JP7189813B2 - 燃料電池システム、車両および燃料電池システムの制御方法 - Google Patents

燃料電池システム、車両および燃料電池システムの制御方法 Download PDF

Info

Publication number
JP7189813B2
JP7189813B2 JP2019044711A JP2019044711A JP7189813B2 JP 7189813 B2 JP7189813 B2 JP 7189813B2 JP 2019044711 A JP2019044711 A JP 2019044711A JP 2019044711 A JP2019044711 A JP 2019044711A JP 7189813 B2 JP7189813 B2 JP 7189813B2
Authority
JP
Japan
Prior art keywords
fuel cell
pressure
injector
hydrogen
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019044711A
Other languages
English (en)
Other versions
JP2020149813A (ja
Inventor
克之 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2019044711A priority Critical patent/JP7189813B2/ja
Publication of JP2020149813A publication Critical patent/JP2020149813A/ja
Application granted granted Critical
Publication of JP7189813B2 publication Critical patent/JP7189813B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Description

本発明は、燃料電池システム、車両および燃料電池システムの制御方法に関する。
一般に、燃料電池は、水素と酸素の電気化学反応によって発電する。このため、燃料電池を用いて構成される燃料電池システムには、燃料電池に水素を供給するインジェクタが設けられている(たとえば、特許文献1を参照)。インジェクタは、燃料電池に接続された水素供給流路に設けられている。水素供給流路には、インジェクタの下流側で水素の圧力を検出する圧力センサが設けられている。
燃料電池内の水素の圧力は、発電によって水素が消費されると低下する。このため、従来においては、燃料電池内の水素の圧力を適正な圧力に維持するために、上記圧力センサの検出結果に基づいてインジェクタの駆動を制御している。
特開2008-198535号公報
燃料電池システムにおいては、水素供給流路に設けられた圧力センサが何らかの理由によって故障し、これによって圧力センサの検出値が実際の水素圧よりも低い一定の圧力値に維持される場合がある。その場合は、インジェクタの駆動によって燃料電池に水素を供給しても、圧力センサの検出値が上昇しなくなる。その結果、燃料電池内の水素の圧力が適正圧に達した後もインジェクタが駆動を継続し、燃料電池に水素が過剰に流れ込む現象(以下、「水素過流現象」ともいう。)が発生するおそれがある。また、水素過流現象が発生すると、圧力センサが故障する前にくらべて、燃料電池の内部に高い圧力が加わる。このため、水素の過流が進行すると、燃料電池の構成部品の破損、あるいは燃料電池からのガス漏れを招くおそれがある。一方で、水素供給流路に過流防止弁を設けることも考えられる。過流防止弁を用いた構成では、燃料電池への水素の過剰な流れ込みを過流防止弁により感知したときに、水素の流れを過流防止弁により遮断することにより、水素の過流を抑制することができる。ただし、その場合は、過流防止弁の追加によって燃料電池システムの構成が複雑になると共に、コストアップを招いてしまう。
本発明は、上記課題を解決するためになされたもので、その目的は、より簡単な構成で水素の過流を感知することができる、燃料電池システム、車両および燃料電池システムの制御方法を提供することにある。
本発明は、燃料電池ユニットが有する燃料電池と、燃料電池ユニットが有し燃料電池に水素を供給するインジェクタと、インジェクタの下流側の水素の圧力である下流側水素圧力を検出する圧力センサと、インジェクタの駆動を制御する制御部と、を備えた燃料電池システムであって、インジェクタは、駆動され、内蔵するインジェクタバルブを1回開閉するごとに、下流側水素圧力が所定の圧力だけ上昇するように設定され、下流側水素圧力が最も低くなると想定される状況から、下流側水素圧力を閾値圧力まで上昇させるのに必要な連続駆動回数より多い回数が所定回数として予め設定されており、制御部は、圧力センサにより検出された圧力が、予め設定された閾値圧力未満に低下すると、その都度、インジェクタを駆動し、インジェクタの連続駆動回数をカウントし、連続駆動回数が所定回数を越えた場合に、燃料電池ユニットが異常であると判定する。
本発明に係る燃料電池システムにおいて、制御部は、燃料電池ユニットが異常であると判定した場合に、燃料電池に対する水素の供給を停止させてもよい。
本発明に係る燃料電池システムにおいて、制御部は、燃料電池ユニットが異常であると判定した後、所定の監視項目が予め設定された異常解除条件を満たすまで燃料電池システムの再起動を禁止してもよい。この場合、所定の監視項目は、燃料電池ユニットが異常であると判定してからの経過時間であり、異常解除条件は、経過時間が予め設定された所定時間に到達することであってもよい。
本発明は、上記構成の燃料電池システムを搭載した車両であってもよい。
本発明に係る燃料電池システムの制御方法は、燃料電池ユニットが有する燃料電池と、燃料電池ユニットが有し燃料電池に水素を供給するインジェクタと、インジェクタの下流側の水素の圧力である下流側水素圧力を検出する圧力センサと、インジェクタの駆動を制御する制御部とを備え、インジェクタは、駆動され、内蔵するインジェクタバルブを1回開閉するごとに、下流側水素圧力が所定の圧力だけ上昇するように設定され、下流側水素圧力が最も低くなると想定される状況から、下流側水素圧力を閾値圧力まで上昇させるのに必要な連続駆動回数より多い回数が所定回数として予め設定された、燃料電池システムの制御方法であって、下流側水素圧力を検出水素圧力として検出する工程と、検出水素圧力が、予め設定された閾値圧力未満に低下すると、その都度、インジェクタを駆動する工程と、インジェクタの連続駆動回数をカウントする工程と、連続駆動回数が所定回数を越えた場合に、燃料電池ユニットが異常であると判定する工程と、を含む。
本発明によれば、より簡単な構成で水素の過流を感知することができる。
本発明の実施形態に係る燃料電池システムの構成を示す概略図である。 本発明の実施形態に係る燃料電池システムの制御方法を示すフローチャートである。 インジェクタの下流側の水素圧力の経時的な変化を示す図である。
以下、本発明の実施形態について図面を参照して詳細に説明する。
図1は、本発明の実施形態に係る燃料電池システムの構成を示す概略図である。
図1に示すように、燃料電池システムは、燃料電池ユニット11と、この燃料電池ユニット11を制御する制御部12とを備えている。
(燃料電池ユニット)
まず、燃料電池ユニット11の構成について説明する。
燃料電池ユニット11は、燃料電池15を有している。燃料電池15は、複数の燃料電池セル(図示せず)を積層したスタック構造となっている。燃料電池15には、水素供給流路16とエア供給流路17とが接続されている。水素供給流路16は、水素タンク30に貯蔵された水素を燃料電池15へと供給する場合に、水素が流れる流路である。エア供給流路17は、大気中のエアに含まれる酸素を燃料電池15へと供給する場合に、エアが流れる流路である。
水素供給流路16には、第1圧力センサ20と、インジェクタ21と、第2圧力センサ22とが設けられている。水素供給流路16を流れる水素の流れ方向において、第1圧力センサ20は、インジェクタ21の下流側に配置され、第2圧力センサ22は、インジェクタ21の上流側に配置されている。第1圧力センサ20は、インジェクタ21の下流側において、水素供給流路16内の水素の圧力を検出するセンサである。第2圧力センサ22は、インジェクタ21の上流側において、水素供給流路16内の水素の圧力を検出するセンサである。
インジェクタ21は、燃料電池15に水素を供給するものである。インジェクタ21は、図示しないインジェクタバルブを内蔵し、このインジェクタバルブを開閉することにより、燃料電池15に水素を供給する。インジェクタ21は、制御部12に電気的に接続されている。
また、水素供給流路16には、フィルタ25と、レギュレータ26と、第3圧力センサ27と、メインバルブ28と、温度センサ29とが設けられている。フィルタ25は、塵埃などの不純物を捕捉するものである。レギュレータ26は、水素タンク30からメインバルブ28を介して供給される水素の圧力を減圧するものである。第3圧力センサ27は、水素タンク30からメインバルブ28を介して供給される水素の圧力を検出するセンサである。
メインバルブ28は、水素タンク30からの水素の供給を遮断または許容するバルブである。メインバルブ28は、閉状態で水素の供給を遮断し、開状態で水素の供給を許容する。メインバルブ28の開閉動作は制御部12によって制御される。温度センサ29は、メインバルブ28と水素タンク30との間で、水素供給流路16内の温度を検出するセンサである。水素タンク30は、水素を貯蔵するタンクである。水素タンク30には水素補給流路31が接続されている。水素補給流路31は、レセプタクル32から水素タンク30へと補給される水素が流れる流路である。水素補給流路31には2つの逆止弁33,34が設けられている。
一方、エア供給流路17にはエアコンプレッサ37が設けられている。エアコンプレッサ37は、大気中から吸引したエアを圧縮し、この圧縮したエアをエア供給流路17を通して燃料電池15に供給するものである。
また、燃料電池15には、循環流路41と排出流路42とが接続されている。循環流路41は、燃料電池15から排出されるアノードオフガスに含まれる水素を水素供給流路16に戻すための流路である。排出流路42は、燃料電池15から排出されるカソードオフガスを排出するための流路である。
循環流路41には、気液分離器43と水素循環ポンプ44とが設けられている。気液分離器43は、燃料電池15から排出されるアノードオフガスを気体と液体とに分離するものである。水素循環ポンプ44は、気液分離器43によって分離された気体である水素を水素供給流路16へと送り出すものである。水素循環ポンプ44は、制御部12に電気的に接続されている。
排出流路42には希釈器46が設けられている。希釈器46には、燃料電池15から排出されるカソードオフガスが供給される。また、希釈器46には、気液分離器43で気液分離されたアノードオフガスが排気排水弁45を介して供給される。希釈器46は、アノードオフガスをカソードオフガスにより希釈して大気中に排気するものである。希釈器46には排水管47を介して貯水タンク48が接続されている。貯水タンク48は、希釈器46から排水管47を通して供給される水を貯めるタンクである。貯水タンク48には水位センサ49が設けられている。水位センサ49は、貯水タンク48に貯められた水の液面高さが所定の高さになったことを検出するものである。貯水タンク48内の水は、排水カプラ50を介して排水される。燃料電池ユニット11は以上のように構成されている。
(制御部)
次に、制御部12の構成について説明する。
制御部12は、CPU、RAM、ROM、インターフェース回路などを備えたコンピュータによって構成される。制御部12には、インジェクタ21および水素循環ポンプ44の他に、第1圧力センサ20、第2圧力センサ22、第3圧力センサ27、メインバルブ28、温度センサ29、エアコンプレッサ37、排気排水弁45および水位センサ49が、それぞれ電気的に接続されている(図1の符号A,B,C,D,E,F,G,Hを参照)。これにより、第1圧力センサ20、第2圧力センサ22、第3圧力センサ27、温度センサ29および水位センサ49は、それぞれの検出結果を制御部12に与える。また、インジェクタ21、水素循環ポンプ44、メインバルブ28、エアコンプレッサ37および排気排水弁45は、それぞれ制御部12から与えられる指令に基づいて動作する。
上記構成からなる燃料電池システムにおいては、インジェクタ21の駆動によって燃料電池15に供給された水素と、エアコンプレッサ37の駆動によって燃料電池15に供給されたエアに含まれる酸素とが、燃料電池15内で各々の燃料電池セルに分配して供給される。その際、燃料電池セルのアノード側には水素が供給され、燃料電池セルのカソード側には酸素が供給される。これにより、燃料電池セルは、水素と酸素の電気化学反応によって発電する。
次に、制御部12がインジェクタ21の駆動を制御する場合の制御方法について説明する。
制御部12は、第1圧力センサ20の検出結果に基づいてインジェクタ21の駆動を制御する。具体的には、制御部12は、第1圧力センサ20によって検出される、インジェクタ21の下流側の水素の圧力が、予め設定された閾値圧力P1未満に低下すると、インジェクタ21に駆動指令を与えることにより、インジェクタ21を駆動する。このとき、インジェクタ21は、制御部12から駆動指令を1回与えられるたびに、インジェクタバルブを1回だけ開閉する。このため、制御部12からインジェクタ21に与えられる駆動指令の回数は、インジェクタ21の駆動回数と同じ回数になる。なお、インジェクタ21の下流側の水素圧力は、インジェクタバルブが1回開閉するごとに所定の圧力だけ上昇するように、あらかじめ設定されている。このため、インジェクタ21の下流側の水素圧力は、インジェクタ21に与えられる駆動指令の回数に比例して上昇する。
また、制御部12は、第1圧力センサ20が検出する水素の圧力(以下、「検出水素圧力」ともいう。)が閾値圧力P1未満になると、その都度、インジェクタ21に駆動指令を与えて、インジェクタ21を駆動する。これにより、インジェクタバルブの開閉によってインジェクタ21の下流側に水素が噴射される。このため、インジェクタ21の下流側の水素の圧力(以下、「下流側水素圧力」ともいう。)が上昇する。これにより、下流側水素圧力は、閾値圧力P1に近い圧力レベルに維持される。
これに対し、燃料電池システムを長時間にわたって停止すると、下流側水素圧力が大幅に低下する。理由は、燃料電池システムの停止中に、燃料電池15内で水素がアノード側からカソード側へと次第に透過し、その透過した分だけ下流側水素圧力が低くなるからである。したがって、燃料電池システムの起動時には、下流側水素圧力を閾値圧力P1まで上昇させるために、制御部12がインジェクタ21を連続的に駆動(以下、「連続駆動」ともいう。)する場合がある。また、制御部12は、燃料電池システムの起動時以外にも、インジェクタ21を連続的に駆動する場合がある。
本実施形態においては、第1圧力センサ20が検出する水素の圧力が閾値圧力P1未満となった場合に、その水素の圧力を閾値圧力P1以上に上昇させるために、制御部12がインジェクタ21を連続的に駆動するときの駆動回数を「連続駆動回数」と定義する。この定義により、インジェクタ21の連続駆動回数は、第1圧力センサ20が検出する水素の圧力が閾値圧力P1未満の状態から閾値圧力P1以上の状態に回復するまでの期間内(以下、「圧力回復期間内」という。)において、制御部12がインジェクタ21に与える駆動指令の回数と同じ回数になる。このため、圧力回復期間内に制御部12がインジェクタ21に与えた駆動指令の回数が5回であれば、連続駆動回数は5回となる。
ここで、第1圧力センサ20が何らかの理由によって故障し、これによって検出水素圧力が閾値圧力P1よりも低い圧力値を示したまま変動しなくなると、インジェクタ21の駆動によって下流側水素圧力を上昇させても、検出水素圧力が閾値圧力P1以上の値を示さなくなる。この場合に、インジェクタ21の下流側の水素の圧力が閾値圧力P1以上となった後もインジェクタ21の駆動を継続すると、水素過流現象が発生するおそれがある。そこで、本実施形態においては、上記構成の燃料電池システムを以下のように制御することとした。
図2は、本発明の実施形態に係る燃料電池システムの制御方法を示すフローチャートである。燃料電池システムの制御方法は、制御部12の制御下で行われる。なお、図2のフローチャートは、制御部12がインジェクタ21の駆動を制御する場合の制御処理を含んでいる。また、図2は、図1の燃料電池システムを搭載した車両における、燃料電池システムの制御方法を示している。燃料電池システムを搭載した車両としては、たとえば、燃料電池式自動車、燃料電池式産業車両、燃料電池式建設機械用車両などを挙げることができる。
まず、制御部12は、変数Mの値をゼロにリセットする(ステップS1)。次に、制御部12は、第1圧力センサ20によって得られる検出水素圧力が閾値圧力P1未満になったどうかを確認する(ステップS2)。そして、検出水素圧力が閾値圧力P1未満になった場合は、インジェクタ21に駆動指令を与えることにより、インジェクタ21を駆動する(ステップS3)。これに対し、検出水素圧力が閾値圧力P1以上である場合は、インジェクタ21を駆動することなく、ステップS1に戻る。
次に、制御部12は、変数Mの値をインクリメントする(ステップS4)。変数Mの値は、インジェクタ21の連続駆動回数を示す。したがって、ステップS4の処理は、インジェクタ21の連続駆動回数をカウントする処理に相当する。
次に、制御部12は、連続駆動回数を示す変数Mの値が所定回数を超えたかどうかを確認する(ステップS5)。所定回数は、制御部12が第1圧力センサ20の検出結果に基づいてインジェクタ21の駆動を制御する場合に、第1圧力センサ20の故障によってインジェクタ21の連続駆動が異常に多く行われたことを制御部12が感知するために予め設定される回数である。燃料電池ユニット11の設計上、下流側水素圧力が最も低くなると想定される状況から、下流側水素圧力を閾値圧力P1まで上昇させるのに必要な連続駆動回数がJ回であるとすると、所定回数はJ回よりも多い回数に設定される。ステップS5において変数Mの値が所定回数を超えていない場合は、ステップS2に戻る。
以上の処理により、第1圧力センサ20が故障なく正常に機能している場合は、下流側水素圧力が閾値圧力P1に近い圧力レベルに維持される。このため、燃料電池15内の水素の圧力を適正な圧力に維持することができる。これに対し、先述したように第1圧力センサ20が故障した場合は、ステップS3でインジェクタ21を駆動しても、第1圧力センサ20の検出水素圧力が閾値圧力P1以上にならない。このため、ステップS5において変数Mの値が所定回数を超えることになる。
制御部12は、変数Mの値が所定回数を超えた場合に、燃料電池ユニット11が異常であると判定して異常判定フラグをオン状態にする(ステップS6)。このとき、制御部12は、変数Mの値が所定回数を超えた段階で、燃料電池15に対する水素の供給を停止すべく、インジェクタ21の駆動を停止し、必要に応じてメインバルブ28も閉じる。また、制御部12は、燃料電池ユニット11全体の稼働を停止させる。これにより、燃料電池システムは実質的に停止した状態となる。また、制御部12は、ステップS6において異常判定フラグをオン状態にしたときに、制御部12自身が有するタイマの機能を用いて時間の計測を開始する。タイマの計測時間は、所定の監視項目に相当するもので、燃料電池ユニット11が異常であると判定してからの経過時間を示す。
続いて、制御部12は、所定の監視項目が予め設定された異常解除条件を満たすかどうかを、タイマの計測時間に基づいて判断する(ステップS7)。具体的には、制御部12は、タイマの計測時間が予め設定された所定時間Tに到達したかどうかを判断する。そして、タイマの計測時間が所定時間Tに到達している場合、すなわち監視項目が異常解除条件を満たす場合は、異常判定フラグをオフ状態にする(ステップS8)。また、タイマの計測時間が所定時間Tに到達していない場合、すなわち監視項目が異常解除条件を満たさない場合は、ステップS7からステップS9に移行する。所定時間Tは、所定回数を超えるインジェクタ21の連続駆動によって上昇した水素圧力が、正常な圧力範囲に戻るまでに必要な時間に基づいて設定される。
ステップS9において、制御部12は、車両のキーオン操作が行われたかどうかを確認する。キーオン操作は、車両を始動させるためにキースイッチをオフ状態からオン状態にする操作である。ステップS9において、車両のキーオン操作が行われない場合はステップS7に戻り、車両のキーオン操作が行われた場合はステップS10に進む。車両のキーオン操作は使用者によって行われるものである。次に、制御部12は、ステップS10において異常判定フラグがオフ状態になっているかどうかを確認する。そして、異常判定フラグがオフ状態になっていない場合は、ステップS11で燃料電池システムの再起動を禁止した後、ステップS7に戻る。これにより、燃料電池システムの再起動は、タイマの計測時間が所定時間Tに到達するまで、すなわち所定の監視項目が異常解除条件を満たすまで、制御部12によって禁止される。一方、異常判定フラグがオフ状態になっている場合は、ステップS12において燃料電池システムの再起動を許可する。これにより、タイマの計測時間が所定時間Tに到達した後に、燃料電池システムを再起動させることが可能となる。
図3は、インジェクタの下流側の水素圧力の経時的な変化を示す図である。
図3において、タイミングt1は、第1圧力センサ20が故障したタイミングを示している。また、タイミングt2は、インジェクタ21の連続駆動回数が所定回数を超えたタイミングを示し、タイミングt3は、上述したタイマの計測時間が所定時間Tに到達したタイミングを示している。
下流側水素圧力は、タイミングt1で制御部12がインジェクタ21の連続駆動を開始すると、インジェクタ21の連続駆動に従って徐々に上昇する。このとき、下流側水素圧力に対する燃料電池ユニット11の耐圧上限値がP2であるとすると、図2のステップS5の所定回数は、「下流側水素圧力が耐圧上限値P2に到達する前に、インジェクタ21の連続駆動回数が所定回数を超える」という条件を満たすように設定される。これにより、第1圧力センサ20が故障し、この状態でインジェクタ21を連続駆動した場合でも、下流側水素圧力は耐圧上限値P2未満に抑えられる。また、タイミングt2からタイミングt3までの期間は、燃料電池システムの再起動が禁止される。そして、タイミングt3において下流側水素圧力が正常圧P3まで下がると、それ以降は、燃料電池システムの再起動が許可される。これにより、所定回数を超える燃料電池ユニット11の連続駆動によって下流側水素圧力が上昇した直後に、使用者がキーオン操作によって燃料電池システムを再起動しようとしても、この再起動が禁止される。このため、下流側水素圧力が耐圧上限値P2に到達することを抑制することができる。
以上説明したように、本発明の実施形態においては、インジェクタ21の連続駆動回数をカウントし、その連続駆動回数が予め設定された所定回数を越えた場合に、燃料電池ユニット11が異常であると判定する構成を採用している。これにより、第1圧力センサ20が故障した場合でも、インジェクタ21の連続駆動回数のカウント結果を基に水素の過流を感知することができる。したがって、水素供給流路16に過流防止弁を設けなくても、制御部12の制御処理だけで水素の過流を感知することができる。
また、本発明の実施形態においては、燃料電池ユニット11が異常であると判定した場合に、燃料電池15に対する水素の供給を停止させる構成を採用している。これにより、燃料電池ユニット11が異常であると判定する構成を採用している。これにより、第1圧力センサ20が故障した場合でも、水素の過流の進行が抑制される。このため、燃料電池15や燃料電池ユニット11の構成部品の破損、あるいは燃料電池ユニット11からのガス漏れの発生を抑制することができる。
また、本発明の実施形態においては、燃料電池ユニット11が異常であると判定した後、所定の監視項目が予め設定された異常解除条件を満たすまで燃料電池システムの再起動を禁止する構成を採用している。これにより、監視項目が異常解除条件を満たす前に、使用者が燃料電池システムの再起動を試みたときでも、燃料電池システムが停止状態に維持されるため、燃料電池15に水素が供給されることがない。このため、燃料電池15や燃料電池ユニット11の破損などを効果的に抑制することができる。
また、本発明の実施形態においては、燃料電池ユニット11が異常であると判定してからの経過時間が予め設定された所定時間に到達まで燃料電池システムの再起動を禁止する構成を採用している。これにより、燃料電池システムの再起動を禁止する期間を、より簡単な構成で管理することができる。
なお、本発明の技術的範囲は上述した実施形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
たとえば、上記実施形態においては、制御部12がタイマによって計測した時間が所定時間に到達するまで燃料電池システムの再起動を禁止するとしたが、本発明はこれに限らない。すなわち、制御部12は、燃料電池ユニット11が異常であると判定した場合に、排気排水弁45を閉状態から開状態に切り替える構成を採用してもよい。これにより、燃料電池15内の水素の圧力を強制的に下げることができる。このため、より短い時間で燃料電池システムを再起動することが可能となる。
11 燃料電池ユニット、12 制御部、15 燃料電池、21 インジェクタ。

Claims (6)

  1. 燃料電池ユニットが有する燃料電池と、
    前記燃料電池ユニットが有し前記燃料電池に水素を供給するインジェクタと、
    前記インジェクタの下流側の水素の圧力である下流側水素圧力を検出する圧力センサと、
    前記インジェクタの駆動を制御する制御部と、
    を備えた燃料電池システムであって、
    前記インジェクタは、駆動され、内蔵するインジェクタバルブを1回開閉するごとに、前記下流側水素圧力が所定の圧力だけ上昇するように設定され、
    前記下流側水素圧力が最も低くなると想定される状況から、前記下流側水素圧力を閾値圧力まで上昇させるのに必要な連続駆動回数より多い回数が所定回数として予め設定されており、
    前記制御部は、
    前記圧力センサにより検出された圧力が、予め設定された閾値圧力未満に低下すると、その都度、前記インジェクタを駆動し、
    前記インジェクタの連続駆動回数をカウントし、前記連続駆動回数が前記所定回数を越えた場合に、前記燃料電池ユニットが異常であると判定する、燃料電池システム。
  2. 前記制御部は、前記燃料電池ユニットが異常であると判定した場合に、前記燃料電池に対する水素の供給を停止させる、請求項1に記載の燃料電池システム。
  3. 前記制御部は、前記燃料電池ユニットが異常であると判定した後、所定の監視項目が予め設定された異常解除条件を満たすまで燃料電池システムの再起動を禁止する、請求項1または2に記載の燃料電池システム。
  4. 前記所定の監視項目は、前記燃料電池ユニットが異常であると判定してからの経過時間であり、
    前記異常解除条件は、前記経過時間が予め設定された所定時間に到達することである、請求項3に記載の燃料電池システム。
  5. 請求項1~4のいずれか一項に記載の燃料電池システムを搭載した車両。
  6. 燃料電池ユニットが有する燃料電池と、前記燃料電池ユニットが有し前記燃料電池に水素を供給するインジェクタと、前記インジェクタの下流側の水素の圧力である下流側水素圧力を検出する圧力センサと、前記インジェクタの駆動を制御する制御部とを備え、前記インジェクタは、駆動され、内蔵するインジェクタバルブを1回開閉するごとに、前記下流側水素圧力が所定の圧力だけ上昇するように設定され、前記下流側水素圧力が最も低くなると想定される状況から、前記下流側水素圧力を閾値圧力まで上昇させるのに必要な連続駆動回数より多い回数が所定回数として予め設定された、燃料電池システムの制御方法であって、
    前記下流側水素圧力を検出水素圧力として検出する工程と、
    前記検出水素圧力が、予め設定された閾値圧力未満に低下すると、その都度、前記インジェクタを駆動する工程と、
    前記インジェクタの連続駆動回数をカウントする工程と、
    前記連続駆動回数が前記所定回数を越えた場合に、前記燃料電池ユニットが異常であると判定する工程と、
    を含む、燃料電池システムの制御方法。
JP2019044711A 2019-03-12 2019-03-12 燃料電池システム、車両および燃料電池システムの制御方法 Active JP7189813B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044711A JP7189813B2 (ja) 2019-03-12 2019-03-12 燃料電池システム、車両および燃料電池システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044711A JP7189813B2 (ja) 2019-03-12 2019-03-12 燃料電池システム、車両および燃料電池システムの制御方法

Publications (2)

Publication Number Publication Date
JP2020149813A JP2020149813A (ja) 2020-09-17
JP7189813B2 true JP7189813B2 (ja) 2022-12-14

Family

ID=72429814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044711A Active JP7189813B2 (ja) 2019-03-12 2019-03-12 燃料電池システム、車両および燃料電池システムの制御方法

Country Status (1)

Country Link
JP (1) JP7189813B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076647A (ja) 2002-08-19 2004-03-11 Denso Corp エンジンおよび燃料電池の冷却装置
JP2008130442A (ja) 2006-11-22 2008-06-05 Toyota Motor Corp 燃料電池システム
JP2008198535A (ja) 2007-02-14 2008-08-28 Toyota Motor Corp 燃料電池システム
JP2011028950A (ja) 2009-07-23 2011-02-10 Toyota Motor Corp 燃料噴射制御装置
WO2012161217A1 (ja) 2011-05-23 2012-11-29 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP2018101572A (ja) 2016-12-21 2018-06-28 トヨタ自動車株式会社 燃料電池システム
JP2018160363A (ja) 2017-03-22 2018-10-11 トヨタ自動車株式会社 燃料電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076647A (ja) 2002-08-19 2004-03-11 Denso Corp エンジンおよび燃料電池の冷却装置
JP2008130442A (ja) 2006-11-22 2008-06-05 Toyota Motor Corp 燃料電池システム
JP2008198535A (ja) 2007-02-14 2008-08-28 Toyota Motor Corp 燃料電池システム
JP2011028950A (ja) 2009-07-23 2011-02-10 Toyota Motor Corp 燃料噴射制御装置
WO2012161217A1 (ja) 2011-05-23 2012-11-29 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP2018101572A (ja) 2016-12-21 2018-06-28 トヨタ自動車株式会社 燃料電池システム
JP2018160363A (ja) 2017-03-22 2018-10-11 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP2020149813A (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
KR100523197B1 (ko) 연료 전지 시스템 및 그 제어방법
JP5105218B2 (ja) 異常判定装置
JP6391625B2 (ja) 燃料電池システム及び燃料電池システムの故障判定方法
JP6610904B2 (ja) 燃料電池システム及びその制御方法
JP4506644B2 (ja) 燃料ガス消費システム、および燃料ガス消費システムのガス漏れ検出方法
JP5428307B2 (ja) 燃料電池システム
KR102614135B1 (ko) 연료전지의 공기 공급 제어방법 및 제어시스템
JP4106960B2 (ja) 燃料電池システム
JP4106961B2 (ja) 燃料電池システム
KR101846077B1 (ko) 연료 전지 시스템
JP5024889B2 (ja) 燃料電池システム、燃料電池システムの起動制御方法
JP4363475B2 (ja) 燃料電池システム
US11152630B2 (en) Fuel cell system
JP2005050574A (ja) 燃料電池システム
JP7189813B2 (ja) 燃料電池システム、車両および燃料電池システムの制御方法
JP2007184199A (ja) 燃料電池システム
JP4940573B2 (ja) 燃料ガス供給装置
JP2009123600A (ja) 燃料電池システム、燃料電池システムの異常検出方法、及び車両
JP2009076261A (ja) 燃料電池システム及びその起動方法
JP5211875B2 (ja) 燃料電池システムおよび燃料電池システムの異常診断方法
JP2009094000A (ja) 燃料電池システム
JP5262520B2 (ja) 加熱制御装置
JP5333730B2 (ja) 燃料電池システム
JP2019096533A (ja) 燃料電池システムのガス漏れ検知方法
JP2007213835A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7189813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150