法(カード C面の高さ) tcc2やカード厚み tc2、 (b) はカード揷入前のカードとコネクタ端子の位置関係を示す図、(c)はカード揷入後を 示す。図 14において、 tlはコネクタ下部のカード揷入側表面とカード C面までの高さ 、 t2はコネクタ端子上端とコネクタ下部のカード揷入側表面の間の距離、 t3はコネク タ端子の支点部分の高さを示す。 tlはカードとコネクタの隙間寸法と面取り寸法 tcc2 の和である。支点は、コネクタ下部に接着または半田付け等で固定されている。コネ クタ下部は、配線基板、プラスチック等である。
[0105] tcc2が 0または非常に小さい時のコネクタ端子坐屈不具合の解決策は次の通りで ある。コネクタの固定位置 (ここでは支点を例とする)をカードの揷入方向よりコネクタ 端子接点位置より手前にすると、支点の高さ位置がカードに接触する不具合が出な い(カードとコネクタの隙間がコネクタ端子の支点部厚さより大きぐ互いに衝突しない )条件で、コネクタ端子は坐屈しない。このとき、カードの面取り tcc2は 0でも可能であ る。このときカード揷入後のコネクタ端子の変形は弾性変形範囲内にあるように設計 するのが 繰り返し揷抜においては望ましい。 C面を取らなくてもコネクタ端子が坐屈 しないのはコネクタ端子の支点がカードの底部より下、すなわちコネクタ下部の方に あるので、コネクタ端子の変形は常にカード揷入に倣うように設計された動きがとれる 力 である。
[0106] また、図 7との差異のもう 1つは、図 7では、カード揷入口に近い方をコネクタ端子先 、遠い方をコネクタ端子支点部としているのに対し、図 14では、カード揷入口に近い 方をコネクタ端子支点部、遠!/、方をコネクタ端子先端としてレ、ることである。
[0107] 図 14のように、カード揷入時、固定されたコネクタ端子支点部から、移動可能なコ ネクタ端子先端へ向けてカードが移動するので、コネクタ端子先端がカードとぶっか りあうことを防げる。
[0108] 以上のように、第 2の実施の形態によれば、アダプタのコネクタ端子の支点がカード の底部より下に設けることにより、カード揷入時のアダプタのコネクタ端子の破壊が防 止される。
[0109] <実施の形態 3〉
実施の形態 3に示すものは、主に第 3の課題を解決するものであり、概要を簡単 に説明すれば、チップ積層によるカード厚みの増加をカードの揷入後ろ端に位置さ せ、部分的に厚いカード構造にするものである。
[0110] 図 15は、チップ多層積層可能なカード構造を示す図である。図 15において、例え ばチップ Aは配線基板上に搭載されたチップサイズの大きいフラッシュメモリチップ、 チップ Bはフラッシュメモリをコントロールするコントローラチップである。コントローラチ ップは、フラッシュメモリよりチップサイズが小さ!/、。
[0111] カード全体はチップ表面を保護するプラスチック樹脂等によるモールド部で覆われ ている。 tはアダプタへの揷入可能な最大のカード厚みである。図 15に示すように、 カードの厚さを 2つの厚みを持つ 2段の階段構造とし、チップの積層部分を揷入後ろ 端に持ってくる。これによりカードはコネクタの下部と上部をカードの薄い部分でガイ ドあるいは保持され、カードの厚い部分(図 15ではチップ Bが搭載された部分)は露 出している。このカードの露出部分はカードを着脱するときに直接ハンドリングする部 分としてカードをコネクタから引き出し扱うことができる。また、この厚い露出部分に力 ード認識用のマーキングを印字 ·印刷することも可能である。
[0112] また、ここではコントローラチップのサイズは基板のサイズの半分以下である。このた め、カードの厚さが薄い部分に比べ、カードの厚さが厚い部分の方が平面の面積が 狭い。これにより、コネクタへの揷入量が増加し、揷入後の安定性が増す。
[0113] なお、コントローラチップのサイズが基板のサイズの半分より大きい場合であっても、 フラッシュメモリより小さいチップサイズであれば、 2段構造は適用できるものである。 [0114] また、図 15(a)では、 2チップを例に示した力 基板やチップをより薄くできる場合等 により、 3チップ以上を組み合わせて 2段の階段状の厚み構造を有するカード、もしく は 3段以上の階段状の多段構造としても良い。
[0115] さらに、カードに搭載される半導体チップは、フラッシュメモリチップやコントローラチ ップに限定されるものではなぐ他の機能を有するチップ、例えば、 DRAM, SRAM,マ イコン等を搭載しても良い。
[0116] また、図 15(a)ではカードの厚さが厚い部分と薄い部分の境界がおおよそ垂直であ る力 図 15(b)や (c)に示すように、スロープ状になだらかに厚い部分と薄い部分が連 続しても良い。
[0117] これに応じて、アダプタの形状も合わせれば良い。
[0118] また、これまでカードの多段構造を中心に述べた力 アダプタについても、新しい構 造となっている。
[0119] 図 15に示すように、アダプタ上面部は、アダプタ下面部より、カード揷入端からカー ド揷入口までの長さが短くなつて!/、る(ULく DL)。
[0120] これにより、多段構造のカードの揷入を実現している。
[0121] 以上のように、第 3の実施の形態によれば、カードの揷入側から揷入後ろ側に行く に従い順次カードの厚みが厚くなる構造としたことにより、アダプタの揷入口の高さの 問題からカードの厚みが制限されるカードにおいて、 ICチップの積層化が可能となる
[0122] <実施の形態 4〉
実施の形態 4に示すものは、主に第 4の課題を解決するものであり、概要を簡単に 説明すれば、コンタクト端子直上に押さえ構造を有するカード構造とするものである。
[0123] 図 16は、カードのたわみを抑制する構造のアダプタとカードの構造例を示す図で あり、(a)はカードの形状と裏面にあるカード端子の領域を示す平面図と、このカード を右側面から見た側面図、(b)は本発明によるアダプタ構造を示す平面図、(c)は力 ードがアダプタに揷入された状態を示す図、(d)は (b)における A— A'面の断面図、 (e)は B— B'面の断面図である。
[0124] 図 16 (b)に示すように、斜め線の領域を除いてアダプタの上面部である板状構造と なっている。ここで、カードと平面上重なるアダプタ上面部をガイド部とする。ガイド部 は複数の端子が配列されたコネクタ端子部を覆っている。図 16 (c)において、 1601 はコネクタ端子部とカード端子部が接触している状態を示す。図 16 (e)において示 すように、各コネクタ端子に対向するようにアダプタ上面部であるガイド部が設けられ ているので、ガイド部は、複数の支点(図中の破線の三角、おおまかな支点を便宜上 示すものであり、実際には現れるものではない)によるカード押さえ機構として働く。
[0125] これにより、コンタクト端子からのカードを押し上げ力をガイド部全体で分散して押さ えているため、カードのたわみが抑制される。
[0126] またこの場合、カード上部に位置する押さえ構造の板はアダプタの側面と機械的に 繋がっていることから、面内の張力を連続的に伝えることができる。これにより、コネク タ端子からの押上げ力の反発 ·位置保持力を発生させることも可能である。
[0127] また、ここではガイド部として板状の例を示した力 コネクタ端子からのカードへの押 上げ力によるカードたわみ量を抑制、もしくは低減するため、コネクタ端子接点部直 上または直上の近傍にカードのたわみを制限する押さえ構造があるものでもよい。例 えば、ガイド部に複数の穴やスリット等があってもよい。つまり、部分的に開口してい ても板構造の面内の張力は伝えることができる。
[0128] 実施の形態 3の中で示された例えば多段構造のカードに対し、本実施の形態を適 応する場合は、厚みの薄いカード領域にコネクタ端子とコンタクトするカード端子を配 置することで可能である。このときカード上部の押さえ板 (ガイド部)は、少なくとも薄い カード領域のカード端子部分を覆ってレ、ればよレ、。
[0129] 以上のように、第 4の実施の形態によれば、アダプタのコネクタ端子部を覆うように アダプタ上面部であるガイド部を設けることで、カード揷入時のカードのたわみが抑 制される。
[0130] <実施の形態 5〉
実施の形態 5に示すものは、主に第 5の課題を解決するものであり、概要を簡単に 説明すれば、カードのコーナ部の曲率を、切り欠き部に比べ切り欠き部でない部分 で大きくするものである。
[0131] 図 17は、 miniUICC等コーナに切り欠きを有するカードにチップが搭載される基板 の形状又はアダプタに揷入されるカードの形状を例として示すものである。
[0132] miniUICC等コーナに切り欠きを有するカードに基板を搭載または薄型カードを揷 入することを考慮して、基板もしくはカードの先端形状を図 17のように、角部に丸み を持たせる。 miniUICCに揷入される薄型カードは、コーナ R1を切り欠きに接するか 、または miniUICCカード外形規格の最大値以内とする。これにより、薄型カード面 積もしくはチップ搭載面積の増加が可能となる。この際、 R1〉R2とする。曲率で示せ ば、 R1にくらべ R2側の曲率を大きくする。 R1はコーナ切り欠きを超えないようにする。 但し、図 17では、円弧状であるが直線や多角形でも、本論を逸脱しない範囲で変形 組み合わせ可能である。
[0133] このとき R2を必要最小限(例えば Rを 0.05mm)に小さくすることで、図 10の 1で示す L より大きいチップは R2のあるほうに近づけて配置することができる。これにより、チップ 幅 wを最大限にすることが可能になる。なお、 R2は薄型カードをアダプタに揷入する とき薄型カードの角でコネクタを削ったり、揷入での弓 Iつかかりを低減しスムーズな揷 入を促すために形成するものである。
[0134] 以上のように、第 5の実施の形態によれば、薄型カードの 2つのコーナのうち、切り 欠き部近辺のコーナを切り欠き部を有しない方のコーナに比べ曲率を小さくすること で、コーナ切り欠きによる薄型カードの面積抑制が緩和されるものである。
[0135] <実施の形態 6〉
図 18は、本発明の実施の形態 6による SIMカードの構成を示すブロック図である。 本発明の薄型メモリカード(以下、単に「カード」ともいう) 1802を SIMカードアダプタ (以下、単に「アダプタ」ともいう) 1801にコネクタ 1808を介して接続することで、フラ ッシュメモリ 1806内蔵の SMカードとできるものである。また、図 18では、図中に ISO 7816端子の機能説明例も示している。
[0136] SIMカードアダプタ 1801は、 SIMカード用セキュアマイコン(SIC1) 1803、 IS07 816端子 1804、メモリカード用コネクタ 1808などから構成される。アダプタに揷入さ れる薄型メモリカード 1802は、カードに設けられたカード端子と、アダプタに設けられ たコネクタ 1808のコネクタ端子(図示せず)と力 接続されることで、データ、信号等 のやりとりが行われる。 [0137] 薄型メモリカード 1802は、コントローラ 1805、コントローラにより制御されるフラッシ ュメモリ 1806、必要に応じてセキュアマイコン(SIC2) 1807など力、ら構成される。
[0138] ここで、コネクタ 1808はセキュアマイコン 1803とインターフェースを持ち互いに通 信可能である。
[0139] またコネクタ 1808は、必要に応じて IS07816端子 1804と一部または全部に接続 しても良い。
[0140] またコネクタ 1808は、薄型メモリカード内部のコントローラ 1805とメモリカード用イン ターフェイス、例えばメモリースティック(商標、 MEMORY STICK登録商標)インターフ ェイスである MS I/Fを介して接続されたり、必要に応じて設けられたセキュアマイコン 1807またはその機能を実現する回路 (例えばセキュアマイコン機能をコントローラ 18 05が有する)と拡張 I/Fを経由して接続されても良い。
[0141] また、 MS I/Fにセキュア機能を兼用させてもよい。
[0142] 拡張 I/Fは、図中では RSV1から RSV3の 3本である力 それ以上の本数を設けて あよい。
[0143] SIMカード用セキュアマイコン(SIC1) 1803は、 IS07816端子 1804と IS07816 I/F (インターフェース)を介して接続されて!/、る。
[0144] また、 IS07816端子の空き端子(図 18では C4,C8を例としている)は、 USBに用い ても良い。さらに、空き端子の他の使用例として、 SDカード I/F、 MMC I/F、非 接触通信 I/F等用に用いても良い。
[0145] この SIMカードの実施例としては、アダプタの SIC1と薄型カードとのセキュア通信、 暗号処理用に SIC2を使用する場合、 SIC1を省略してカード内 SIC2が全てを処理 する場合、カードに SIC2がない場合等がある。 SIMカードアダプタ 1801は、薄型メ モリカード 1802用のコネクタ 1808を有し、コネクタ 1808を介して、薄型メモリカード 1 802と SIMカードアダプタ 1801内のセキュアマイコン 1803とを通信する。また、直接 、 IS07816端子 1804にアクセスする経路を設けることも上述のように可能である。
[0146] 図 19は、薄型メモリカード 1802の端子信号例を示す図である。図 20は、 Vcc端子 の割当例を示す図である。図 21は、 RSV (リザーブ)端子の割当例を示す図である。
[0147] 図 19に示す薄型カードのカード端子は、例としてメモリースティックマイクロ(商標、 Memory Stick Micro商標)に適応した場合である。カード端子は、薄型カードがァダ プタに揷入されたか否かを検出する端子である INS,バス状況を示す端子である BS ,カードのデータ入出力等の制御に用いられるシリアルクロックが入力される端子で ある SCLK,データの入出力が行われる端子である DATA0— DATA3,電源電圧 端子である Vccl ,接地電圧端子である Vssを有する。
[0148] さらにここでは、拡張端子であるリザーブ端子 RSV1から RSV3, Vcc2の 4本を有す
[0149] ここに示す薄型メモリカード 1802は、 1. 8Vと 3. 3Vの電源および信号インターフエ ースに対応できるものである。拡張端子 VCC2は、カード内部の素子の一部に 3. 3V のみで動作するものを実装した場合に用いられるものである。
[0150] なお、本願において 1. 8Vとは、 1. 8Vからおおよそ 1割程度の電圧上昇もしくは電 圧降下を生じても、正常な動作が保証される電圧を意味するものである。
[0151] 同様に、 3. 3Vとは、 3. 3Vからおおよそ 1割程度の電圧変動での動作の保証がさ れて!/、る電圧を意味するものである。
[0152] 3. 3Vでフラッシュメモリが動作するとした場合、 VCC端子の電圧割り当て例を図 20
(a)に示す。ここでは、 1. 8Vが Vcclに印加されたときは、 Vcc2は 3.3Vを外部から供 給できる電源端子として!/、る。
[0153] また、リザーブ端子を薄型カードに用いられる電源の電源制御に用いてもよい。ここ では、 RSV3を用いた例で説明する。
[0154] 図 20(a)の割当例(1)の場合、つまり 1.8Vと 3.3Vが供給される場合、 Vcclに 1 · 8V が供給され、本カード内部のコントローラが起動したのち、適切なタイミングで Vcc2 に 3. 3Vを供給開始や停止を指示する信号を出力する制御信号端子を RSV3とする
。図 20(b)には、タイミングチャートを示している。
[0155] RSV3は、薄型カードからアダプタへの出力が基本である力 S、アダプタからのレスポ ンスを得る双方向通信も可能である。
[0156] 図 20(a)の条件と異なる条件、つまり VCC1に 3. 3Vが供給される場合において、 1 ·
8Vのみで動作するフラッシュメモリを本薄型カードに使用するとした場合、 Vcclに 3
. 3Vが供給されたとき、前述と同様にカード内のコントローラがアダプタに対して Vcc 2に 1. 8V供給を要求することもできる。
[0157] 他のリザーブ端子の応用例を図 21に示す。 3端子では MMCや SD— I/Fの CM D (コマンド)、 CLK (クロック)、 DAT (データ)端子として機能や追加の IS07816の I /O, RES (リセット)、 CLK (クロック)、 2端子では USBモードの I/Fが搭載可能で ある。 RSV3が電源供給制御端子と重複をさけるためには、電源制御は電源投入時 のみの初期状態のみに使用し、通常使用時に入った場合は他の目的を達成する信 号端子として切り替えて用いても良レ、。
[0158] また、この切り替えはメモリカードインタフェースや拡張端子インターフェースでのコ マンド (命令)により、カード内部にレジスタを設け、このレジスタのデータによりモード 切り替えをしてもよい。
[0159] 図 22は、薄型メモリカード 1802の電源関係の第 1実施例(メモリースティックインタ 一フェースの例)の構成を示すブロック図である。
[0160] 図 22は、コントローラ、フラッシュが、 3. 3V及び 1. 8Vの両方の電源に対応してい る時の接続例を示している。この場合、 Vcclのみの電源供給で動作可能である。内 部電源回路用コンデンサや電源安定用コンデンサはオプションである。図中ではメ モリを NANDフラッシュメモリを例に示している力 S、 NOR型や AND型フラッシュメモリ、 ROM, RAM,またはその混在でも同様である。
[0161] 図 23は、薄型メモリカード 1802の電源関係の第 2実施例(メモリースティックインタ 一フェースの例)の構成を示すブロック図である。
[0162] 図 23は、コントローラが 3. 3V及び 1. 8Vの両方の電源に対応し、フラッシュが 3. 3 Vのみの電源に対応している時の接続例を示している。 RSV3端子を経由してコント ローラは Vcc lの電源でスタートアップした後、適切な時期に Vcc2の供給タイミング を要求する。内部電源回路用コンデンサや電源安定用コンデンサはオプションであ
[0163] もしコントローラが Vcc2を要求したとき、適切な Vcc2が供給されな力 た場合は、 コントローラはカード動作を停止しても良い。
[0164] この場合、コントローラは Vcc2の電圧を監視することで可能である。
[0165] 図 24は、薄型メモリカード 1802の電源関係の第 3実施例(メモリスティックインター フェースの例)の構成を示すブロック図である。
[0166] 図 24は、コントローラが 3. 3V及び 1. 8Vの両方の電源に対応し、フラッシュが 3. 3 Vのみの電源に対応している時の接続例を示している。電源 ICを制御する信号が、 コントローラから昇圧電源 IC (1. 8V→3. 3V)に入力される。なお、 Vcc2とコントロー ラは接続しておいても良い。内部電源回路用コンデンサはオプションである。 Vccl に 1. 8Vが供給されると、コントローラ 1805は、薄型カードに内蔵された昇圧電源 IC 2401に 3. 3Vの発生を指示する信号を出力する。
[0167] その後、 NANDフラッシュメモリに 3. 3Vが供給される。
[0168] 図 24には図示されてないが、コントローラは昇圧電源 ICの出力電圧や入力電圧を 監視することで、薄型カードを安定に動作させてもよい。さらに監視機能を有すること で、異常時はカード動作を停止させても良い。
[0169] 図 25は、薄型メモリカード 1802の電源関係の第 4実施例(メモリースティックインタ 一フェースの例)の構成を示すブロック図である。
[0170] 図 25は、コントローラが 3. 3V及び 1. 8Vの両方の電源に対応し、フラッシュが 1. 8 Vのみの電源に対応している時の接続例を示している。外部電圧として 3. 3Vが供給 される場合、降圧電源 IC2501を制御する信号力 コントローラから降圧電源 IC (3. 3V→1. 8V)に入力される。内部電源回路用コンデンサはオプションである。
[0171] 図 24と同様にコントローラは降圧電源 ICの電圧をモニタし、判断して適切なカード 動作またはモードに推移をすることができる。総合的に外部電源からの電流容量が 不足気味の場合には、コントローラは電圧モニタや降圧電源 ICの消費電流平準化を 目的にカード動作を低速化し平均消費電流を抑制しても良い。
[0172] <実施の形態 7〉
図 26は、本発明の実施の形態 7による薄型メモリカード 1802の外形を示す図であ り、(a)は平面図、 (b)は正面図、 (c)は背面図、(d)は左側面図、(e)は右側面図、 ( f)は裏面図である。図 26は、メモリスティックマイクロインターフェースの例を示してい
[0173] 図 26に示すように、基板 2601の上側はモールド 2602で覆われ、基板 2601の裏 側の露出面に複数のコネクタ端子 2603が形成されている。薄型メモリカード 1802の 表側のモールド 2602の部分は、厚さが異なる 2段構成となっている。そして、厚い部 分には、薄い部分よりより多くの ICチップが積層できるようになつている。また、薄型メ モリカード 1802の裏側のコネクタ端子 2603は、カードの中央またはカードの先端や 後端より隔てて配置されている。また、アダプタへの揷入側のコーナ(角) 2604は、ァ ダプタの切り欠き位置にあわせ、曲率半径 Rが大きい面取りが施されている。切り欠き の制限がない場合はカード揷入がスムーズにできる程度の最小限の R (例えば 0.05m m以上)や面取り量で良い。
[0174] 図 27は、本発明の一実施の形態による薄型メモリカード 1802の外形を示す斜視 図であり、(a)は上側斜め前から見た図、(b)は下側斜め前から見た図である。
[0175] 図 28は、本発明の一実施の形態による薄型メモリカード 1802のチップの搭載配置 を示す図であり、(a)はチップを積層する場合の基本例、(b)は応用例 1、(c)は応用 例 2を示す。
[0176] なお、薄型カード外形と、チップが搭載される基板のサイズはほぼ同じ(基板の方が やや小さい場合もある)となり、図 28では基板とカード外形が同じサイズと仮定して示 している。
[0177] 図 28 (a) , (b) , (c)に示すように、フラッシュメモリがカードに搭載されるチップの中 で一番大きぐ他のチップと基板上に並べて置くと、並べられたチップの総面積が基 板面積より大きくなる場合は、基板の上にフラッシュメモリ 1806が搭載され、その上 の左側(モールドの厚い部分)にフラッシュメモリをコントロールするコントローラ 1805 が積層されている。フラッシュメモリと他のチップを並べても、基板の面積より狭い場 合は、基板上に並べてフラッシュメモリとコントローラを配置しても良い。
[0178] また、基板上の左側にカード内に電源安定化用に用いられるチップコンデンサ、力 ード端子のインピーダンス整合等に用いられるチップ抵抗、 DC/DCコンバータ等に 用いられるチップインダクタや電源制御等に用いられるトランジスタ等のチップ部品 2 801が搭載されている。モールド段差のある部分を境として、左側のカード厚み Laは 、右側のカード厚み Lbより厚くなつている。
[0179] 図 28 (b)に示すように、応用例 1として、カードの厚い左側に、コントローラ 1805の ほかに外部電源電圧を昇圧もしくは降圧する電源 ICである DC/DCコンバータ 280 2、チップ部品 2801などを搭載してもよい。
[0180] また、図 28 (c)に示すように、応用例 2として、カードの厚い左側に、コントローラ 18 05、 DC/DCコンバータ 2802のほ力、に、セキュアマイコン 1807を搭載してもよい。 図 28の電源 IC2802、セキュアマイコン 1807やチップ部品 2801はオプションであり 、カードに要求される性能に応じて、搭載の要否が決まるものである。またチップと基 板に設けられた配線との接続はワイヤボンディングで図示しているが基板の直上の チップ (この場合はフラッシュメモリ)はフェースダウンのフリップチップ接続することも できる。
[0181] またフラッシュメモリ上に搭載するものはチップだけでなぐ基板に配線を有する配 線基板を積層し、この配線基板をインターポーザ(中間配線基板)として使用すること もできる。
[0182] 図 29は、本発明の実施の形態 7による薄型メモリカード 1802のチップの搭載を示 す図であり、(a)は応用例 3、(b)は応用例 4を示す。
[0183] 図 29 (a)に示すように、応用列 3として、 2つのフラッシュメモリ 1806, 1806aを積層 して、その上に、カードの厚い左側に、コントローラ 1805、 DC/DCコンバータ 2802 を積層して、 3段積み重ねて搭載してもよい。
[0184] また、図 29 (b)に示すように、応用例 4として、フラッシュメモリ 1806のほ力、に、フラ ッシュメモリ、 SRAM、 DRAM等のメモリ 2901を一つまたは複数個を搭載し、カード の厚い左側に、コントローラ 1805、 DC/DCコンバータ 2802等を搭載してもよい。
[0185] <実施の形態 8〉
図 30は、本発明の実施の形態 8による Plug— inSIM変換アダプタ(SIMカードア ダプタ 1801)の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面図、( d)は左側面図、(e)は右側面図、(f)は裏面図である。
[0186] 図 30に示すように、アダプタの下側の基板 3002上に複数のコネクタ端子 3001 (図
18の IS07816端子 1804に対応)が形成されている。また、薄型メモリカード 1802 が揷入される開口部の上部には、実施の形態 4で説明した図 16のコンタクト端子直 上の押さえ構造の上押さえ板 (ガイド部) 3003が形成されている。また、コーナには、 アダプタの方向を示すための切り欠き 3004が設けられている。 [0187] 図 31は、本発明の実施の形態 8による Plug— inSIM変換アダプタ(SIMカードア ダプタ 1801)の外形を示す斜視図であり、(a)は上側から見た図、(b)は下側から見 た図である。
[0188] 図 32は、 Plug— inSIM変換アダプタ(SIMカードアダプタ 1801)に薄型メモリカー ド 1802が揷入された後の外形を示す平面図である。
[0189] 図 32に示すように、 SIMカードアダプタ 1801の左側から薄型メモリカード 1802が 揷入され、お互いにカード端子とコネクタ端子が接触する。 SIMカードアダプタ 1801 において、薄型メモリカード 1802のコネクタ端子の上部には、コンタクト端子直上の 押さえ構造がある。
[0190] 図 33は、 Plug— inSIM変換アダプタに薄型メモリカード 1802が揷入される前と後 の構成を示す縦断面図であり、(a)は薄型メモリカード 1802が揷入される前、(b)は 薄型メモリカード 1802が揷入された後を示す。
[0191] 図 33 (a)に示すように、ここでは、 Plug— inSIM変換アダプタ内には、基板 3002 上に SIC (セキュアマイコン)とメモリカードインタフェース機能を備えた ICチップ 3301 と、受動素子 ·能動素子等のチップ部品 3302が搭載されている。
[0192] また、基板 3002上において、薄型メモリカード 1802のコネクタ端子と接触する部 分に半田付け又は溶接等によりコネクタ端子 3303が接着されている。コネクタ端子 3 303の接着部分をカード揷入口側に設けることにより、カード揷入時のコネクタ端子 破壊を防止している。
[0193] また、コネクタ端子 3303の上部に上押さえ板 3003を設けることにより、カードのた わみを防止している。基板 3002の下側には、 IS07816電極であるコネクタ端子 30 01が形成されている。
[0194] 図 33 (b)に示すように、 Plug— inSIM変換アダプタに薄型メモリカード 1802が揷 入され、コネクタ端子 3303とカード端子が接続される。
[0195] 図 34は、 Plug— inSIM変換アダプタに薄型メモリカードが揷入された状態の配線 構成を示す平面図である。
[0196] 図 34に示すように、 SIMカードアダプタ 1801に薄型メモリカード 1802が揷入され
、カードのカード端子 2603とアダプタのコネクタ端子 3303が接続されている。 SIM カードアダプタ 1801の基板 3002上には、チップ部品 3302が半田や銀ペースト等 による電気的接続パッド 3401 (図は半田付け搭載の場合)により接続されている。さ らに、基板 3002上には、 SICとメモリカードインタフェース機能を備えた ICチップ 330 1が、ワイヤボンディング 3402で基板上のボンディングパッド 3403に接続されている 。そして、ボンディングパッド 3403は、基板表面に設けられた表面配線 3404に接続 されている。表面酉己線 3404は、 VIA配線 3405を介して、基板裏面に設けられた裏 面配線 3406と接続されて!/、る。
[0197] 裏面配線 3406は、基板裏面に設けられたコネクタ端子 3001に接続されている。
[0198] また、 ICチップ 3301は、ボンディングワイヤ 3402b、ボンディングパッド 303b、表 面配線 3404bを介して、基板表面のコネクタ端子 3303に接続されている。
[0199] コネクタ端子 3303は、カード端子 2603に接続されることで、カード端子 2603と IC チップ 3301が接続されることになる。
[0200] なお、ここでは、 1つの配線経路を例として示した力 図 34から分力、るように、複数 の酉己泉がある。
[0201] 図 35は、 Plug— inSIM変換アダプタの配線構成を示す断面図である。
[0202] ここで、 ICチップ 3301やワイヤボンド 3402は封止用のエポキシレジン等でモール ドされている。押さえ板 3003とこのモールドレジンは構造上適切な場所で接着等に よりアダプタ内で一体化してもよい。
[0203] <実施の形態 9〉
図 36は、本発明の実施の形態 9による miniUICCアダプタ(SIMカードアダプタ 18
01に対応) 3601の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面 図、(d)は左側面図、(e)は右側面図、(f)は裏面図である。
[0204] 図 36に示す miniUICCアダプタ 3601は、前記 Plug— inSIM変換アダプタに対応 し、同様の構成を有し、薄型メモリカード 1802が揷入される。
[0205] 図 37は、 miniUICCアダプタ 3601 (SIMカードアダプタ 1801に対応)の外形を示 す斜視図であり、(a)は上側から見た図、(b)は下側から見た図である。また、図 30の
Plug inSIMアダプタに対応する図 36の miniUICCアダプタは電気回路図として は同様である。し力、し、 miniUICCは、カードの面積が小さいため、前述の ICチップ 3 301や他の部品 3302は配線基板内に埋め込んだりして実装領域を削減したり、実 装厚さを低減することが望まし!/、。このような実装領域の削減や実装厚さの低減方法 は、 ICチップの厚みを薄く研摩し、金バンプや半田バンプの接続技術により実現す ること力 Sできる。ここでは図示していないが薄型カード 1802とのコネクタ接続構造は 図 35のコネクタコンタクト端子と同様である。
[0206] <実施の形態 10〉
図 38は、本発明の実施の形態 10による薄型メモリカード用外形変換アダプタとして 、 Memory Stick Micro(M2) (M2:商標)のアダプタ及び M2アダプタの内部結線を示 す図であり、(a)は薄型メモリカード 1802、(b)は変換アダプタ 3801、(c)はカード揷 入前の変換アダプタ 3801の断面図、(d)はカード揷入後の変換アダプタ 3801の断 面図である。
[0207] 図 38に示すように、変換アダプタ 3801内に、電源 IC3803が搭載されている。図 2 4や図 25で動作説明した電源 ICは、 M2カードの 1. 8V/3. 3V両電源に対応する ために、薄型メモリカード 1802へ電源を供給する電源 ICである。ここでは、 3. 3V電 源(3· 3Vおよび 3· 3V前後の電源)で動作するフラッシュメモリと、 1. 8V/3. 3V両 電圧で動作するコントローラとが搭載された薄型カード 1802である。 Vcc2経由で薄 型メモリカード 1802に 3. 3Vを薄型カード内のコントローラの制御信号に従い供給し ている。制御信号は RSV3経由で薄型メモリカード 1802からタイミング要求を受ける 。この方法は 1 · 8V (1. 8Vおよびその前後)のみで動作するフラッシュメモリの場合 には、 Vcclに 3. 3Vが給電されたとき、コントローラの制御信号により Vcc2に 1 · 8V を供給することで実現できる。
[0208] このように本 M2アダプタの電源 ICは使用される電源電圧 3. 3Vや 1. 8Vに対して それぞれ 1. 8Vや 3. 3Vの電圧を供給する 2種類の電圧発生のマルチ電源でもよい 。 基板 3002において、スルーホール 3804を介して表面と裏面の配線が接続され る。アダプタ筐体 3802に薄型メモリカード 1802が揷入され、コネクタ端子 3303が接 続され基板上の配線やスルーホールを介して電源 ICや M2の信号端子 ·電源端子 に配線されている。 3803の電源 ICは図ではワイヤボンドで接続し、図示していない がエポキシレジンで封止されてレ、る。 [0209] 押さえ板 3802はレジンモールドの領域と一体成型や接着により外形を形成してい
[0210] 図 39は、薄型メモリカード用外形変換アダプタ 1 (M2アダプタ)の外形を示す図で あり、(a)は平面図、 (b)は下面図、 (c)は側面図である。
[0211] 図 39に示すように、変換アダプタの側面に切り欠き 3901がある。この切り欠きは力 ードの不用意な抜け防止やホスト機器上でのカード揷入検出スィッチの動作領域と して用いること力 Sでさる。
[0212] <実施の形態 11〉
図 40は、本発明の実施の形態 11による薄型メモリカード用外形変換アダプタとして
、他の Memory Stick Micro(M2)のアダプタ及び他の M2アダプタの内部結泉を示す 図であり、(a)は薄型メモリカード 1802、 (b)は変換アダプタ 3801、 (c)はカード揷入 前の変換アダプタ 3801の断面図、(d)はカード揷入後の変換アダプタ 3801の断面 図である。
[0213] 図 40に示すように、変換アダプタ 3801内に、電源 IC3803が搭載されている。電 源 ICは、 M2カードの 1 · 8V/3. 3V両電源に対応するために、薄型メモリカード 18 02へ電源を供給する電源 ICである。ここでは、 Vcc2経由で薄型メモリカード 1802 に 3. 3Vを供給している。制御信号は RSV3経由で薄型メモリカード 1802からタイミ ング要求を受ける。本動作は前述の 1. 8Vにおいても同様である。
[0214] 基板 3002において、スルーホール 3804を介して表面と裏面の配線が接続される 。アダプタ筐体 3802に薄型メモリカード 1802が揷入され、コネクタ端子 3303が接続 されるのも同様である。
[0215] また M2アダプタは薄型カード 1802の(図 24や図 25によっても)電源対応能力に 応じて電源 ICを省略可能である。
[0216] <実施の形態 12〉
図 41は、本発明の実施の形態 12による SIM機能付き薄型メモリカードの外形を示 す図であり、(a)は平面図、 (b)は正面図、 (c)は背面図、(d)は左側面図、 (e)は右 側面図、(f)は裏面図である。図 41は、メモリースティックマイクロインターフェースの 例を示している。 [0217] 図 41に示すように、基板 2601の上側はモールド 2602で覆われ、基板 2601の裏 側の露出面に複数のコネクタ端子 2603が形成されている。薄型メモリカード 1802の 表側のモールド 2602の部分は、厚さが異なる 2段構成となっている。そして、厚い部 分には、 ICチップが積層できるようになつている。また、薄型メモリカード 1802の裏側 のコネクタ端子 2603は、中央に配置されている。また、アダプタへの揷入側のコーナ (角) 2604は、アダプタの切り欠き位置にあわせ、曲率半径 Rが大きい面取りが施さ れている。ただし切り欠き制限の少ない場合は曲率半径 R (図 17の R1や R2ともに) 必要最小限でも良い。
[0218] 図 42は、電気的に SIM機能や IS07816機能付きとできる薄型メモリカード 2の力 ード端子配置例(MS I/F + IS07816I/Fの例)を示す図である。図 43は、 Vcc 端子の割当例を示す図である。図 44,図 21と同様であり、拡張機能としての RSV (リ ザーブ)端子の割当例を示す図である。図 45は今回新たに設けた電気的に IS078 16機能を拡張する端子の信号配置図である。
[0219] Vcc2の供給制御端子の割当例として、例えば RSV3を割り当てる。 Vcclに 1. 8V が供給され、本カード内部のコントローラが起動したのち、適切なタイミングで Vcc2 に 3. 3Vを供給指示する制御信号端子として RSV3を割り当てる。出力が基本である 力 ホストからのレスポンスを得る双方向通信も可能である。前述の Vcclに 3. 3V供 給時に薄型カード内部の 1. 8Vのみの動作部品に 1. 8Vを供給する方法として同様 に Vcc2に 3. 3Vを RSV3を制御端子として動作させることができる。
[0220] また電源制御が不要な場合は RSV3の制御は省略できる。すなわち Vcclの電源 投入の適切なタイミングで自動的に Vcc2の電源を給電すれば良い。それぞれ Vccl : 1. 8Vのときは Vcc2 : 3. 3V、Vccl : 3. 3Vのときは Vcc2: 1. 8Vのように動作すれ ばよ!/、。また目的に応じて必ずしも両電源を供給する必要はな!/、。
[0221] <実施の形態 13〉
図 46は、本発明の実施の形態 13による Plug— inSIM変換アダプタ 2 (SIMカード アダプタ 1801)の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面図 、(d)は左側面図、(e)は右側面図、(f)は裏面図である。
[0222] 図 46に示すように、アダプタの下側の基板 3002上に、複数のコネクタ端子用の開 口部(貫通した窓) 4601が形成されている。そして、図 42に示す薄型メモリカード 18 02のコネクタ端子 2603の図 45で示す IS07816用拡張端子が開口部 4601を通し て露出するようになっている。
[0223] 図 47は、 Plug— inSIM変換アダプタ(SIMカードアダプタ 1801)に図 42に示す薄 型メモリカード 1802が揷入された後の外形を示す平面図である。
[0224] 図 47に示すように、 SIMカードアダプタ 1801の左側から薄型メモリカード 1802が 揷入され、複数のコネクタ端子用の開口部(貫通した窓) 4601を通して、薄型メモリ カード 1802の IS07816端子 4701 (コネクタ端子 2603に対応)カ露出してレヽる。こ のとき図 42のメモリースティックマイクロインターフェス端子や RSV1から RSV3はァダ プタ内部に覆われ、外部に露出していない。これにより用いない端子を絶縁分離する こと力 Sでさる。
[0225] 図 48は、 Plug— inSIM変換アダプタ 2に薄型メモリカード 1802が揷入される前と 後の構成を示す縦断面図であり、(a)は薄型メモリカード 1802が揷入される前、(b) は薄型メモリカード 1802が揷入された後を示す。特に (b)では薄メモリカードを搭載 した Plug— inSIMアダプタがホスト機器の IS07816コネクタ端子に接続している状 態を同時に示している。
[0226] 図 48 (b)に示すように、開口部 4601を通して、ホスト側ソケット 4801のコネクタ端 子と SIM機能付き薄型メモリカード 1802の IS07816端子 4701が接続される。これ はアダプタの開口を形成して!/、る絶縁板の厚みが充分薄ぐまた開口部が充分広!/、 ので、ホストソケットのコネクタ端子は開口部を通過して内部にある薄カードの拡張 IS 07816端子に直接コンタクトすることが特徴である。これにより非常に安価で構造が 簡便でかつ厚みの薄!/、SIMアダプタが実現できる。
[0227] <実施の形態 14〉
図 49は、本発明の実施の形態 14による miniUICCアダプタ 2 (SIMカードアダプタ 1801に対応)の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面図、( d)は左側面図、(e)は右側面図、(f)は裏面図である。
[0228] 図 49に示す miniUICCアダプタ 2は、前記 Plug— inSIM変換アダプタ 2に対応し 、同様の構成を有し、薄型メモリカード 1802が揷入される。そして、開口部 4601を通 して、薄型メモリカード 1802のコネクタ端子が露出するようになっている。これは前述 の Plug— inSIMアダプタ図 46と同様の機能である。
[0229] 図 50は、 miniUICCアダプタ 2の外形を示す斜視図であり、 (a)は上側から見た図
、(b)は下側から見た図である。図 51は、本発明の実施の形態 14による切り欠き付き 薄型メモリカード 3の外形を示す図であり、(a)は平面図、(b)は正面図、(c)は背面 図、(d)は左側面図、(e)は右側面図、(f)は裏面図である。
[0230] 図 51に示すように、モールド 2602の側面に切り欠き 5101力 Sある。この切り欠き 51
01は、カード抜け防止、位置のロックを目的とした貫通していないノッチ構造となって いる。切り欠きを貫通しないことで基板 2601の面積を最大限に活用し、幅 wの広い 切り欠きにより制限されないチップ (たとえばフラッシュメモリチップ)を搭載できる。
[0231] <実施の形態 15〉
図 52は、本発明の実施の形態 16による切り欠き付き薄型メモリカード 4の外形を示 す図であり、(a)は平面図、 (b)は正面図、 (c)は背面図、(d)は左側面図、 (e)は右 側面図、(f)は裏面図である。
[0232] 図 52に示すように、モールド 2602の側面に切り欠き 5201力 Sある。この切り欠き 51
01は、カード抜け防止、位置のロックを目的とした貫通しているノッチ構造となってい る。貫通することでより機械的に強靭なロック機構やラッチング強さを実現するときに 有利である。
[0233] 以上、実施の形態 1から 15について述べたが、適宜各実施の形態および各実施の 形態に記載された内容の一部を組み合わせてもよい。
[0234] なお、本発明者によってなされた発明をその実施の形態に基づき具体的に説明し た力 本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない 範囲で種々変更可能であることは!/、うまでもなレ、。
産業上の利用可能性
[0235] 本発明は、 ICカード、電子機器等の製造業において利用可能である。

Claims

請求の範囲
[1] 外付けのアダプタが装着されることで、外形寸法が Plug— inSIMカード規格又は miniUICC規格におけるフルサイズのカードの外形寸法に等しくなることが可能であ り、
前記アダプタを装着されなレ、状態にお!/、て、前記フルサイズのカードの外形寸法よ り小さ!/、半導体装置であって、
前記半導体装置が、前記?11¾ ^ 31^[ァダプタ又は前記1^1^1;1じじァダプタに 装着されることにより、前記?11½ ^ 31^[ァダプタ又は前記1^1^1;1じじァダプタと前 記 ICカードとがー体となり、
前記半導体装置は、前記?11¾ ^ 31^[ァダプタ又は前記1^1^1;1じじァダプタカ、ら 物理的に分離可能であり、
前記半導体装置には、フラッシュメモリチップが搭載され、
前記半導体装置は、前記 Plug— inSIMアダプタ又は前記 miniUICCアダプタと電 気的に接続するためのカード端子を有し、
前記半導体装置および前記カード端子は長手部分と短辺部分を有する形状であり 前記半導体装置における前記カード端子の配置位置は、前記アダプタへの半導 体装置の揷入先側の短辺部分からこの短辺に近い側の前記カード端子の一方端ま での距離が、前記半導体装置の長手方向の半分の位置から前記短辺に遠い側の前 記カード端子他端までの距離より大きいことを特徴とする半導体装置。
[2] 外付けのアダプタが装着されることで、外形寸法が Plug— inSIMカード規格又は miniUICC規格におけるフルサイズのカードの外形寸法に等しくなることが可能であ り、
前記アダプタを装着されなレ、状態にお!/、て、前記フルサイズのカードの外形寸法よ り小さ!/、半導体装置であって、
前記半導体装置が、前記 Plug— inSIMアダプタ又は前記 miniUICCアダプタに 装着されることにより、前記 Plug— inSIMアダプタ又は前記 miniUICCアダプタと前 記 ICカードとがー体となり、 前記半導体装置は、前記?11¾ ^ 31^ [ァダプタ又は前記1^1^1;1じじァダプタカ、ら 物理的に分離可能であり、
前記半導体装置には、フラッシュメモリチップが搭載され、
前記半導体装置は、前記 Plug— inSIMアダプタ又は前記 miniUICCアダプタと電 気的に接続可能なカード端子を有し、
前記半導体装置は長手部分と短辺部分を有する形状であり、
前記半導体装置を長手方向に均等に 4等分した場合に、前記アダプタへの半導体 装置の揷入先側の 1/4の領域に比べ、隣接する次の 1/4の領域およびさらに次の 1/ 4の領域の方力 S、前記カード端子の 1/4の領域に占める面積率が高いことを特徴とす る半導体装置。
[3] 前記カード端子は、前記半導体装置のデータの入出力が行われるデータ端子や、 前記半導体装置の動作を制御する制御信号が入力される制御端子、もしくはクロック 信号が入力されるクロック端子のいずれかを含む請求項 1もしくは 2に記載の半導体 装置。
[4] 外付けのアダプタが装着されることで、外形寸法が Plug— inSIMカード規格又は miniUICC規格におけるフルサイズのカードの外形寸法に等しくなることが可能であ り、
前記アダプタを装着されなレ、状態にお!/、て、前記フルサイズのカードの外形寸法よ り小さいものであり、フラッシュメモリチップが搭載された半導体装置であって、 前記半導体装置が、前記 Plug— inSIMアダプタ又は前記 miniUICCアダプタに 装着されることにより、前記 Plug— inSIMアダプタ又は前記 miniUICCアダプタと前 記 ICカードとがー体となり、
前記半導体装置は、前記 Plug— inSIMアダプタ又は前記 miniUICCアダプタ力も 物理的に分離可能であり、
前記半導体装置は、第 1の厚さを有する第 1部分と、前記第 1の厚さよりも厚い第 2 部分とを有し、
前記第 1部分は、前記 Plug— inSIMアダプタ又は前記 miniUICCアダプタに揷入 される側であることを特徴とする半導体装置。
[5] 前記第 1部分に搭載もしくは積層された半導体チップ数に比べ、前記第 2部分に搭 載もしくは積層された半導体チップ数の方が多い、請求項 4に記載の半導体装置。
[6] セキュリティマイコン機能を有するセキュア ICチップを搭載し、 SIMもしくは miniUI CCとして動作するアダプタであって、
前記アダプタは、フラッシュメモリチップを搭載した半導体装置を揷入可能であり、 前記アダプタは上面と下面を有し、前記下面には前記半導体装置のカード端子と 接触可能なコネクタ端子が設けられ、このコネクタ端子と向かい合うように上面が設け られ、前記上面と前記下面の間に挟まれて前記半導体装置は揷入可能とされるもの であることを特徴とするアダプタ。
[7] 前記上面および下面は両端を有する板状のものであり、一方端が前記半導体装置 の揷入口を構成し、他方端が前記セキュア ICチップを搭載される部分に接続され、 前記揷入口では、前記下面に対向する前記上面が設けられず、前記上面部分が 開放された、請求項 6に記載のアダプタ。
PCT/JP2007/073931 2006-12-20 2007-12-12 半導体装置およびそのアダプタ WO2008075594A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/517,385 US20100072284A1 (en) 2006-12-20 2007-12-12 Semiconductor device and adaptor for the same
JP2008550112A JPWO2008075594A1 (ja) 2006-12-20 2007-12-12 半導体装置およびそのアダプタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-342766 2006-12-20
JP2006342766 2006-12-20

Publications (1)

Publication Number Publication Date
WO2008075594A1 true WO2008075594A1 (ja) 2008-06-26

Family

ID=39536225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073931 WO2008075594A1 (ja) 2006-12-20 2007-12-12 半導体装置およびそのアダプタ

Country Status (5)

Country Link
US (1) US20100072284A1 (ja)
JP (1) JPWO2008075594A1 (ja)
CN (1) CN101536018A (ja)
TW (1) TW200841252A (ja)
WO (1) WO2008075594A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018064778A (ja) * 2016-10-19 2018-04-26 任天堂株式会社 カートリッジ

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0805780D0 (en) * 2008-03-31 2008-04-30 Royal Bank Of Scotland Plc The Processor card arrangement
KR20110028999A (ko) * 2009-09-14 2011-03-22 삼성전자주식회사 이종의 커넥터를 선택적으로 적용할 수 있는 메모리 장치
JP2011118905A (ja) 2009-12-07 2011-06-16 Samsung Electronics Co Ltd メモリカード及び電子機器
US8195236B2 (en) * 2010-06-16 2012-06-05 On Track Innovations Ltd. Retrofit contactless smart SIM functionality in mobile communicators
US20110309152A1 (en) * 2010-06-22 2011-12-22 Kim Young-Sun Plastic card package and plastic card package manufacturing method
TW201249005A (en) * 2011-05-27 2012-12-01 Hon Hai Prec Ind Co Ltd Storage card with a connector
FR2976382B1 (fr) * 2011-06-10 2013-07-05 Oberthur Technologies Module a microcircuit et carte a puce le comportant
US8649820B2 (en) * 2011-11-07 2014-02-11 Blackberry Limited Universal integrated circuit card apparatus and related methods
US8936199B2 (en) 2012-04-13 2015-01-20 Blackberry Limited UICC apparatus and related methods
USD703208S1 (en) 2012-04-13 2014-04-22 Blackberry Limited UICC apparatus
USD701864S1 (en) 2012-04-23 2014-04-01 Blackberry Limited UICC apparatus
US9888283B2 (en) 2013-03-13 2018-02-06 Nagrastar Llc Systems and methods for performing transport I/O
USD729808S1 (en) 2013-03-13 2015-05-19 Nagrastar Llc Smart card interface
USD758372S1 (en) 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
USD759022S1 (en) 2013-03-13 2016-06-14 Nagrastar Llc Smart card interface
US9647997B2 (en) 2013-03-13 2017-05-09 Nagrastar, Llc USB interface for performing transport I/O
DE102013105291B4 (de) * 2013-05-23 2017-12-07 Infineon Technologies Ag Chipkarte
KR20160013196A (ko) * 2013-05-29 2016-02-03 비자 인터네셔널 서비스 어소시에이션 보안 요소에서 수행되는 검증 시스템 및 방법
FR3014227B1 (fr) * 2013-12-04 2018-03-16 Idemia France Carte a microcircuit multi interface
USD736213S1 (en) * 2014-07-01 2015-08-11 Samsung Electronics Co., Ltd. Memory card
USD736212S1 (en) * 2014-07-01 2015-08-11 Samsung Electronics Co., Ltd. Memory card
USD736216S1 (en) * 2014-07-30 2015-08-11 Samsung Electronics Co., Ltd. Memory card
USD739856S1 (en) * 2014-07-30 2015-09-29 Samsung Electronics Co., Ltd. Memory card
USD780763S1 (en) 2015-03-20 2017-03-07 Nagrastar Llc Smart card interface
USD864968S1 (en) 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface
USD798868S1 (en) * 2015-08-20 2017-10-03 Isaac S. Daniel Combined subscriber identification module and storage card
USD773466S1 (en) * 2015-08-20 2016-12-06 Isaac S. Daniel Combined secure digital memory and subscriber identity module
USD783622S1 (en) * 2015-08-25 2017-04-11 Samsung Electronics Co., Ltd. Memory card
USD783621S1 (en) * 2015-08-25 2017-04-11 Samsung Electronics Co., Ltd. Memory card
USD773467S1 (en) * 2015-11-12 2016-12-06 Samsung Electronics Co., Ltd. Memory card
USD772232S1 (en) * 2015-11-12 2016-11-22 Samsung Electronics Co., Ltd. Memory card
KR102440366B1 (ko) * 2018-01-04 2022-09-05 삼성전자주식회사 메모리 카드 및 이를 포함하는 전자 장치
CN109948767A (zh) * 2018-02-01 2019-06-28 华为技术有限公司 存储卡和终端
US11650943B2 (en) * 2018-10-16 2023-05-16 Micron Technology, Inc. Flexible bus management

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916738A (ja) * 1995-06-30 1997-01-17 Fujitsu Ltd カード状電子回路ユニット、カード状電子回路ユニットを相互に接続するコネクタ及び複数のカード状電子回路ユニットにて構成される電子回路システム
JP3045042U (ja) * 1997-07-03 1998-01-23 バーグ・テクノロジー・インコーポレーテッド カード状装置
JP2000354093A (ja) * 1999-03-11 2000-12-19 Nokia Mobile Phones Ltd 移動局において追加カードを使用する方法及び手段
JP2006059042A (ja) * 2004-08-19 2006-03-02 Dainippon Printing Co Ltd Uim用icカード
JP2006139417A (ja) * 2004-11-10 2006-06-01 Smk Corp カードアダプタ構造とicカードの形成方法
JP3125533U (ja) * 2006-06-15 2006-09-21 建舜電子製造股▲分▼有限公司 メモリーカードアダプター

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7416132B2 (en) * 2003-07-17 2008-08-26 Sandisk Corporation Memory card with and without enclosure
US7170754B2 (en) * 2004-05-06 2007-01-30 Sychip Inc. SDIO memory and interface card
JP2005322109A (ja) * 2004-05-11 2005-11-17 Renesas Technology Corp Icカードモジュール
US20070259567A1 (en) * 2006-05-08 2007-11-08 Li-Pai Chen Multiple mode micro memory card connector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916738A (ja) * 1995-06-30 1997-01-17 Fujitsu Ltd カード状電子回路ユニット、カード状電子回路ユニットを相互に接続するコネクタ及び複数のカード状電子回路ユニットにて構成される電子回路システム
JP3045042U (ja) * 1997-07-03 1998-01-23 バーグ・テクノロジー・インコーポレーテッド カード状装置
JP2000354093A (ja) * 1999-03-11 2000-12-19 Nokia Mobile Phones Ltd 移動局において追加カードを使用する方法及び手段
JP2006059042A (ja) * 2004-08-19 2006-03-02 Dainippon Printing Co Ltd Uim用icカード
JP2006139417A (ja) * 2004-11-10 2006-06-01 Smk Corp カードアダプタ構造とicカードの形成方法
JP3125533U (ja) * 2006-06-15 2006-09-21 建舜電子製造股▲分▼有限公司 メモリーカードアダプター

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018064778A (ja) * 2016-10-19 2018-04-26 任天堂株式会社 カートリッジ
US11171433B2 (en) 2016-10-19 2021-11-09 Nintendo Co., Ltd. Cartridge

Also Published As

Publication number Publication date
JPWO2008075594A1 (ja) 2010-04-08
TW200841252A (en) 2008-10-16
CN101536018A (zh) 2009-09-16
US20100072284A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
WO2008075594A1 (ja) 半導体装置およびそのアダプタ
US7427032B2 (en) Adapter for a memory card and a memory card
US7559469B2 (en) Chip card of reduced size with backward compatibility and adapter for a reduced size chip card
JP4651332B2 (ja) メモリカード
US20100267419A1 (en) Sim adapter and sim card
US7742009B2 (en) Antenna for the plug-in dual-interface smart card
US8078226B2 (en) Multiple interface card in a mobile phone
KR100269848B1 (ko) 카드형 기억장치
US7703692B2 (en) Memory card
JP5366401B2 (ja) 位置決め性能を改善したマルチプラグsimカード
US20080099559A1 (en) Dual Interface SIM Card Adapter with Detachable Antenna
US20020025726A1 (en) Card connector
JP2002535784A (ja) ループアンテナを備えたチップカードと結合されるマイクロモジュール
TW200810054A (en) A semiconductor device
US7492604B2 (en) Electronic module interconnection apparatus
US20170077590A1 (en) Simplified electronic module for a smartcard with a dual communication interface
US11307637B2 (en) Universal flash storage memory card
WO2009118807A1 (ja) ソケットおよび半導体装置
RU2775156C2 (ru) Карта памяти и оконечное устройство
JP5019207B2 (ja) Icカード及び通信装置
JP3105841U (ja) フォーインワン型メモリカードコネクタ
JP2012198677A (ja) 支持基材付きicカード
WO2018082215A1 (zh) Sim卡座和sim卡
JP2010238081A (ja) Icカード及び通信装置
KR20060125054A (ko) 메모리카드 및 이를 이용한 아답터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042082.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550112

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12517385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850482

Country of ref document: EP

Kind code of ref document: A1