WO2008099905A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2008099905A1
WO2008099905A1 PCT/JP2008/052481 JP2008052481W WO2008099905A1 WO 2008099905 A1 WO2008099905 A1 WO 2008099905A1 JP 2008052481 W JP2008052481 W JP 2008052481W WO 2008099905 A1 WO2008099905 A1 WO 2008099905A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
sensor
gas
valve
fuel
Prior art date
Application number
PCT/JP2008/052481
Other languages
English (en)
French (fr)
Inventor
Norimasa Ishikawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112008000393T priority Critical patent/DE112008000393B8/de
Priority to CN2008800050357A priority patent/CN101611511B/zh
Priority to US12/527,107 priority patent/US9028992B2/en
Publication of WO2008099905A1 publication Critical patent/WO2008099905A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a fuel cell system including a fuel cell that generates power by receiving a supply of a reaction gas (a fuel gas and an oxidizing gas) has been proposed and put into practical use.
  • a fuel cell system is provided with a fuel supply flow path for flowing fuel gas supplied from a fuel supply source such as a hydrogen tank to the fuel cell, and the fuel supply flow path includes a fuel supply path from the fuel supply source. It is common to provide a regulator (regulator) that reduces the fuel gas supply pressure to a certain value.
  • the present invention has been made in view of such circumstances, and includes an on-off valve that changes a supply state of a fuel gas to the fuel cell, and a sensor that detects a gas state for controlling the on-off valve.
  • the purpose is to suppress fuel cell power generation abnormalities caused by sensor abnormalities.
  • a fuel cell system includes a fuel cell, a fuel supply channel for flowing fuel gas supplied from a fuel supply source to the fuel cell, and an upstream of the fuel supply channel.
  • An on-off valve that adjusts the gas state on the fuel supply side and supplies it to the downstream side, a sensor that detects the gas state on the fuel supply flow path, and a control means that controls the on-off valve based on the detection value of the sensor, The control means stops the opening / closing operation of the on-off valve when the sensor falls into an abnormal state.
  • Gas state means a gas state represented by flow rate, pressure, temperature, molarity, etc., and particularly includes at least one of gas flow rate and gas pressure.
  • Control means for determining that the sensor has fallen into an abnormal state when the state has been exceeded for a predetermined time In the fuel cell system, a shutoff valve for shutting off the fuel gas supplied from the fuel supply source is provided on the upstream side of the on-off valve, and control means for closing the shutoff valve when the sensor falls into an abnormal state is adopted. be able to.
  • the shutoff valve upstream of the on-off valve can be closed due to a sensor abnormality, so that it is possible to suppress an excessive increase in the pressure of the fuel gas upstream of the on-off valve, It becomes possible to suppress the failure of the on-off valve.
  • a control unit that resumes the opening / closing operation of the on-off valve when the sensor recovers from an abnormal state to a normal state.
  • Control means that determines that the sensor has recovered from the abnormal state to the normal state when the predetermined lower limit value or more and not more than the predetermined upper limit value and the state has continued for a predetermined time) can be employed.
  • an injector can be used as the on-off valve, and a pressure sensor for detecting the pressure of the fuel gas on the downstream side of the injector can be used as the sensor.
  • the engineer is an electromagnetic drive that can adjust the gas state (gas flow rate and gas pressure) by driving the valve body directly with a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat It is a type on-off valve.
  • a predetermined control unit drives the valve body of the injector to control the fuel gas injection timing and injection time, whereby the flow rate and pressure of the fuel gas can be controlled.
  • a fuel cell system comprising: an on-off valve that changes a supply state of fuel gas to the fuel cell; and a sensor that detects a gas state for controlling the on-off valve. It is possible to suppress power generation abnormalities in the fuel cell.
  • FIG. 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a control block diagram for explaining a control mode of the control device of the fuel cell system shown in FIG.
  • FIG. 3A is a time chart showing the time history of the detected value of the secondary pressure sensor of the fuel cell system shown in FIG.
  • FIG. 3B is a time chart showing an example of the control operation of the injector of the fuel cell system shown in FIG.
  • FIG. 3C is a time chart showing an example of the control operation of the shutoff valve of the fuel cell system shown in FIG.
  • FIG. 3D is a time chart showing an example of forced intermittent operation of the fuel cell system shown in FIG.
  • FIG. 4 is a flowchart for explaining the operation method of the fuel cell system shown in FIG.
  • FIG. 5A is a time chart showing the time history of the detected value of the secondary pressure sensor of the fuel cell system shown in FIG.
  • FIG. 5B is a time chart showing another example of the control operation of the injector of the fuel cell system shown in FIG.
  • FIG. 6 is a configuration diagram showing a modification of the fuel cell system shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the fuel cell system 1 includes a fuel cell 10 that generates electric power upon receiving a supply of reaction gas (oxidizing gas and fuel gas). It includes an oxidizing gas piping system 2 that supplies air as oxidizing gas, a hydrogen gas piping system 3 that supplies hydrogen gas as fuel gas to the fuel cell 10, and a control device 4 that performs integrated control of the entire system.
  • reaction gas oxidizing gas and fuel gas
  • oxidizing gas piping system 2 that supplies air as oxidizing gas
  • hydrogen gas piping system 3 that supplies hydrogen gas as fuel gas to the fuel cell 10
  • a control device 4 that performs integrated control of the entire system.
  • the fuel cell 10 has a stack structure in which a required number of unit cells that generate power upon receiving a reaction gas are stacked.
  • the electric power generated by the fuel cell 10 is supplied to a PCU (Power Control Unit) 11.
  • P C U 1 1 includes an inverter D C—D C converter or the like disposed between the fuel cell 10 and the traction motor 12. Further, the fuel cell 10 is provided with a current sensor 13 for detecting a current during power generation.
  • the oxidizing gas piping system 2 includes an air supply channel 21 for supplying the oxidizing gas (air) humidified by the humidifier 20 to the fuel cell 10, and humidifying the oxidized off-gas discharged from the fuel cell 10.
  • the air supply passage 21 is provided with a compressor 24 that takes in the oxidizing gas in the atmosphere and pumps it to the humidifier 20.
  • the hydrogen gas piping system 3 includes a hydrogen tank 30 as a fuel supply source storing high-pressure hydrogen gas, and a hydrogen supply as a fuel supply channel for supplying the hydrogen gas from the hydrogen tank 30 to the fuel cell 10. Water discharged from channel 3 1 and fuel cell 10 And a circulation flow path 3 2 for returning the raw off gas to the hydrogen supply flow path 31.
  • a reformer that generates hydrogen-rich reformed gas from a hydrocarbon-based fuel
  • a high-pressure gas tank that stores the reformed gas generated by the reformer in a high-pressure state.
  • a tank having a hydrogen storage alloy may be employed as a fuel supply source.
  • the hydrogen supply flow path 3 1 is provided with a shut-off valve 3 3 that shuts off or allows the supply of hydrogen gas from the hydrogen tank 30, a regulator 3 4 that adjusts the pressure of the hydrogen gas, and an injector 3 5. It has been. Further, on the upstream side of the injector 35, there are provided a primary pressure sensor 4.1 and a temperature sensor 4 2 for detecting the pressure and temperature of the hydrogen gas in the hydrogen supply flow path 31. Further, the pressure of the hydrogen gas in the hydrogen supply flow path 3 1 is detected downstream of the injector 35 and upstream of the junction A 1 between the hydrogen supply flow path 3 1 and the circulation flow path 3 2. A secondary pressure sensor 4 3 is provided. The secondary pressure sensor 43 corresponds to an embodiment of the sensor and the pressure sensor in the present invention.
  • the regulator 34 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure.
  • a mechanical pressure reducing valve for reducing the primary pressure is employed as the regulator 34.
  • the mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure regulating chamber are formed with a diaphragm therebetween, and the primary pressure is set to a predetermined pressure in the pressure regulating chamber by the back pressure in the back pressure chamber. It is possible to adopt a known configuration in which the pressure is reduced to a secondary pressure. In the present embodiment, as shown in FIG. 1, by arranging two regulators 34 on the upstream side of the indicator 35, the upstream pressure of the indicator 35 can be effectively reduced.
  • the degree of freedom in designing the mechanical structure of the injector 35 can be increased. Further, since the upstream pressure of the injector 35 can be reduced, the valve body of the injector 35 becomes difficult to move due to an increase in the differential pressure between the upstream pressure and the downstream pressure of the injector 35. Can be suppressed. Accordingly, it is possible to widen the adjustable pressure range of the downstream pressure of the injector 35, and to suppress the decrease in the response 1 "of the injector 35.
  • the injector 35 is an electromagnetically driven on-off valve that can adjust the gas flow rate and gas pressure by driving the valve body directly at a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat.
  • the injector 35 is provided with a valve seat having an injection hole for injecting gaseous fuel such as hydrogen gas, a nozzle pod that supplies and guides the gaseous fuel to the injection hole, and an axial direction (gas flow direction) with respect to the nozzle pod. And a valve body movably accommodated and held to open and close the injection hole.
  • the valve body of the indicator 35 is driven by a solenoid that is an electromagnetic drive device, and the opening area of the injection hole is set in two steps by turning on and off the pulsed excitation current supplied to the solenoid.
  • the injector 35 is a valve that directly opens and closes the valve (valve body and valve seat) with an electromagnetic driving force, and has a high responsiveness because its driving cycle can be controlled to a highly responsive region.
  • Injector 35 is configured to change at least one of the opening area (opening) and the opening time of the valve provided in the gas flow path of injector 35 in order to supply the required gas flow rate downstream. Adjust the gas flow rate (or hydrogen molar concentration) supplied to the downstream side (fuel cell 10 side). In addition, the gas flow rate is adjusted by opening and closing the valve body of the injector 35, and the gas pressure supplied downstream of the injector 35 is depressurized from the gas pressure upstream of the injector 35. It can also be interpreted as a pressure reducing valve or a regulator. In the present embodiment, a predetermined pressure range is set according to the gas demand. 08 052481
  • variable pressure control valve that can change the pressure adjustment amount (pressure reduction amount) of the upstream gas pressure of the injector 35 so as to match the required pressure.
  • an indicator 35 is arranged upstream of the junction A 1 between the hydrogen supply channel 31 and the circulation channel 32.
  • the hydrogen gas supplied from each hydrogen tank 30 is joined (hydrogen gas joining part A 2) Install the indicator 35 on the downstream side.
  • An exhaust flow path 3 8 is connected to the circulation flow path 3 2 via a gas-liquid separator 3 6 and an exhaust drain valve 3 7.
  • the gas-liquid separator 36 recovers moisture from the hydrogen off gas.
  • the exhaust drain valve 3 7 is operated according to a command from the control device 4 so that moisture recovered by the gas-liquid separator 36, hydrogen off-gas (fuel off-gas) containing impurities in the circulation channel 3 2, Is discharged (purged) to the outside.
  • the circulation channel 3 2 is provided with a hydrogen pump 39 that pressurizes the hydrogen off-gas in the circulation channel 32 and sends it to the hydrogen supply channel 31 side.
  • the hydrogen off-gas discharged through the air drain valve 37 and the discharge passage 38 is joined with the oxidizing off-gas in the exhaust passage 23 by the diluter 40 and diluted.
  • the control device 4 detects an operation amount of an acceleration operation member (accelerator, etc.) provided in the vehicle, and provides control information such as an acceleration request value (for example, a required power generation amount from a load device such as the traction motor 12). In response, the operation of various devices in the system is controlled.
  • the load device refers to auxiliary equipment required to operate the fuel cell 10 (for example, compressor 24, hydrogen pump 39, cooling pump motor, etc.), vehicle Actuators used in various devices (transmissions, wheel control devices, steering devices, suspension devices, etc.) It is a collective term for power consumption devices including air conditioners (air conditioners), lighting, and audio.
  • the control device 4 is configured by a computer system (not shown). Such a computer system is provided with a CPU, ROM, RAM, HDD, input / output interface, display, and the like, and various kinds of control programs recorded in the ROM are read and executed by the CPU. The control operation is realized.
  • the control device 4 determines the fuel cell 1 based on the operating state of the fuel cell 10 (the current value during power generation of the fuel cell 10 detected by the current sensor 13).
  • the amount of hydrogen gas consumed at 0 (hereinafter referred to as “hydrogen consumption”) is calculated (fuel consumption calculation function: B 1).
  • the hydrogen consumption is calculated and updated for each calculation cycle of the control device 4 using a specific calculation formula representing the relationship between the current value of the fuel cell 10 and the hydrogen consumption. .
  • control device 4 determines the target of the hydrogen gas at the downstream position of the engine 35 based on the operating state of the fuel cell 10 (current value at the time of power generation of the fuel cell 10 detected by the current sensor 13). Calculate the pressure value (target gas supply pressure to the fuel cell 10) (target pressure value calculation function: B 2).
  • target pressure value calculation function: B 2 target pressure value calculation function
  • the secondary side pressure sensor 4 3 is arranged for each calculation cycle of the control device 4 using a specific map representing the relationship between the generated current value of the fuel cell 1.0 and the target pressure value. The target pressure value at the selected position is calculated and updated.
  • the control device 4 calculates the feed pack correction flow rate based on the deviation between the calculated target pressure value and the detected pressure value of the injector 3 5 downstream position detected by the secondary pressure sensor 4 3.
  • the feed pack correction flow rate is a hydrogen gas flow rate added to the hydrogen consumption in order to reduce the deviation between the target pressure value and the detected pressure value.
  • the feedback correction flow rate is calculated and updated every calculation cycle of the control device 4 using the PI type feedback control law.
  • control device 4 detects the upstream gas state of the injector 35 based on the gas state upstream of the injector 35 (the pressure of the hydrogen gas detected by the primary pressure capacitor 41 and the temperature of the hydrogen gas detected by the temperature sensor 42).
  • the static flow rate is calculated (Static flow rate calculation function: B 4).
  • the static flow rate is calculated for each calculation cycle of the control device 4 using a specific calculation formula representing the relationship between the pressure and temperature of the hydrogen gas upstream of the indicator 35 and the static flow rate. To update.
  • the control device 4 calculates the invalid injection time of the injector 35 based on the gas state (hydrogen gas pressure and temperature) upstream of the indicator 35 and the applied voltage (invalid injection time calculation function: B 5 )
  • the invalid injection time means the time required from when the injector 35 receives the control signal from the control device 4 until the actual injection is started.
  • a specific map that represents the relationship between the pressure and temperature of the hydrogen gas on the flow side of the indicator 35, the applied voltage, and the invalid injection time is used. The shooting time is calculated and updated.
  • the control device 4 calculates the injection flow rate of the indicator 35 by adding the hydrogen consumption amount and the feedback correction flow rate (injection flow rate calculation function: B 6). Then, the control device 4 calculates the basic injection time of the injector 35 by multiplying the value obtained by dividing the injection flow rate of the injector 35 by the static flow rate by the drive cycle of the injector 35, and calculates the basic injection time and The total injection time of the injector 35 is calculated by caloring the invalid injection time (total injection time calculation function: B 7).
  • the drive cycle means a stepped (on / off) waveform cycle representing the open / close state of the injection hole of the injector 35. In the present embodiment, the drive period is set to a constant value by the control device 4.
  • control device 4 controls the gas injection time and the gas injection timing of the injector 35 by sending a control signal for realizing the total injection time of the injector 35 calculated through the above procedure, Adjust the flow rate and pressure of the hydrogen gas supplied to the fuel cell 10. In this way, the control device 4 controls the injector 35 with reference to the detected pressure value at the downstream position of the injector 35 detected by the secondary pressure sensor 43.
  • control device 4 determines whether the secondary pressure sensor 4 3 is abnormal during normal operation of the fuel cell 10 and determines that the secondary pressure sensor 4 3 is in an abnormal state. Stop the injection operation (open / close operation) by the injector 3 5 and make it fully closed. Specifically, as shown in FIG. 3A, the control device 4 detects that the value detected by the secondary pressure sensor 43 is less than a predetermined lower limit value or exceeds a predetermined upper limit value, and The state is T for a predetermined time. If it continues, it is determined that the secondary pressure sensor 4 3 is in an abnormal state, and the injector 3 5 is fully closed as shown in FIG. 3B. That is, the control device 4 functions as an embodiment of the control means in the present invention.
  • control device 4 determines that the secondary pressure sensor 4 3 is in an abnormal state
  • the control device 4 has a shut-off valve provided in the hydrogen supply passage 31 as shown in FIG.
  • control device 4 is capable of operating the secondary pressure sensor during the forced intermittent operation described above.
  • the control device 4 detects that the value detected by the secondary-side pressure sensor 43 is not less than a predetermined lower limit value and not more than a predetermined upper limit value, and the state is maintained for a predetermined time T. . If it continues, it is determined that the secondary pressure sensor 43 has recovered from the abnormal state to the normal state, and the injection operation (opening / closing operation) by the injector 35 is resumed as shown in FIG. 3B.
  • the control device 4 opens the shut-off valve 3 3 that has been closed as shown in FIG. 3C. Then, supply of hydrogen gas from the hydrogen tank 30 is resumed.
  • the control device 4 determines that the secondary side pressure sensor 4 3 has recovered from the abnormal state to the normal state, the exhaust gas provided in the circulation flow path 3 2 as shown in FIG. 3D. Open drain valve 3 7 and operate hydrogen pump 3 9 and compressor 2 4 to shift from forced intermittent operation to normal operation and restart power generation.
  • the control device 4 of the fuel cell system 1 detects the pressure value of the hydrogen gas downstream of the injector 3 5 using the secondary pressure sensor 4 3 during normal operation (pressure detection during normal operation). Process: S 1). Then, the control device 4 detects that the detected value in the normal pressure detecting step S1 is less than the predetermined lower limit value or exceeds the predetermined upper limit value, and the state is the predetermined time T. It is determined whether or not to continue (abnormality determination step: S 2).
  • the control device 4 determines that the detection value of the secondary pressure sensor 4 3 is not less than the predetermined lower limit value and not more than the predetermined upper limit value, or the detection value of the secondary pressure sensor 4 3 Even if is less than the predetermined lower limit value or exceeds the predetermined upper limit value, the condition remains at the predetermined time T. If not, it is determined that the secondary pressure sensor 43 is normal and the control operation is terminated as it is.
  • the control device 4 detects that the detection value of the secondary pressure sensor 4 3 is less than a predetermined lower limit value or exceeds a predetermined upper limit value, and the state is a predetermined time T. If it continues, it is determined that the secondary pressure sensor 43 has entered an abnormal state, and the injection operation by the injector 35 is stopped to make it fully closed (injector stop process: S 3). The control device 4 closes the shut-off valve 3 3 provided in the hydrogen supply flow path 31 and the exhaust drain valve 3 7 provided in the circulation flow path 3 2 together with the stop of the injector 35, and the hydrogen Stop pump 3 9 and compressor 2 4 to shift from normal operation to forced intermittent operation to temporarily stop power generation.
  • control device 4 uses the secondary pressure sensor 43 to determine the hydrogen gas pressure value on the downstream side of the injector 35 while performing the forced intermittent operation through the injector stop step S3. Detected (intermittent pressure detection step: S 4), and the detected value is not less than a predetermined lower limit value and not more than a predetermined upper limit value, and the state is T for a predetermined time. It is determined whether or not to continue (return determination step: S 5).
  • the state is the predetermined time T. If it does not continue, it is determined that the secondary pressure sensor 4 3 is in an abnormal state, and control returns to the injector stop step S 3 to continue control.
  • the control device 4 detects that the detection value of the secondary pressure sensor 4 3 is not less than a predetermined lower limit value and not more than a predetermined upper limit value, and the state is a predetermined time T. If it continues, it is determined that the secondary pressure sensor 43 has recovered from an abnormal state to a normal state, and the injection operation by the indicator 35 is restarted (indicator restart process: S 6). The control device 4 reopened the shut-off valve 3 3 and the exhaust drain valve 3 7 that were closed, and restarted the hydrogen pump 3 9 and the compressor 2 4 together with the restart of the injector 3 5. Shift from forced intermittent operation to normal operation to resume power generation.
  • the supply state of hydrogen gas to the fuel cell 10 0 is prevented from being abnormal due to the malfunction of the injector 35 due to the abnormality of the secondary pressure sensor 4 3. can do. Therefore, it is possible to prevent the power generation state of the fuel cell 10 from becoming abnormal, and the components inside the fuel cell 10 are deteriorated due to a rapid increase in the amount of fuel supplied to the fuel cell 10. Can be avoided.
  • the injector 3 5 can close the shutoff valve 3 3 on the upstream side in accordance with the abnormality of the secondary pressure sensor 4 3. It is possible to prevent the upstream hydrogen gas pressure from rising excessively. Therefore, the failure of the injector 35 can be suppressed.
  • the opening / closing operation of the indicator 35 is automatically restarted. The fuel supply to the fuel cell 10 can be resumed. Therefore, when the secondary pressure sensor 4 3 recovers from the abnormal state to the normal state, the power generation by the fuel cell 10 can be automatically resumed.
  • the value detected by the secondary pressure sensor 43 is less than a predetermined lower limit value or exceeds a predetermined upper limit value, and the state is a predetermined time T.
  • the force S shows an example in which the secondary pressure sensor 43 is determined to be in an abnormal state when it is sustained, and the method of abnormality determination is not limited to this.
  • the force at which the detection value at the secondary pressure sensor 4 3 is less than a predetermined lower limit value, or the detection value at the secondary pressure sensor 4 3 has a predetermined upper limit value. If exceeded, it is immediately determined that the secondary pressure sensor 4 3 is in an abnormal state, and the injector 35 can be fully closed as shown in FIG. 5B.
  • the value detected by the secondary pressure sensor 43 is not less than the predetermined lower limit value and not more than the predetermined upper limit value, and the state is the predetermined time T.
  • the method for determining recovery from the abnormal state is not limited to this.
  • the detected value at the secondary pressure sensor 4 3 falls below a predetermined lower limit value and below a predetermined upper limit value, the secondary pressure sensor 4 3 immediately becomes abnormal.
  • the injection operation by the indicator 35 can be restarted by determining that the vehicle has recovered from the normal state.
  • the example in which the circulation flow path 32 is provided in the hydrogen gas piping system 3 of the fuel cell system 1 has been shown.
  • the controller 4 determines the abnormality of the secondary pressure sensor 4 3 in the same manner as in the previous embodiment, and the secondary pressure sensor 4 3 falls into an abnormal state. In this case, the injector 35 can be fully closed.
  • the on-off valve adjusts the gas state upstream of the supply flow path (hydrogen supply flow path 3 1). As long as it is supplied to the downstream side, it is not limited to the indicator 35.
  • the secondary pressure sensor 43 is arranged at the downstream position of the indicator 35 in the hydrogen supply flow path 31 and the pressure at this position is adjusted (approaches a predetermined target pressure value).
  • the injector 35 is controlled, but the position of the secondary pressure sensor is not limited to this.
  • a secondary pressure sensor can be placed in the vicinity (on the circulation channel 3 2). In such a case, a map in which the target pressure value at each position of the secondary pressure sensor is recorded in advance, and the feedback correction flow rate is calculated based on this map.
  • shut-off valve 3 3 and the regulator 3 4 are provided in the hydrogen supply flow path 31
  • the injector 35 has a function as a variable pressure control valve.
  • the shut-off valve 3 3 does not necessarily have to be provided with the regulator 3 4. Therefore, when the indicator 35 is employed, the shut-off valve 3 3 and the regulator 3 4 can be omitted, so that the system can be reduced in size and cost.
  • the fuel cell system according to the present invention can be mounted on a fuel cell vehicle, and can also be applied to various moving bodies (mouth pots, ships, aircrafts, etc.) other than fuel cell vehicles. It can be installed. Further, the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (house, building, etc.).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池と、燃料供給源から供給される燃料ガスを燃料電池へと流すための燃料供給流路と、燃料供給流路の上流側におけるガス状態を調整して下流側に供給する開閉弁と、燃料供給流路におけるガス状態を検出するセンサと、センサでの検出値に基づいて開閉弁を制御する制御手段と、を備える燃料電池システムであって、制御手段は、センサが異常状態に陥った場合に、開閉弁の開閉動作を停止させる。

Description

明細書 燃料電池システム 技術分野
本発明は、 燃料電池システムに関する。 背景技術
従来より、 反応ガス (燃料ガス及び酸化ガス) の供給を受けて発電を行う 燃料電池を備えた燃料電池システムが提案され、 実用化されている。 かかる 燃料電池システムには、 水素タンク等の燃料供給源から供給される燃料ガス を燃料電池へと流すための燃料供給流路が設けられており、 燃料供給流路に は、 燃料供給源からの燃料ガスの供給圧力を一定の値まで低減させる調圧弁 (レギユレータ) が設けられるのが一般的である。
現在においては、 燃料ガスの供給圧力を変化させる開閉弁を燃料供給流路 に設けることにより、 システムの運転状態に応じて燃料ガスの供給圧力を 化させる技術が提案されている。 また、 近年においては、 開閉弁の上^側に 圧力センサを配置し、 この圧力センサでの検出値に基づいて開閉弁を制御す る技術も提案されている(例えば、特開 2005-302563号公報参照)。 特許文献 1に記載されたような技術を採用すると、 開閉弁の故障判定を行う ことも可能である。 発明の開示
し力、し、 特開 2005-302563号公報に記載されたような技術を採 用しても、断線や短絡等に起因して圧力センサが異常状態に陥った場合には、 開閉弁の故障判定が不可能となるばかりでなく、 開閉弁を正常に制御するこ とが不可能となる。 かかる事態が発生すると、 開閉弁の誤動作により、 燃料 電池への燃料ガスの供給量が急増又は急減して、 正常な発電が妨げられるお それがある。
本発明は、 かかる事情に鑑みてなされたものであり、 燃料電池への燃料ガ スの供給状態を変化させる開閉弁と、 この開閉弁を制御するためのガス状態 を検出するセンサと、 を有する燃料電池システムにおいて、 センサ異常に起 因した燃料電池の発電異常を抑制することを目的とする。
前記目的を達成するため、本発明に係る燃料電池システムは、燃料電池と、 燃料供給源から供給される燃料ガスを燃料電池へと流すための燃料供給流路 と、 この燃料供給流路の上流側におけるガス状態を調整して下流側に供給す る開閉弁と、 燃料供給流路におけるガス状態を検出するセンサと、 このセン サでの検出値に基づいて開閉弁を制御する制御手段と、 を備える燃料電池シ ステムであって、 制御手段は、 センサが異常状態に陥った場合に、 開閉弁の 開閉動作を停止させるものである。
かかる構成を採用すると、 センサ異常に起因した開閉弁の誤動作により燃 料電池への燃料ガスの供給状態が異常となることを抑制することができる。 従って、 燃料電池の発電状態が異常となることを抑制することができるとと もに、 燃料電池への燃料供給量の急増に起因して燃料電池内部の構成部品が 劣化するというような事態を回避することができる。 なお、 「ガス状態」 と は、 流量、 圧力、 温度、 モル濃度等で表されるガスの状態を意味し、 特にガ ス流量及びガス圧力の少なくとも一方を含むものとする。
前記燃料電池システムにおいて、 センサでの検出値が所定の下限値未満と なる場合又は所定の上限値を超える場合 (又は、 センサでの検出値が所定の 下限値未満となるか又は所定の上限値を超え、 かつ、 その状態が所定時間持 続した場合) に、 センサが異常状態に陥ったものと判定する制御手段を採用 することができる。 また、 前記燃料電池システムにおいて、 燃料供給源から供給される燃料ガ スを遮断する遮断弁を開閉弁上流側に備え、 センサが異常状態に陥った場合 に遮断弁を閉鎖する制御手段を採用することができる。
かかる構成を採用すると、 センサ異常に伴って、 開閉弁上流側の遮断弁を 閉鎖することができるので、 開閉弁上流側の燃料ガスの圧力が過剰に上昇す ることを抑制することができ、 開閉弁の故障を抑制することが可能となる。 また、 前記燃料電池システムにおいて、 センサが異常状態から正常状態へ と回復した場合に開閉弁の開閉動作を再開させる制御手段を採用することが 好ましい。
かかる構成を採用すると、 センサが異常状態から正常状態へと回復した場 合に、 開閉弁の開閉動作を自動的に再開させて、 燃料電池への燃料供給を再 開することができる。 従って、 センサが異常状態から正常状態へと回復しこ 場合に、 燃料電池による発電を自動的に再開することができる。
また、 前記燃料電池システムにおいて、 異常であると判断したセンサでの 検出値が所定の下限値以上所定の上限値以下となった場合 (又は、 異常であ ると判断したセンサでの検出値が所定の下限値以上所定の上限値以下となり、 かつ、 その状態が所定時間持続した場合) に、 センサが異常状態から正常状 態へと回復したと判断する制御手段を採用することができる。
また、 前記燃料電池システムにおいて、 開閉弁としてインジェクタを採用 するとともに、 センサとしてインジェクタの下流側における燃料ガスの圧力 を検出する圧力センサを採用することができる。
ィンジ工クタとは、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動し て弁座から離隔させることによりガス状態 (ガス流量やガス圧力) を調整す ることが可能な電磁駆動式の開閉弁である。 所定の制御部がィンジェクタの 弁体を駆動して燃料ガスの噴射時期や噴射時間を制御することにより、 燃料 ガスの流量や圧力を制御することが可能となる。 本発明によれば、燃料電池への燃料ガスの供給状態を変化させる開閉弁と、 この開閉弁を制御するためのガス状態を検出するセンサと、 を有する燃料電 池システムにおいて、 センサ異常に起因した燃料電池の発電異常を抑制する ことが可能となる。 . 図面の簡単な説明
図 1は、 本発明の実施形態に係る燃料電池システムの構成図である。
図 2は、 図 1に示した燃料電池システムの制御装置の制御態様を説明する ための制御ブロック図である。
図 3 Aは、 図 1に示した燃料電池システムの二次側圧力センサの検出値の 時間履歴を示すタイムチャートである。
図 3 Bは、 図 1に示した燃料電池システムのィンジヱクタの制御動作の一 例を示すタイムチヤ一トである。
図 3 Cは、 図 1に示した燃料電池システムの遮断弁の制御動作の一例を示 すタイムチャートである。
図 3 Dは、 図 1に示した燃料電池システムの強制間欠運転動作の一例を示 すタイムチャートである。
図 4は、 図 1に示した燃料電池システムの運転方法を説明するためのフロ 一チャートである。
図 5 Aは、 図 1に示した燃料電池システムの二次側圧力センサの検出値の 時間履歴を示すタイムチャートである。
図 5 Bは、 図 1に示した燃料電池システムのィンジェクタの制御動作の他 の例を示すタイムチャートである。
図 6は、 図 1に示した燃料電池システムの変形例を示す構成図である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施形態に係る燃料電池システム 1につ いて説明する。 本実施形態においては、 本発明を燃料電池車両の車载発電シ ステムに適用した例について説明することとする。
まず、 図 1〜図 3 Dを用いて、 本発明の実施形態に係る燃料電池システム
1の構成について説明する。 本実施形態に係る燃料電池システム 1は、 図 1 に示すように、 反応ガス (酸化ガス及び燃料ガス) の供給を受けて電力を発 生する燃料電池 1 0を備えるとともに、 燃料電池 1 0に酸化ガスとしての空 気を供給する酸化ガス配管系 2、 燃料電池 1 0に燃料ガスとしての水素ガス を供給する水素ガス配管系 3、 システム全体を統合制御する制御装置 4等を 備えている。
燃料電池 1 0は、 反応ガスの供給を受けて発電する単電池を所要数積層し て構成したスタック構造を有している。燃料電池 1 0により発生した電力は、 P C U (Power Control Unit) 1 1に供給される。 P C U 1 1は、 燃料電池 1 0とトラクシヨンモータ 1 2との間に配置されるインパータゃ D C— D C コンバータ等を備えている。 また、 燃料電池 1 0には、 発電中の電流を検出 する電流センサ 1 3が取り付けられている。
酸化ガス配管系 2は、 加湿器 2 0により加湿された酸化ガス (空気) を燃 料電池 1 0に供給する空気供給流路 2 1と、 燃料電池 1 0から排出された酸 化オフガスを加湿器 2 0に導く空気排出流路 2 2と、 加湿器 2 1から外部に 酸ィ匕オフガスを導くための排気流路 2 3と、 を備えている。 空気供給流路 2 1には、 大気中の酸化ガスを取り込んで加湿器 2 0に圧送するコンプレッサ 2 4が設けられている。
水素ガス配管系 3は、 高圧の水素ガスを貯留した燃料供給源としての水素 タンク 3 0と、 水素タンク 3 0の水素ガスを燃料電池 1 0に供給するための 燃料供給流路としての水素供給流路 3 1と、 燃料電池 1 0から排出された水 素オフガスを水素供給流路 3 1に戻すための循環流路 3 2と、を備えている。 なお、 水素タンク 3 0に代えて、 炭化水素系の燃料から水素リッチな改質ガ スを生成する改質器と、 この改質器で生成した改質ガスを高圧状態にして蓄 圧する高圧ガスタンクと、を燃料供給源として採用することもできる。また、 水素吸蔵合金を有するタンクを燃料供給源として採用してもよい。
水素供給流路 3 1には、 水素タンク 3 0からの水素ガスの供給を遮断又は 許容する遮断弁 3 3と、 水素ガスの圧力を調整するレギユレータ 3 4と、 ィ ンジェクタ 3 5と、 が設けられている。 また、 インジェクタ 3 5の上流側に は、 水素供給流路 3 1内の水素ガスの圧力及び温度を検出する一次側圧カセ ンサ 4. 1及び温度センサ 4 2が設けられている。 また、 インジェクタ 3 5の 下流側であって水素供給流路 3 1と循環流路 3 2との合流部 A 1の上流側に は、 水素供給流路 3 1内の水素ガスの圧力を検出する二次側圧力センサ 4 3 が設けられている。 二次側圧力センサ 4 3は、 本発明におけるセンサ及び圧 力センサの一実施形態に相当するものである。
レギユレータ 3 4は、 その上流側圧力 (一次圧) を、 予め設定した二次圧 に調圧する装置である。 本実施形態においては、 一次圧を減圧する機械式の 減圧弁をレギユレータ 3 4として採用している。 機械式の減圧弁の構成とし ては、 背圧室と調圧室とがダイアフラムを隔てて形成された筐体を有し、 背 圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする 公知の構成を採用することができる。 本実施形態においては、 図 1に示すよ うに、 インジヱクタ 3 5の上流側にレギユレータ 3 4を 2個配置することに より、 ィンジヱクタ 3 5の上流側圧力を効果的に低減させることができる。 このため、 インジェクタ 3 5の機械的構造 (弁体、 筐体、 流路、 駆動装置等) の設計自由度を高めることができる。 また、 インジヱクタ 3 5の上流側圧力 を低減させることができるので、 インジヱクタ 3 5の上流側圧力と下流側圧 力との差圧の増大に起因してインジェクタ 3 5の弁体が移動し難くなること を抑制することができる。 従って、 インジェクタ 3 5の下流側圧力の可変調 圧幅を広げることができるとともに、 インジェクタ 3 5の応答 1"生の低下を抑 制することができる。
ィンジェクタ 3 5は、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動 して弁座から離隔させることによりガス流量やガス圧を調整することが可能 な電磁駆動式の開閉弁である。 インジェクタ 3 5は、 水素ガス等の気体燃料 を噴射する噴射孔を有する弁座を備えるとともに、 その気体燃料を嘖射孔ま で供給案内するノズルポディと、 このノズルポディに対して軸線方向 (気体 流れ方向) に移動可能に収容保持され噴射孔を開閉する弁体と、 を備えてい る。 本実施形態においては、 インジヱクタ 3 5の弁体は電磁駆動装置である ソレノィ ドにより駆動され、 このソレノィ ドに給電されるパルス状励磁電流 のオン ·オフにより、 噴射孔の開口面積を 2段階又は多段階に切り替えるこ とができるようになっている。 制御装置 4から出力される制御信号によって インジ工クタ 3 5のガス噴射時間及ぴガス噴射時期が制御されることにより、 水素ガスの流量及ぴ圧力が高精度に制御される。インジェクタ 3 5は、弁(弁 体及び弁座) を電磁駆動力で直接開閉駆動するものであり、 その駆動周期が 高応答の領域まで制御可能であるため、 高い応答性を有する。
インジヱクタ 3 5は、 その下流に要求されるガス流量を供給するために、 インジェクタ 3 5のガス流路に設けられた弁体の開口面積 (開度) 及び開放 時間の少なくとも一方を変更することにより、 下流側 (燃料電池 1 0側) に 供給されるガス流量 (又は水素モル濃度) を調整する。 なお、 インジェクタ 3 5の弁体の開閉によりガス流量が調整されるとともに、 インジェクタ 3 5 下流に供給されるガス圧力がィンジェクタ 3 5上流のガス圧力より減圧され るため、 インジヱクタ 3 5を調圧弁 (減圧弁、 レギユレータ) と解釈するこ ともできる。 また、 本実施形態では、 ガス要求に応じて所定の圧力範囲の中 08 052481
8
で要求圧力に一致するようにィンジヱクタ 3 5の上流ガス圧の調圧量 (減圧 量) を変化させることが可能な可変調圧弁と解釈することもできる。
なお、 本実施形態においては、 図 1に示すように、 水素供給流路 3 1と循 環流路 3 2との合流部 A 1より上流側にインジヱクタ 3 5を配置している。 また、 図 1に破線で示すように、 燃料供給源として複数の水素タンク 3 0を 採用する場合には、 各水素タンク 3 0から供給される水素ガスが合流する部 分 (水素ガス合流部 A 2 ) よりも下流側にインジ-クタ 3 5を配置するよう にする。
循環流路 3 2には、 気液分離器 3 6及ぴ排気排水弁 3 7を介して、 排出流 路 3 8が接続されている。 気液分離器 3 6は、 水素オフガスから水分を回収 するものである。 排気排水弁 3 7は、 制御装置 4からの指令によって作動す ることにより、 気液分離器 3 6で回収した水分と、 循環流路 3 2内の不純物 を含む水素オフガス (燃料オフガス) と、 を外部に排出 (パージ) するもの である。 また、 循環流路 3 2には、 循環流路 3 2内の水素オフガスを加圧し て水素供給流路 3 1側へ送り出す水素ポンプ 3 9が設けられている。 なお、 お気排水弁 3 7及び排出流路 3 8を介して排出される水素オフガスは、 希釈 器 4 0で排気流路 2 3内の酸化オフガスと合流して希釈されるようになつで いる。
制御装置 4は、 車両に設けられた加速操作部材 (アクセル等) の操作量を 検出し、 加速要求値 (例えばトラクシヨンモータ 1 2等の負荷装置からの要 求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。 なお、 負荷装置とは、 トラクシヨンモータ 1 2のほかに、 燃料電池 1 0を作 動させるために必要な補機装置(例えばコンプレッサ 2 4、水素ポンプ 3 9、 冷却ポンプのモータ等) 、 車両の走行に関与する各種装置 (変速機、 車輪制 御装置、 操舵装置、 懸架装置等) で使用されるァクチユエータ、 乗員空間の 空調装置 (エアコン) 、 照明、 オーディオ等を含む電力消費装置を総称した ものである。
制御装置 4は、 図示していないコンピュータシステムによって構成されて いる。 かかるコンピュータシステムは、 C P U、. R OM、 R AM, H D D、 入出力インタフェース及びディスプレイ等を備えるものであり、 R OMに記 録された各種制御プログラムを C P Uが読み込んで実行することにより、 各 種制御動作が実現されるようになっている。
具体的には、 制御装置 4は、 図 2に示すように、 燃料電池 1 0の運転状態 (電流センサ 1 3で検出した燃料電池 1 0の発電時の電流値) に基づいて、 燃料電池 1 0で消費される水素ガスの量 (以下 「水素消費量」 という) を算 出する (燃料消費量算出機能: B 1 ) 。 本実施形態においては、 燃料電池 1 0の電流値と水素消費量との関係を表す特定の演算式を用いて、 制御装置 4 の演算周期毎に水素消費量を算出して更新することとしている。
また、 制御装置 4は、 燃料電池 1 0の運転状態 (電流センサ 1 3で検出し た燃料電池 1 0の発電時の電流値) に基づいて、 ィンジ工クタ 3 5下流位置 における水素ガスの目標圧力値 (燃料電池 1 0への目標ガス供給圧) を算出 する (目標圧力値算出機能: B 2 ) 。 本実施形態においては、 燃料電池 1. 0 の発電電流値と目標圧力値との関係を表す特定のマップを用いて、 制御装置 4の演算周期毎に、 二次側圧力センサ 4 3が配置された位置における目標圧 力値を算出して更新することとしている。 ' また、 制御装置 4は、 算出した目標圧力値と、 二次側圧力センサ 4 3で検 出したインジェクタ 3 5下流位置の検出圧力値と、 の偏差に基づいてフィー ドパック捕正流量を算出する (フィードパック補正流量算出機能: B 3 ) 。 フィードパック補正流量は、 目標圧力値と検出圧力値との偏差を低減させる ために水素消費量に加算される水素ガス流量である。本実施形態においては、 · P I型フィードバック制御則を用いて、 制御装置 4の演算周期毎にフィード バック補正流量を算出して更新することとしている。
また、 制御装置 4は、 インジェクタ 3 5の上流のガス状態 (一次側圧カセ ンサ 4 1で検出した水素ガスの圧力及び温度センサ 4 2で検出した水素ガス の温度) に基づいてインジェクタ 3 5の上流の静的流量を算出する (静的流 量算出機能: B 4 ) 。 本実施形態においては、 インジヱクタ 3 5の上流側の 水素ガスの圧力及び温度と静的流量との関係を表す特定の演算式を用いて、 制御装置 4の演算周期毎に静的流量を算出して更新することとしている。 また、 制御装置 4は、 インジヱクタ 3 5の上流のガス状態 (水素ガスの圧 力及び温度) 及び印加電圧に基づいてィンジェクタ 3 5の無効噴射時間を算 出する (無効噴射時間算出機能: B 5 ) 。 ここで無効噴射時間とは、 インジ ェクタ 3 5が制御装置 4から制御信号を受けてから実際に噴射を開始するま でに要する時間を意味する。 本実施形態においては、 インジヱクタ 3 5の 流側の水素ガスの圧力及ぴ温度と印加電圧と無効噴射時間との関係を表す特 定のマップを用いて、 制御装置 4の演算周期毎に無効嘖射時間を算出して更 新することとしている。
また、 制御装置 4は、 水素消費量とフィードバック補正流量とを加算する ことにより、 インジヱクタ 3 5の噴射流量を算出する (噴射流量算出機能: B 6 ) 。 そして、 制御装置 4は、 ィンジェクタ 3 5の噴射流量を静的流量で 除した値にインジェクタ 3 5の駆動周期を乗じることにより、 インジェクタ 3 5の基本噴射時間を算出するとともに、 この基本噴射時間と無効噴射時間 とをカロ算してインジェクタ 3 5の総噴射時間を算出する (総噴射時間算出機 能: B 7 ) 。 ここで、 駆動周期とは、 インジェクタ 3 5の噴射孔の開閉状態 を表す段状 (オン ·オフ) 波形の周期を意味する。 本実施形態においては、 制御装置 4により駆動周期を一定の値に設定している。 そして、 制御装置 4は、 以上の手順を経て算出したィンジェクタ 3 5の総 噴射時間を実現させるための制御信号を送出することにより、 ィンジェクタ 3 5のガス噴射時間及びガス噴射時期を制御して、 燃料電池 1 0に供給され る水素ガスの流量及び圧力を調整する。 このように、 制御装置 4は、 二次側 圧力センサ 4 3で検出したィンジェクタ 3 5下流位置の検出圧力値を参照し て、 インジェクタ 3 5を制御している。
また、 制御装置 4は、 燃料電池 1 0の正常運転中に、 二次側圧力センサ 4 3の異常判定を行い、 二次側圧力センサ 4 3が異常状態に陥ったものと判定 した場合に、 インジェクタ 3 5による噴射動作 (開閉動作) を停止させて全 閉状態とする。 具体的には、 制御装置 4は、 図 3 Aに示すように、 二次側圧 力センサ 4 3での検出値が所定の下限値未満となるか又は所定の上限値を超 え、 かつ、 その状態が所定時間 T。持続した場合に、二次側圧力センサ 4 3が 異常状態に陥ったもの判定し、 図 3 Bに示すように、 インジェクタ 3 5を全 閉状態とする。 すなわち、 制御装置 4は、 本発明における制御手段の一実施 形態として機能する。
また、 制御装置 4は、 二次側圧力センサ 4 3が異常状態に陥ったものと判 定した場合に、 図 3 Cに示すように、 水素供給流路 3 1に設けられた遮断弁
3 3を閉鎖して、 水素タンク 3 0からの水素ガスの供給を遮断する。 これに より、 インジェクタ 3 5の上流側圧力が過剰に上昇することを抑制すること ができる。 また、 制御装置 4は、 二次側圧力センサ 4 3が異常状態に陥った ものと判定した場合に、 図 3 Dに示すように、 循環流路 3 2に設けられた排 気排水弁 3 7を閉鎖するとともに水素ポンプ 3 9及びコンプレッサ 2 4を停 止させ、 正常運転から強制的な間欠運転に移行させて一時的に発電を停止さ せる。
—方、 制御装置 4は、 前記した強制的な間欠運転中に、 二次側圧力センサ
4 3の復帰判定を行い、 二次側圧力センサ 4 3が異常状態から正常状態へと 回復したものと判定した場合に、 インジェクタ 3 5を再稼動させる。 具体的 には、 制御装置 4は、 図 3 Aに示すように、 二次側圧力センサ 4 3での検出 値が所定の下限値以上所定の上限値以下となり、 かつ、 その状態が所定時間 T。持続した場合に、二次側圧力センサ 4 3が異常状態から正常状態へと回復 したものと判断し、 図 3 Bに示すように、 インジェクタ 3 5による噴射動作 (開閉動作) を再開させる。
また、 制御装置 4は、 二次側圧力センサ 4 3が異常状態から正常状態へと 回復したものと判定した場合に、 図 3 Cに示すように、 閉鎖していた遮断弁 3 3を開放して、 水素タンク 3 0からの水素ガスの供給を再開する。 また、 制御装置 4は、 二次側圧力センサ 4 3が異常状態から正常状態へと回復した ものと判定した場合に、 図 3 Dに示すように、 循環流路 3 2に設けられた排 気排水弁 3 7を開放するとともに水素ポンプ 3 9及びコンプレッサ 2 4を作 動させ、 強制的な間欠運転から正常運転へと移行させて発電を再開させる。 続いて、 図 4のフローチャートを用いて、 本実施形態に係る燃料電池シス テム 1の運転方法について説明する。
燃料電池システム 1の正常運転時においては、 水素タンク 3 0から水素ガ スが水素供給流路 3 1を介して燃料電池 1 0の燃料極に供給されるとともに、 加湿調整された空気が空気供給流路 2 1を介して燃料電池 1 0の酸化極に供 給されることにより、 発電が行われる。 この際、 燃料電池 1 0から引き出す べき電力 (要求電力) が制御装置 4で演算され、 その発電量に応じた量の水 素ガス及ぴ空気が、 インジェクタ 3 5やコンプレッサ 2 4が駆動制御される ことにより燃料電池 1 0内に供給されるようになっている。 本実施形態にお いては、 このような正常運転時に二次側圧力センサ 4 3が異常状態に陥った 場合に、 インジ工クタ 3 5による噴射動作を停止させ、 強制的な間欠運転に 移行させて一時的に発電を停止させる。 まず、 燃科電池システム 1の制御装置 4は、 正常運転中に、 二次側圧力せ ンサ 4 3を用いて、 インジェクタ 3 5下流側における水素ガスの圧力値を検 出する (正常時圧力検出工程: S 1 ) 。 そして、 制御装置 4は、 正常時圧力 検出工程 S 1での検出値が所定の下限値未満となるか又は所定の上限値を超 え、かつ、その状態が所定時間 T。持続するか否かを判定する(異常判定工程: S 2 ) 。
制御装置 4は、 異常判定工程 S 2において、 二次側圧力センサ 4 3の検出 値が所定の下限値以上所定の上限値以下である場合、 又は、 二次側圧力セン サ 4 3の検出値が所定の下限値未満となるか若しくは所定の上限値を超えて もその状態が所定時間 T。持続しない場合には、二次側圧力センサ 4 3が正常 であるものと判定してそのまま制御動作を終了する。
一方、 制御装置 4は、 異常判定工程 S 2において、 二次側圧力センサ 4 3 の検出値が所定の下限値未満となるか又は所定の上限値を超え、 かつ、 その 状態が所定時間 T。持続した場合に、二次側圧カセンサ 4 3が異常状態に陥つ たものと判定し、 インジヱクタ 3 5による噴射動作を停止させて全閉状態と する (インジェクタ停止工程: S 3 ) 。 なお、 制御装置 4は、 インジェクタ 3 5の停止とともに、 水素供給流路 3 1に設けられた遮断弁 3 3及び循環流 路 3 2に設けられた排気排水弁 3 7を閉鎖し、 かつ、 水素ポンプ 3 9及びコ ンプレッサ 2 4を停止させ、 正常運転から強制的な間欠運転に移行させて一 時的に発電を停止させる。
続いて、 制御装置 4は、 インジェクタ停止工程 S 3を経て強制的な間欠運 転を行っている間に、 二次側圧力センサ 4 3を用いてインジヱクタ 3 5下流 側における水素ガスの圧力値を検出し (間欠時圧力検出工程: S 4 ) 、 検出 値が所定の下限値以上所定の上限値以下となり、 かつ、 その状態が所定時間 T。持続するか否かを判定する (復帰判定工程: S 5 ) 。 制御装置 4は、 復帰判定工程 S 5において、 二次側圧力センサ 4 3の検出 値が所定の下限値未満となる力若しくは所定の上限値を超える場合、 又は、 二次側圧力センサ 4 3の検出値が所定の下限値以上所定の上限値以下となつ てもその状態が所定時間 T。持続しない場合には、二次側圧力センサ 4 3が 然として異常状態にあるものと判定し、 インジェクタ停止工程 S 3に戻って 制御を続行する。
一方、 制御装置 4は、 復帰判定工程 S 2において、 二次側圧力センサ 4 3 の検出値が所定の下限値以上所定の上限値以下となり、 かつ、 その状態が所 定時間 T。持続した場合に、二次側圧力センサ 4 3が異常状態から正常状態へ と回復したものと判定し、インジヱクタ 3 5による噴射動作を再開させる(ィ ンジヱクタ再稼動工程: S 6 ) 。 なお、 制御装置 4は、 インジェクタ 3 5の 再稼働とともに、 閉鎖していた遮断弁 3 3及び排気排水弁 3 7を開放し、 か つ、 水素ポンプ 3 9及ぴコンプレッサ 2 4を再稼働し、 強制的な間欠運転か ら正常運転に移行させて発電を再開させる。
以上説明した実施形態に係る燃料電池システム 1においては、 二次側圧力 センサ 4 3の異常に起因したインジェクタ 3 5の誤動作により燃料電池 1 0 への水素ガスの供給状態が異常となることを抑制することができる。従って、 燃料電池 1 0の発電状態が異常となることを抑制することができるとともに、 燃料電池 1 0への燃料供給量の急増に起因して燃料電池 1 0内部の構成部品 が劣化するというような事態を回避することができる。
また、 以上説明した実施形態に係る燃料電池システム 1においては、 二次 側圧力センサ 4 3の異常に伴って、 ィンジェクタ 3 5上流側の遮断弁 3 3を 閉鎖することができるので、 インジェクタ 3 5上流側の水素ガスの圧力が過 剰に上昇することを抑制することができる。 従って、 インジェクタ 3 5の故 障を抑制することが可能となる。 また、 以上説明した実施形態に係る燃料電池システム 1においては、 二次 側圧力センサ 4 3が異常状態から正常状態へと回復した場合に、 インジエタ タ 3 5の開閉動作を自動的に再開させて、 燃料電池 1 0への燃料供給を再開 することができる。 従って、 二次側圧力センサ 4 3が異常状態から正常状態 へと回復した場合に、 燃料電池 1 0による発電を自動的に再開することがで さる。
なお、 以上の実施形態においては、 二次側圧力センサ 4 3での検出値が所 定の下限値未満となるか又は所定の上限値を超え、 かつ、 その状態が所定時 間 T。持続した場合に、二次側圧カセンサ 4 3が異常状態に陥ったものと判定 した例を示した力 S、異常判定の方法はこれに限られるものではなレ、。例えば、 図 5 Aに示すように、 二次側圧力センサ 4 3での検出値が所定の下限値未満 となる力、 又は、 二次側圧力センサ 4 3での検出値が所定の上限値を超えた 場合に、 即座に二次側圧力センサ 4 3が異常状態に陥ったものと判定して、 図 5 Bに示すようにインジェクタ 3 5を全閉状態とすることもできる。 また、 以上の実施形態においては、 二次側圧力センサ 4 3での検出値が所 定の下限値以上所定の上限値以下となり、かつ、その状態が所定時間 T。持続 した場合に、 二次側圧力センサ 4 3が異常状態から正常状態へと回復したも のと判定した例を示したが、 異常状態からの回復判定の方法はこれに限られ るものではない。 例えば、 図 5 Aに示すように、 二次側圧力センサ 4 3での 検出値が所定の下限値以上所定の上限値以下となった場合に、 即座に二次側 圧力センサ 4 3が異常状態から正常状態へと回復したものと判定して、 図 5 Bに示すように、 インジヱクタ 3 5による噴射動作を再開させることもでき る。
また、 以上の実施形態においては、 燃料電池システム 1の水素ガス配管系 3に循環流路 3 2を設けた例を示したが、 例えば、 図 6に示すように、 燃料 電池 1 0に排出流路 3 8を直接接続して循環流路 3 2を廃止することもでき る。 かかる構成 (デッドエンド方式) を採用した場合においても、 制御装置 4で前記実施形態と同様に二次側圧力センサ 4 3の異常判定を行い、 二次側 圧力センサ 4 3が異常状態に陥った場合に、 インジェクタ 3 5を全閉状態と することもできる。
また、 以上の実施形態においては、 本発明における開閉弁としてインジェ クタ 3 5を採用した例を示したが、 開閉弁は供給流路 (水素供給流路 3 1 ) の上流側のガス状態を調整して下流側に供給するものであればよく、 インジ ヱクタ 3 5に限られるものではない。
また、 以上の実施形態においては、 水素供給流路 3 1のインジヱクタ 3 5 の下流位置に二次側圧力センサ 4 3を配置し、 この位置における圧力を調整 する (所定の目標圧力値に近付ける) ようにインジェクタ 3 5を制御した例 を示したが、 二次側圧力センサの位置はこれに限られるものではない。 例え ば、 燃料電池 1 0の水素ガス入口近傍位置 (水素供給流路 3 1上) や、 燃料 電池 1 0の水素ガス出口近傍位置 (循環流路 3 2上) や、 水素ポンプ 3 9の 出口近傍位置 (循環流路 3 2上) に二次側圧力センサを配置することもでき る。 かかる場合には、 二次側圧力センサの各位置における目標圧力値を記録 したマップを予め作成しておき、 このマップに基づいてフィードバック補正 流量を算出するようにする。
また、 以上の実施形態においては、 水素供給流路 3 1に遮断弁 3 3及ぴレ ギユレ一タ 3 4を設けた例を示したが、 インジェクタ 3 5は、 可変調圧弁と しての機能を果たすとともに、 水素ガスの供給を遮断する遮断弁としての機 能をも果たすため、 必ずしも遮断弁 3 3ゃレギユレータ 3 4を設けなくても よい。 従って、 インジヱクタ 3 5を採用すると遮断弁 3 3ゃレギユレータ 3 4を省くことができるため、 システムの小型化及ぴ低廉化が可能となる。 産業上の利用可能性 P T/JP2008/052481
1 7
本発明に係る燃料電池システムは、 以上の実施形態に示すように、 燃料電 池車両に搭載可能であり、また、燃料電池車両以外の各種移動体(口ポット、. 船舶、 航空機等) にも搭載可能である。 また、 本発明に係る燃料電池システ ムを、 建物 (住宅、 ビル等) 用の発電設備として用いられる定置用発電シス テムに適用してもよい。

Claims

請求の範囲
1 . 燃料電池と、 燃料供給源から供給される燃料ガスを前記燃料電池へと 流すための燃料供給流路と、 この燃料供給流路の上流側におけるガス状態を 調整して下流側に供給する開閉弁と、 前記燃料供給流路におけるガス状態を 検出するセンサと、 このセンサでの検出値に基づいて前記開閉弁を制御する 制御手段と、 を備える燃料電池システムであって、
前記制御手段は、 前記センサが異常状態に陥った場合に前記開閉弁の開閉 動作を停止させるものである、
燃科電池システム。
2 . 前記制御手段は、 前記センサでの検出値が所定の下限値未満となる場 合又は所定の上限値を超える場合に、 前記センサが異常状態に陥ったものと 判定するものである、
請求項 1に記載の燃料電池システム。
3 . 前記制御手段は、 前記センサでの検出値が所定の下限値未満となるか 又は所定の上限値を超え、 かつ、 その状態が所定時間持続した場合に、 前記 センサが異常状態に陥ったものと判断するものである、
請求項 1に記載の燃料電池システム。
4 . 前記燃料供給源から供給される燃料ガスを遮断する遮断弁を前記開閉 弁の上流側に備え、
前記制御手段は、 前記センサが異常状態に陥った場合に前記遮断弁を閉鎖 するものである、
請求項 1カゝら 3の何れか一項に記載の燃料電池システム。
5 . 前記制御手段は、 前記センサが異常状態から正常状態へと回復した場 合に前記開閉弁の開閉動作を再開させるものである、
請求項 1カゝら 4の何れか一項に記載の燃科電池システム。
6 . 前記制御手段は、 異常であると判断した前記センサでの検出値が所定 'の下限値以上所定の上限値以下となった場合に、 前記センサが異常状態から 正常状態へと回復したと判断するものである、
請求項 5に記載の燃料電池システム。
7 . 前記制御手段は、 異常であると判断した前記センサでの検出値が所定 の下限値以上所定の上限値以下となり、 かつ、 その状態が所定時間持続した 場合に、 前記センサが異常状態から正常状態へと回復したと判断するもので ある、 . 請求項 5に記載の燃料電池システム。
8 . 前記開閉弁は、 インジヱクタであり、
前記センサは、 前記ィンジェクタの下流側における燃料ガスの圧力を検出 する圧力センサである、
請求項 1力 ら 7の何れか一項に記載の燃料電池システム。
PCT/JP2008/052481 2007-02-14 2008-02-07 燃料電池システム WO2008099905A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112008000393T DE112008000393B8 (de) 2007-02-14 2008-02-07 Brennstoffzellensystem
CN2008800050357A CN101611511B (zh) 2007-02-14 2008-02-07 燃料电池系统
US12/527,107 US9028992B2 (en) 2007-02-14 2008-02-07 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007034048A JP4883360B2 (ja) 2007-02-14 2007-02-14 燃料電池システム
JP2007-034048 2007-02-14

Publications (1)

Publication Number Publication Date
WO2008099905A1 true WO2008099905A1 (ja) 2008-08-21

Family

ID=39690130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052481 WO2008099905A1 (ja) 2007-02-14 2008-02-07 燃料電池システム

Country Status (5)

Country Link
US (1) US9028992B2 (ja)
JP (1) JP4883360B2 (ja)
CN (1) CN101611511B (ja)
DE (1) DE112008000393B8 (ja)
WO (1) WO2008099905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120281A (ja) * 2017-01-23 2018-08-02 株式会社Ksf 水素流量制御装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438854B2 (ja) * 2007-11-19 2010-03-24 トヨタ自動車株式会社 燃料電池システム
JP6225886B2 (ja) 2014-11-14 2017-11-08 トヨタ自動車株式会社 燃料電池システムおよび該システム内の流体の排出方法
KR101679971B1 (ko) * 2015-05-14 2016-11-25 현대자동차주식회사 연료전지시스템의 공기공급계 고장진단장치 및 그 고장진단방법
JP6485324B2 (ja) * 2015-11-02 2019-03-20 トヨタ自動車株式会社 燃料電池システム用センサの異常検出方法
JP6631566B2 (ja) * 2017-03-09 2020-01-15 トヨタ自動車株式会社 燃料電池システム及び判定方法
JP6788225B2 (ja) * 2017-03-22 2020-11-25 トヨタ自動車株式会社 燃料電池システム
JP6834867B2 (ja) * 2017-09-13 2021-02-24 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの異常診断方法
JP7189813B2 (ja) * 2019-03-12 2022-12-14 株式会社豊田自動織機 燃料電池システム、車両および燃料電池システムの制御方法
JP7267880B2 (ja) * 2019-09-06 2023-05-02 株式会社Soken 燃料電池システム
JP2023013188A (ja) * 2021-07-15 2023-01-26 株式会社クボタ 水素供給システム、燃料電池システム及びそれらを備えた作業機
CN114430053B (zh) * 2022-01-05 2024-02-23 一汽解放汽车有限公司 燃料电池冷启动控制方法、装置、计算机设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200143A (ja) * 1995-01-31 1996-08-06 Nippondenso Co Ltd 圧力センサの故障検出装置
JP2003308868A (ja) * 2002-04-18 2003-10-31 Nissan Motor Co Ltd ガス燃料供給装置
JP2004176114A (ja) * 2002-11-26 2004-06-24 Nippon Steel Corp 高耐食性燃料タンク用防錆鋼板
JP2005302563A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp 燃料電池の制御装置
JP2007172888A (ja) * 2005-12-19 2007-07-05 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2007286031A (ja) * 2006-03-24 2007-11-01 Nissan Motor Co Ltd 圧力センサ凍結診断装置
JP2008077955A (ja) * 2006-09-21 2008-04-03 Toyota Motor Corp 燃料電池システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030022036A1 (en) * 2001-07-25 2003-01-30 Ballard Power Systems Inc. Fuel cell controller self inspection
US7470481B2 (en) * 2002-09-27 2008-12-30 Kabushikikaisha Equos Research Fuel cell system
JP4254213B2 (ja) * 2002-11-27 2009-04-15 日産自動車株式会社 燃料電池システム
JP4202100B2 (ja) 2002-11-29 2008-12-24 本田技研工業株式会社 燃料電池システムの機能維持方法
JP4147924B2 (ja) * 2002-12-03 2008-09-10 日産自動車株式会社 燃料電池システム
DE10351207A1 (de) * 2003-11-03 2005-06-02 Robert Bosch Gmbh Ventil zum Steuern eines Fluids
US7087330B2 (en) * 2004-01-22 2006-08-08 Utc Fuel Cells, Llc Storing water in substrates for frozen, boot-strap start of fuel cells
JP4715103B2 (ja) * 2004-03-26 2011-07-06 日産自動車株式会社 燃料電池システム
JP5063110B2 (ja) * 2004-07-14 2012-10-31 パナソニック株式会社 燃料電池発電システム
JP5041272B2 (ja) * 2005-12-12 2012-10-03 トヨタ自動車株式会社 燃料電池システム及び移動体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200143A (ja) * 1995-01-31 1996-08-06 Nippondenso Co Ltd 圧力センサの故障検出装置
JP2003308868A (ja) * 2002-04-18 2003-10-31 Nissan Motor Co Ltd ガス燃料供給装置
JP2004176114A (ja) * 2002-11-26 2004-06-24 Nippon Steel Corp 高耐食性燃料タンク用防錆鋼板
JP2005302563A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp 燃料電池の制御装置
JP2007172888A (ja) * 2005-12-19 2007-07-05 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2007286031A (ja) * 2006-03-24 2007-11-01 Nissan Motor Co Ltd 圧力センサ凍結診断装置
JP2008077955A (ja) * 2006-09-21 2008-04-03 Toyota Motor Corp 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120281A (ja) * 2017-01-23 2018-08-02 株式会社Ksf 水素流量制御装置

Also Published As

Publication number Publication date
DE112008000393T5 (de) 2009-12-03
CN101611511A (zh) 2009-12-23
US20100098980A1 (en) 2010-04-22
DE112008000393B4 (de) 2013-03-14
DE112008000393B8 (de) 2013-05-29
JP4883360B2 (ja) 2012-02-22
JP2008198535A (ja) 2008-08-28
CN101611511B (zh) 2012-07-25
US9028992B2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
JP4883360B2 (ja) 燃料電池システム
KR101083371B1 (ko) 연료전지 시스템 및 개폐밸브의 진단방법
JP4756465B2 (ja) 燃料電池システム及び移動体
US8071249B2 (en) Fuel cell system and mobile article
WO2007069554A1 (ja) 燃料電池システム及び移動体
JP4438854B2 (ja) 燃料電池システム
JP4924792B2 (ja) 燃料電池システム及び移動体
JP5076472B2 (ja) 燃料電池システム
WO2008018229A1 (fr) Système de pile à combustible
JP5158558B2 (ja) 燃料電池システム
JP4655082B2 (ja) 燃料電池システム
WO2009005167A1 (ja) 燃料電池システム
JP2007317597A (ja) 燃料電池システム及び開閉弁の診断方法
JP5224080B2 (ja) 燃料電池システムとオフガスパージ方法
JP2007323873A (ja) 燃料電池システム及びその制御方法
JP4998695B2 (ja) 燃料電池システム
WO2007069484A1 (ja) 燃料電池システム及び移動体
JP2008218034A (ja) 燃料電池システム及びその制御方法
JP2008004320A (ja) 燃料電池システム及び移動体
JP2008171623A (ja) 燃料電池システム
JP2009021024A (ja) 燃料電池システム及び移動体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880005035.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720739

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1120080003939

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12527107

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008000393

Country of ref document: DE

Date of ref document: 20091203

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08720739

Country of ref document: EP

Kind code of ref document: A1