WO2008072643A1 - 燃料電池システム及び燃料電池車両 - Google Patents

燃料電池システム及び燃料電池車両 Download PDF

Info

Publication number
WO2008072643A1
WO2008072643A1 PCT/JP2007/073892 JP2007073892W WO2008072643A1 WO 2008072643 A1 WO2008072643 A1 WO 2008072643A1 JP 2007073892 W JP2007073892 W JP 2007073892W WO 2008072643 A1 WO2008072643 A1 WO 2008072643A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
flow rate
injector
injection flow
cell system
Prior art date
Application number
PCT/JP2007/073892
Other languages
English (en)
French (fr)
Inventor
Koji Katano
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112007002654.5T priority Critical patent/DE112007002654B4/de
Priority to CN2007800261298A priority patent/CN101490882B/zh
Priority to US12/294,838 priority patent/US7910257B2/en
Priority to KR1020097011651A priority patent/KR101088782B1/ko
Publication of WO2008072643A1 publication Critical patent/WO2008072643A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a fuel cell vehicle in which an indicator is provided in a fuel supply system for supplying fuel gas to the fuel cell.
  • pulsation may occur in the fuel gas in the fuel supply flow path by driving the injector. Then, vibration caused by the pulsation, vibration generated by the drive of the injector (for example, vibration when the valve body collides with the valve seat), and noise generated by the vibration by the injector itself (for example, the noise generated when the valve body collides with the valve seat) Force may be transmitted to other places directly or through piping that forms the fuel gas supply flow path.
  • a fuel cell system includes a fuel cell, a fuel supply system for supplying fuel gas to the fuel cell, and a valve body driven by an electromagnetic driving force at a predetermined driving cycle.
  • An injector that adjusts the gas state upstream of the fuel supply system and injects it downstream, and a control device that controls the operation of the injector, the control device comprising: When the required power generation amount for the fuel battery is equal to or less than a predetermined power generation amount, the injector is injected at an injection flow rate equal to or less than a predetermined spray flow rate, and according to the injection flow rate and the required power generation amount, The drive frequency is set. According to such a configuration, the injection flow rate per injection from the injector can be kept low below a predetermined injection flow rate, so that pulsation and noise caused by it can be suppressed.
  • the injector drive frequency is set (changed) as the injection flow rate decreases, so the total injection flow rate from the injector per unit time can be reduced. This makes it possible to match or approach the required injection flow rate, and suppresses a decrease in responsiveness.
  • Gas state means a gas state represented by flow rate, pressure, temperature, molarity, etc., and particularly includes at least one of gas flow rate and gas pressure.
  • the injection flow rate equal to or less than the predetermined injection flow rate may be, for example, an injection flow rate at a minimum injection time set based on an opening / closing response time of the valve body.
  • This minimum injection time is set in advance as a minimum value of the injection time that sufficiently guarantees the injection flow accuracy of the injector according to various characteristics including individual differences and aging.
  • the minimum value of the injection time zone in which the injection time of the injector and the injection flow rate are in a proportional (linear) relationship can be adopted.
  • the injector can be driven stably while keeping the injection flow rate low, and the generation of pulsation and noise accompanying the drive can be suppressed as much as possible.
  • the control device when the control device is injecting the injector at an injection flow rate equal to or less than the predetermined injection flow rate, it is necessary to increase the required injection flow rate per unit time for the injector.
  • the driving frequency may be higher than before.
  • control device may provide a restriction on a change speed of the drive frequency.
  • the control device increases the driving speed as the amount of change in the required injection flow rate per unit time with respect to the injector increases. You may make the restriction
  • the fuel cell system of this invention WHEREIN: The said control apparatus may provide the minimum drive frequency larger than zero in the said drive frequency.
  • the Duty is suppressed from being excessively reduced, even if there is a request for an increase in the injection flow rate per unit time from the injector, the responsiveness is reduced. Can be suppressed.
  • the control device when the required power generation amount for the fuel cell is less than or equal to a predetermined power generation amount, the control device provides a predetermined upper limit drive frequency for the drive frequency, and per unit time for the injector When the required injection flow rate cannot be realized at the upper limit drive frequency, the injection flow rate per injection of the injector may be increased.
  • the noise is generated by increasing the injection flow rate per injection and the upper limit drive frequency is provided. ) Noise in the direction of noise suppression, the total noise can be reduced.
  • the fuel cell system includes a plurality of fuel supply sources, and when the required power generation amount for the fuel cell is equal to or less than a predetermined power generation amount, the control device includes:
  • the fuel gas may be supplied to the injector from a fuel supply source having the lowest primary pressure.
  • low-load (low required power generation) operation such as during idling when mounted on a vehicle
  • the operating noise of the auxiliary equipment is reduced, resulting in the noise generated with the drive of the indicator becoming noticeable.
  • the configuration by lowering the primary pressure of the injector, it is possible to reduce the collision speed of the valve body to the valve seat and to reduce noise caused by the collision.
  • the fuel cell vehicle of the present invention is the above! /, A fuel cell vehicle equipped with a fuel cell system having any configuration.
  • the case where the required power generation amount for the fuel cell is equal to or less than the predetermined power generation amount is, for example, a case where the engine is idling.
  • the noise generated by the drive of the indicator becomes noticeable to the passenger because the operation noise of the auxiliary equipment is low.
  • the configuration since the injection flow rate per injection from the injector can be suppressed to be lower than the predetermined injection flow rate, it is possible to suppress pulsation and generation of noise due to it. Therefore, there is little discomfort for the passenger of the fuel cell vehicle.
  • FIG. 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining an operation method of the fuel cell system shown in FIG.
  • FIG. 3 is a diagram for explaining the minimum injection time of the injector shown in FIG.
  • Figure 4 shows an example of the basic control pattern related to the injector and the cases where the required injection flow rate is increased and decreased from the state controlled by the basic control pattern. It is a time chart for explaining a control pattern in the case of
  • the fuel cell system 1 includes a fuel cell 10 that generates electric power through an electrochemical reaction when supplied with reaction gases (oxidized gas and fuel gas).
  • Oxidizing gas piping system 2 that supplies air as oxidizing gas to the fuel cell
  • hydrogen gas piping system (fuel supply system) 3 that supplies hydrogen gas as fuel gas to the fuel cell 10
  • the fuel cell 10 has a stack structure in which a required number of unit cells that generate power upon receiving a reaction gas are stacked.
  • the electric power generated by the fuel cell 10 is supplied to a PCU (Power Control Unit) 11.
  • the P C U 11 is provided with an impeller D C -D C converter or the like disposed between the fuel cell 10 and the traction motor 12. Further, the fuel cell 10 is provided with a current sensor 13 for detecting a current during power generation.
  • the oxygen gas piping system 2 includes an air supply passage 21 for supplying the fuel cell 10 with the oxygen gas (air) humidified by the humidifier 20, and an acid discharged from the fuel cell 10.
  • An air discharge flow path 22 for guiding the oxidization off gas to the humidifier 20 and an exhaust flow path 23 for guiding the acid off gas from the humidifier 20 to the outside are provided.
  • the air supply channel 21 is provided with a compressor 24 that takes in the acid gas in the atmosphere and pumps it to the humidifier 20.
  • the hydrogen gas piping system 3 includes a hydrogen tank 30 as a fuel supply source storing high-pressure hydrogen gas, and a fuel cell 10 for supplying the hydrogen gas from the hydrogen tank 30 to the fuel cell 10.
  • a hydrogen supply flow path 31 as a fuel supply flow path and a circulation flow path 32 for returning the hydrogen off-gas discharged from the fuel cell 10 to the hydrogen supply flow path 31 are provided.
  • the hydrogen gas piping system 3 is an embodiment of the fuel supply system in the present invention.
  • a reformer that generates a hydrogen-rich reformed gas from a hydrocarbon-based fuel, and a high-pressure gas tank that stores the reformed gas generated by the reformer in a high-pressure state.
  • a tank having a hydrogen storage alloy may be employed as a fuel supply source.
  • the hydrogen supply flow path 3 1 is provided with a shut-off valve 3 3 that shuts off or allows the supply of hydrogen gas from the hydrogen tank 30, a regulator 3 4 that adjusts the pressure of the hydrogen gas, and an injector 3 5. It has been. Further, on the upstream side of the injector 35, a primary pressure sensor 4 1 and a temperature sensor 4 2 for detecting the pressure and temperature of hydrogen gas in the hydrogen supply flow path 31 are provided.
  • a secondary pressure sensor 43 is provided on the downstream side of the injector 35 and upstream of the junction of the hydrogen supply flow path 31 and the circulation flow path 32.
  • the regulator 34 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure.
  • a mechanical pressure reducing valve for reducing the primary pressure is employed as the regulator 34.
  • the mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure regulating chamber are formed with a diaphragm therebetween, and the primary pressure is set to a predetermined pressure in the pressure regulating chamber by the back pressure in the back pressure chamber. It is possible to adopt a public P configuration in which the pressure is reduced to a secondary pressure.
  • the upstream pressure of the injector 35 can be effectively reduced.
  • the injector 35 is an electromagnetically driven on-off valve that can adjust the gas flow rate and gas pressure by driving the valve body directly with a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat. It is.
  • the indicator 35 includes a valve seat having an injection hole for injecting gaseous fuel such as hydrogen gas, a nozzle body for supplying and guiding the gaseous fuel to the injection hole, and an axial direction (air And a valve body that is accommodated and held movably in the body flow direction) and opens and closes the injection hole.
  • gaseous fuel such as hydrogen gas
  • nozzle body for supplying and guiding the gaseous fuel to the injection hole
  • an axial direction air And a valve body that is accommodated and held movably in the body flow direction
  • valve body of the injector 35 is driven by a solenoid that is an electromagnetic drive device, and the opening area (opening state) of the injection hole is reduced by turning on and off the pulsed excitation current fed to the solenoid. It is possible to switch between two or more stages or steplessly.
  • the gas injection time and gas injection timing of the indicator 35 are controlled by the control signal output from the control device 4.
  • an injector 35 is disposed upstream of the junction A 1 between the hydrogen supply channel 31 and the circulation channel 32.
  • the hydrogen gas supplied from each hydrogen tank 30 is joined (hydrogen gas joining part A 2) Place the injector 3 5 on the downstream side.
  • a discharge flow path 3 8 is connected to the circulation flow path 3 2 via a gas-liquid separator 3 6 and an exhaust / drain valve 3 7.
  • the gas-liquid separator 36 collects moisture from the hydrogen off gas.
  • the exhaust drain valve 3 7 is operated according to a command from the control device 4, so that water collected by the gas-liquid separator 36, hydrogen off-gas (fuel off-gas) containing impurities in the circulation channel 3 2, Is discharged (purged) to the outside.
  • the circulation channel 3 2 is pressurized with hydrogen off-gas in the circulation channel 3 2 to generate hydrogen.
  • a hydrogen pump 39 that feeds to the supply flow path 31 is provided.
  • the hydrogen off-gas discharged through the exhaust discharge valve 3 7 and the discharge passage 3 8 is diluted by the diluter 40 and joined with the oxidizing off-gas in the exhaust passage 23. .
  • the control device 4 detects the amount of operation of an acceleration operating member (accelerator, etc.) provided in the fuel cell vehicle S, and requests an acceleration request value (for example, required power generation amount from a load device such as a luxion motor 12). Control the operation of various devices in the system.
  • an acceleration operating member acceleration, etc.
  • a load device such as a luxion motor 12
  • the load device refers to auxiliary equipment required to operate the fuel cell 10 (for example, compressor 24, hydrogen pump 39, cooling pump motor, etc.), fuel cell vehicle Collective name for power consumption devices including actuators used in various devices (transmission gears, wheel control devices, steering devices, suspension devices, etc.) involved in S traveling, air conditioning devices (air conditioners) for passenger spaces, lighting, audio, etc. It is what.
  • the control device 4 is configured by a computer system (not shown).
  • a computer system includes a CPU, ROM, RAM, HD D, input / output interface, display, etc., and each control program recorded in the ROM is read and executed by the CPU. The seed control operation is realized.
  • the control device 4 of the fuel cell system 1 calculates the required injection flow rate for the injector 35 in the required injection flow rate calculation step of step S1. Specifically, first, the current value during power generation of the fuel cell 10 is detected using the current sensor 13, and the amount of hydrogen gas consumed by the fuel cell 10 (hydrogen) is detected based on this current value. Consumption). Next, based on the current value detected by the current sensor 1 3, the target pressure value of the hydrogen gas at the downstream position (pressure adjustment position) of the injector 3 5 is calculated, and the previously calculated target pressure value and this time Calculate the feedforward correction flow rate corresponding to the deviation between the target pressure value and.
  • This feed-forward correction flow rate is the amount of change in the hydrogen gas flow rate caused by the change in the target pressure value (corrected flow rate corresponding to the pressure difference). Furthermore, the secondary side pressure sensor 4 3 is used to The pressure value at the pressure adjustment position) is detected and based on the deviation between this detected pressure value and the above target pressure value! / Calculate the feed pack correction flow rate.
  • This feed pack correction flow rate is a hydrogen gas flow rate (pressure difference reduction correction flow rate) that is added to the hydrogen consumption in order to reduce the deviation between the target pressure value and the detected pressure value.
  • the hydrogen consumption and feedforward corrected flow rate calculated based on the detected current value of the current sensor 13 and the feedback corrected flow rate calculated based on the detected pressure value of the secondary pressure sensor 4 3 are By adding, the required injection flow rate for the indicator 35 is calculated.
  • the injector 35 By calculating the static flow rate upstream of 5 and dividing the required injection flow rate by this static flow rate, the required injection flow rate may be corrected for temperature and pressure.
  • control device 4 selects one of the two prepared injector control patterns according to the operation state of the fuel cell 10 in this embodiment. To select.
  • step S5 drive frequency
  • the injection time per injection is set (fixed) so that the injection flow rate per injection from the indicator 35 is always the injection flow rate at the minimum injection time.
  • the minimum injection time is set in advance according to various characteristics including individual differences and aging of the injector 35 as the minimum value of the injection time that sufficiently guarantees the injection flow rate accuracy of the injector 35.
  • the minimum value t min of the injection time zone in which the injection time t of the injector 35 and the injection flow rate Q have a proportional (linear) relationship can be employed.
  • the time between t0 and t1 is an invalid injection time, which means the time required from when the injector 35 receives the control signal from the control device 4 until the actual injection is started.
  • the minimum injection time is the time from when the opening command is given to the injector 35 from the control device 4 until the valve body is fully opened, and the time until the injection flow rate is stabilized in this fully open state. In addition to being able to be set in advance by adding and, it is also possible to set by experiment or simulation.
  • step S 11 the control device 4 performs the driving cycle of step S5.
  • control signals related to the injection time per injection 35 calculated in the injection time calculation process of step S 11 and the preset constant driving frequency are sent to the injector 35.
  • the gas injection time and gas injection timing of the injector 35 are controlled to adjust the flow rate and pressure of the hydrogen gas supplied to the fuel cell 10.
  • the compressor 24 or the like can be used during low load (low required power generation) operation such as during idle operation. Because the noise of auxiliary equipment such as the hydrogen pump 3 9 is so low that the noise is noticeable to the passenger, the injection flow rate per injection from the injector 3 5 is the injection flow rate corresponding to the minimum injection time. Since it is set and kept low, it is possible to suppress the pulsation of the injector 35 and the generation of noise caused by it, and the discomfort given to the passenger is eliminated or reduced.
  • the injection flow rate of the injector 35 set to the injection flow rate corresponding to the minimum injection time, it is kept low, but the drive frequency of the injector 35 is controlled variably as the injection flow rate decreases. Therefore, it becomes possible to make the total injection flow rate from the injector 35 per unit time coincide with or close to the required injection flow rate, and to suppress a decrease in responsiveness.
  • the drive frequency that is made variable may be made higher than before.
  • the injection flow rate of the injector 35 cannot be adapted to the new required injection flow rate at the minimum injection time until then. Even if it is desired to add a change, the total injection flow rate per unit time can be increased, so that a decrease in responsiveness can be suppressed.
  • the limit on the change speed of the drive frequency may be further reduced as the change amount of the required injection flow rate per unit time for the injector 35 is larger.
  • the control device 4 may provide a lower limit drive frequency greater than zero for the drive frequency. According to this configuration, since the number of injections of the indicator 35, in other words, the duty is prevented from excessively decreasing, there is a request for an increase in the injection flow rate per unit time from the indicator 35. However, a decrease in responsiveness can be suppressed.
  • the control device 4 When the required power generation amount for the fuel cell 10 is less than or equal to the predetermined power generation amount, the control device 4 provides a predetermined upper limit drive frequency to the drive frequency of the injector 35, and at this upper limit drive frequency, the unit time for the injector 35 If the required injection flow rate per hit cannot be realized, the injection flow rate per injection may be increased.
  • the noise due to pulsation and vibration increases as in the case where the injection flow rate is increased.
  • the total noise can be reduced by balancing the noise generation by increasing the injection flow rate per injection and the noise suppression by setting the upper limit drive frequency in the noise suppression direction.
  • the required power generation amount for the fuel cell 10 is a predetermined power generation.
  • the control device 4 may supply the fuel gas to the injector 35 from the hydrogen tank 30 where the primary pressure of the injector 35 becomes the lowest among the plurality of hydrogen tanks 30. .
  • the fuel cell system according to the present invention is mounted on the fuel cell vehicle S.
  • various mobile bodies other than the fuel cell vehicle S mouth bots, ships, aircraft, etc.
  • the fuel cell system according to the present invention can also be mounted on.
  • the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (house, building, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本発明の燃料電池システムは、燃料電池10と、燃料電池10に燃料ガスを供給するための燃料供給系3と、弁体を電磁駆動力で所定の駆動周期で駆動して弁座から離隔させることにより、燃料供給系3の上流側のガス状態を調整して下流側に噴射するインジェクタ35と、インジェクタ35の作動を制御する制御装置4と、を備える。制御装置4は、燃料電池10に対する要求発電量が所定発電量以下の場合に、インジェクタ35を所定噴射流量以下の噴射流量で噴射させると共に、当該噴射流量と前記要求発電量とに応じて、インジェクタ35の駆動周波数を設定する。

Description

明細書 燃料電池システム及ぴ燃料電池車両
技術分野
本発明は、 燃料電池に燃料ガスを供給するための燃料供給系にインジエタ タを備えた燃料電池システム及び燃料電池車両に関する。 背景技術
近年、 燃料電池システムの燃料供給流路にインジヱクタを配置し、 このィ ンジ クタの作動状態を制御することにより、 燃料供給流路内の燃料ガスの 供給圧力を調整する技術が提案されている (例えば、 特開 2 0 0 5— 3 0 2 5 6 3号公報参照)。インジヱクタは、弁体を電磁駆動力で所定の駆動周期で 駆動して弁座から離隔させることにより、 ガス状態 (ガス流量やガス圧力) を調整できるものであり、 制御装置が弁体を駆動して燃料ガスの噴射時期や 噴射時間を制御する。 発明の開示
上記の燃料電池システムにおいては、ィンジヱクタを駆動することにより、 燃料供給流路中の燃料ガスに脈動が生じることがある。 そして、 その脈動に 起因する振動、 インジェクタの駆動に伴い自ら発生する振動 (例えば、 弁体 が弁座に衝突したときの振動)、およびこれら振動に起因する騒音ゃィンジェ クタが自ら発生する騒音 (例えば、 弁体が弁座に衝突したときの騒音) 力 直接あるいは燃料ガス供給流路を面成する配管を介して他所へと伝播するこ とがある。
このような現象は、 例えば車載時におけるアイドル運転中等のように、 燃 料電池に対する要求発電量が他の運転状態と比較して低い場合 (低負荷運転 2
の場合)、 さらに言い換えれば、他の運転状態と比較して補機類の動作音が小 さく静粛性の高い状況下においては特に、 商品性に影響することがある。 本発明は、 上記事情に鑑みてなされたもので、 インジェクタ駆動に伴レ、発 生する脈動を低減して該脈動に起因する騒音の発生を抑制することができる 燃料電池システムおよび燃料電池車両を提供することを目的としている。 前記目的を達成するため、本発明に係る燃料電池システムは、燃料電池と、 前記燃料電池に燃料ガスを供給するための燃料供給系と、 弁体を電磁駆動力 で所定の駆動周期で駆動して弁座から離隔させることにより、 前記燃料供給 系の上流側のガス状態を調整して下流側に噴射するインジェクタと、 前記ィ ンジェクタの作動を制御する制御装置と、 を備え、 前記制御装置は、 前記燃 料電池に対する要求発電量が所定発電量以下の場合に、 前記ィンジェクタを 所定嘖射流量以下の噴射流量で噴射させると共に、 当該噴射流量と前記要求 発電量とに応じて、 前記インジェクタの駆動周波数を設定するものである。 かかる構成によれば、 ィンジェクタからの一噴射当たりの噴射流量が所定 噴射流量以下に低く抑えられるので、 脈動およびそれに起因する騒音の発生 を抑制することができる。
また、 噴射流量が所定噴射流量以下に低く抑えられるだけでなく、 当該噴 射流量の低減に伴い、インジェクタの駆動周波数が設定(変更)されるので、 単位時間当たりのィンジヱクタからの総噴射流量を要求噴射流量に一致ある いは近づけることが可能となり、 応答性の低下を抑制することができる。 なお、 「ガス状態」 とは、 流量、 圧力、 温度、 モル濃度等で表されるガスの 状態を意味し、 特にガス流量及ぴガス圧力の少なくとも一方を含むものとす る。
本発明の燃料電池システムにおいて、前記所定噴射流量以下の噴射流量は、 例えば前記弁体の開閉応答時間に基づき設定される最小噴射時間での噴射流 量であってもよい。 この最小噴射時間は、 インジヱクタの嘖射流量精度が十分に保証される噴 射時間の最小値として、 インジ クタの個体差や経年変化等を含む諸特性に 応じて予め設定されるものであり、 例えば、 インジェクタの噴射時間と噴射 流量とが比例 (線形) 関係となる噴射時間帯の最小値を採用することができ る。
この構成によれば、 ィンジヱクタの噴射流量を低く抑えつつも安定的に駆 動させ得て、 当該駆動に伴う脈動およぴ騷音の発生を極力抑制することがで さる。
本発明の燃料電池システムにおいて、 前記制御装置は、 前記所定噴射流量 以下の噴射流量で前記インジヱクタを噴射させているときに、 当該インジヱ クタに対する単位時間当たりの要求噴射流量に増量の必要が生じた場合には、 前記駆動周波数をそれまでもよりも高くしてもよい。
この構成によれば、 例えばィンジ工クタからの一噴射当たりの噴射流量が 所定噴射流量以下に低く抑えられていたのでは、 単位時間当たりの要求噴射 流量を確保できない場合等、 インジェクタの噴射流量に変化を加えたい場合 には、 インジェクタの駆動周波数をそれまでよりも高くすることにより、 単 位時間当たりの嘖射回数を増やすこと、 言い換えれば、 D u t y (=—噴射 当たりの噴射時間/駆動周期) を上げることが可能となり、 総噴射流量を增 加させて応答性低下を抑制することができる。
本発明の燃料電池システムにおいて、 前記制御装置は、 前記駆動周波数の 変化速度に対して制限を設けてもよい。
この構成よれば、 急激な駆動周波数の変化によって生じる不定期な噴射に よる脈動および耳障りな騒音 (例えば、 不定間隔での騒音発生) の発生を抑 制することができる。
本発明の燃料電池システムにおいて、 前記制御装置は、 前記インジェクタ に対する単位時間当たりの要求噴射流量の変化量が大きいほど、 前記駆動周 波数の変化速度に対する制限を小さくしてもよい。
ィンジ工クタに対する単位時間当たりの要求噴射流量の変化量が大きい場 合に駆動周波数の変化速度に対する制限を大きくすると、 不定期な噴射によ る脈動および騒音の発生抑制に対しては有効であるが、 応答性の低下を招来 しかねない。 これに対し、 上記構成によれば、 不定期な噴射による脈動およ ぴ騷音の発生抑制と、 応答性の低下抑制と、 の両立を図ることができる。 本発明の燃料電池システムにおいて、 前記制御装置は、 前記駆動周波数に ゼロよりも大なる下限駆動周波数を設けてもよい。
この構成によれば、 インジェクタの噴射回数、 言い換えれば、 D u t yが 過度に減少することが抑制されるので、 インジヱクタからの単位時間当たり の噴射流量に増量要求があった場合でも、 応答性低下を抑制することができ る。
本発明の燃料電池システムにおいて、 前記制御装置は、 前記燃料電池に対 する要求発電量が所定発電量以下の場合には、 前記駆動周波数に所定の上限 駆動周波数を設け、 前記インジェクタに対する単位時間当たりの要求噴射流 量を前記上限駆動周波数で実現できない場合には、 当該ィンジェクタの一噴 射当たりの噴射流量を増量してもよい。
インジェクタの噴射流量を低く抑えても駆動周波数が高ければ、 噴射流量 を増やした場合と同様に、脈動および振動による騒音は大きくなる。よって、 上記構成によれば、 一噴射当たりの噴射流量を増量することによる騒音の発 生と上限駆動周波数を設け?)ことによる騒音の抑制とを、 騷音抑制方向にパ ランスさせることにより、 トータルでの騒音を低くすることできる。
本発明の燃料電池システムにおいて、 複数の燃料供給源を備え、 前記制御 装置は、 前記燃料電池に対する要求発電量が所定発電量以下の場合には、 前 記複数の燃料供給源のうち前記ィンジェクタの一次側圧力が最低となる燃料 供給源から当該イン ヱクタに燃料ガスを供給してもよい。 例えば車载時のアイドル運転中のような低負荷(低要求発電量)運転時は、 補機類の動作音が小さくなる結果、 インジヱクタの駆動に伴い発生する騒音 が目立つようになるが、 上記構成によれば、 インジェクタの一次側圧力を低 くすることにより、 弁体の弁座への衝突速度を遅くし、 かかる衝突に伴う騷 音を低減することができる。
本発明の燃料電池車両は、 上記!/、ずれかの構成からなる燃料電池システム を備えた燃料電池車両である。 そして、 この燃料電池車両において、 前記燃 料電池に対する要求発電量が所定発電量以下の場合とは、 例えばアイドル運 転中の場合である。
アイドル運転中のような低負荷 (低要求発電量) 運転時は、 補機類の動作 音が小さいために、 インジヱクタの駆動に伴い発生する騒音が搭乗者に目立 つようになるが、 上記構成によれば、 インジヱクタからの一噴射当たりの噴 射流量が所定噴射流量以下に低く抑えられるので、 脈動おょぴそれに起因す る騒音の発生を抑制することができる。 よって、 燃料電池車両の搭乗者に不 快感を与えることが少ない。
本発明によれば、 インジェクタを駆動させることにより発生する脈動ひい ては該脈動に起因する騒音の発生を抑制することができる。 図面の簡単な説明
図 1は、 本発明の実施形態に係る燃料電池システムの構成図である。 図 2は、 図 1に示した燃料電池システムの運転方法を説明するためのフ ローチャートである。 図 3は、 図 1に示したインジ工クタの最小噴射時間を説明するための図 である。
図 4は、 同インジェクタに係る基本制御パターンの一例と、 同基本制御 パターンで制御されている状態から要求噴射流量が増量した場合と減量し た場合の制御パターンを説明するためのタイムチャートである
発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施形態に係る燃料電池システム 1につ いて説明する。 本実施形態においては、 本発明を燃料電池車両の車載発電シ ステムに適用した例について説明することとする。
本実施形態に係る燃料電池システム 1は、図 1に示すように、反応ガス(酸 化ガス及び燃料ガス) の供給を受けて電気化学反応により電力を発生する燃 科電池 1 0を備えるとともに、 燃料電池 1 0に酸化ガスとしての空気を供給 する酸化ガス配管系 2、 燃料電池 1 0に燃料ガスとしての水素ガスを供給す る水素ガス配管系 (燃料供給系) 3、 システム全体を統合制御する制御装置 4等を備えている。
燃料電池 1 0は、 反応ガスの供給を受けて発電する単電池を所要数積層し て構成したスタック構造を有している。燃料電池 1 0により発生した電力は、 P C U (Power Control Unit) 1 1に供給される。 P C U 1 1は、燃料電池 1 0とトラクションモータ 1 2との間に配置されるインパータゃ D C - D C コンバータ等を備えている。 また、 燃料電池 1 0には、 発電中の電流を検出 する電流センサ 1 3が取り付けられている。
酸ィ匕ガス配管系 2は、 加湿器 2 0により加湿された酸ィ匕ガス (空気) を燃 料電池 1 0に供給する空気供給流路 2 1と、 燃料電池 1 0から排出された酸 化オフガスを加湿器 2 0に導く空気排出流路 2 2と、 加湿器 2 0から外部に 酸ィ匕オフガスを導くための排気流路 2 3と、 を備えている。 空気供給流路 2 1には、 大気中の酸ィ匕ガスを取り込んで加湿器 2 0に圧送するコンプレッサ 2 4が設けられている。
水素ガス配管系 3は、 高圧の水素ガスを貯留した燃料供給源としての水素 タンク 3 0と、 水素タンク 3 0の水素ガスを燃料電池 1 0に供給するための 燃料供給流路としての水素供給流路 3 1と、 燃料電池 1 0から排出された水 素オフガスを水素供給流路 3 1に戻すための循環流路 3 2と、を備えている。 水素ガス配管系 3は、 本発明における燃料供給系の一実施形態である。
なお、 水素タンク 3 0に代えて、 炭化水素系の燃料から水素リッチな改質 ガスを生成する改質器と、 この改質器で生成した改質ガスを高圧状態にして 蓄圧する高圧ガスタンクと、 を燃料供給源として採用することもできる。 ま た、 水素吸蔵合金を有するタンクを燃料供給源として採用してもよい。
水素供給流路 3 1には、 水素タンク 3 0からの水素ガスの供給を遮断又は 許容する遮断弁 3 3と、 水素ガスの圧力を調整するレギユレータ 3 4と、 ィ ンジェクタ 3 5と、 が設けられている。 また、 インジェクタ 3 5の上流側に は、 水素供給流路 3 1内の水素ガスの圧力及び温度を検出する一次側圧カセ ンサ 4 1及ぴ温度センサ 4 2が設けられている。
また、 インジェクタ 3 5の下流側であって水素供給流路 3 1と循環流路 3 2との合流部の上流側には、 水素供給流路 3 1内の水素ガスの圧力を検出す る二次側圧力センサ 4 3が設けられている。
レギユレータ 3 4は、 その上流側圧力 (一次圧) を、 予め設定した二次圧 に調圧する装置である。 本実施形態においては、 一次圧を減圧する機械式の 減圧弁をレギュレータ 3 4として採用している。 機械式の減圧弁の構成とし ては、 背圧室と調圧室とがダイアフラムを隔てて形成された筐体を有し、 背 圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする 公^ Pの構成を採用することができる。
本実施形態においては、 図 1に示すように、 ィンジェクタ 3 5の上流側に レギユレータ 3 4を 2個配置することにより、 インジェクタ 3 5の上流側圧 力を効果的に低減させることができる。 これにより、 インジェクタ 3 5の上 流側圧力と下流側圧力との差圧の増大に起因してインジェクタ 3 5の弁体が 移動し難くなることを抑制することができる。 ィンジェクタ 3 5は、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動 して弁座から離隔させることにより、 ガス流量やガス圧を調整することが可 能な電磁駆動式の開閉弁である。 インジヱクタ 3 5は、 水素ガス等の気体燃 料を噴射する噴射孔を有する弁座を備えるとともに、 その気体燃料を嘖射孔 まで供給案内するノズルボディと、 このノズルボディに対して軸線方向 (気 体流れ方向) に移動可能に収容保持され噴射孔を開閉する弁体と、 を備えて いる。
本実施形態においては、 インジヱクタ 3 5の弁体は、 電磁駆動装置である ソレノィドにより駆動され、 このソレノィドに給電されるパルス状励磁電流 のオン ·オフにより、 噴射孔の開口面積 (開口状態) を 2段階以上の多段階 又は無段階に切り替えることができるようになつている。 そして、 制御装置 4から出力される制御信号によって、 インジヱクタ 3 5のガス嘖射時間及び ガス噴射時期が制御される。
なお、 本実施形態においては、 図 1に示すように、 水素供給流路 3 1と循 環流路 3 2との合流部 A 1より上流側にインジェクタ 3 5を配置している。 また、 図 1に破線で示すように、 燃料供給源として複数の水素タンク 3 0を 採用する場合には、 各水素タンク 3 0から供給される水素ガスが合流する部 分 (水素ガス合流部 A 2 ) よりも下流側にィンジェクタ 3 5を配置するよう にする。
循環流路 3 2には、 本気液分離器 3 6及び排気排水弁 3 7を介して、 排出 流路 3 8が接続されている。 気液分離器 3 6は、 水素オフガスから水分を回 収するものである。 排気排水弁 3 7は、 制御装置 4からの指令によって作動 することにより、 気液分離器 3 6で回収した水分と、 循環流路 3 2内の不純 物を含む水素オフガス (燃料オフガス) と、 を外部に排出 (パージ) するも のである。
また、 循環流路 3 2には、 循環流路 3 2内の水素オフガスを加圧して水素 供給流路 3 1側へ送り出す水素ポンプ 3 9が設けられている。 なお、 排気排 水弁 3 7及ぴ 出流路 3 8を介して排出される水素オフガスは、 希釈器 4 0 によって希釈されて排気流路 2 3内の酸化オフガスと合流するようになって いる。
制御装置 4は、 燃料電池車両 Sに設けられた加速用の操作部材 (アクセル 等) の操作量を検出し、 加速要求値 (例えば ラクシヨンモータ 1 2等の負 荷装置からの要求発電量) 等の制御情報を受けて、 システム内の各種機器の 動作を制御する。
なお、 負荷装置とは、 トラクションモータ 1 2のほかに、 燃料電池 1 0を 作動させるために必要な補機装置 (例えばコンプレッサ 2 4、 水素ポンプ 3 9、冷却ポンプのモータ等)、燃料電池車両 Sの走行に関与する各種装置(変 速機、車輪制御装置、操舵装置、懸架装置等)で使用されるァクチユエータ、 乗員空間の空調装置(エアコン)、照明、オーディオ等を含む電力消費装置を 総称したものである。
制御装置 4は、 図示していないコンピュータシステムによって構成されて いる。 かかるコンピュータシステムは、 C P U、 R OM, R AM, HD D、 入出力インタフェース及ぴディスプレイ等を備えるものであり、 R OMに記 録された各種制御プログラムを C P Uが読み込んで実行することにより、 各 種制御動作が実現されるようになつている。
続いて、 図 2のフローチャートを用いて、 本実施形態に係る燃料電池シス テム 1の運転方法について説明する。
燃料電池システム 1の制御装置 4は、 ステップ S 1の要求噴射流量算出ェ 程において、 インジェクタ 3 5に対する要求噴射流量を算出する。 具体的に は、 まず、 電流センサ 1 3を用いて燃料電池 1 0の発電時における電流値を 検出し、この電流値に基づいて、燃料電池 1 0で消費される水素ガスの量(水 素消費量) を算出する。 次に、 電流センサ 1 3で検出した電流値に基づいて、 インジェクタ 3 5の 下流位置 (圧力調整位置) における水素ガスの目標圧力値を算出し、 前回算 出した目標圧力値と、 今回算出した目標圧力値と、 の偏差に対応するフィー ドフォワード補正流量を算出する。 このフィードフォワード補正流量は、 目 標圧力値の変動に起因する水素ガス流量の変動分 (圧力差対応捕正流量) で さらに、 二次側圧力センサ 4 3を用いてインジヱクタ 3 5の下流位置 (圧 力調整位置) の圧力値を検出し、 この検出圧力値と上記目標圧力値との偏差 に基づ!/、てフィードパック補正流量を算出する。 このフィードパック補正流 量は、 目標圧力値と検出圧力値との偏差を低減させるために水素消費量に加 算される水素ガス流量 (圧力差低減補正流量) である。
そして、 電流センサ 1 3の検出電流値に基づき算出された水素消費量及ぴ フィードフォワード補正流量と、 二次側圧力センサ 4 3の検出圧力値に基づ き算出されたフィードバック補正流量と、 を加算することにより、 インジヱ クタ 3 5に対する要求噴射流量を算出する。
ここで、 一次側圧力センサ 4 1で検出したインジェクタ 3 5の上流の水素 ガスの圧力と、 温度センサ 4 2で検出したインジ工クタ 3 5の上流の水素ガ スの温度と、 に基づいてインジェクタ 3 5の上流の静的流量を算出し、 上記 要求噴射流量をこの静的流量で除算することにより、 当該要求噴射流量を温 度補正及び圧力補正してもよい。
次に、 制御装置 4は、 ステップ S 3の低負荷運転判定において、 本実施形 態では二通り用意されたィンジェクタ制御パターンのうち、 いずれか一方の 制御パターンを燃料電池 1 0の運転状態に応じて選択する。
具体的には、 アイドル運転中等のように燃料電池 1 0に対する要求発電量 が所定発電量以下の低負荷運転状態である場合、 すなわち本実施形態では、 ステップ S 3の判定結果が 「Y E S」 の場合には、 ステップ S 5の駆動周波 数算出工程において、 まず、 インジヱクタ 3 5からの一噴射当たりの噴射流 量が常に最小噴射時間での噴射流量となるように、 一噴射当たりの噴射時間 を設定 (固定) する。
次に、 インジヱクタ 3 5がこの最小噴射時間でのみ噴射することとした場 合に、 ステップ S 1で求めた要求噴射流量を実現することのできる D u t y (=最小噴射時間/インジェクタの駆動周期) を算出し、 この D u t yに基 づいて可変に設定されることとなる駆動周波数を算出する。
上記最小噴射時間は、 ィンジェクタ 3 5の噴射流量精度が十分に保証され る噴射時間の最小値として、 ィンジェクタ 3 5の個体差や経年変化等を含む 諸特性に応じて予め設定されるものであり、 例えば図 3に示すように、 イン ジェクタ 3 5の噴射時間 tと噴射流量 Qとが比例 (線形) 関係となる噴射時 間帯の最小値 t minを採用することができる。
なお、 時間 t 0〜 t 1間は無効噴射時間であり、 インジェクタ 3 5が制御 装置 4から制御信号を受けてから実際に噴射を開始するまでに要する時間を 意味する。
また、 この最小噴射時間は、 制御装置 4からインジェクタ 3 5に対して開 指令が与えられてから弁体が全開状態となるまでの時間と、 この全開状態で の噴射流量が安定するまでの時間と、 を加算することにより予め設定してお くことが可能である他、 実験あるいはシミュレーシヨン等によっても設定す ることが可能である。
他方、 燃料電池 1 0が上記所定の低負荷運転以外の運転状態である場合、 つまり、 ステップ S 3の判定結果が 「N O」 の場合には、 ステップ S 1 1の 噴射時間算出工程において、 ステップ S 1で求めた要求噴射流量を満たすィ ンジェクタ 3 5の総噴射時間を算出し、 この総噴射時間'と予め一定の値に設 定されている不変の駆動周波数とから一噴射当たりの噴射時間を算出する。 しかる後、 制御装置 4は、 ステップ S 7において、 ステップ S 5の駆動周 波数算出工程で算出したインジェクタ 3 5の駆動周波数と予め一定の値に設 定されている最小噴射時間とに係る制御信号を、 当該インジェクタ 3 5に対 して出力することにより、 あるいは、 ステップ S 1 3において、 ステップ S 1 1の噴射時間算出工程で算出したインジヱクタ 3 5の一噴射当たりの噴射 時間と予め設定されている不変の駆動周波数とに係る制御信号を、 当該イン ジェクタ 3 5に対して出力することにより、 インジェクタ 3 5のガス噴射時 間及ぴガス噴射時期を制御して、 燃料電池 1 0に供給される水素ガスの流量 及び圧力を調整する。
以上説明したように、 本実施形態に係る燃料電池システム 1を搭載した燃 料電池車両 Sによれば、 例えばアイドル運転中のような低負荷 (低要求発電 量) 運転時は、 コンプレッサ 2 4や水素ポンプ 3 9等の補機類の動作音が小 さいために騷音が搭乗者に目立つようになるところ、 インジェクタ 3 5から の一噴射当たりの噴射流量が最小噴射時間に対応する噴射流量に設定されて 低く抑えられているので、 インジェクタ 3 5の脈動おょぴそれに起因する騷 音の発生を抑制することが可能となり、 搭乗者に与える不快感が解消あるい は軽減される。
しかも、 インジェクタ 3 5の噴射流量が最小噴射時間に対応する噴射流量 に設定されて低く抑えられているだけでなく、 当該噴射流量の低減に伴って ィンジェクタ 3 5の駆動周波数が可変に制御されるので、 単位時間当たりの インジェクタ 3 5からの総噴射流量を要求噴射流量に一致あるいは近づける ことが可能となり、 応答性の低下を抑制することできる。
なお、 以上の実施形態において、 制御装置 4は、 最小噴射時間でインジェ クタ 3 5を噴射させているときに、 インジェクタ 3 5に対する単位時間当た りの要求嘖射流量に増量の必要が生じた場合には、 図 4に示すように、 可変 とされている駆動周波数をそれまでもよりも高くしてもよい。
つまり、 図 4の上段のタイムチャートに示すように、 インジェクタ 3 5の 作動が所定の駆動周波数 (= 1ノ駆動周期丁0 = 1 (t 4- t 1)) の下、 最小噴射時間 t O (= t 2- t 1 = t 6- t 4) で繰り返し噴射する基本制 御パターンで制御されている場合において、 要求噴射流量に増量の必要が生 じたときは、 同図の中段のタイムチャートに示すように、 駆動周波数 (= 1 駆動周期 T 1 = 1/ (t 3- t 1)) をそれまでの駆動周波数よりも高くす る (駆動周期 T 1を短くする)。
これにより、 駆動周波数変更後の Du t y (= t 0/T 1) は、 それまで の基本制御パターンでの Du t y (= t 0/T0) よりも大きくなる、 言い 換えれば、 例えば時間 t 1〜 t 4までの単位時間当たりの噴射回数が増える ので、 総噴射流量が増加する。 :
したがって、 例えばアイドル運転中に運転者から加速要求があった場合の ように、 それまでの最小噴射時間での噴射流量では新たな要求嘖射流量に対 応できなくなる等、インジェクタ 35の噴射流量に変化を加えたい場合でも、 単位時間当たりの総噴射流量を増加させることが可能になるので、 応答性の 低下を抑制することができる。
他方、 インジェクタ 35が基本制御パターンで制御されている場合におい て、 上記とは逆に、 要求噴射流量に減量の必要が生じたときは、 同図の下段 のタイムチヤ一トに示すように、駆動周波数(= 1 /駆動周期 T 2 = 1 / ( t 7— t 1)) をそれまでの駆動周波数よりも低く (駆動周期 T 2を長く)する ことにより、 駆動周波数変更後の Du t y (= t 0/T 2) を、 それまでの 基本制御パターンでの Du t y (= t 0/T 0) よりも小さくしてもよレヽ。 また、 制御装置 4は、 最小噴射時間でインジェクタ 35を噴射させている ときに、 可変に制御される駆動周波数の変化速度に制限を設けてもよい。 こ の構成によれば、 急激な駆動周波数の変化によって生じる不定期な噴射によ る脈動および耳障りな騒音 (例えば、 不定間隔での騒音発生) の発生を抑制 することができる。 この場合においては更に、 インジェクタ 3 5に対する単位時間当たりの要 求噴射流量の変化量が大きいほど、 駆動周波数の変化速度に対する制限を小 さくしてもよい。
すなわち、 ィンジェクタ 3 5に対する単位時間当たりの要求噴射流量の変 化量が大きい場合に駆動周波数の変化速度に設ける制限を大きくすると、 不 定期な噴射による脈動およぴ騒音の発生抑制に対しては有効であるが、 応答 性が低下しかねないが、 上記構成によれば、 不定期な噴射による脈動おょぴ 騒音の発生抑制と、 応答性の低下抑制と、 の両立を図ることができる。 また、 制御装置 4は、 前記駆動周波数にゼロよりも大なる下限駆動周波数 を設けてもよい。 この構成によれば、 インジヱクタ 3 5の噴射回数、 言い換 えれば、 D u t yが過度に減少することが抑制されるので、 インジヱクタ 3 5からの単位時間当たりの噴射流量に増量要求があった場合でも、 応答性の 低下を抑制することができる。
制御装置 4は、 燃料電池 1 0に対する要求発電量が所定発電量以下の場合 には、 インジェクタ 3 5の駆動周波数に所定の上限駆動周波数を設け、 この 上限駆動周波数では当該インジェクタ 3 5に対する単位時間当たりの要求噴 射流量を実現できない場合には、 一噴射当たりの噴射流量を増量するように してもよい。
すなわち、 インジェクタ 3 5の噴射流量を低く抑えても駆動周波数が高け れば、 噴射流量を増やした場合と同様に、 脈動および振動による騒音は大き くなるので、 上記の構成とすることにより、 一噴射当たりの噴射流量を増量 することによる騒音の発生と上限駆動周波数を設けることによる騷音の抑制 とを、 騒音抑制方向にバランスさせることにより、 トータルでの騒音を低く することできる。
さらに、 本実施形態の燃料電池システム 1のように、 複数の水素タンク 3 0を備えている場合において、 燃料電池 1 0に対する要求発電量が所定発電 量以下のときには、 制御装置 4は、 複数の水素タンク 3 0のうちインジェク タ 3 5の一次側圧力が最低となる水素タンク 3 0からインジェクタ 3 5に燃 料ガスを供給するようにしてもよい。
例えば車載時のアイドル運転中のような低負荷 (低要求発電量)運転時は、 補機類の動作音が小さくなるので、 インジェクタ 3 5の駆動に伴い発生する 騒音が搭乗者に目立つようになるが、 上記構成によれば、 インジェクタ 3 5 の一次側圧力を低くすることにより、 弁体の弁座への衝突速度が遅くなるの で、 力かる衝突に伴う騒音を低減することができる。 よって、 搭乗者に与え る不快感が解消あるいは減少する。
また、 以上の各実施形態においては、 本発明に係る燃料電池システムを燃 料電池車両 Sに搭載した例を示したが、燃料電池車両 S以外の各種移動体(口 ボット、 船舶、 航空機等) に本発明に係る燃料電池システムを搭載すること もできる。 また、 本発明に係る燃料電池システムを、 建物 (住宅、 ビル等) 用の発電設備として用いられる定置用発電システムに適用してもよい。

Claims

請求の範囲
1 . 燃料電池と、
前記燃料電池に燃料ガスを供給するための燃料供給系と、
弁体を電磁駆動力で所定の駆動周期で駆動して弁座から離隔させることに より、 前記燃料供給系の上流側のガス状態を調整して下流側に噴射するィン ジェクタと、
前記インジェクタの作動を制御する制御装置と、 を備え、
前記制御装置は、 前記燃料電池に対する要求発電量が所定発電量以下の場 合に、前記インジヱクタを所定噴射流量以下の噴射流量で噴射させると共に、 当該噴射流量と前記要求発電量とに応じて、 前記ィンジェクタの駆動周波数 を設定する燃料電池システム。
2 . 請求項 1に記載の燃料電池システムにおいて、
前記所定噴射流量以下の噴射流量は、 前記弁体の開閉応答時間に基づき設 定される最小噴射時間での噴射流量である燃料電池システム。 ·
3 . 請求項 2に記載の燃料電池システムにおいて、
前記制御装置は、 前記所定噴射流量以下の噴射流量で前記ィンジェクタを 噴射させているときに、 当該ィンジェクタに対する単位時間当たりの要求噴 射流量に増量の必要が生じた場合には、.前記駆動周波数をそれまでよりも高 くする燃料電池システム。
4 . 請求項 1から 3のいずれかに記載の燃料電池システムにおいて、 前記制御装置は、 前記駆動周波数の変化速度に対して制限を設ける燃料電 池システム。
5 . 請求項 4に記載の燃料電池システムにおいて、
前記制御装置は、 前記インジ クタに対する単位時間当たりの要求噴射流 量の変化量が大きいほど、 前記駆動周波数の変化速度に対する制限を小さく する燃料電池システム。
6 . 請求項 5に記載の燃科電池システムにおいて、
前記制御装置は、 前記駆動周波数にゼロよりも大なる下限駆動周波数を設 ける燃料電池システム。
7 . 請求項 1から 6のいずれかに記載の燃料電池システムにおいて、 前記制御装置は、 前記燃料電池に対する要求発電量が所定発電量以下の場 合には、 前記駆動周波数に所定の上限駆動周波数を設け、 前記インジェクタ に対する単位時間当たりの要求嘖射流量を前記上限駆動周波数で実現できな い場合には、 当該インジ クタの一噴射当たりの噴射流量を増量する燃料電 池システム。
8 . 請求項 1から 7のいずれかに記載の燃料電池システムにおいて、 複数の燃料供給源を備え、
前記制御装置は、 前記燃料電池に対する要求発電量が所定発電量以下の場 合には、 前記複数の燃料供給源のうち前記ィンジェクタの一次側圧力が最低 となる燃料供給源から当該ィンジェクタに燃料ガスを供給する燃料電池シス テム。
9 . 請求項 1カゝら 8の何れかに記載の燃料電池システムを備えた燃料電池 車両。
1 0 . 請求項 9に記載の燃料電池車両において、
前記燃料電池に対する要求発電量が所定発電量以下の場合とは、 アイドル. 運転中の場合である燃料電池車両。
PCT/JP2007/073892 2006-12-07 2007-12-05 燃料電池システム及び燃料電池車両 WO2008072643A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112007002654.5T DE112007002654B4 (de) 2006-12-07 2007-12-05 Brennstoffzellensystem und Brennstoffzellenfahrzeug
CN2007800261298A CN101490882B (zh) 2006-12-07 2007-12-05 燃料电池系统及燃料电池车辆
US12/294,838 US7910257B2 (en) 2006-12-07 2007-12-05 Fuel cell system and fuel cell vehicle
KR1020097011651A KR101088782B1 (ko) 2006-12-07 2007-12-05 연료전지 시스템 및 연료전지 차량

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006330723A JP4756476B2 (ja) 2006-12-07 2006-12-07 燃料電池システム及び燃料電池車両
JP2006-330723 2006-12-07

Publications (1)

Publication Number Publication Date
WO2008072643A1 true WO2008072643A1 (ja) 2008-06-19

Family

ID=39511662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073892 WO2008072643A1 (ja) 2006-12-07 2007-12-05 燃料電池システム及び燃料電池車両

Country Status (6)

Country Link
US (1) US7910257B2 (ja)
JP (1) JP4756476B2 (ja)
KR (1) KR101088782B1 (ja)
CN (1) CN101490882B (ja)
DE (1) DE112007002654B4 (ja)
WO (1) WO2008072643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110143234A1 (en) * 2009-12-10 2011-06-16 Gm Global Technology Operations, Inc. Injector control for fuel cell system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655082B2 (ja) * 2007-11-16 2011-03-23 トヨタ自動車株式会社 燃料電池システム
JP4363482B2 (ja) 2007-11-20 2009-11-11 トヨタ自動車株式会社 燃料電池システム
GB2475320B (en) * 2009-11-16 2016-09-28 Gm Global Tech Operations Llc Method for controlling a diesel emission fluid injected quantity in a NOx reduction system employing a SCR catalyist
US8387441B2 (en) * 2009-12-11 2013-03-05 GM Global Technology Operations LLC Injector flow measurement for fuel cell applications
KR101219346B1 (ko) * 2011-06-09 2013-01-09 현대자동차주식회사 연료전지 시스템용 수소연료 공급 조절 장치 및 그 제어 방법
FR2993226B1 (fr) * 2012-07-13 2015-12-18 Commissariat Energie Atomique Motorisation de vehicule automobile incluant une pile a combustible et un systeme de stockage d'energie
US8956778B2 (en) * 2012-10-25 2015-02-17 GM Global Technology Operations LLC Cathode flow split control and pressure control for a vehicle fuel cell power system
JP6227497B2 (ja) * 2014-07-30 2017-11-08 本田技研工業株式会社 燃料電池システム及び燃料電池システムの制御方法
JP6450263B2 (ja) * 2014-08-25 2019-01-09 本田技研工業株式会社 燃料電池システム
JP6102893B2 (ja) 2014-11-14 2017-03-29 トヨタ自動車株式会社 燃料電池システムおよび燃料電池搭載車両
JP6299683B2 (ja) * 2015-06-25 2018-03-28 トヨタ自動車株式会社 燃料電池システム
CN108736044A (zh) * 2017-04-20 2018-11-02 徐煜 一种燃料电池
CN108736045A (zh) * 2017-04-20 2018-11-02 徐煜 一种燃料电池
JP6819474B2 (ja) 2017-06-14 2021-01-27 トヨタ自動車株式会社 燃料電池システムおよび噴射制御方法
JP7054640B2 (ja) * 2018-03-22 2022-04-14 本田技研工業株式会社 燃料電池システム及びその制御方法
EP3806209A4 (en) * 2018-05-30 2021-06-02 Nissan Motor Co., Ltd. FUEL CELL SYSTEM AND ITS OPERATING PROCEDURE
JP7111008B2 (ja) * 2019-01-29 2022-08-02 トヨタ自動車株式会社 燃料電池システム
US11152814B2 (en) * 2019-11-22 2021-10-19 GM Global Technology Operations LLC Mobile charging stations with fuel-cell generators for electric-drive vehicles
JP2021180148A (ja) 2020-05-15 2021-11-18 トヨタ自動車株式会社 燃料電池システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302571A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp 燃料電池の制御装置
JP2005327596A (ja) * 2004-05-14 2005-11-24 Toyota Motor Corp 燃料電池システム
JP2007165186A (ja) * 2005-12-15 2007-06-28 Toyota Motor Corp 燃料電池システム及び移動体
JP2007305348A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp 燃料電池システム及び移動体
JP2008041329A (ja) * 2006-08-02 2008-02-21 Toyota Motor Corp 燃料電池システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915747A (en) * 1973-11-27 1975-10-28 United Technologies Corp Pulse width modulated fuel control for fuel cells
US6497970B1 (en) * 1999-10-15 2002-12-24 General Motors Corporation Controlled air injection for a fuel cell system
JP4595304B2 (ja) 2002-09-27 2010-12-08 株式会社エクォス・リサーチ 燃料電池システム
JP3951885B2 (ja) * 2002-10-22 2007-08-01 日産自動車株式会社 燃料電池システム
JP3895263B2 (ja) * 2002-11-25 2007-03-22 本田技研工業株式会社 燃料電池システムのアイドル時騒音抑制方法
US7320840B2 (en) * 2003-07-17 2008-01-22 General Motors Corporation Combination of injector-ejector for fuel cell systems
JP2005226715A (ja) * 2004-02-12 2005-08-25 Toyota Motor Corp 水素供給装置
JP4561155B2 (ja) 2004-04-13 2010-10-13 トヨタ自動車株式会社 燃料電池の制御装置
US20060078768A1 (en) * 2004-10-07 2006-04-13 Rainer Pechtold Anode inlet unit for a fuel cell system
JP5041272B2 (ja) * 2005-12-12 2012-10-03 トヨタ自動車株式会社 燃料電池システム及び移動体
JP4863052B2 (ja) * 2005-12-15 2012-01-25 トヨタ自動車株式会社 燃料電池システム及び移動体
JP4756465B2 (ja) * 2005-12-16 2011-08-24 トヨタ自動車株式会社 燃料電池システム及び移動体
JP5206918B2 (ja) * 2005-12-19 2013-06-12 トヨタ自動車株式会社 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302571A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp 燃料電池の制御装置
JP2005327596A (ja) * 2004-05-14 2005-11-24 Toyota Motor Corp 燃料電池システム
JP2007165186A (ja) * 2005-12-15 2007-06-28 Toyota Motor Corp 燃料電池システム及び移動体
JP2007305348A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp 燃料電池システム及び移動体
JP2008041329A (ja) * 2006-08-02 2008-02-21 Toyota Motor Corp 燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110143234A1 (en) * 2009-12-10 2011-06-16 Gm Global Technology Operations, Inc. Injector control for fuel cell system
US8389168B2 (en) * 2009-12-10 2013-03-05 GM Global Technology Operations LLC Injector control for fuel cell system

Also Published As

Publication number Publication date
US7910257B2 (en) 2011-03-22
KR20090082271A (ko) 2009-07-29
CN101490882B (zh) 2011-09-14
DE112007002654B4 (de) 2018-02-01
KR101088782B1 (ko) 2011-12-01
JP4756476B2 (ja) 2011-08-24
CN101490882A (zh) 2009-07-22
US20100239935A1 (en) 2010-09-23
DE112007002654T5 (de) 2009-09-10
JP2008146923A (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
WO2008072643A1 (ja) 燃料電池システム及び燃料電池車両
JP4780390B2 (ja) 燃料電池システム及び移動体
KR100997225B1 (ko) 연료전지시스템 및 이동체
JP5206918B2 (ja) 燃料電池システム
JP4924792B2 (ja) 燃料電池システム及び移動体
JP4438854B2 (ja) 燃料電池システム
US8758952B2 (en) Fuel cell system with vibration control
JP4780427B2 (ja) 燃料電池システム及び移動体
JP5076472B2 (ja) 燃料電池システム
WO2008099905A1 (ja) 燃料電池システム
JP4882972B2 (ja) 燃料電池システム
JP4655082B2 (ja) 燃料電池システム
WO2007142245A1 (ja) 燃料電池システム
JP4863052B2 (ja) 燃料電池システム及び移動体
JP2007323873A (ja) 燃料電池システム及びその制御方法
JP2007165162A (ja) 燃料電池システム及び移動体
JP2008004320A (ja) 燃料電池システム及び移動体
JP2008218034A (ja) 燃料電池システム及びその制御方法
JP5228263B2 (ja) 燃料電池システム
JP2007305348A (ja) 燃料電池システム及び移動体
JP2008053151A (ja) 燃料電池システム
JP2008171623A (ja) 燃料電池システム
JP2008204711A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026129.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12294838

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120070026545

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097011651

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112007002654

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07850448

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607