WO2008072600A1 - 高強度薄鋼板 - Google Patents

高強度薄鋼板 Download PDF

Info

Publication number
WO2008072600A1
WO2008072600A1 PCT/JP2007/073791 JP2007073791W WO2008072600A1 WO 2008072600 A1 WO2008072600 A1 WO 2008072600A1 JP 2007073791 W JP2007073791 W JP 2007073791W WO 2008072600 A1 WO2008072600 A1 WO 2008072600A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
hot
strength
rolled steel
Prior art date
Application number
PCT/JP2007/073791
Other languages
English (en)
French (fr)
Inventor
Muneaki Ikeda
Kouji Kasuya
Yoichi Mukai
Fumio Yuse
Junichiro Kinugasa
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US12/513,514 priority Critical patent/US8673093B2/en
Priority to EP07850359A priority patent/EP2105514A4/en
Priority to KR1020097011996A priority patent/KR101126827B1/ko
Priority to CN2007800431956A priority patent/CN101541992B/zh
Publication of WO2008072600A1 publication Critical patent/WO2008072600A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength thin steel sheet having excellent hydrogen embrittlement resistance, and in particular, due to hydrogen embrittlement such as set cracking and delayed fracture, which is a problem with steel sheets having a tensile strength of 980 MPa or more.
  • the present invention relates to a high-strength thin steel sheet in which fracture is suppressed.
  • TRIP Transformation Induced Plasticity
  • the TRIP steel sheet has an austenite structure remaining in the steel, and when deformed at a temperature equal to or higher than the martensitic transformation start temperature (Ms point), the retained austenite (residual ⁇ ) is transformed into martensite by stress and becomes large. It is a steel plate that can be stretched.
  • Ms point martensitic transformation start temperature
  • TRIP type composite structure steel (TPF steel) containing polygonal ferrite as a parent phase and containing retained austenite
  • TRIP type tempered martensitic steel (TAM steel) containing tempered martensite as the parent phase and containing retained austenite
  • TRIP-type bainitic steel (TBF steel) containing residual austenite with vanitic ferrite as the parent phase
  • TBF steel has been known for a long time, and it is highly resistant to hard vinylitic ferrite. Such a microstructure that easily obtains strength and easily forms fine retained austenite at the boundary of lath-shaped vinylic ferrite leads to excellent elongation. Furthermore, TBF steel has the manufacturing advantage that it can be easily manufactured by a single heat treatment (continuous annealing process or plating process).
  • Delayed fracture is a phenomenon in which high-strength steel is dissipated into defects such as dislocations, vacancies, and grain boundaries in hydrogen-powered steel generated from a corrosive environment or atmosphere, and stress is applied in this state. This is a phenomenon that causes destruction. Delayed fracture causes adverse effects such as reduced ductility and toughness of metal materials.
  • the present inventors have disclosed a TRIP-type ultra-high strength thin steel sheet having high strength without impairing the excellent ductility characteristic of the TRIP steel sheet, and improved strength and resistance to hydrogen embrittlement. Proposed in 2006-207016, JP2006-207017, and 2006-207018.
  • Mo-added steel to which Mo is preferably added in an amount of 0.1% or more is preferably used.
  • the present invention has been made based on such a situation, and an object of the present invention is to provide a high-strength thin steel sheet having a tensile strength of S980 MPa or more and improved hydrogen embrittlement resistance. is there. Another object of the present invention is to provide a hot-rolled steel sheet for cold rolling, which is capable of producing the high-strength thin steel sheet with high productivity, and has improved cold-rollability.
  • the high-strength thin steel sheet according to the present invention which has been able to solve the above problems, is C%.
  • the steel sheet is calculated by the following formula (1)
  • the Z value is 2.0 to 6.0, and the area ratio to the entire structure is 1% or more of retained austenite, and 80% or more of the total amount of vanitic ferrite and martensite.
  • the hot-rolled steel sheet for cold rolling according to the present invention that has solved the above-mentioned problems is C: 0.10-0.25%, Si: 0.5-3%, Mn: l.0-3.2 in mass%. %, P: 0.1% or less, S: 0.05% or less, A1: 0.01—0.1%, ⁇ : 0.02% or less, Ti: 0.005—0.1%, B: 0.0 002 to 0.0030%, N: 0.01% or less
  • the hot-rolled steel sheet has a Z value of 2.0 to 6.0 calculated by the following formula (1) and a tensile strength of 900 MPa. It has the gist in the following points.
  • [] indicates the content (% by mass) of each element contained in the hot-rolled steel sheet.
  • the high-strength thin steel sheet and the cold-rolled hot-rolled steel sheet may further include (a) Nb
  • the hot-rolled steel sheet for cold rolling of the present invention can be produced by hot rolling a slab satisfying the above component composition and winding it at 550 to 800 ° C.
  • the component composition of the hot-rolled steel sheet is appropriately controlled! /, So that the tensile strength of the hot-rolled steel sheet can be suppressed to 900 MPa or less, and the cold-rollability can be improved. Therefore, if this hot-rolled steel sheet is cold-rolled and then subjected to an appropriate heat treatment, a TRIP-type high-strength thin steel sheet (high-strength thin cold-rolled steel sheet) can be produced with high productivity.
  • the high-strength thin steel sheet of the present invention can increase the tensile strength to 980 MPa or more, and can improve the hydrogen embrittlement resistance by detoxifying hydrogen entering from the outside.
  • FIG. 1 is a diagram for explaining a method for evaluating hydrogen embrittlement resistance
  • (a) is a schematic diagram of a test piece
  • (b) is a diagram showing the shape of the test piece under evaluation. .
  • the inventors of the present invention continue to improve productivity without reducing the strength and hydrogen embrittlement resistance of the ultra-high-strength thin steel sheet as much as possible after proposing the technique of the above-mentioned JP-A-2006-207016. For this reason, we have been studying hard. As a result, if (l) Mo-free steel with Mo kept at 0.02% or less is used and the Z value expressed by the balance between Mo and B is adjusted appropriately, the tensile strength will be 900 MPa in the past. The tensile strength of the hot-rolled steel sheet that has been exceeded can be reduced to 900 MPa or less, and cold-rollability can be improved.
  • a cold-rolled steel sheet obtained by cold rolling this hot-rolled steel sheet is disclosed in Japanese Patent Application Laid-Open No. 2006-207016. If heat treatment is performed under the conditions disclosed in the publication, the tensile strength can be increased to 980 MPa or more, and high strength can be realized. (3) Also, the high-strength thin steel sheet obtained by heat treatment is disclosed in — The inventors have found that hydrogen embrittlement resistance at the same level as that of the ultra-high strength thin steel sheet proposed in Japanese Patent No. 207016 can be achieved, and the present invention has been completed. Hereinafter, the present invention will be described in detail.
  • the high-strength thin steel sheet and the hot-rolled steel sheet for cold rolling are in a relationship between the final product and the intermediate.
  • hot-rolled steel sheet of the present invention is primarily to enhance the cold ductility, while reducing the the time component composition is controlled JP ⁇ Kaari, Mo to 0.02 0/0 or less
  • B is included in the range of 0.0002 to 0.0030%, and the Z value calculated by the following formula (1) from the contents of Mo, B, C, and Mn is 2.0 to 6.0. It is important to adjust to the range.
  • Mo-free steel steel in which Mo is reduced to 0.02% or less (including 0%) is particularly referred to as Mo-free steel.
  • the Z value represented by the above formula (1) is mainly defined to enhance the cold rolling property of the hot-rolled steel sheet and to ensure the strength of the thin steel sheet obtained using the hot-rolled steel sheet. It is a parameter. Details More precisely, when the Z value is adjusted in the range of 2.0 to 6.0, the tensile strength of the hot-rolled steel sheet can be suppressed to 900 MPa or less, and cold rolling with good productivity can be achieved. When a suitable heat treatment is applied to the rolled steel sheet, a high-strength thin steel sheet with a sufficient tensile strength of 980 MPa or more can be obtained.
  • the upper limit of the Z value is determined from the viewpoint of the cold rolling property of the hot-rolled steel sheet, and the lower limit of the Z value is determined from the viewpoint of the strength of the thin steel sheet.
  • the Z value indicates the balance of elements (C, Mn, Mo, B) that contribute to hardenability, and is a value obtained by repeating various experiments.
  • 9 X [C], [Mn], 3 X [Mo], and 490 X [B] indicate the degree (contribution) that each element affects the strength of the thin steel sheet. ing.
  • 7 X [Mo] / ⁇ 100 X ([B] + 0.001) ⁇ contributes to increasing the strength of the thin steel plate, but also increases the strength of the hot-rolled steel plate.
  • the Z value exceeds 6.0, the balance of the hardenability improving element becomes poor, the strength of the hot-rolled steel sheet becomes too high, and the cold-rollability is lowered. Therefore, the content of each element is adjusted so that the Z value is 6.0 or less. Preferably it is 5.9 or less, more preferably 5.8 or less. From the viewpoint of cold-rollability only, the Z value should be as small as possible. However, if the Z value is less than 2.0, the hardenability is insufficient and the strength as a thin steel sheet cannot be secured. Therefore, adjust the content of each element so that the Z value is 2.0 or more. Preferably it is 3.0 or more, more preferably 4.0 or more.
  • Mo is a hardenability improving element.
  • Mo precipitates as fine carbides, and contributes to increasing the strength of the thin steel sheet by precipitation strengthening.
  • the precipitated carbide works as a hydrogen trap site, which also has the effect of suppressing delayed fracture due to hydrogen embrittlement.
  • Mo is actively added with the aim of improving the strength and improving the hydrogen embrittlement resistance by such Mo.
  • Mo-added steel containing a large amount of Mo when Mo-added steel containing a large amount of Mo is used, a hard phase (for example, bainite or martensite) is generated during hot rolling, and the strength of the hot-rolled steel sheet is significantly increased. Subsequent examination by the inventors revealed that the cold-rolling property when cold-rolling was later deteriorated. Therefore, in order to improve the cold rolling property of the ultra-high strength thin steel sheet using Mo-added steel, it is sufficient that Mo is not added as much as possible. However, as described above, Mo is useful as an element for improving the hardenability. If the addition of Mo is simply made zero, the hardenability deteriorates, and the strength required for the finally obtained thin steel sheet cannot be sufficiently secured.
  • a hard phase for example, bainite or martensite
  • tempering is performed after hot rolling to reduce the dislocation density in bainite, and from martensite.
  • Methods such as improving the cold-rollability by changing to a mixed structure of soft ferrite and cementite are used, and if tempering before cold rolling is required after hot rolling, productivity decreases.
  • a predetermined amount of B is contained as an alternative element of Mo from the viewpoint of mainly increasing the cold-rollability of the hot-rolled steel sheet while ensuring high strength of the finally obtained thin steel sheet.
  • B was newly found to have the effect of promoting pearlite transformation compared to Mo.
  • pearlite transformation is promoted by containing B in place of Mo, which does not complete pearlite transformation in the cooling process after hot rolling, but generates martensite and strengthens it. , The generation of martensite can be suppressed.
  • a structure mainly composed of ferrite and pearlite can be obtained, and an increase in the strength of the hot-rolled steel sheet can be suppressed.
  • the Mo content is 0.02% or less. Preferably it is 0.015% or less, more preferably 0.
  • Mo should be as low as possible, most preferably 0%.
  • the content of B is set to 0.0002-0.0030%. If B is less than 0.0002%, the steel cannot be fully quenched, and the strength of the thin steel sheet is insufficient. Therefore, B is 0.0002% or more, preferably 0.0005% or more. If it is excessively contained, the hot workability is improved. to degrade. Further, since boron carbide precipitates at the grain boundaries to cause grain boundary embrittlement, the desired hydrogen embrittlement resistance characteristics when a thin steel sheet is obtained cannot be obtained. Therefore, B is 0.0003% or less, preferably 0.0025% or less.
  • N in the steel is reduced so that BN is not generated as much as possible. Therefore, N should be less than 0.01%. Further, in order to suppress the generation of BN as much as possible, in the present invention, Ti having a higher affinity for N than B is set to 0.005-0.
  • N in the steel is trapped as TiN.
  • N is preferably 0.008% or less, more preferably 0.005% or less. N is as low as possible and better, but it is not realistic to reduce it to 0%! /, So 0% is not included! /,
  • Ti is an element that not only acts to trap N, but also promotes the formation of protective rust, like Cu and Ni described later.
  • Protective rust suppresses the formation of 0 FeOOH, which is generated particularly in chloride environments and has a negative impact on corrosion resistance (and consequently hydrogen embrittlement resistance). Therefore Tii Also, 0.005 0/0 or more, preferably (or 0.01 0/0 or more, more preferably (or 0.03 0/0 or more.
  • the upper limit of Ti is 0.1%, preferably 0.08% or less.
  • the present invention contains 0.10% or more of C. Preferably it is 0.12% or more, more preferably 0.15% or more.
  • the upper limit of C is 0.25%. Preferably it is 0.23% or less, more preferably 0.20% or less.
  • Mn is an element that acts to stabilize austenite, and is an element necessary for securing the amount of austenite. Mn is an element that improves hardenability and also acts to increase strength. In order to exert such an effect, Mn is contained at 1.0% or more. Preferably it is 1.2% or more, more preferably 1.5% or more. However, if it is contained excessively, segregation becomes prominent, promotes grain boundary segregation of P, and hydrogen embrittlement resistance deteriorates due to grain boundary embrittlement. Therefore, the upper limit of Mn is 3.2%. Preferably it is 3.0% or less, more preferably 2.8% or less.
  • the steel sheet of the present invention contains Si and A1 as basic components, and P and S are suppressed within the following ranges.
  • Si acts as a solid solution strengthening element and is an important element for securing the strength of the thin steel sheet.
  • Si is an element that acts to suppress the decomposition of retained austenite and generate carbides, and to obtain the desired retained austenite.
  • 0.5% or more of Si is contained. Preferably it is 0.8% or more, more preferably 1.0% or more. If it is contained excessively, scale formation by hot rolling becomes remarkable, and pickling performance is lowered. Therefore, the upper limit of Si is 3%. Preferably it is 2.8% or less, more preferably 2.5% or less.
  • A1 is added as a deoxidizing element. In order to exert such an action effectively, it is preferable to contain 0.01% or more of A1. Preferably it is 0.02% or more, more preferably 0.03% or more. However, if A1 becomes excessive, the toughness of the thin steel sheet deteriorates, and inclusions such as alumina increase and the workability deteriorates. Therefore, A1 should be 0.1% or less. Preferably it is 0.08% or less, more preferably 0.05% or less.
  • is an element that promotes grain boundary fracture due to grain boundary segregation.
  • the upper limit of 0 ⁇ 1% Preferably it is 0.05% or less, More preferably, it is 0.01% or less.
  • s is an element that promotes hydrogen absorption of a thin steel sheet in a corrosive environment. Also in the thin steel plate
  • S is 0.05% or less. Preferably it is 0.03% or less, More preferably, it is 0.01% or less.
  • the steel sheet of the present invention includes (a) at least one element selected from the group consisting of Nb, V, and Cr, and (b) at least one element of Cu and Ni. (C) W, (d) At least one element selected from the group consisting of Ca, Mg, and REM may be actively contained within the following range.
  • Nb, V, and Cr are all elements that act very effectively on increasing the strength of the thin steel sheet.
  • Nb is an element that not only increases the strength of thin steel sheets but also effectively improves toughness by refining the structure.
  • Nb is 0.09% or less, more preferably 0.08% or less.
  • V is an element that not only increases the strength of the thin steel sheet but also effectively improves toughness by refining the structure.
  • V carbides, nitrides, or carbonitrides act as hydrogen trap sites and improve the resistance to hydrogen embrittlement.
  • V be contained in an amount of 0.01% or more. More preferably, it is 0.05% or more, and still more preferably 0.1% or more.
  • V carbide, nitride, or carbonitride precipitates excessively, causing embrittlement. And deteriorates workability and hydrogen embrittlement resistance. Therefore, V should be kept below 0.5%. Preferably it is 0.4% or less, more preferably 0.3% or less.
  • Cr not only increases the strength of the thin steel sheet but also acts to suppress the intrusion of hydrogen.
  • precipitates containing Cr for example, Cr carbides and carbonitrides
  • Cr is suppressed to 0.5% or less. Preferably it is 0.4% or less, more preferably 0.3% or less.
  • Cu and Ni are elements that suppress the generation of hydrogen, which causes hydrogen embrittlement, and suppress the penetration of the generated hydrogen into the thin steel sheet, thereby improving the resistance to hydrogen embrittlement.
  • Cu and Ni improve the corrosion resistance of the thin steel sheet itself, and suppress hydrogen generation due to corrosion of the thin steel sheet.
  • Cu and Ni also have the effect of accelerating the formation of iron oxide (a-FeOOH) that is thermodynamically stable and protective among the soot produced in the atmosphere! Therefore, by promoting the generation of rust, it is possible to suppress the intrusion of the generated hydrogen into the thin steel sheet, and to improve the hydrogen embrittlement resistance in a severe corrosive environment.
  • a-FeOOH iron oxide
  • Cu is contained in an amount of 0.01% or more, preferably 0.1% or more, more preferably 0.15% or more, and further preferably 0.2% or more.
  • Ni is contained in an amount of 0.01% or more, preferably 0.1% or more, more preferably 0.15% or more. If it is added excessively, it causes deterioration of workability. Therefore, Cu is 1% or less, preferably 0.8% or less, more preferably 0.5% or less. Ni is 1% or less, preferably 0.8% or less, more preferably 0.5% or less. Cu and Ni may be contained singly, but the above effect is easily exhibited by using Cu and Ni together.
  • W is an element that effectively acts to increase the strength of the thin steel sheet. In addition, precipitates containing W act as hydrogen trap sites, thus improving the resistance to hydrogen embrittlement.
  • W is 0.01% or more, preferably 0.1% or more, more preferably 0. It is good to contain 15% or more. However, when it contains excessively, ductility and workability will fall. Therefore, W is 1% or less. Preferably it is 0.8% or less, more preferably 0.5% or less
  • Ca, Mg, and REM (rare earth elements) suppress the corrosion of the surface of the thin steel sheet and increase the hydrogen ion concentration in the interface atmosphere (that is, suppress the decrease in pH) and increase the corrosion resistance of the thin steel sheet. It is an element that acts on It also works to improve the workability by controlling the form of sulfides in the steel sheet. In order to effectively exhibit such an effect, it is preferable to contain 0.0005% or more, preferably 0.001% or more in any case of Ca, Mg, and REM. However, if it is contained excessively, the workability deteriorates, so in any case of Ca, Mg, and REM, it is good to keep it at 0.005% or less, preferably 0.004% or less.
  • the hot-rolled steel sheet for cold rolling according to the present invention that satisfies the above component composition contains a good balance of the hardenability improving element, the structure of the hot-rolled steel sheet is mainly composed of ferrite and pearlite. It becomes. As a result, the hot-rolling strength can be suppressed to 900 MPa or less, and good cold-rollability can be obtained. On the other hand, by performing the heat treatment described later after cold rolling, the hardenability of B is exhibited, and a thin steel sheet having a tensile strength of 980 MPa or more is obtained.
  • the thin steel sheet of the present invention has an area ratio with respect to the entire structure, and (i) payic ferrite (BF) and martensite (M) total 80% or more, and (ii) retained austenite (residual ⁇ ) Is not less than 1% and (iii) not less than the average axial ratio (major axis / minor axis) force of the residual austenite crystal grains.
  • the structure of the thin steel sheet is a two-phase structure of vinylic ferrite and martensite (hereinafter sometimes referred to as BF-M structure).
  • BF-M structure has a two-phase structure mainly composed of vinylic ferrite.
  • the BF—M structure is hard and high strength is easily obtained.
  • the BF-M structure has a large amount of hydrogen compared to TRIP steel that uses, for example, polygonal ferrite as the parent phase. There is an advantage that can be occluded.
  • at the boundary of the lath-shaped vane ferrite there is a very good elongation at which lath-like retained austenite as defined in the present invention is easily formed.
  • the total area ratio of vinylic ferrite and martensite is 80% or more, preferably 85% or more, more preferably 90% or more, in terms of the area ratio to the entire structure.
  • the upper limit of vanitic ferrite and martensite is determined by the balance with other structures (for example, retained austenite). If no structure other than retained austenite (for example, ferrite) described later is contained, the upper limit is determined. Is controlled to 99%
  • the vanitic ferrite referred to in the present invention is a plate-like ferrite and means a substructure having a high dislocation density. It should be noted that vaneitic ferrite is clearly distinguished from polygonal ferrite with no or few dislocations by SEM observation. That is, the vanity ferrite is a dark gray force in the SEM photograph. Polygonal ferrite is black in the SEM photograph and appears as a lump.
  • the area ratio of the BF-M structure is obtained as follows. That is, when a thin steel plate is corroded with nital, an arbitrary measurement region (about 50 X 50 m, measurement interval 0 ⁇ l ⁇ um) in a plane parallel to the rolling surface at a position of 1/4 of the plate thickness is defined as EBSP ( It is calculated by observing with a high-resolution FE—SEM (Field Emission type Scanning Electron Microscope; Philips, XL30S—FEG) equipped with an Electron Back Scatter Diffraction Pattem) detector.
  • FE—SEM Field Emission type Scanning Electron Microscope; Philips, XL30S—FEG
  • BF-M structure and retained austenite may not be separated and distinguished.
  • the SEM observation area can be analyzed simultaneously on the spot by an EBSP detector. This has the advantage that the BF-M structure and retained austenite can be separated and distinguished.
  • the observation magnification may be 1500 times.
  • the EBSP method will be briefly described.
  • an electron beam is incident on the sample surface, and an electron beam incident position is analyzed by analyzing the Kikuchi pattern obtained from the reflected electrons generated at this time.
  • the crystal orientation of the sample surface can be measured by scanning the sample surface in two dimensions with the electron beam and measuring the crystal orientation at a given pitch. According to this EBSP observation, it is possible to distinguish the structure in the plate thickness direction with different crystal orientation differences, which is judged to be the same in normal microscope observation, by the color difference. is there.
  • the retained austenite is not only useful for improving the total elongation, but also greatly contributes to improving the hydrogen embrittlement resistance.
  • 1% or more of retained austenite is present. Preferably it is 3% or more, more preferably 5% or more. However, if a large amount of retained austenite is present, the desired high strength cannot be ensured, so it is recommended that the upper limit be 15% (more preferably 10%).
  • the hydrogen trapping capability is overwhelmingly larger than that of carbide, and particularly when the shape is 5 or more in terms of the average axial ratio (long axis / short axis), so-called Hydrogen invading due to atmospheric corrosion can be made substantially harmless, and the hydrogen embrittlement resistance can be remarkably improved.
  • the average axial ratio of retained austenite is preferably 10 or more, more preferably 15 or more.
  • the upper limit of the average axial ratio is not particularly specified from the viewpoint of enhancing the hydrogen embrittlement resistance, but a certain thickness of retained austenite is necessary to effectively exhibit the TRIP effect. In view of this, the upper limit is preferably 30 and more preferably 20 or less.
  • Residual austenite means a region observed as a fee phase (face-centered cubic lattice) using a high-resolution FE-SEM equipped with the EBSP detector described above.
  • the object to be measured is the same measurement area as that observed for the above-mentioned vaneic ferrite and martensite, that is, an arbitrary measurement area (about 50% in a plane parallel to the rolling surface at a position of 1/4 of the plate thickness. X 50 m, and the measurement interval is 0 ⁇ l ⁇ m).
  • electrolytic polishing is preferably performed to prevent transformation of retained austenite due to mechanical polishing.
  • a high-resolution FE — SEM equipped with an EBSP detector is used to irradiate the sample set in the SEM column with an electron beam.
  • the EBSP image projected on the screen is shot with a high-sensitivity camera (Dage—MTI Inc., VE-1000—SIT) and captured as an image on a computer.
  • the image is analyzed by a computer, and the fee phase determined by comparison with a simulation pattern using a known crystal system [the fee phase (face-centered cubic lattice in the case of retained austenite)] is color-mapped.
  • the area ratio of the region thus mapped is obtained, and this is defined as the area ratio of retained austenite.
  • Te and Te as hardware and software related to the above analysis are used.
  • An xim SEM Laboratories Inc. OIM (Orientation Imaging Microscopy TM) / stem was used.
  • the average axial ratio of the retained austenite grains was measured with a TEM (Transmission Electron Microscope) at a magnification of 150,000, and 3 fields (1 field was 8 m X 8) In m), the major axis and minor axis of the residual austenite crystal grains present were measured to determine the axial ratio (major axis / minor axis), and the average value was calculated as the average axial ratio.
  • TEM Transmission Electron Microscope
  • the thin steel sheet of the present invention is composed of a mixed structure of vanitic ferrite, martensite, and retained austenite! /, Even though it does not impair the action of the present invention! / It may have other structures (typically ferrite or pearlite). Ferrite here means polygonal ferrite. That is, it means that there is no dislocation density or very few dislocations! / ⁇ ferrite.
  • Ferrite and pearlite are structures that can inevitably remain in the production process of the present invention.
  • the thin steel sheet of the present invention is a hot-rolled steel sheet obtained by hot rolling a slab satisfying the above-described component composition, and then cold-rolled to obtain a cold-rolled steel sheet. Can be manufactured by heat treatment.
  • the coiling temperature is set to 550 to
  • the structure of the hot-rolled steel sheet becomes a structure mainly composed of ferrite and pearlite, and the strength of the hot-rolled steel sheet is suppressed to 900 MPa or less, and it is easy to cold-roll.
  • the coiling temperature force is less than S550 ° C, hard phases such as bainite and martensite are generated, the strength is increased, and the cold rolling property cannot be improved.
  • the winding temperature is 550 ° C or higher, preferably 600 ° C or higher.
  • the upper limit of the coiling temperature is not particularly limited, but is set to 800 ° C due to equipment restrictions.
  • the winding temperature is preferably 750 ° C or lower, more preferably 700 ° C or lower.
  • the hot rolling conditions before winding are not particularly limited as long as the winding temperature can be adjusted to the above range.
  • the slab obtained by forging is left as-made or about 1150 to 1300 ° C. , Hot rolling at a finishing temperature of 850 to 950 ° C., and then cooling to the above winding temperature at a cooling rate of 0.;! To 1000 ° C./second.
  • the hot-rolled steel sheet of the present invention since the slab having the adjusted composition is hot-rolled and wound at a predetermined temperature, the strength of the hot-rolled steel sheet can be suppressed to 900 MPa or less. Therefore, the hot-rolled steel sheet of the present invention is useful as a non-tempered material that can be cold-rolled without being tempered (tempered) after hot rolling, and can improve productivity.
  • Cold rolling conditions after hot rolling are not particularly limited, and the hot-rolled steel sheet may be cold-rolled according to a conventional method. It is recommended that the cold rolling rate be between !! and 70%. This is because cold rolling exceeding a cold rolling rate of 70% increases the rolling load and makes rolling difficult.
  • T1 exceeds the temperature of (A point + 50 ° C)
  • tl exceeds 1800 seconds
  • austenite grain growth will be caused and workability (stretch flangeability) will be deteriorated.
  • t 1 is 1800 seconds or less, preferably 600 seconds or less, more preferably 400 seconds or less.
  • tl is 10 seconds or longer, preferably 30 seconds or longer, more preferably 60 seconds or longer.
  • Point A can be calculated from the following formula described on page 273 of "Leslie Steel Material Science”.
  • the cooling ultimate temperature is (Ms point—100 ° C) to Bs point temperature (T2), and the temperature is maintained for 60 to 1800 seconds (t2) in this temperature range. it can.
  • T2 holding temperature
  • t2 holding temperature
  • a large amount of pearlite which is not preferable for the present invention is generated, and a sufficient amount of baitic ferrite and martensite structure cannot be secured.
  • T2 falls below the temperature of (Ms point 100 ° C)
  • retained austenite decreases, which is not preferable.
  • the Ms point can be calculated from the following calculation formula.
  • the Bs point can be calculated from the following equation.
  • t2 holding time
  • t2 is 1800 seconds or less, preferably 1200 seconds or less, more preferably 600 seconds or less.
  • t2 is preferably 60 seconds or longer, preferably 90 seconds or longer, more preferably 120 seconds or longer.
  • the cooling method after the holding is not particularly limited, and it is possible to perform air cooling, rapid cooling, air-water cooling, etc. with force S.
  • the plating conditions may be set so as to satisfy the above heat treatment conditions, and the plating process may also be performed as the above heat treatment! /.
  • the present invention is directed to a thin steel plate having a thickness of 5 mm or less, and the product form is not particularly limited, and is obtained through hot rolling, cold rolling, and heat treatment (annealing treatment).
  • the obtained thin steel sheet may be subjected to chemical conversion treatment, melting plating, electrical plating, plating by vapor deposition, etc., various coatings, coating base treatment, organic coating treatment, and the like.
  • the type of plating may be any of general zinc plating, aluminum plating, or the like.
  • the method of plating can be either melting or electric plating. Multi-layer plating that may be subjected to alloying heat treatment may be performed. In addition, film lamination may be applied to non-coated steel sheets.
  • paints can be used for the paint, for example, epoxy resins, fluorine-containing resins, silicone acrylic resins, polyurethane resins, acrylic resins, polyester resins, phenol resins, alkyd resins, melamine resins, etc. together with known curing agents. It is possible to use. In particular, from the viewpoint of corrosion resistance, the use of epoxy resin, fluorine-containing resin, and silicon acrylic resin is recommended.
  • known additives added to the paint such as coloring pigments, coupling agents, leveling agents, sensitizers, antioxidants, UV stabilizers, flame retardants, and the like, may be added.
  • the form of the paint is not particularly limited, and can be appropriately selected according to the use such as solvent-based paint, powder paint, water-based paint, water-dispersed paint, and electrodeposition paint.
  • a known method such as a dubbing method, a roll coater method, a spray method, or a curtain flow coater method may be used.
  • a known appropriate value should be adopted depending on the application! /.
  • the thin steel sheet of the present invention has high strength, for example, automotive strength parts such as bumpers, door impact beams, billiards, reinforcements, and reinforcing members of automobiles such as members, and indoor parts such as seat rails. Etc. Even in parts obtained by forming and processing in this way, they have sufficient material properties (strength) and excellent hydrogen embrittlement resistance.
  • test steels steel grades A to U and steel grades a to r having the composition shown in Table 1 or Table 2 (the balance is iron and inevitable impurities) were vacuum-melted into experimental slabs Then, after obtaining a hot-rolled steel sheet with a thickness of 3.2 mm, the surface scale was removed by pickling, and then cold-rolled to a thickness of 1.2 mm, followed by continuous annealing.
  • the conditions of the hot rolling process, the cold rolling process, and the annealing process are as follows.
  • Tables 1 and 2 below show the temperature at point A, the temperature at point Bs, and the temperature at point Ms using the above formulas from the component composition.
  • Tables 3 and 4 below show the Z values calculated from the composition shown in Tables 1 and 2 using the above formula (1).
  • the experimental slab was held at 1250 ° C for 30 minutes, and then hot-rolled so that the finishing temperature (F DT) was 850 ° C, and the winding temperature (500 650 ° C) was cooled at an average cooling rate of 40 ° C / sec. Next, after being kept at this winding temperature for 30 minutes, it was allowed to cool to room temperature to obtain a hot-rolled steel sheet.
  • the obtained hot-rolled steel sheet was cold-rolled at a cold rolling rate of 50% (cold rolling process), and then continuously annealed with! / (Annealing process).
  • continuous annealing hold at a temperature T1 (° C) for 120 seconds (tl), then rapidly cool to the temperature T2 (° C) shown in Table 3 or 4 at an average cooling rate of 20 ° C / second (air cooling)
  • T2 ° C
  • t2 the steel sheet was obtained by air-water cooling to room temperature.
  • the tensile strength (TS) of the hot-rolled steel sheet was measured by a tensile test using a JIS No. 5 test piece as a test piece.
  • the strain rate in the tensile test was lmm / sec.
  • the tensile strength of the hot-rolled steel sheet was 900 MPa or less, it was evaluated as having excellent cold-rollability, and in Tables 3 and 4 below, it was indicated by a circle.
  • it exceeds 900 MPa it is evaluated as being inferior in cold rolling, and is indicated by X in Tables 3 and 4 below.
  • the tensile strength (TS) of the thin steel plate was also measured by a tensile test using a JIS No. 5 test piece as a test piece.
  • the strain rate in the tensile test was also lmm / sec.
  • the tensile strength of the thin steel sheet is 980 MPa or more, it was evaluated as high strength (pass), and when it was less than 980 MPa, it was evaluated as insufficient strength (fail).
  • Tick ferrite The area ratio of BF and martensite (M) and the area ratio of retained austenite (residual iron ) were measured according to the method described above. Measurements were taken in the same way for two fields of view of the above-selected size, and the average value was obtained.
  • the area ratio of other structures was obtained by subtracting the area ratio of the above-described structure (BF + M + residual ⁇ ) from the total structure (100%).
  • the average axial ratio of the retained austenite crystal grains was measured according to the above-mentioned method, and those having an average axial ratio greater than or equal to the requirements of the present invention (O) and those having an average axial ratio of less than 5 were It was evaluated as (X), which did not meet the requirements of Ming.
  • a strip test piece of 150 mm X 30 mm was cut out from each thin steel sheet to obtain a test piece. That is, as shown in Fig. 1 (a), two holes ( ⁇ 12mm) for passing the bolts are made in the cut strip test piece, and as shown in Fig. 1 (b), the bending portion R is 15 mm.
  • a bolt 1 was tightened with the bolt 1 and a stress of lOOOMPa was applied to the bent portion as a test piece. It should be noted that the stress of the bending part is determined by bolt 1 until the stress applied to the bending part becomes lOOOMPa after the strain gauge 2 is attached to the bending part before fastening the bent specimen with bolt 1.
  • test piece was immersed in a 5% aqueous hydrochloric acid solution and the time until cracking was measured. Thin steel sheets with a time to crack generation of 24 hours or more were evaluated as having excellent hydrogen embrittlement resistance, and thin steel sheets having less than 24 hours were evaluated as having poor hydrogen embrittlement characteristics.
  • Nos. 3, 6, and 8 are examples in which the amount of Mo is excessive, and the strength of the hot-rolled steel sheet is high and the cold-rolling property cannot be improved.
  • No. 12 is an example in which the amount of B is excessive. Boron carbide precipitates at the grain boundaries and causes embrittlement at the grain boundaries, which deteriorates the resistance to hydrogen embrittlement.
  • No. 13 is an example in which the amount of C is excessive, and the strength of the hot-rolled steel sheet is so high that cold rolling properties cannot be improved. In addition, the strength of the thin steel sheet becomes too high, and the hydrogen embrittlement resistance can be sufficiently improved.
  • No. 15 is an example in which the amount of Si is insufficient, and since there is almost no retained austenite, the hydrogen embrittlement resistance is poor.
  • No. 18 is an example in which the amount of Mn is excessive, and the cold-rollability cannot be improved due to the high strength of the hot-rolled steel sheet. In addition, segregation is remarkable and the hydrogen embrittlement resistance is deteriorated.
  • Nos. 27 to 33 have an excessive amount of Mo and do not contain B, even B! /, For example, the hot-rolled steel sheet has high strength and can improve cold-rollability! / ,.
  • No. 34 was annealed in the two-phase region ( ⁇ + ⁇ ) due to the low temperature T1, and produced a large amount of ferrite. Further, the average axial ratio of the retained austenite crystal grains does not satisfy the range specified in the present invention. In No. 38, since the Z value is smaller than the range defined in the present invention, the strength as a thin steel sheet cannot be secured. In No. 41, since the coiling temperature is low, hard phases such as bainite and martensite are generated, and the strength of the hot-rolled steel sheet is high, so that the cold-rollability cannot be improved.
  • the high-strength thin steel sheet obtained by the present invention exhibits excellent hydrogen embrittlement resistance. Therefore, high-strength parts that require a tensile strength of 980 MPa or more (for example, reinforcing materials such as bumpers and impact beams, sheet rails) , Pillars, reinforcements, members and other automotive parts).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 本発明は、C、Si、Mn、P、S、Al、Mo、Ti、B、およびNを含有する薄鋼板であって、該薄鋼板は、下記式で算出されるZ値が2.0~6.0で、全組織に対する面積率で、残留オーステナイトが1%以上、ベイニティックフェライトおよびマルテンサイトが合計で80%以上であると共に、上記残留オーステナイト結晶粒の平均軸比が5以上であり、引張強度が980MPa以上である。 Z値=9×[C]+[Mn]+3×[Mo]+490×[B]+7×[Mo]/{100×([B]+0.001)}  これにより引張強度が980MPa以上で、耐水素脆化特性が高められた高強度薄鋼板を提供できる。また、本発明によれば、上記高強度薄鋼板を生産性良く製造することが可能な冷延用の熱延鋼板であって、冷延性が改善された熱延鋼板を提供できる。

Description

明 細 書
高強度薄鋼板
技術分野
[0001] 本発明は、耐水素脆化特性に優れた高強度薄鋼板に関するものであり、特に、引 張強度が 980MPa以上の鋼板で問題となる置き割れや遅れ破壊といった水素脆化 に起因する破壊が抑制された高強度薄鋼板に関するものである。
背景技術
[0002] 自動車等を構成する高強度部品をプレス成形加工や曲げ加工して得るにあたり、 該加工に供される鋼板は、優れた強度と延性を兼ね備えていることが求められている 。近年では、自動車を軽量化して低燃費を実現するために、自動車の素材として用 いられて!/、る鋼板の強度を高め、板厚を一層薄くして軽量化することが望まれて!/、る 。また、自動車の衝突安全性を向上させるために、ビラ一等の自動車用構造部品に は更なる高強度化が求められており、引張強度で 980MPa以上の高強度薄鋼板の 適用が検討されている。
[0003] 高強度と延性を兼ね備えた鋼板として、 TRIP (Transformation Induced Plas ticity;変態誘起塑性)鋼板が注目されている。 TRIP鋼板は、鋼中にオーステナイト 組織が残留しており、マルテンサイト変態開始温度(Ms点)以上の温度で加工変形 させると、応力によって残留オーステナイト (残留 γ )がマルテンサイトに誘起変態し て大きな伸びが得られる鋼板である。その種類として幾つか挙げられ、例えば、
( 1 )ポリゴナルフェライトを母相とし、残留オーステナイトを含む TRIP型複合組織鋼 ( TPF鋼)、
(2)焼戻マルテンサイトを母相とし、残留オーステナイトを含む TRIP型焼戻マルテン サイト鋼(TAM鋼)、
(3)べィニティックフェライトを母相とし、残留オーステナイトを含む TRIP型べイナイト 鋼(TBF鋼)、
等が知られている。
[0004] このうち TBF鋼は古くから知られており、硬質のべィニティックフェライトによって高 強度が得られ易ぐまたラス状のべィニティックフェライトの境界に微細な残留オース テナイトが生成し易ぐこの様な組織形態が非常に優れた伸びをもたらす。更に TBF 鋼は、 1回の熱処理 (連続焼鈍工程またはメツキ工程)によって容易に製造できるとい う製造上のメリットもある。
[0005] ところが引張強度が 980MPa以上の高強度域では、時間が経過するに連れて水 素脆化による遅れ破壊という弊害が新たに生じることが知られている。遅れ破壊は、 高強度鋼において腐食環境または雰囲気から発生した水素力 鋼中の転位ゃ空孔 、粒界などの欠陥部へ拡散して材料を脆化させ、この状態で応力が付与されることに よって破壊を生じる現象である。遅れ破壊によって、金属材料の延性ゃ靭性が低化 する等の弊害がもたらされる。
[0006] そこで本発明者らは、 TRIP鋼板の特徴である優れた延性を損なうことなぐ高強度 で、し力、も耐水素脆化特性を改善した TRIP型の超高強度薄鋼板を特開 2006— 20 7016号公報、特開 2006— 207017号公報、特開 2006— 207018号公報に提案し た。ここでは、主に耐水素脆化特性を向上させるため、 Moをより好ましくは 0.1%以 上添加した Mo添加鋼を使用して!/、る。
発明の開示
[0007] 本発明は、このような状況に基づいて成されたものであり、その目的は、引張強度 力 S980MPa以上で、耐水素脆化特性が高められた高強度薄鋼板を提供することに ある。また、本発明の他の目的は、上記高強度薄鋼板を生産性良く製造することが可 能な冷延用の熱延鋼板であって、冷延性が改善された熱延鋼板を提供することにあ
[0008] 上記課題を解決することのできた本発明に係る高強度薄鋼板は、質量%で、 C:0.
10—0.25%、Si:0.5〜3%、Mn:l.0—3.2%、P:0.1%以下、 S:0.05%以 下、 A1:0.01—0.1%、Μο:0.02%以下、 Ti:0.005—0. 1%、B:0.0002—0 .0030%、 N:0.01%以下を満足し、残部が鉄および不可避不純物からなる薄鋼 板であり、該薄鋼板は、下記(1)式で算出される Z値が 2.0〜6.0で、全組織に対す る面積率で、残留オーステナイトが 1%以上、べィニティックフェライトおよびマルテン サイトが合計で 80%以上であると共に、上記残留オーステナイト結晶粒の平均軸比( 長軸/短軸)が 5以上であり、引張強度が 980MPa以上である点に要旨を有する。 式中、 [ ]は、薄鋼板中に含まれる各元素の含有量 (質量%)を示している。
Z値 =9X [C] + [Mn] + 3X [Mo]+490X [B] + 7X [Mo]/{100X ([B]+0. 001)} …ひ)
[0009] また、上記課題を解決することのできた本発明に係る冷延用熱延鋼板は、質量% で、 C:0.10—0.25%、 Si:0.5—3%, Mn:l.0—3.2%、 P:0.1%以下、 S:0 .05%以下、 A1:0.01—0.1%、Μο:0.02%以下、 Ti:0.005—0.1%、B:0.0 002〜0.0030%、 N:0.01%以下を満足し、残部が鉄および不可避不純物からな る冷延用熱延鋼板であり、該熱延鋼板は、下記(1)式で算出される Z値が 2.0〜6. 0で、引張強度が 900MPa以下である点に要旨を有する。式中、 [ ]は、熱延鋼板 中に含まれる各元素の含有量 (質量%)を示して!/、る。
Z値 =9X [C] + [Mn] + 3X [Mo]+490X [B] + 7X [Mo]/{100X ([B]+0. 001)} …ひ)
[0010] 上記高強度薄鋼板および上記冷延用熱延鋼板は、更に、他の元素として、(a)Nb
:0.005—0.1%、 V:0.01—0.5%、および Cr:0.01—0.5%よりなる群力、ら選 ばれる少なくとも 1種の元素、(b)Cu:0.01〜; 1%と Ni:0.01〜; 1%の少なくとも一 方の元素、 (c)W:0.01— 1%, (d)Ca:0.0005—0.005%、Mg:0.0005—0. 005%、および REM: 0.0005—0.005%よりなる群力、ら選ば、れる少ヽなくとも 1種の 元素、等を含有してもよい。
[0011] 本発明の冷延用熱延鋼板は、上記成分組成を満足するスラブを熱間圧延し、 550 〜800°Cで巻き取ることで製造できる。
[0012] 本発明によれば、熱延鋼板の成分組成が適切に制御されて!/、るため、熱延鋼板の 引張強度を 900MPa以下に抑えることができ、冷延性を改善できる。そのためこの熱 延鋼板を冷延した後、適切な熱処理を施せば、生産性よく TRIP型の高強度薄鋼板 (高強度薄冷延鋼板)を製造できる。本発明の高強度薄鋼板は、引張強度を 980M Pa以上に高めることができると共に、外部から侵入する水素を無害化して耐水素脆 化特性も改善できる。
図面の簡単な説明 [0013] [図 1]耐水素脆化特性の評価方法を説明するための図であり、 (a)は試験片の概略 図、(b)は評価中の試験片の形状を示す図である。
発明を実施するための最良の形態
[0014] 本発明者らは、上記特開 2006— 207016号公報の技術を提案した後も引き続き 当該超高強度薄鋼板の強度と耐水素脆化特性をできるだけ低下させずに、生産性 を高めるために鋭意検討を重ねてきた。その結果、(l ) Moを 0. 02%以下に抑えた Mo非添加鋼を用い、且つ Moと Bとのバランスで表される Z値を適切に調整してやれ ば、従来は引張強度が 900MPaを超えていた熱延鋼板の引張強度を 900MPa以 下に低減でき、冷延性を改善できること、(2)この熱延鋼板を冷間圧延して得られた 冷延鋼板に、特開 2006— 207016号公報で開示した条件で熱処理すれば、引張 強度を 980MPa以上に高めることができ、高強度化を実現できること、(3)また、熱処 理して得られた高強度薄鋼板は、特開 2006— 207016号公報で提案した超高強度 薄鋼板と同レベルの耐水素脆化特性を達成できること、を見出し、本発明を完成した 。以下、本発明について詳細に説明する。
[0015] まず、本発明の高強度薄鋼板を得るのに好適な冷延用熱延鋼板について説明す る。本明細書において、高強度薄鋼板と冷延用熱延鋼板とは、最終製品と中間体と の関係にある。以下、高強度薄鋼板と冷延用熱延鋼板をまとめて単に鋼板とよぶこと 力 sある。
[0016] 本発明の熱延鋼板は、主に冷延性を高めるために、成分組成が制御されていると ころに特 ί毁カぁり、 Moを 0. 020/0以下に低減する一方で、 Bを 0. 0002—0. 0030 %の範囲で含有させると共に、 Mo、 B、 Cおよび Mnの含有量から下記(1)式で算出 される Z値を 2. 0〜6. 0の範囲に調整することが重要である。なお、本明細書では、 説明の便宜上、 Moを 0. 02%以下(0%を含む)に低減した鋼を特に Mo非添加鋼と よふ。
Z値 = 9 X [C] + [Mn] + 3 X [Mo] + 490 X [B] + 7 X [Mo] /{ 100 X ( [B] + 0. 001) } …ひ)
[0017] 上記(1)式で表される Z値は、主に熱延鋼板の冷延性を高めると共に、当該熱延鋼 板を用いて得られる薄鋼板の強度を確保するために定められたパラメータである。詳 細には、 Z値を 2· 0〜6· 0の範囲に調整すると、熱延鋼板の引張強度を 900MPa以 下に抑えることができ、生産性良く冷間圧延できる一方で、得られた冷延鋼板に適切 な熱処理を施すと、充分に焼入れされて 980MPa以上の引張強度を備えた高強度 薄鋼板が得られる。そして Z値の上限は熱延鋼板の冷延性、 Z値の下限は薄鋼板の 強度の観点から定めている。
[0018] 上記 Z値は、焼入れ性に寄与する元素(C、 Mn、 Mo、 B)のバランスを示しており、 種々の実験を繰返して得られた数値である。特に、上記(1)式中、 9 X [C]、 [Mn]、 3 X [Mo]、 490 X [B]は、各元素が薄鋼板の強度に影響を及ぼす度合い(寄与度) を示している。一方、上記(1)式中、 7 X [Mo]/{ 100 X ( [B] + 0. 001) }は、薄鋼 板の高強度化に寄与する反面、熱延鋼板の強度も高めて冷延性を阻害する作用を 有する Moと、 Moと較べると熱延鋼板の強度上昇を抑えて冷延性を阻害することなく 薄鋼板の強度を高める作用を有する Bとのバランスに基づいて規定されたものである
[0019] 上記 Z値が 6. 0を超えると、焼入れ性向上元素のバランスが悪くなつて、熱延鋼板 の強度が高くなり過ぎ、冷延性が低下する。従って Z値が 6. 0以下となるように各元 素の含有量を調整する。好ましくは 5. 9以下、より好ましくは 5. 8以下とする。冷延性 の観点のみからすれば、 Z値はできるだけ小さい方がよいが、 Z値が 2. 0未満では、 焼入れ性が不充分となり、薄鋼板としての強度を確保できない。従って Z値が 2. 0以 上となるように各元素の含有量を調整する。好ましくは 3. 0以上、より好ましくは 4. 0 以上である。
[0020] 次に、 Z値を構成する各元素について説明する。 Moは、焼入れ性向上元素であり 、 Moを含有させることで、 Moが微細炭化物として析出し、析出強化による薄鋼板の 高強度化に寄与する。また、析出した炭化物が水素トラップサイトとして働くことで、水 素脆化による遅れ破壊を抑制する効果も発揮する。上記特開 2006— 207016号公 報では、このような Moによる高強度化作用および耐水素脆化特性の改善を狙って Moを積極的に添加している。
[0021] ところが Moを多く含有する Mo添加鋼を用いると、熱間圧延時に硬質相(例えば、 ベイナイトやマルテンサイト)が生成し、熱延鋼板の強度が著しく高くなり、熱間圧延 後に冷間圧延するときの冷延性を劣化させることが、その後の発明者らの検討によつ て判明した。そこで Mo添加鋼を用いた超高強度薄鋼板の冷延性を改善するには、 Moを極力添加しないようにすれば良い。しかし前述したように Moは焼入れ性向上 元素として有用であり、単に Moの添加をゼロにすると、焼入れ性が悪くなり、最終的 に得られる薄鋼板に必要な強度を充分には確保できなくなる。そのため Mo添加鋼を 用いて超高強度薄鋼板を製造するにあたっては、冷延性を改善するために、例えば 、熱間圧延後に焼き戻しを行ない、ベイナイト中の転位密度を低下させ、またマルテ ンサイトから軟質なフェライトとセメンタイトの混合組織へ変化させるなどして冷延性を 改善するなどの方法がとられており、熱延後、冷延前の焼戻し処理が必要になるとい つた生産性の低下を招いて!/、た。
[0022] そこで本発明では、主に熱延鋼板の冷延性を高める一方で、最終的に得られる薄 鋼板の高強度を確保するという観点から、 Moの代替元素として、 Bを所定量含有す ることにした。 Bは、パーライト変態を Moに比べて促進させる効果を有することが今回 新たに判明した。従来の Mo添加鋼では、熱延巻取り後の冷却過程でパーライト変態 が完了せずに、マルテンサイトが生成して高強度化する力 Moの代わりに Bを含有 させることでパーライト変態が促進され、マルテンサイトの生成を抑制することができる 。これによりフェライトとパーライトを主体とする組織とすることができ、熱延鋼板の強度 上昇を抑えることが可能となる。
[0023] 更に、本発明では、上記のように Moの減少に伴って耐水素脆化特性が低下するこ とも懸念されたが、 Bを所定量含有させることで、耐水素脆化特性も向上できることが 判明した。耐水素脆化特性を向上できる機構については不明である力 Bはオース テナイト中への溶解度が小さいためにオーステナイト粒界に偏析し、粒界同士の結 合力を高めることによって水素脆化が起こり難くなつているものと推定される。
[0024] Moの含有量は、 0. 02%以下とする。好ましくは 0. 015%以下、より好ましくは 0.
01 %以下である。 Moはできるだけ少ないのがよぐ最も好ましくは 0%である。
[0025] 一方、 Bの含有量は、 0. 0002—0. 0030%とする。 Bが 0· 0002%未満では、充 分に焼入れできず、薄鋼板としたときの強度が不足する。従って Bは 0. 0002%以上 、好ましくは 0. 0005%以上である。しカゝし Bが過剰に含まれていると熱間加工性が 劣化する。また、粒界に硼炭化物が析出し、粒界脆化を生じることによって、薄鋼板と したときの所望の耐水素脆化特性が得られない。従って Bは 0. 0030%以下、好まし くは 0. 0025%以下とする。
[0026] B添加による冷延性向上作用を有効に発揮させるには、鋼中の Nを低減して BNを 極力生成させないようにする。従って Nは 0. 01 %以下とする。更に、 BNの生成をで きるだけ抑えるために、本発明では、 Bよりも Nとの親和性の高い Tiを 0. 005-0. 1
%の範囲で含有させて鋼中の Nを TiNとしてトラップする。
[0027] Nは、好ましくは 0. 008%以下、より好ましくは 0· 005%以下とする。 Nは、できる だけ少なレ、方が良レ、が、 0%に低減することは現実的ではな!/、ため、 0%は含まな!/、
[0028] Tiは、 Nをトラップするのに作用するほか、後述する Cuや Niと同様に、保護性さび の生成を促進する元素である。保護性さびは、特に塩化物環境下で生成して耐食性 (結果として耐水素脆化特性)に悪影響を及ぼす 0 FeOOHの生成を抑制する。 従って Tiiま、 0. 0050/0以上、好ましく (ま 0. 010/0以上、より好ましく (ま 0. 030/0以上で ある。しかし Tiを過剰に添加すると、 Tiの炭化物や窒化物、或いは炭窒化物の析出 が多くなり、加工性や耐水素脆化特性の劣化を招く。従って Tiの上限は 0. 1 %とす る。好ましくは 0. 08%以下である。
[0029] 本発明の鋼板は、 C, Mn, Moおよび Bの含有量のバランスが上記(1)式を満足す るように調整することが重要である力 S、 Cと Mnの含有量は次の通りである。
[0030] [C : 0. 10—0. 25%]
cは、薄鋼板としたときの強度を確保する元素である。即ち、焼入れ性を向上させて 980MPa以上の高強度を確保するのに必要な元素である。また、オーステナイト相 中に充分な Cを含有させて、室温でも所望のオーステナイト相を残留させる点でも重 要な元素である。オーステナイトが残留することで、強度-延性バランスが良好になる 。また、ラス状の安定した残留オーステナイト (詳細は後述する)は水素トラップサイト として働き、耐水素脆化特性を向上させる。このような観点から本発明では Cを 0. 10 %以上含有させる。好ましくは 0. 12%以上、より好ましくは 0. 15%以上である。しか し過剰に含有すると、強度が高くなりすぎて水素脆性を起こし易くなる。また、溶接性 も劣化する。従って、 Cの上限は 0. 25%とする。好ましくは 0. 23%以下、より好まし くは 0. 20%以下である。
[0031] [Μη : 1. 0〜3· 2%]
Mnは、オーステナイトを安定化させるのに作用する元素であり、オーステナイト量 を確保ために必要な元素である。また、 Mnは、焼入れ性を向上させる元素であり、 高強度化にも作用する。このような作用を発揮させるには、 Mnを 1. 0%以上含有さ せる。好ましくは 1. 2%以上、より好ましくは 1. 5%以上である。しかし過剰に含有す ると、偏析が顕著となり、また Pの粒界偏析を助長し、粒界脆化によって耐水素脆化 特性が劣化する。従って Mnの上限は 3. 2%とする。好ましくは 3. 0%以下、より好ま しくは 2. 8%以下である。
[0032] 本発明の鋼板は、上記元素以外に、基本成分として、 Siと A1を含有すると共に、 P と Sが下記範囲内に抑えられている。
[0033] [Si : 0. 5〜3%]
Siは、固溶強化元素として作用し、薄鋼板の強度を確保するのに重要な元素であ る。また、 Siは、残留オーステナイトが分解して炭化物が生成するのを抑え、所望の 残留オーステナイトを得るためにも作用する元素である。このような作用を発揮させる には、 Siを 0. 5%以上含有させる。好ましくは 0. 8%以上、より好ましくは 1. 0%以上 である。し力、し過剰に含有すると熱間圧延でのスケール形成が顕著になり、酸洗性が 低下する。従って Siの上限は 3%とする。好ましくは 2. 8%以下、より好ましくは 2. 5 %以下である。
[0034] [A1 : 0. 01—0. 1 %]
A1は、脱酸元素として添加する。こうした作用を有効に発揮させるには、 A1を 0. 01 %以上含有させるのがよい。好ましくは 0. 02%以上、より好ましくは 0. 03%以上で ある。しかし A1が過剰になると、薄鋼板の靭性が劣化したり、アルミナ等の介在物が 増加して加工性が劣化するため、 A1は 0. 1 %以下とする。好ましくは 0. 08%以下、 より好ましくは 0. 05%以下である。
[0035] [Ρ : 0· 1 %以下]
Ρは、粒界偏析による粒界破壊を助長する元素であるため、低い方が望ましぐそ の上限を 0· 1 %とする。好ましくは 0. 05%以下、より好ましくは 0. 01 %以下である。
[0036] [S : 0. 05%以下]
sは、腐食環境下で薄鋼板の水素吸収を助長する元素である。また、薄鋼板中に
MnS等の硫化物を形成し、この硫化物が水素脆化による割れの起点になるため、 S は低い方が望ましい。従って Sは 0. 05%以下とする。好ましくは 0. 03%以下、より 好ましくは 0. 01 %以下である。
[0037] 本発明の鋼板における基本成分は上記の通りであり、残部は実質的に鉄であるが
、原料や資材、製造設備等の状況によって持ち込まれる不可避不純物が含まれるこ とは許容できる。
[0038] また、本発明の鋼板には、上記成分の他に、(a) Nb、 V、および Crよりなる群から 選ばれる少なくとも 1種の元素、(b) Cuと Niの少なくとも一方の元素、(c)W、 (d) Ca 、 Mg、および REMよりなる群から選ばれる少なくとも 1種の元素を、下記の範囲で積 極的に含有させてもよい。
[0039] [ (a) Nb : 0. 005—0. 1 %、 V: 0. 01—0. 5%、および Cr : 0. 01—0. 5%よりなる 群から選ばれる少なくとも 1種]
Nb, V, Crは、いずれも薄鋼板の強度上昇に非常に有効に作用する元素である。 特に Nbは、薄鋼板の強度を上昇させる他、組織の細粒化による靭性向上にも有効 に作用する元素である。このような効果を有効に発揮させるには、 Nbを 0. 005%以 上含有させることが推奨される。より好ましくは 0. 01 %以上、更に好ましくは 0. 02% 以上である。但し、 Nbを過剰に含有させても、これらの効果が飽和して経済的に無 駄である。また、粗大な析出物を形成し、脆化が起こる。従って Nbは 0. 1 %以下に 抑える。好ましくは 0. 09%以下、より好ましくは 0. 08%以下である。
[0040] Vは、薄鋼板の強度を上昇させる他、組織の細粒化による靭性向上にも有効に作 用する元素である。また、 Vの炭化物や窒化物、或いは炭窒化物が、水素トラップサ イトとして作用し、耐水素脆化特性を向上させるのにも作用する。このような効果を有 効に発揮させるには、 Vを 0. 01 %以上含有させることが推奨される。より好ましくは 0 . 05%以上、更に好ましくは 0. 1 %以上である。但し、 Vを過剰に含有させると、 Vの 炭化物や窒化物、或いは炭窒化物が過剰に析出することによって、脆化を引き起こ し、加工性および耐水素脆化特性を劣化させる。従って Vは 0. 5%以下に抑える。 好ましくは 0. 4%以下、より好ましくは 0. 3%以下である。
[0041] Crは、薄鋼板の強度を上昇させる他、水素の侵入を抑制するのにも作用する。また 、 Crを含有する析出物(例えば、 Crの炭化物や炭窒化物)は、水素トラップサイトとし て作用し、耐水素脆化特性を向上させるのにも作用する。このような効果を有効に発 揮させるには、 Crを 0. 01 %以上含有させることが推奨される。より好ましくは 0. 05 %以上、更に好ましくは 0. 1 %以上である。但し、 Crを過剰に含有すると、延性や加 ェ性が低下する。従って Crは 0. 5%以下に抑える。好ましくは 0. 4%以下、より好ま しくは 0. 3%以下である。
[0042] [ (b) Cu : 0. 01〜; 1 %と Ni : 0. 01〜; 1 %の少なくとも一方]
Cuと Niは、水素脆化の原因となる水素の発生を抑制すると共に、発生した水素の 薄鋼板への侵入を抑制し、耐水素脆化特性を向上させるのに作用する元素である。
Cuと Niは、薄鋼板自体の耐食性を向上させて、薄鋼板の腐食による水素発生を抑 制する。また Cuと Niは、大気中で生成する鯖の中でも熱力学的に安定で保護性が あると!/、われて!/、る酸化鉄( a -FeOOH)が生成するのを促進させる効果も有して おり、さびの生成促進を図ることで、発生した水素の薄鋼板への侵入を抑制でき、過 酷な腐食環境下において耐水素脆化特性を高めることができる。
[0043] こうした効果を有効に発揮させるには、 Cuは 0. 01 %以上、好ましくは 0. 1 %以上 、より好ましくは 0. 15%以上、更に好ましくは 0· 2%以上含有するのがよい。 Niは 0 . 01 %以上、好ましくは 0. 1 %以上、より好ましくは 0. 15%以上含有するのがよい。 し力、し過剰に含有させると、加工性の劣化を招く。従って Cuは 1 %以下、好ましくは 0 . 8%以下、より好ましくは 0. 5%以下とする。 Niは 1 %以下、好ましくは 0. 8%以下、 より好ましくは 0. 5%以下とする。 Cuと Niは、夫々単独で含有させてもよいが、 Cuと Niを併用することにより上記効果が発現されやすい。
[0044] [ (c)W : 0. 01〜; !%]
Wは、薄鋼板の強度上昇に有効に作用する元素である。また、 Wを含む析出物は 水素トラップサイトとして作用するため、耐水素脆化特性も向上させる。こうした効果を 有効に発揮させるには、 Wは 0. 01 %以上、好ましくは 0. 1 %以上、より好ましくは 0. 15%以上含有するのがよい。しかし過剰に含有すると、延性や加工性が低下する。 従って Wは 1 %以下とする。好ましくは 0. 8%以下、より好ましくは 0. 5%以下とする
[0045] [ (d) Ca : 0. 0005—0. 005%、 Mg : 0. 0005—0. 005%、および REM : 0. 000
5〜0· 005%よりなる群から選ばれる少なくとも 1種]
Ca、 Mg、 REM (希土類元素)は、薄鋼板の表面が腐食して界面雰囲気の水素ィ オン濃度が上昇するのを抑制し(即ち、 pHの低下を抑制し)、薄鋼板の耐食性を高 めるのに作用する元素である。また、薄鋼板中の硫化物の形態を制御して加工性を 高めるのにも作用する。こうした効果を有効に発揮させるには、 Ca、 Mg、 REMのい ずれの場合も 0. 0005%以上、好ましくは 0. 001 %以上含有させることが好ましい。 しかし過剰に含有すると加工性が劣化するため、 Ca、 Mg、 REMのいずれの場合も 0. 005%以下、好ましくは 0. 004%以下に抑えるのがよい。
[0046] 上記成分組成を満足する本発明の冷延用熱延鋼板は、焼入れ性向上元素をバラ ンスよく含有しているため、該熱延鋼板の組織は、フェライトとパーライトを主体とした 組織となる。その結果、熱延強度が 900MPa以下に抑えられ、良好な冷延性を得る こと力 Sできる。その一方で、冷延後に後述する熱処理を施すことで、 Bの焼入れ性が 発揮され、引張強度が 980MPa以上の薄鋼板が得られる。
[0047] 本発明の薄鋼板は、全組織に対する面積率で、 (i)ペイユティックフェライト (BF)お よびマルテンサイト(M)が合計で 80%以上で、(ii)残留オーステナイト (残留 γ )が 1 %以上であると共に、(iii)上記残留オーステナイト結晶粒の平均軸比(長軸/短軸) 力 以上である。以下、本発明で各組織を規定した理由について詳述する。
[0048] (i)本発明では、上述した通り、薄鋼板の組織をべィニティックフェライトとマルテン サイトの二相組織(以下、 BF— M組織ということがある)とする。特に、べィニティック フェライトが主体の二相組織とする。 BF— M組織は硬質で、高強度が得られ易い。ま た、 BF— M組織は、母相の転位密度が高ぐこの転位上に水素が多数トラップされ る結果、例えば、ポリゴナルフェライトを母相とするような TRIP鋼に比べて多量の水 素を吸蔵できるという利点がある。更に、ラス状のべィニティックフェライトの境界に、 本発明で規定するラス状の残留オーステナイトが生成し易ぐ非常に優れた伸びが [0049] この様な作用を有効に発揮させるには、全組織に対する面積率で、べィニティック フェライトとマルテンサイトを合計で 80%以上、好ましくは 85%以上、より好ましくは 9 0%以上とする。べィニティックフェライトとマルテンサイトの上限は、他の組織 (例えば 、残留オーステナイト)とのバランスによって決定され、後述する残留オーステナイト以 外の組織 (例えば、フェライト等)を含有しない場合は、その上限が 99%に制御される
[0050] 本発明でいうべィニティックフェライトとは、板状のフェライトであって、転位密度が高 い下部組織を意味している。なお、べィニティックフェライトと、転位がないか、または 極めて少ない下部組織を有するポリゴナルフェライトとは、 SEM観察によって明瞭に 区別される。即ち、べィニティックフェライトは、 SEM写真では濃灰色を示す力 ポリ ゴナルフェライトは、 SEM写真では黒色で塊状に写る。
[0051] BF— M組織の面積率は次の様にして求める。即ち、薄鋼板をナイタールで腐食し 、板厚の 1/4の位置で圧延面と平行な面における任意の測定領域(約 50 X 50 m 、測定間隔は 0· l ^u m)を、 EBSP (Electron Back Scatter diffraction Patt em)検出器を備えた高分解能型 FE— SEM (Field Emission type Scanning Electron Microscope ; Philips社製、 XL30S— FEG)で観察することにより算出 される。
[0052] SEM写真では、 BF— M組織と残留オーステナイトとを分離区別できない場合もあ る力 上記方法によれば、 SEM観察した領域をその場で同時に、 EBSP検出器によ つて解析することができ、 BF— M組織と残留オーステナイトとを分離区別できるという メリットがある。観察倍率は、 1500倍とすればよい。
[0053] ここで EBSP法について簡単に説明すると、 EBSPは、試料表面に電子線を入射さ せ、このときに発生する反射電子から得られた菊池パターンを解析することにより、電 子線入射位置の結晶方位を決定するものであり、電子線を試料表面に 2次元で走査 させ、所定のピッチごとに結晶方位を測定すれば、試料表面の方位分布を測定でき る。この EBSP観察によれば、通常の顕微鏡観察では同一と判断される組織であつ て、結晶方位差の異なる板厚方向の組織を、色調差によって識別できるという利点が ある。
[0054] (ii)残留オーステナイトは、全伸びの向上に有用であるのみならず、耐水素脆化特 性の向上にも大きく寄与する。本発明の薄鋼板では、残留オーステナイトを 1 %以上 存在させる。好ましくは 3%以上、より好ましくは 5%以上である。但し、残留オーステ ナイトが多量に存在すると、所望の高強度を確保できなくなるため、その上限を 15% (より好ましくは 10%)とすることが推奨される。
[0055] (iii)残留オーステナイトをラス状とすれば、水素トラップ能力が炭化物よりも圧倒的 に大きくなり、特にその形状が平均軸比(長軸/短軸)で 5以上の場合に、いわゆる 大気腐食で侵入する水素を実質無害化して、耐水素脆化特性を顕著に向上できる。 残留オーステナイトの平均軸比は、好ましくは 10以上、更に好ましくは 15以上である 。一方、上記平均軸比の上限は、耐水素脆化特性を高める観点から特に規定されな いが、 TRIP効果を有効に発揮させるには残留オーステナイトの厚さが或る程度必要 であり、この点を考慮すれば、その上限を 30とするのが好ましぐより好ましくは 20以 下である。
[0056] 残留オーステナイトは、上述した EBSP検出器を備えた高分解能型 FE— SEMを 用い、 fee相(面心立方格子)として観察される領域を意味する。 EBSPによる測定の 一具体例について説明する。測定対象は、上記べィニティックフェライトおよびマル テンサイトの観察を行なったのと同じ測定領域、即ち、板厚の 1/4の位置で圧延面 と平行な面における任意の測定領域(約 50 X 50 m、測定間隔は 0· l ^ m)とする 。但し、当該測定面まで研磨する際には、機械研磨による残留オーステナイトの変態 を防ぐため、電解研磨を行うのがよい。次に、 EBSP検出器を備えた高分解能型 FE — SEMを用い、 SEMの鏡筒内にセットした試料に電子線を照射する。スクリーン上 に投影される EBSP画像を高感度カメラ(Dage— MTI Inc.製、 VE— 1000— SIT )で撮影し、コンピューターに画像として取込む。そしてコンピューターで画像解析を 行い、既知の結晶系 [残留オーステナイトの場合は fee相(面心立方格子)]を用いた シミュレーションによるパターンとの比較によって決定した fee相をカラーマップする。 この様にしてマッピングされた領域の面積率を求め、これを残留オーステナイトの面 積率と定める。なお、本発明では、上記解析に係るハードウェア及びソフトとして、 Te xSEM Laboratories Inc.の OIM (Orientation Imaging Microscopy™) / ステムを用いた。
[0057] また残留オーステナイト結晶粒の平均軸比の測定は、 TEM (Transmission Elec tron Microscope)で、倍率 1. 5万倍で観察し、任意に選択した 3視野(1視野は、 8 m X 8 m)において、存在する残留オーステナイト結晶粒の長軸と短軸を測定 し軸比 (長軸/短軸)を求め、その平均値を算出して平均軸比とした。
[0058] 本発明の薄鋼板は、べィニティックフェライト、マルテンサイト、および残留オーステ ナイトの混合組織で構成されて!/、ても良レ、が、本発明の作用を損なわな!/、範囲で、 他の組織 (代表的には、フェライトやパーライト)を有していても良い。ここでいうフェラ イトとは、ポリゴナルフェライトを意味する。即ち、転位密度がないか、或いは転位が 極めて少な!/ヽフェライトを意味する。
[0059] フェライトやパーライトは、本発明の製造過程で必然的に残存し得る組織である。こ れらの組織は、少なければ少ない程好ましぐ本発明では 9%以下に抑えることが好 ましい。より好ましくは 5%未満、更に好ましくは 3%未満である。
[0060] 本発明の薄鋼板は、前述した成分組成を満足するスラブを熱間圧延して熱延鋼板 を得た後、冷間圧延して冷延鋼板を得て、次いでこの冷延鋼板を熱処理することで 製造できる。
[0061] 冷延性に優れた熱延鋼板を得るには、熱延工程において、巻き取り温度を 550〜
800°Cとする。これにより熱延鋼板の組織は、フェライトとパーライトを主体とした組織 となり、熱延鋼板の強度が 900MPa以下に抑えられ、冷延し易くなる。巻き取り温度 力 S550°C未満では、ベイナイトやマルテンサイトなどの硬質相が生成し、強度が高く なり、冷延性を改善できない。従って巻き取り温度は 550°C以上、好ましくは 600°C 以上である。なお、巻き取り温度の上限は特に限定されないが、設備の制約上 800 °Cとする。巻き取り温度は好ましくは 750°C以下、より好ましくは 700°C以下とする。
[0062] 巻き取る前の熱間圧延条件については、巻き取り温度を上記範囲に調整できれば 特に限定されず、例えば、铸造して得られたスラブを、铸造まま、或いは 1150〜130 0°C程度に加熱し、仕上げ温度を 850〜950°Cとして熱間圧延し、次いで上記巻き 取り温度まで 0. ;!〜 1000°C/秒の冷却速度で冷却すればよい。 [0063] 本発明によれば、成分組成を調整したスラブを熱延し、これを所定の温度で巻き取 つているため、熱延鋼板の強度を 900MPa以下に抑えることができる。そのため本発 明の熱延鋼板は、熱間圧延後、焼戻し (調質処理)することなく冷間圧延できる非調 質材として有用であり、生産性を向上させることができる。
[0064] 熱間圧延後の冷間圧延条件は、特に限定されず、常法に従って熱延鋼板を冷延 すればよい。冷延率は;!〜 70%とすることが推奨される。冷延率 70%を超える冷間 圧延は、圧延荷重が増大して圧延が困難となるからである。
[0065] 冷間圧延後の熱処理条件は、前述した成分組成を満足する冷延鋼板を A 点〜(
A 点 + 50°C)の温度 (T1)で 10〜; 1800秒間(tl)保持後、 3°C/秒以上の平均冷 却速度で(Ms点 100°C)〜Bs点の温度(T2)まで冷却し、該温度域で 60〜; 1800 秒間 (t2)保持することが推奨される。
[0066] 上記 T1が(A 点 + 50°C)の温度を超える力、、 tlが 1800秒を超えると、オーステナ イトの粒成長を招き、加工性 (伸びフランジ性)が悪化するので好ましくない。従って t 1は 1800秒以下、好ましくは 600秒以下、より好ましくは 400秒以下である。
[0067] 一方、上記 T1が A 点の温度より低くなると、所定のべィニティックフェライトおよび マルテンサイト組織が得られない。また、上記 tlが 10秒未満では、オーステナイト化 が充分行われず、 Feの炭化物(セメンタイト)やその他の合金の炭化物が残存してし まうので好ましくない。従って tlは 10秒以上、好ましくは 30秒以上、より好ましくは 60 秒以上である。
[0068] A 点は、「レスリー鉄鋼材料学」の 273頁に記載されている次に示す計算式から算 出できる。
A = 910— 203 X [C]0 5— 15. 2 X [Ni] +44. 7 X [Si] + 104 X [V] + 31. 5 X [
Mo] + 13. I X [W] - 30 X [Mn] - l l X [Cr] - 20 X [Cu] + 700 X [P] +400 X [A1] +400 X [Ti]
[0069] 次いで上記冷延鋼板を 3°C/秒以上の平均冷却速度で冷却することで、パーライト 変態領域を避けてパーライト組織の生成を防止できる。この平均冷却速度は大きレ、 程よぐ好ましくは 5°C/秒以上、より好ましくは 10°C/秒以上とすることが推奨される
〇 [0070] 冷却到達温度は、(Ms点— 100°C)〜Bs点の温度(T2)とし、この温度域で 60〜1 800秒間(t2)保持して恒温変態させることで所定の組織にできる。 T2 (保持温度)が Bs点の温度を超えると、本発明にとって好ましくないパーライトが多量に生成し、べィ 二ティックフェライトおよびマルテンサイト組織を充分に確保できない。一方、 T2が( Ms点 100°C)の温度を下回ると残留オーステナイトが減少するので好ましくない。
[0071] Ms点は、次に示す計算式から算出できる。
Ms = 561-474X [C]-33X [Mn]-17X [Ni]-17X [Cr]-21X [Mo]
[0072] Bs点は次に示す計算式から算出できる。
Bs = 830-270X [C]-90X [Mn]-37X [Ni]-70X [Cr]-83X [Mo]
[0073] また、 t2 (保持時間)が 1800秒を超えるとべィニティックフェライトの転位密度が小さ くなり水素のトラップ量が少なくなる他、所定の残留オーステナイトが得られない。従 つて上記 t2は 1800秒以下、好ましくは 1200秒以下、より好ましくは 600秒以下とす
[0074] 一方、上記 t2が 60秒未満でも、所定のべィニティックフェライトおよびマルテンサイ ト組織が得られない。従って上記 t2は好ましくは 60秒以上、好ましくは 90秒以上、よ り好ましくは 120秒以上とする。
[0075] 保持後の冷却方法につ!/、ては特に限定されず、空冷、急冷、気水冷却等を行なう こと力 Sでさる。
[0076] 実操業を考慮すると、上記熱処理 (焼鈍処理)は、連続焼鈍設備またはバッチ式焼 鈍設備を用いて行うのが簡便である。また冷延鋼板にメツキを施して溶融亜鉛メツキ とする場合には、メツキ条件が上記熱処理条件を満足するように設定し、該メッキエ 程で上記熱処理を兼ねて行ってもよ!/、。
[0077] 本発明は、板厚が 5mm以下の薄鋼板を対象とするものである力 S、製品形態は特に 限定されず、熱間圧延、冷間圧延、および熱処理 (焼鈍処理)を経て得られた薄鋼板 について、化成処理を施したり、溶融メツキ、電気メツキ、蒸着等によるメツキや、各種 塗装、塗装下地処理、有機皮膜処理等を施してもよい。
[0078] 上記メツキの種類としては、一般的な亜鉛メツキ、アルミメツキ等のいずれでもかまわ ない。またメツキの方法は、溶融メツキと電気メツキのいずれでもよぐ更にメツキ後に 合金化熱処理を施してもよぐ複層メツキを施してもよい。また、非メツキ鋼板上ゃメッ キ鋼板上にフィルムラミネート処理を施してもょレ、。
[0079] 上記塗装を行なう場合は、各種用途に応じてリン酸塩処理などの化成処理を施し たり、電着塗装を施してもよい。塗料は公知の樹脂が使用可能であり、例えば、ェポ キシ樹脂、フッ素含有樹脂、シリコンアクリル樹脂、ポリウレタン樹脂、アクリル樹脂、 ポリエステル樹脂、フエノール樹脂、アルキッド樹脂、メラミン樹脂などを公知の硬化 剤と共に使用することが可能である。特に耐食性の観点からはエポキシ樹脂、フッ素 含有樹脂、シリコンアクリル樹脂の使用が推奨される。その他、塗料に添加される公 知の添加剤、例えば着色用顔料、カップリング剤、レべリング剤、増感剤、酸化防止 剤、紫外線安定剤、難燃剤などを添加してもよい。
[0080] また塗料の形態も特に限定されず、溶剤系塗料、粉体塗料、水系塗料、水分散型 塗料、電着塗料など用途に応じて適宜選択することができる。上記塗料を用い、所望 の被覆層を鋼材に形成させるには、デイツビング法、ロールコーター法、スプレー法、 カーテンフローコーター法などの公知の方法を用いればよい。被覆層の厚みは用途 に応じて公知の適切な値を採用すればよ!/、。
[0081] 本発明の薄鋼板は強度が高いため、例えば、バンパーやドアインパクトビーム、ビラ 一、レインフォース、メンバー等の自動車の補強部材等の自動車用強度部品の他、 シートレール等の室内部品等にも適用できる。この様に形成加工して得られる部品 にお!/、ても、十分な材質特性(強度)を有しかつ優れた耐水素脆化特性を発揮する。 実施例
[0082] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に よって制限を受けるものではなく、前 ·後記の趣旨に適合し得る範囲で適当に変更を 加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる
[0083] 表 1または表 2に示した成分組成 (残部は、鉄および不可避不純物)の供試鋼 (鋼 種 A〜Uと鋼種 a〜r)を真空溶製し、実験用スラブとした後、板厚 3. 2mmの熱延鋼 板を得てから酸洗により表面スケールを除去し、その後 1. 2mm厚となるまで冷間圧 延し、連続焼鈍した。熱延工程、冷延工程、焼鈍工程の条件は次の通りである。なお 、下記表 1と表 2に、成分組成から上記の式を用いて A 点の温度、 Bs点の温度、 Ms 点の温度を夫々算出して示す。また、表 1と表 2に示した成分組成から上記(1)式を 用いて算出した Z値を下記表 3と表 4に示す。
[0084] 熱延工程は、上記実験用スラブを、 1250°Cで 30分間保持した後、仕上げ温度(F DT)が 850°Cとなるように熱間圧延し、巻き取り温度(500 650°C)まで平均冷却速 度 40°C/秒で冷却した。次いで、この巻き取り温度で 30分間保持した後、室温まで 放冷して熱延鋼板を得た。
[0085] 得られた熱延鋼板を、冷延率 50%で冷間圧延し (冷延工程)、次!/、で、連続焼鈍し た (焼鈍工程)。連続焼鈍は、温度 T1 (°C)で 120秒間 (tl)保持した後、平均冷却速 度 20°C/秒で表 3または表 4に示した温度 T2 (°C)まで急速冷却(空冷)し、この温 度 T2 (°C)で 240秒間 (t2)保持して行なった。温度 T2で保持後は、室温まで気水冷 却して薄鋼板を得た。
[0086] このようにして得られた熱延鋼板の引張強度 (TS)と冷延性、薄鋼板の引張強度、 薄鋼板の金属組織、および薄鋼板の耐水素脆化特性を下記要領で夫々調べた。
[0087] 延鋼板の弓 I張強度 (TS)と冷延性]
熱延鋼板の引張強度 (TS)は、試験片として JIS5号試験片を用い、引張試験して 測定した。尚、引張試験の歪速度は lmm/秒とした。熱延鋼板の引張強度が 900 MPa以下である場合を冷延性に優れると評価し、下記表 3と表 4では〇で示した。一 方、 900MPaを超える場合を冷延性に劣ると評価し、下記表 3と表 4では Xで示した
[0088] [薄鋼板の弓 I張強度 (TS) ]
薄鋼板の引張強度 (TS)も、試験片として JIS5号試験片を用い、引張試験して測 定した。引張試験の歪速度も lmm/秒とした。薄鋼板の引張強度が 980MPa以上 である場合を高強度 (合格)と評価し、 980MPa未満を強度不足(不合格)と評価した
[0089] [薄鋼板の金属組織]
薄鋼板の板厚 1/4の位置で圧延面と平行な面における任意の測定領域 (約 50 ιη Χ δΟ , ΐη,測定間隔は 0· 1 m)を対象に観察.撮影し、べィニティックフェライト( BF)およびマルテンサイト(M)の面積率、残留オーステナイト(残留 Ί )の面積率を 前述した方法に従って測定した。任意に選択した上記サイズの 2視野にお!/、て同様 に測定し、平均値を求めた。
[0090] その他の組織 (フェライトやパーライト等)の面積率は、全組織(100%)から上記組 織 (BF + M +残留 γ )の占める面積率を差し引いて求めた。
[0091] 残留オーステナイト結晶粒の平均軸比は、前述の方法に従って測定し、平均軸比 力 以上のものを本発明の要件を満たす(〇)とし、平均軸比が 5未満のものを本発 明の要件を満たさなレ、( X )と評価した。
[0092] [薄鋼板の耐水素脆化特性]
耐水素脆化特性を測定するに当たり、各薄鋼板から 150mm X 30mmの短冊試験 片を切り出して試験片とした。即ち、図 1の(a)に示すように、切り出した短冊試験片 にボルトを通す穴(φ 12mm)を 2つ空け、図 1の(b)に示すように、曲げ部の Rが 15 mmとなるように曲げ加工を施した後、前記穴にボルト 1を通して締め付け、曲げ部に lOOOMPaの応力を負荷したものを試験片として用いた。なお、曲げ部の応力は、曲 げ加工を施した試験片をボルト 1で締め付ける前に曲げ部に歪ゲージ 2を貼り付けた 後、該曲げ部に負荷される応力が lOOOMPaになるまでボルト 1を締め込むことによ つて調整した。この試験片を 5%塩酸水溶液中に浸漬して割れ発生までの時間を測 定した。割れ発生までの時間が 24時間以上の薄鋼板を耐水素脆化特性に優れると 評価し、 24時間未満の薄鋼板を耐水素脆化特性に劣ると評価した。
[0093] 以上の結果を表 3と表 4に併記する。
[0094] [表 1]
Figure imgf000021_0001
2]
Figure imgf000022_0001
3]
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000024_0001
表 3と表 4から次の様に考察できる。本発明で規定する要件を満たす No. 1 , 2, 4, , 7, 9—11 , 14, 16, 17, 19—26, 35—37, 39, 40ίま、熱延ま岡板の引張虽度カ 00MPa以下で、冷延性に優れているにもかかわらず、薄鋼板の引張強度は 980 MPa以上を確保でき、しかも過酷な環境下での耐水素脆化特性にも優れて!/、る。
[0099] これ ίこ対し、 No. 3, 6, 8, 12, 13, 15, 18, 27—34, 38, 41 (ま、 可れも本発明で 規定する要件を満足してレ、なレ、。
[0100] No. 3, 6, 8は、 Mo量が過剰な例であり、熱延鋼板の強度が高くなつて冷延性を 改善できていない。 No. 12は、 B量が過剰な例であり、粒界に硼炭化物が析出し、 粒界脆化を生じることによって、耐水素脆化特性が劣化している。 No. 13は、 C量が 過剰な例であり、熱延鋼板の強度が高くなつて冷延性を改善できていない。また、薄 鋼板の強度が高なり過ぎて、耐水素脆化特性を充分に改善できてレ、なレ、。
[0101] No. 15は、 Si量が不足している例であり、残留オーステナイトがほとんど存在して いないため、耐水素脆化特性に劣っている。 No. 18は、 Mn量が過剰な例であり、 熱延鋼板の強度が高くなつて冷延性を改善できていない。また、偏析が顕著となって 耐水素脆化特性が劣化している。 No. 27〜33は、 Mo量が過剰で、し力、も Bを含有 しな!/、例であり、熱延鋼板の強度が高くなつて冷延性を改善できて!/、な!/、。
[0102] No. 34は、温度 T1が低いため、(α + γ )の二相域での焼鈍となり、フェライトが多 く生成した。また、残留オーステナイト結晶粒の平均軸比が本発明で規定する範囲を 満足していない。 No. 38は、 Z値が本発明で規定する範囲より小さくなつているため 、薄鋼板としての強度を確保できていない。 No. 41は、巻き取り温度が低いため、ベ イナイトやマルテンサイトなどの硬質相が生成し、熱延鋼板の強度が高くなつて冷延 性を改善できていない。
産業上の利用可能性
[0103] 本発明で得られる高強度薄鋼板は、優れた耐水素脆化特性を示すため、 980MP a以上の引張強度が求められる高強度部品(例えばバンパー、インパクトビーム等の 補強材ゃシートレール、ピラー、レインフォース、メンバー等の自動車部品)の素材と して好適に用いることができる。

Claims

請求の範囲
質量%で、
C :0.10—0.25%、
Si:0.5—3%,
Μη:1.0〜3· 2%、
Ρ :0.1%以下、
S :0.05%以下、
A1:0.01—0.1%、
Mo:0.02%以下、
Ti:0.005—0. 1%、
B :0.0002—0.0030%、
N :0.01%以下を満足し、
残部が鉄および不可避不純物からなる薄鋼板であり、
該薄鋼板は、下記(1)式で算出される Z値が 2.0〜6.0で、
全組織に対する面積率で、
残留オーステナイトが 1%以上、
べィニティックフェライトおよびマルテンサイトが合計で 80%以上であると共に、 上記残留オーステナイト結晶粒の平均軸比 (長軸/短軸)が 5以上であり、引張強度 が 980MPa以上であることを特徴とする高強度薄鋼板。
Z値 =9X [C] + [Mn] + 3X [Mo]+490X [B] + 7X [Mo]/{100X ([B]+0. 001)} …ひ)
[式中、 [ ]は、薄鋼板中に含まれる各元素の含有量 (質量%)を示している。 ] 質量%で、
C :0.10—0.25%、
Si:0.5—3%,
Μη:1.0〜3· 2%、
Ρ :0.1%以下、
S :0.05%以下、 A1:0.01—0.1%、
Mo:0.02%以下、
Ti:0.005—0. 1%、
B :0.0002—0.0030%、
N :0.01%以下を満足し、
残部が鉄および不可避不純物からなる冷延用熱延鋼板であり、
該熱延鋼板は、下記(1)式で算出される Z値が 2.0〜6.0で、引張強度が 900MPa 以下であることを特徴とする冷延用熱延鋼板。
Z値 =9X [C] + [Mn] + 3X [Mo]+490X [B] + 7X [Mo]/{100X ([B]+0. 001)} …ひ)
[式中、 [ ]は、熱延鋼板中に含まれる各元素の含有量 (質量%)を示している。 ] 更に、他の元素として、
Nb:0.005—0. 1%、
V :0.01—0.5%、および
Cr:0.01-0.5%よりなる群から選ばれる少なくとも 1種を含有する請求項 1に記載 の鋼板。
更に、他の元素として、
Cu:0.01〜; 1%と
Ni:0.01〜1%の少なくとも一方を含有する請求項 1に記載の鋼板。
更に、他の元素として、
W:0.01〜; 1%を含有する請求項 1に記載の鋼板。
更に、他の元素として、
Ca :0.0005—0.005%、
Mg :0.0005—0.005%、および
REM:0.0005-0.005%よりなる群から選ばれる少なくとも 1種を含有する請求項 1に記載の鋼板。
更に、他の元素として、
Nb:0.005—0. 1%、 V :0.01—0.5%、および
Cr:0.01-0.5%よりなる群から選ばれる少なくとも 1種を含有する請求項 2に記載 の冷延用熱延鋼板。
[8] 更に、他の元素として、
Cu:0.01〜; 1%と
Ni:0.01〜1%の少なくとも一方を含有する請求項 2に記載の冷延用熱延鋼板。
[9] 更に、他の元素として、
W:0.01〜; 1%を含有する請求項 2に記載の冷延用熱延鋼板。
[10] 更に、他の元素として、
Ca :0.0005—0.005%、
Mg :0.0005—0.005%、および
REM:0.0005-0.005%よりなる群から選ばれる少なくとも 1種を含有する請求項 2に記載の冷延用熱延鋼板。
[11] 請求項 2に記載の成分組成を満足するスラブを熱間圧延し、 550〜800°Cで巻き取 ることを特徴とする冷延用熱延鋼板の製造方法。
PCT/JP2007/073791 2006-12-11 2007-12-10 高強度薄鋼板 WO2008072600A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/513,514 US8673093B2 (en) 2006-12-11 2007-12-10 High-strength thin steel sheet
EP07850359A EP2105514A4 (en) 2006-12-11 2007-12-10 HIGH STRENGTH STEEL PLATE
KR1020097011996A KR101126827B1 (ko) 2006-12-11 2007-12-10 고강도 박강판
CN2007800431956A CN101541992B (zh) 2006-12-11 2007-12-10 高强度薄钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-333797 2006-12-11
JP2006333797 2006-12-11

Publications (1)

Publication Number Publication Date
WO2008072600A1 true WO2008072600A1 (ja) 2008-06-19

Family

ID=39511621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073791 WO2008072600A1 (ja) 2006-12-11 2007-12-10 高強度薄鋼板

Country Status (6)

Country Link
US (1) US8673093B2 (ja)
EP (1) EP2105514A4 (ja)
JP (1) JP4164537B2 (ja)
KR (1) KR101126827B1 (ja)
CN (1) CN101541992B (ja)
WO (1) WO2008072600A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851732A (zh) * 2009-03-31 2010-10-06 株式会社神户制钢所 弯曲加工性优异的高强度冷轧钢板

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394709B2 (ja) 2008-11-28 2014-01-22 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた超高強度鋼板
JP5473359B2 (ja) * 2009-03-04 2014-04-16 株式会社キトー 高強度リンクチェーンの製造方法
JP5412182B2 (ja) * 2009-05-29 2014-02-12 株式会社神戸製鋼所 耐水素脆化特性に優れた高強度鋼板
JP5703608B2 (ja) * 2009-07-30 2015-04-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5333298B2 (ja) * 2010-03-09 2013-11-06 Jfeスチール株式会社 高強度鋼板の製造方法
JP5671359B2 (ja) 2010-03-24 2015-02-18 株式会社神戸製鋼所 温間加工性に優れた高強度鋼板
JP5771034B2 (ja) 2010-03-29 2015-08-26 株式会社神戸製鋼所 加工性に優れた超高強度鋼板、およびその製造方法
JP5671391B2 (ja) * 2010-03-31 2015-02-18 株式会社神戸製鋼所 加工性および耐遅れ破壊性に優れた超高強度鋼板
JP4893844B2 (ja) * 2010-04-16 2012-03-07 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101220619B1 (ko) 2010-11-09 2013-01-10 주식회사 포스코 초고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
JP5662902B2 (ja) 2010-11-18 2015-02-04 株式会社神戸製鋼所 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品
KR101228753B1 (ko) * 2010-12-07 2013-01-31 주식회사 포스코 형상 품질이 우수한 초고강도 냉연강판 및 그 제조방법
JP5321605B2 (ja) * 2011-01-27 2013-10-23 Jfeスチール株式会社 延性に優れる高強度冷延鋼板およびその製造方法
JP5667472B2 (ja) 2011-03-02 2015-02-12 株式会社神戸製鋼所 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
CN102719733B (zh) * 2011-03-29 2014-06-04 鞍钢股份有限公司 一种高镍钢的制造方法
JP5704721B2 (ja) * 2011-08-10 2015-04-22 株式会社神戸製鋼所 シーム溶接性に優れた高強度鋼板
JP5636347B2 (ja) 2011-08-17 2014-12-03 株式会社神戸製鋼所 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法
JP5860308B2 (ja) * 2012-02-29 2016-02-16 株式会社神戸製鋼所 温間成形性に優れた高強度鋼板およびその製造方法
JP5348268B2 (ja) * 2012-03-07 2013-11-20 Jfeスチール株式会社 成形性に優れる高強度冷延鋼板およびその製造方法
WO2013160938A1 (ja) * 2012-04-24 2013-10-31 Jfeスチール株式会社 延性に優れる高強度冷延鋼板およびその製造方法
JP5860354B2 (ja) * 2012-07-12 2016-02-16 株式会社神戸製鋼所 降伏強度と成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP2690184B1 (de) * 2012-07-27 2020-09-02 ThyssenKrupp Steel Europe AG Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
US9920391B2 (en) 2013-02-11 2018-03-20 Tata Steel Ijmuiden B.V. High-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet
KR101428375B1 (ko) * 2013-03-28 2014-08-13 주식회사 포스코 표면품질이 우수한 초고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
ES2636780T3 (es) 2013-08-22 2017-10-09 Thyssenkrupp Steel Europe Ag Procedimiento para la fabricación de un componente de acero
JP5783229B2 (ja) 2013-11-28 2015-09-24 Jfeスチール株式会社 熱延鋼板およびその製造方法
JP6295893B2 (ja) * 2014-08-29 2018-03-20 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法
JP2017155329A (ja) * 2016-02-29 2017-09-07 株式会社神戸製鋼所 焼入れ用鋼板及びその製造方法
WO2017149999A1 (ja) * 2016-02-29 2017-09-08 株式会社神戸製鋼所 焼入れ用鋼板、焼入れ部材、及び焼入れ用鋼板の製造方法
JP6749818B2 (ja) * 2016-02-29 2020-09-02 株式会社神戸製鋼所 高強度鋼板およびその製造方法
CN105970087A (zh) * 2016-07-06 2016-09-28 安徽红桥金属制造有限公司 一种高强度钢制汽车五金冲压件及其制备工艺
CN107201482B (zh) * 2017-04-19 2019-01-25 马鞍山市鑫龙特钢有限公司 一种风电用齿轮钢及其制备方法
CN107916369A (zh) * 2017-11-08 2018-04-17 河钢股份有限公司 一种q590级高强韧性热轧钢带及其制备方法
KR20220139983A (ko) * 2020-03-25 2022-10-17 제이에프이 스틸 가부시키가이샤 고강도 열연 강판 및 그의 제조 방법
CN115362275B (zh) * 2020-03-31 2024-03-01 杰富意钢铁株式会社 钢板、部件及其制造方法
CN114293098A (zh) * 2021-11-30 2022-04-08 南京钢铁股份有限公司 一种适用于大规格锻件的高强韧贝氏体型非调质钢

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193193A (ja) * 2001-12-27 2003-07-09 Nippon Steel Corp 溶接性、穴拡げ性および延性に優れた高強度鋼板およびその製造方法
JP2005097725A (ja) * 2003-09-05 2005-04-14 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
JP2006207016A (ja) 2004-12-28 2006-08-10 Kobe Steel Ltd 耐水素脆化特性に優れた超高強度薄鋼板
JP2006207017A (ja) 2004-12-28 2006-08-10 Kobe Steel Ltd 耐水素脆化特性に優れた超高強度薄鋼板
JP2006207018A (ja) 2004-12-28 2006-08-10 Kobe Steel Ltd 耐水素脆化特性に優れた超高強度薄鋼板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172505B2 (ja) 1998-03-12 2001-06-04 株式会社神戸製鋼所 成形性に優れた高強度熱延鋼板
EP1589126B1 (en) * 2004-04-22 2009-03-25 Kabushiki Kaisha Kobe Seiko Sho High-strenght cold rolled steel sheet having excellent formability and plated steel sheet
EP1676932B1 (en) * 2004-12-28 2015-10-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength thin steel sheet having high hydrogen embrittlement resisting property
CA2531616A1 (en) * 2004-12-28 2006-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability
CN101351570B (zh) * 2005-12-28 2013-01-30 株式会社神户制钢所 超高强度薄钢板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193193A (ja) * 2001-12-27 2003-07-09 Nippon Steel Corp 溶接性、穴拡げ性および延性に優れた高強度鋼板およびその製造方法
JP2005097725A (ja) * 2003-09-05 2005-04-14 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
JP2006207016A (ja) 2004-12-28 2006-08-10 Kobe Steel Ltd 耐水素脆化特性に優れた超高強度薄鋼板
JP2006207017A (ja) 2004-12-28 2006-08-10 Kobe Steel Ltd 耐水素脆化特性に優れた超高強度薄鋼板
JP2006207018A (ja) 2004-12-28 2006-08-10 Kobe Steel Ltd 耐水素脆化特性に優れた超高強度薄鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2105514A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851732A (zh) * 2009-03-31 2010-10-06 株式会社神户制钢所 弯曲加工性优异的高强度冷轧钢板

Also Published As

Publication number Publication date
EP2105514A1 (en) 2009-09-30
CN101541992B (zh) 2011-08-31
KR101126827B1 (ko) 2012-03-23
KR20090089391A (ko) 2009-08-21
JP2008169475A (ja) 2008-07-24
JP4164537B2 (ja) 2008-10-15
US20100080728A1 (en) 2010-04-01
CN101541992A (zh) 2009-09-23
US8673093B2 (en) 2014-03-18
EP2105514A4 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4164537B2 (ja) 高強度薄鋼板
KR101748510B1 (ko) 베이킹 경화성과 저온 인성이 우수한 인장 최대 강도 980㎫ 이상의 고강도 열연 강판
KR101218530B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
US7887648B2 (en) Ultrahigh-strength thin steel sheet
JP5883211B2 (ja) 加工性に優れた高強度冷延鋼板およびその製造方法
JP4684002B2 (ja) 耐水素脆化特性に優れた超高強度薄鋼板
KR101604963B1 (ko) 가공성이 우수한 고강도 강판 및 그의 제조 방법
JP5503346B2 (ja) 耐水素脆性に優れた超高強度薄鋼板
EP2447390A1 (en) High-strength molten zinc-plated steel sheet and process for production thereof
JP2009203549A (ja) 高強度鋼板とその製造方法
JP5025211B2 (ja) 打抜き加工用の超高強度薄鋼板
KR20060076741A (ko) 내수소취화 특성 및 가공성이 우수한 초고강도 박강판
JP5192991B2 (ja) 高強度合金化溶融亜鉛めっき鋼板の製造方法および高強度合金化溶融亜鉛めっき鋼板
JP4868771B2 (ja) 耐水素脆化特性に優れた超高強度薄鋼板
JP4553372B2 (ja) 耐水素脆化特性に優れた超高強度薄鋼板
WO2017154401A1 (ja) 高強度鋼板およびその製造方法
JP4551815B2 (ja) 耐水素脆化特性及び加工性に優れた超高強度薄鋼板
JP4684003B2 (ja) 耐水素脆化特性及び加工性に優れた超高強度薄鋼板
EP4123046B1 (en) Steel sheet
JP7006849B1 (ja) 鋼板、部材及びそれらの製造方法
JP7020594B2 (ja) 鋼板、部材及びそれらの製造方法
JP4551816B2 (ja) 耐水素脆化特性及び加工性に優れた超高強度薄鋼板
JP7006848B1 (ja) 鋼板、部材及びそれらの製造方法
WO2021054290A1 (ja) 高強度鋼板およびその製造方法
EP4269643A1 (en) Cold-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043195.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12513514

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097011996

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007850359

Country of ref document: EP