WO2021054290A1 - 高強度鋼板およびその製造方法 - Google Patents

高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2021054290A1
WO2021054290A1 PCT/JP2020/034736 JP2020034736W WO2021054290A1 WO 2021054290 A1 WO2021054290 A1 WO 2021054290A1 JP 2020034736 W JP2020034736 W JP 2020034736W WO 2021054290 A1 WO2021054290 A1 WO 2021054290A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
steel sheet
area
strength steel
Prior art date
Application number
PCT/JP2020/034736
Other languages
English (en)
French (fr)
Inventor
忠夫 村田
宗朗 池田
村上 俊夫
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US17/760,969 priority Critical patent/US11913088B2/en
Priority to MX2022003162A priority patent/MX2022003162A/es
Priority to KR1020227009046A priority patent/KR20220047846A/ko
Priority to CN202080064385.1A priority patent/CN114375343B/zh
Priority to EP20865435.0A priority patent/EP4012056A4/en
Publication of WO2021054290A1 publication Critical patent/WO2021054290A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet applied to various uses including automobile parts.
  • Steel sheets used for automobile parts, etc. are required to have improved strength in order to ensure collision safety to protect passengers and to reduce the weight of the vehicle body to improve fuel efficiency to reduce the environmental load. ing.
  • Mechanical properties that have a large effect on collision safety include, for example, tensile strength and yield strength.
  • Patent Documents 1 and 2 technologies related to improvement of collision safety or improvement of moldability have been proposed as different technologies.
  • Patent Documents 1 and 2 technologies related to improvement of collision safety or improvement of moldability have been proposed as different technologies.
  • high strength of the steel sheet for example, improvement of tensile strength
  • formability for example, ductility and hole expandability
  • the present inventors From the viewpoint of protecting passengers in the event of a car collision, it is important to prevent contact between the vehicle body deformed by the collision and the passengers.
  • the present inventors have considered that it is possible to reduce the amount of deformation of parts and suppress contact between the vehicle body and passengers at the time of a collision by increasing the load at the initial stage of deformation at the time of a collision (load required for the initial deformation). .. Based on this idea, the present inventors have examined high-strength steel sheets that require a high load for initial deformation in addition to formability in various applications such as automobile parts from various angles.
  • Specific examples of the required characteristics of the high-strength steel sheet having the above characteristics include the following requirements (1) to (5).
  • Tension strength TS tensile strength: 780 MPa or more
  • Yield ratio YR yield ratio expressed by the ratio (YS / TS) of yield strength YS (yield strength) to tensile strength TS: 0.70 or more
  • Tensile strength TS x total elongation EL elongation
  • Tensile strength TS x hole expansion rate ⁇ 40,000 MPa ⁇ % or more (5)
  • VDA German Automobile Manufacturers Association
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-strength steel sheet having a high level of required characteristics and excellent collision safety and formability. An object of the present invention is to provide a useful method for producing such a high-strength steel sheet.
  • the high-strength steel sheet according to one aspect of the present invention is By mass% C: 0.10 to 0.35%, Si + Al: 0.5-3.0%, Mn: 1.0-3.0%, P: more than 0% and 0.05% or less, and S: more than 0% and 0.01% or less, respectively, and the balance is iron and unavoidable impurities.
  • ferrite fraction 0 to 10%
  • MA fraction 0 to 30%
  • hard phase other than ferrite and MA 70 to 100%. It has a metallic structure with a retained austenite fraction: 5-30% by volume.
  • Each variable in the equation (1) represents the following.
  • n bcc structure and bct total area of an area 0.05 .mu.m 2 having the structure s: standard deviation of the area of the IQ area 0.05 .mu.m 2 x i: area i area 0.05 .mu.m 2 IQ x ave : Average IQ of a region with an area of 0.05 ⁇ m 2 having a bcc structure and a bct structure
  • a method for producing a high-strength steel sheet is also included, and this production method is described.
  • a steel material having a chemical composition as described above is heated, then hot-rolled, cooled and wound after the completion of the hot-rolling, and then pickled. ⁇
  • the cooling stop temperature T4 is heated to a reheating temperature T5 that satisfies the following requirements in a temperature range of 300 ° C. or higher and 500 ° C. or lower, and a time t5 of 350 seconds or more and 1800 seconds or less in the temperature range of the reheating temperature T5.
  • the process of holding and Reheating temperature T5 The difference between the cooling stop temperature T3a and the average temperature of the residence end point temperature T3b is 50 ° C. or less. Is included in this order.
  • FIG. 1 is a schematic view showing an example of a heat treatment pattern performed on the original plate.
  • the present inventors have diligently studied a structure that realizes a high-strength steel sheet that achieves both excellent collision safety and formability.
  • the crystal grains are aggregated in the region of 0.05 ⁇ m 2 area.
  • a high-strength steel plate that can achieve both excellent collision safety and formability can be obtained by appropriately defining the distribution state of IQ when analyzed by the EBSD method, and completed the present invention. ..
  • C is an element effective for obtaining a desired structure such as retained austenite and ensuring high properties such as (tensile strength TS ⁇ total elongation EL).
  • the amount of C needs to be 0.10% or more.
  • the amount of C is preferably 0.13% or more, more preferably 0.15% or more, still more preferably 0.18% or more.
  • MA Martensite-Austenite Constituent
  • retained austenite become coarse, and both the deep drawing property and the hole expanding property evaluated by the hole expanding rate ⁇ are lowered. To do. Further, if the amount of C is excessive, the weldability is also adversely affected. Therefore, the amount of C needs to be 0.35% or less, preferably 0.33% or less, and more preferably 0.30% or less.
  • Si + Al 0.5 to 3.0%
  • Si + Al is preferably 0.7% or more, more preferably 1.0% or more.
  • Si + Al is preferably 2.5% or less, more preferably 2.0% or less.
  • Al may be added in an amount sufficient to function as a deoxidizing element, that is, less than 0.1%.
  • Al may be contained in a large amount of 0.6% or more.
  • Mn is an element necessary for suppressing the formation of ferrite and securing tempered martensite, bainite, etc. other than ferrite.
  • the amount of Mn is set to 1.0% or more.
  • the amount of Mn is preferably 1.5% or more, more preferably 1.7% or more.
  • the amount of Mn needs to be 3.0% or less, preferably 2.7% or less, and more preferably 2.5% or less.
  • P More than 0% and less than 0.05%
  • P is an impurity that is inevitably mixed in. If the amount of P becomes excessive and exceeds 0.05%, the total elongation EL and the hole expansion rate ⁇ decrease. Therefore, the amount of P needs to be 0.05% or less.
  • the amount of P is preferably 0.03% or less. It is impossible to set the amount of P to 0% in industrial production, and it contains about 0.001% or more.
  • S More than 0% and less than 0.01%
  • S is an impurity that is inevitably mixed in.
  • the amount of S is preferably 0.005% or less. It is impossible to set the S amount to 0% in industrial production, and it contains about 0.0005% or more.
  • the chemical composition defined by the high-strength steel sheet of the present embodiment is as described above, and the balance is iron and unavoidable impurities other than the above P and S.
  • this unavoidable impurity it is permissible to mix elements brought in depending on the conditions of raw materials, materials, manufacturing equipment, etc., for example, trace elements such as As, Sb, Sn.
  • trace elements such as As, Sb, Sn.
  • the term "unavoidable impurities" constituting the balance means the concept excluding the elements whose composition range is separately defined.
  • N an impurity
  • the amount thereof is preferably as follows.
  • N is an impurity mixed in steel, and if the amount of N is excessive, coarse nitrides are formed to deteriorate bendability and hole expansion property, and blowholes are generated during welding. It may cause. Therefore, as with P and S, the smaller the amount of N, the more preferable, and the amount of N is preferably 0.01% or less. It should be noted that reducing the amount of N is costly, and if it is attempted to reduce it to less than 0.0005%, the cost will increase significantly. Therefore, the lower limit of the amount of N is preferably 0.0005% or more.
  • the high-strength steel plate of the present embodiment further includes (a) Ti: more than 0% and 0.2% or less, and Nb: more than 0% and 0.2. % Or less and V: at least one selected from the group consisting of more than 0% and less than 0.5%, (b) Ni: more than 0% and less than 2%, Cr: more than 0% and less than 2%, and Mo: more than 0%.
  • Ti at least one selected from the group consisting of more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: more than 0% and 0.5% or less]
  • Ti is an element that exerts the effects of precipitation strengthening and microstructure miniaturization, and contributes to the improvement of the strength of the steel sheet. Therefore, Ti may be contained. Such an effect increases as the content increases, but in order to effectively exert the effect, the Ti content is preferably 0.01% or more, more preferably 0.02% or more. However, if the amount of Ti exceeds 0.2% and becomes excessive, the carbonitride of Ti is excessively precipitated and the formability of the steel sheet is lowered. Therefore, the amount of Ti is preferably 0.2% or less, more preferably 0.10% or less, and further preferably 0.06% or less.
  • Nb is an element that exerts the effects of precipitation strengthening and microstructure miniaturization, and contributes to the improvement of the strength of the steel sheet. Therefore, Nb may be contained. Such an effect increases as the content increases, but in order to effectively exert the effect, the Nb amount is preferably 0.005% or more, more preferably 0.010% or more. However, if the amount of Nb exceeds 0.2% and becomes excessive, the carbonitride of Nb is excessively precipitated and the formability of the steel sheet is lowered. Therefore, the amount of Nb is preferably 0.2% or less, more preferably 0.10% or less, and further preferably 0.06% or less.
  • V is an element that exerts the effects of precipitation strengthening and microstructure miniaturization, and contributes to the improvement of the strength of the steel sheet. Therefore, V may be contained. Such an effect increases as the content increases, but in order to effectively exert the effect, the V amount is preferably 0.01% or more, more preferably 0.02% or more. However, if the amount of V exceeds 0.5% and becomes excessive, the carbonitride of V is excessively precipitated and the formability of the steel sheet is lowered. Therefore, the amount of V is preferably 0.125% or less, more preferably 0.30% or less, and further preferably 0.10% or less.
  • Ti, Nb and V may be contained alone, or may be contained in combination of 2 or 3 types.
  • Ni at least one selected from the group consisting of more than 0% and 2% or less, Cr: more than 0% and 2% or less, and Mo: more than 0% and 0.5% or less]
  • Ni is an element that contributes to increasing the strength of the steel sheet, stabilizes retained austenite, and secures a desired amount of retained austenite. Therefore, Ni may be contained. Such an effect increases as the content increases, but in order to effectively exert the effect, the Ni content is preferably 0.001% or more, more preferably 0.01% or more. However, if the amount of Ni exceeds 2% and becomes excessive, the manufacturability during hot rolling deteriorates. Therefore, the amount of Ni is preferably 2% or less, more preferably 1.0% or less.
  • Cr is an element that contributes to increasing the strength of the steel sheet, stabilizes retained austenite, and secures the desired amount of retained austenite. Therefore, Cr may be contained. Such an effect increases as the content increases, but in order to effectively exert the effect, the Cr content is preferably 0.001% or more, more preferably 0.01% or more. However, if the amount of Cr exceeds 2% and becomes excessive, the manufacturability during hot rolling deteriorates. Therefore, the amount of Cr is preferably 2% or less, more preferably 1.0% or less.
  • Mo is an element that contributes to increasing the strength of the steel sheet, stabilizes retained austenite, and secures the desired amount of retained austenite. Therefore, Mo may be contained. Such an effect increases as the content increases, but in order to effectively exert the effect, the Mo content is preferably 0.001% or more, more preferably 0.01% or more. However, if the amount of Mo exceeds 0.5% and becomes excessive, the manufacturability during hot rolling deteriorates. Therefore, the amount of Mo is preferably 0.5% or less, more preferably 0.20% or less.
  • Ni, Cr and Mo may be contained alone, or may be contained in combination of 2 or 3 types.
  • B More than 0% and less than 0.005%
  • B is an element effective for suppressing ferrite transformation by enhancing hardenability. Therefore, B may be contained. Such an effect increases as the content increases, but in order to effectively exert the effect, the B amount is preferably 0.0001% or more, more preferably 0.0010% or more. However, if the amount of B exceeds 0.005% and becomes excessive, the manufacturability of hot rolling may decrease. Therefore, the amount of B is preferably 0.005% or less, more preferably 0.0030% or less.
  • Mg At least one selected from the group consisting of more than 0% and 0.04% or less, REM: more than 0% and 0.04% or less, and Ca: more than 0% and 0.04% or less]
  • Mg, REM (rare earth element) and Ca form fine oxides or sulfides and suppress the deterioration of hole-spreading property due to coarse oxides or sulfides. Therefore, Mg, REM or Ca may be contained in any combination thereof. These effects increase as their content increases, but in order to obtain the effects sufficiently, the Mg amount, the REM amount, and the Ca amount are all preferably 0.0005% or more, more preferably 0.0005% or more. Is 0.0010% or more.
  • the amount of Mg, the amount of REM or the amount of Ca exceeds 0.04% and becomes excessive, the oxide or sulfide becomes coarse and the hole-expanding property deteriorates. Therefore, the amount of Mg, the amount of REM, and the amount of Ca are all preferably 0.04% or less, more preferably 0.010% or less.
  • REM contains a total of 17 types of lanthanoid series rare earth elements from La (atomic number 57) to Lu (atomic number 71), and the amount of REM is the total amount of these 17 types of elements. Means.
  • the following area ratio and volume ratio are ratios to the total metal structure, respectively.
  • MA fraction 0 to 30 area% by area ratio
  • MA is a complex of fresh martensite and retained austenite. Since MA contains retained austenite, increasing the amount of MA is effective in improving the workability indicated by the total elongation EL. However, since MA also contains very hard fresh martensite, the hole expansion rate ⁇ decreases as the MA fraction increases. Therefore, the MA fraction was set to 0 to 30 area% in terms of area ratio.
  • the lower limit of the MA fraction is preferably 3 area% or more, and more preferably 5 area% or more.
  • the upper limit of the MA fraction is preferably 25 area% or less, more preferably 20 area% or less.
  • the MA fraction can be determined by observing the night-game-etched steel sheet with SEM and measuring the gray part containing no carbide by the point calculation method.
  • the hard phase is an important structure for ensuring the desired tensile strength TS and yield ratio YR.
  • the high-strength steel plate of the present embodiment may contain, for example, bainitic ferrite, bainite, tempered martensite, fresh martensite, etc. as the hard phase.
  • the area ratio of the hard phase other than ferrite and MA was set to 70 to 100 area%.
  • the area ratio of the hard phase other than ferrite and MA is preferably 75 area% or more, more preferably 80 area% or more.
  • the area ratio of the hard phase other than ferrite and MA can be obtained as the area ratio of the portion excluding Ferrai and MA.
  • the retained austenite causes a TRIP (transformation induced plasticity) phenomenon that transforms into martensite in press working or the like, and a large total elongation EL can be obtained. Since the martensite formed has a high hardness, the tensile strength TS ⁇ total elongation EL (hereinafter, may be abbreviated as TS ⁇ EL) can be increased. Moreover, since the yield ratio of retained austenite is low, it is necessary to prevent excessive introduction of retained austenite in order to secure a desired high yield ratio. Therefore, the volume ratio of retained austenite was set to 5 to 30% by volume.
  • the retained austenite fraction is preferably 7% by volume or more, and 20% by volume or less.
  • the retained austenite fraction can be measured by, for example, X-ray diffraction.
  • a portion from the surface of the steel sheet to 1/4 of the thickness of the steel sheet can be removed by mechanical polishing and chemical polishing, and Co ⁇ K ⁇ rays can be used as characteristic X-rays.
  • Each variable in the equation (1) represents the following.
  • n bcc structure and bct total area of an area 0.05 .mu.m 2 having the structure s: standard deviation of the area of the IQ area 0.05 .mu.m 2 x i: area i area 0.05 .mu.m 2 IQ x ave : Average IQ of a region with an area of 0.05 ⁇ m 2 having a bcc structure and a bct structure
  • the above equation (1) is a parameter equation analyzed and defined based on the experimental results.
  • the metal structures having a bcc structure and a bct structure such as bainitic ferrite, bainite and tempered martensite are very similar, and it is difficult to unambiguously define them. Therefore, the IQ (Image Quality) of crystal grains having a bcc structure and a bct structure was analyzed using an EBSD (Electron Backscatter Diffractaction pattern) method, which is a crystal analysis method using SEM.
  • EBSD Electro Backscatter Diffractaction pattern
  • the IQ indicates the sharpness of the EBSD pattern, and it is generally known that it is affected by the amount of dislocations in the crystal. Specifically, the smaller the IQ, the more dislocations tend to be present in the crystal.
  • the IQ is not the IQ of each measurement point, but the region surrounded by the boundary where the crystal orientation difference between the measurement points is 3 ° or more is defined as the crystal grain, and the bcc structure and the bcc structure and The average IQ for each crystal grain having a bct structure is adopted.
  • the CI Confidence Index
  • Relatively soft bainitic ferrite and bainite, and hard fresh martensite and tempered martensite are the major structures with bcc and bct structures.
  • the skewness of IQ when analyzed by the EBSD method is used. Represents.
  • the relationship between the area and IQ of bainitic ferrite and bainite, and fresh martensite and tempered martensite can be clarified.
  • the area of crystal grains is not necessarily an integral multiple of 0.05 ⁇ m 2. Therefore, the value obtained by dividing the area of the crystal grains by 0.05 ⁇ m 2 and rounding off the first decimal place was regarded as the number of regions having an area of 0.05 ⁇ m 2 contained in the crystal grains. Then, as a result of the examination by the present inventors, the skewness of IQ calculated by the equation (1) is set to -1.2 to -1.2 for the set of regions having an area of 0.05 ⁇ m 2 in the crystal grains having the bcc structure and the bct structure. It was found that by controlling to -0.3, both excellent collision safety and moldability can be achieved.
  • the high-strength steel sheet of this embodiment shows excellent collision safety and formability has not been clarified, but it could be considered as follows. That is, by appropriately controlling the area of the structure having the bcc structure and the bct structure and the state of IQ distribution, in the composite structure steel sheet composed of structures having different hardness, while utilizing the effect of improving the moldability by the soft structure, It is presumed that the concentration of strain on the soft tissue in the early stage of deformation can be suppressed.
  • the IQ skewness is less than -1.2, it means that the proportion of soft tissues with high IQ is high and the average IQ is relatively high as compared with the desired distribution state.
  • the load / plate thickness at the bending angle of 10 ° in the VDA bending test decreases, and the desired collision safety cannot be obtained.
  • the difference in hardness between the structures is large, and the number of places that become the starting point of cracking in the hole expansion test increases, so that the tensile strength TS ⁇ hole expansion rate ⁇ (hereinafter, may be abbreviated as TS ⁇ ⁇ ) is 40,000 MPa ⁇ %. The above cannot be secured.
  • the IQ skewness exceeds -0.3, it indicates that the proportion of hard tissue having a relatively low IQ is high as compared with the desired distribution state. At this time, as the proportion of the soft structure decreases, the moldability, particularly the total elongation EL, decreases, and the desired TS ⁇ EL cannot be obtained.
  • the high-strength steel plate of the present embodiment has (1) tensile strength TS, (2) yield ratio YR, (3) TS ⁇ EL, (4) TS ⁇ ⁇ , and (5) German Association of the Automotive Industry (VDA) bending test.
  • VDA German Association of the Automotive Industry
  • Tensile strength TS 780 MPa or more
  • the high-strength steel sheet of the present embodiment preferably has a tensile strength TS of 780 MPa or more.
  • the tensile strength TS is more preferably 880 MPa or more, still more preferably 980 MPa or more.
  • the yield ratio YR represented by the ratio of the yield strength YS to the tensile strength TS (YS / TS) is 0.70 or more. preferable.
  • the yield ratio YR is more preferably 0.75 or more, still more preferably 0.80 or more. From the viewpoint of collision safety, the higher the yield ratio YR is, the more preferable it is.
  • the upper limit of the yield ratio YR is approximately 0.95 or less.
  • the high-strength steel sheet of the present embodiment preferably has TS ⁇ EL of 13000 MPa ⁇ % or more.
  • TS ⁇ EL is more preferably 14,000 MPa ⁇ % or more, still more preferably 15,000 MPa ⁇ % or more.
  • the upper limit of the TS ⁇ EL is approximately 25,000 MPa ⁇ % or less.
  • the high-strength steel sheet of the present embodiment preferably has TS ⁇ ⁇ of 40,000 MPa ⁇ % or more.
  • TS ⁇ ⁇ is more preferably 50,000 MPa ⁇ % or more, and further preferably 60,000 MPa ⁇ % or more.
  • the upper limit of TS ⁇ ⁇ is approximately 150,000 MPa ⁇ % or less.
  • the load / plate thickness for deforming the test piece to a bending angle of 10 ° is used in the bending test of VDA.
  • the value of the load / plate thickness for deforming the test piece to a bending angle of 10 ° is preferably 3.0 kN / mm or more.
  • the load / thickness value for deforming the test piece to a bending angle of 10 ° is 3.0 kN / mm or more, which reduces the amount of deformation of the steel sheet in a collision or the like and improves collision safety. Can be enhanced.
  • the load / plate thickness value is more preferably 3.1 kN / mm or more, and further preferably 3.2 kN / mm or more.
  • the load / plate that deforms the test piece to a bending angle of 10 ° in the VDA bending test is approximately 5.0 kN / mm or less.
  • Examples of the original plate to be heat-treated include a hot-rolled steel sheet obtained by hot-rolling a steel material and a cold-rolled steel sheet obtained by further pickling and cold-rolling.
  • the conditions for cold rolling are not particularly limited.
  • FIG. 1 schematically shows an example of a heat treatment pattern performed on the original plate.
  • Step A A step of heating a steel sheet to a temperature T1 of Ac 3 transformation point or more and 950 ° C. or lower, and holding t1 for a time of 5 seconds or more and 1800 seconds or less in the temperature range to austenite
  • the steel sheet is heated to a temperature T1 (heating temperature T1) of Ac 3 transformation point or more and 950 ° C. or less, and held for a time t1 (holding time t1) of 5 seconds or more and 1800 seconds or less in the temperature range. ..
  • the average heating rate HR1 ([1] in FIG. 1) when the steel sheet is heated to a heating temperature T1 having an Ac 3 transformation point or more and 950 ° C. or less is not particularly limited, and if the temperature is raised at an arbitrary average heating rate HR1. Good.
  • the temperature may be raised from room temperature to the heating temperature T1 by setting the average heating rate HR1 to 1 ° C./sec or more and 100 ° C./sec or less.
  • the heating temperature T1 is preferably set to the Ac 3 transformation point or higher, preferably the Ac 3 transformation point + 5 ° C. or higher, and more preferably the Ac 3 transformation point + 10 ° C. or higher. If the heating temperature T1 exceeds 950 ° C., the crystal grains of the steel sheet structure may become coarse and the hole expansion ratio ⁇ may decrease. Therefore, the heating temperature T1 is preferably 950 ° C. or lower.
  • the holding time t1 at the heating temperature T1 ([2] in FIG. 1) is less than 5 seconds, the reverse transformation to austenite becomes insufficient, and ferrite remains, so that the yield ratio YR decreases. Therefore, the holding time t1 is preferably 5 seconds or longer, preferably 10 seconds or longer, and more preferably 20 seconds or longer.
  • the holding time t1 exceeds 1800 seconds, in addition to the decrease in productivity, there is a possibility that the crystal grains of the steel sheet structure may become coarse and the steel sheet characteristics such as the hole expansion ratio ⁇ may decrease. Therefore, the holding time t1 is preferably 1800 seconds or less, preferably 1500 seconds or less, and more preferably 1000 seconds or less.
  • Step B A step of cooling from a quenching start temperature T2 of 700 ° C. or higher to a cooling stop temperature T3a in a temperature range of 300 ° C. or higher and 500 ° C. or lower at an average cooling rate of 10 ° C./sec or higher]
  • step B in FIG. 1 the steel sheet heated and held in step A is cooled from a quenching start temperature T2 of 700 ° C. or higher to a cooling stop temperature T3a of 300 ° C. or higher and 500 ° C. or lower at an average cooling rate of 10 ° C./sec or higher. .. This makes it possible to suppress the precipitation of ferrite during the cooling process.
  • the average cooling rate CR1 ([3] in FIG. 1) from the heating temperature T1 to the quenching start temperature T2 is not particularly limited.
  • Examples of the average cooling rate CR1 include cooling at 0.1 ° C./sec or higher and 5 ° C./sec or lower.
  • the quenching start temperature T2 is preferably 700 ° C. or higher, preferably 750 ° C. or higher, and more preferably 800 ° C. or higher.
  • the upper limit of the quenching start temperature T2 is not particularly limited as long as it is the heating temperature T1 or less in the step A.
  • the average cooling rate CR2 ([4] in FIG. 1) from the quenching start temperature T2 to the cooling stop temperature T3a falls below 10 ° C./sec, ferrite precipitates during cooling and the yield ratio YR decreases. Therefore, the average cooling rate CR2 is preferably 10 ° C./sec or higher, preferably 15 ° C./sec or higher, and more preferably 20 ° C./sec or higher.
  • the upper limit of the average cooling rate CR2 is not particularly limited, but may be, for example, 100 ° C./sec or less.
  • the cooling stop temperature T3a is a temperature at which the quenching ends, and is also a retention start temperature in step C, which will be described later.
  • the cooling stop temperature T3a is lower than 300 ° C., the bainite precipitated in the subsequent step becomes excessively hard, and the formation of the carbon-enriched portion does not proceed sufficiently and the retained austenite also decreases, which is desired.
  • TS ⁇ EL cannot be obtained. Therefore, the cooling stop temperature T3a is preferably 300 ° C. or higher, preferably 320 ° C. or higher, and more preferably 340 ° C. or higher.
  • the cooling stop temperature T3a exceeds 500 ° C., the bainite precipitated in the subsequent step becomes excessively soft, and the desired yield ratio YR cannot be obtained. Further, by coarsening the carbon-enriched portion, coarse retained austenite and MA are formed, and TS ⁇ ⁇ also decreases. Therefore, the cooling stop temperature T3a is preferably 500 ° C. or lower, preferably 480 ° C. or lower, and more preferably 460 ° C. or lower.
  • Step C A step of staying at t3 for a time of 10 seconds or more and less than 300 seconds at an average cooling rate of 10 ° C./sec or less in a temperature range of 300 ° C. or more and 500 ° C. or less]
  • step C in FIG. 1 the steel sheet cooled in step B is subjected to a time t3 (residence time t3) of 10 seconds or more and less than 300 seconds at an average cooling rate of 10 ° C./sec or less in a temperature range of 300 ° C. or higher and 500 ° C. or lower.
  • a time t3 (residence time t3) of 10 seconds or more and less than 300 seconds at an average cooling rate of 10 ° C./sec or less in a temperature range of 300 ° C. or higher and 500 ° C. or lower.
  • Stays This causes partial formation of bainite.
  • this bainite Since this bainite has a lower solid solution limit of carbon than austenite, it expels carbon that exceeds the solid solution limit. As a result, a carbon-enriched austenite region is formed around bainite. This region becomes retained austenite after cooling in step D and reheating in step E, which will be described later. This retained austenite can enhance TS ⁇ EL.
  • the residence temperature is preferably 300 ° C. or higher, preferably 320 ° C. or higher, and more preferably 340 ° C. or higher.
  • the residence temperature is preferably 500 ° C. or lower, preferably 480 ° C. or lower, and more preferably 460 ° C. or lower.
  • the average cooling rate in step C is preferably 10 ° C./sec or less, preferably 7 ° C./sec or less, and more preferably 3 ° C./sec or less. Alternatively, it may be maintained at 0 ° C./sec, that is, a constant temperature. Within the above temperature range, the cooling rate may be changed, or cooling and holding at a constant temperature may be combined. Further, in the retention of step C, the temperature of the steel sheet may rise within the temperature of 300 ° C. or higher and 500 ° C. or lower due to heat generation due to bainite transformation or the like.
  • the residence time t3 at 300 ° C. or higher and 500 ° C. or lower is preferably 10 seconds or longer, preferably 20 seconds or longer, and more preferably 30 seconds or longer.
  • the residence time t3 at 300 ° C. or higher and 500 ° C. or lower is preferably less than 300 seconds, preferably 200 seconds or less, and more preferably 100 seconds or less.
  • Step D A step of cooling with an average cooling rate of 10 ° C./sec or more from the retention end point temperature T3b to the cooling stop temperature T4 in the temperature range of 100 ° C. or higher and 300 ° C. or lower]
  • the cooling stop temperature of the steel plate retained in step C in a temperature range of 100 ° C. or higher and 300 ° C. or lower from the retention end point temperature T3b (corresponding to the cooling start temperature in step D) of 300 ° C. or higher.
  • the average cooling rate up to T4 CR3 ([6] in FIG. 1) is set to 10 ° C./sec or more for cooling.
  • the untransformed austenite can be transformed into martensite, and the untransformed austenite that does not transform into martensite can be miniaturized.
  • the result is fine retained austenite and MA.
  • the formed martensite becomes tempered martensite through the steps described later, so that the yield ratio YR and the collision safety can be improved.
  • the average cooling rate CR3 is preferably 10 ° C./sec or higher, preferably 15 ° C./sec or higher, and more preferably 20 ° C./sec or higher.
  • the upper limit of the average cooling rate CR3 is not particularly limited, but may be, for example, 100 ° C./sec or less.
  • the cooling stop temperature T4 ([7] in FIG. 1) exceeds 300 ° C., sufficient martensitic transformation does not occur, so that MA in the steel sheet structure after annealing becomes coarse and the desired TS ⁇ ⁇ cannot be obtained. .. At the same time, a sufficient amount of tempered martensite cannot be introduced into the annealed steel sheet structure, and the yield ratio YR also decreases. Therefore, the cooling stop temperature T4 is preferably 300 ° C. or lower, preferably 280 ° C. or lower, and more preferably 260 ° C. or lower.
  • the cooling stop temperature T4 is preferably 100 ° C. or higher, preferably 120 ° C. or higher, and more preferably 140 ° C. or higher.
  • the cooling stop temperature T4 may be maintained, but the step of reheating, which will be described later, may be further performed without holding the cooling.
  • the holding time t4 is preferably 1 second or more and 600 seconds or less. Even if the holding time t4 at the cooling stop temperature T4 is long, the characteristics are hardly affected, but if it exceeds 600 seconds, the productivity decreases.
  • Step E A step of heating from the cooling stop temperature T4 to a reheating temperature T5 in a temperature range of 300 ° C. or higher and 500 ° C. or lower, and holding t5 for a time of 350 seconds or more and 1800 seconds or less in the temperature range of the reheating temperature T5.
  • the steel sheet cooled in step D is heated at 300 ° C. or higher and 500 ° C. or lower to a reheating temperature T5 that satisfies the following requirements, and is 350 seconds or longer and 1800 seconds in the temperature range of the reheating temperature T5. It is held for the following time (holding time t5) ([9] in FIG. 1).
  • the difference between the cooling stop temperature T3a in step B (corresponding to the retention start temperature in step C) and the average temperature [(T3a-T3b) / 2] between the retention end temperature T3b is 50 ° C. or less. It is necessary to satisfy the requirement of being.
  • step E a part of the untransformed austenite is transformed into bainite, and at the same time, the martensite precipitated in the step D is tempered.
  • the IQ skewness of the tissue having the bcc structure and the bct structure can be controlled to a desired value.
  • carbon in bainite and martensite is excreted to promote carbon enrichment to the surrounding austenite, which can stabilize austenite. As a result, the amount of retained austenite finally obtained can be increased.
  • the heating rate HR2 up to the reheating temperature T5 ([8] in FIG. 1) is not particularly limited, and examples thereof include 1 ° C./sec or more and 50 ° C./sec or less.
  • the reheating temperature T5 is preferably 300 ° C. or higher, preferably 320 ° C. or higher, and more preferably 340 ° C. or higher.
  • the reheating temperature T5 exceeds 500 ° C., carbon is precipitated as cementite, and a sufficient amount of retained austenite cannot be secured. As a result, the total elongation EL is lowered, and the desired TS ⁇ EL cannot be obtained. Therefore, the reheating temperature T5 is preferably 500 ° C. or lower, preferably 480 ° C. or lower, and more preferably 460 ° C. or lower.
  • the reheating temperature T5 is preferably such that the difference between the average temperature of the cooling stop temperature T3a and the residence end point temperature T3b is 50 ° C. or less, preferably 40 ° C. or less, and more preferably 30 ° C. or less.
  • the holding time t5 ([9] in FIG. 1) after reheating in this step E is less than 350 seconds, a desired tempered state cannot be obtained for a hard structure such as martensite, and it has a bcc structure and a bct structure.
  • the IQ skewness of the crystal grains is less than -1.2.
  • the holding time t5 after reheating is preferably 350 seconds or longer, preferably 380 seconds or longer, and more preferably 400 seconds or longer. If the holding time t5 after reheating exceeds 1800 seconds, the mechanical properties are hardly affected, but the productivity is lowered. Therefore, the holding time t5 is preferably 1800 seconds or less, preferably 1200 seconds or less, and more preferably 600 seconds or less.
  • the average cooling rate CR4 ([10] in FIG. 1) at this time is not particularly limited.
  • the average cooling rate CR4 is 1 ° C./sec or more and 50 ° C. / Second or less.
  • the steel sheet may be subjected to plating treatment such as electroplating treatment and vapor deposition plating treatment, and may be further alloyed after the plating treatment.
  • the steel sheet may be subjected to surface treatment such as formation of an organic film, film lamination, organic salt treatment, inorganic salt treatment, and non-chromium treatment.
  • hot-dip galvanizing a steel sheet is performed as a plating process, for example, the temperature of the steel sheet is heated or cooled to a temperature 40 ° C. lower than the galvanized bath temperature and 50 ° C. higher than the galvanized bath temperature. , Pass through the galvanized bath.
  • a steel sheet having a hot-dip galvanized layer on the surface that is, a hot-dip galvanized steel sheet can be obtained.
  • the hot-dip galvanized steel sheet is heated to a temperature of 460 ° C. or higher and 600 ° C. or lower. If the heating temperature is less than 460 ° C., alloying may be insufficient. If the heating temperature exceeds 600 ° C., alloying may become excessive and the corrosion resistance may deteriorate.
  • the alloying treatment gives a steel sheet having an alloyed hot-dip galvanized layer on its surface, that is, an alloyed hot-dip galvanized steel sheet.
  • the high-strength steel sheet according to one aspect of the present invention is By mass% C: 0.10 to 0.35%, Si + Al: 0.5-3.0%, Mn: 1.0-3.0%, P: more than 0% and 0.05% or less, and S: more than 0% and 0.01% or less, respectively, and the balance is iron and unavoidable impurities.
  • ferrite fraction 0 to 10%
  • MA fraction 0 to 30%
  • hard phase other than ferrite and MA 70 to 100%. It has a metallic structure with a retained austenite fraction: 5-30% by volume.
  • Each variable in the equation (1) represents the following.
  • n bcc structure and bct total area of an area 0.05 .mu.m 2 having the structure s: standard deviation of the area of the IQ area 0.05 .mu.m 2 x i: area i area 0.05 .mu.m 2 IQ x ave : Average IQ of a region with an area of 0.05 ⁇ m 2 having a bcc structure and a bct structure
  • the high-strength steel plate further includes (a) Ti: more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: more than 0% and 0. At least one selected from the group consisting of .5% or less, (b) from the group consisting of Ni: more than 0% and 2% or less, Cr: more than 0% and 2% or less, and Mo: more than 0% and 0.5% or less. At least one selected, (c) B: more than 0% and 0.005% or less, (d) Mg: more than 0% and 0.04% or less, REM: more than 0% and 0.04% or less, and Ca: 0%. It is also effective to contain at least one selected from the group consisting of super 0.04% or less, and the characteristics of the high-strength steel plate are further improved depending on the type of the element to be contained.
  • Another preferred embodiment of the present invention also includes a high-strength steel sheet having a plating layer on the surface of the steel sheet.
  • a method for producing a high-strength steel sheet in which a steel material having a chemical composition as described above is heated, then hot-rolled, and cooled after the completion of the hot-rolling.
  • a step of heating the steel to a temperature T1 of the Ac 3 transformation point or more and 950 ° C. or less, and holding t1 for a time of 5 seconds or more and 1800 seconds or less in the temperature range to austenite.
  • the cooling stop temperature T4 is heated to a reheating temperature T5 that satisfies the following requirements in a temperature range of 300 ° C.
  • the process of holding and Reheating temperature T5 The difference between the cooling stop temperature T3a and the average temperature of the residence end point temperature T3b is 50 ° C. or less. Is included in this order.
  • the above manufacturing method may further include a step of applying a plating layer on the surface of the steel sheet.
  • Casting materials (steel grades A to E) having the chemical composition shown in Table 1 below (remaining: iron and unavoidable impurities other than P and S) are manufactured by vacuum melting, and then this casting material is hot-rolled. The plate thickness was 30 mm, and hot rolling was further performed.
  • the Ac 3 transformation points of each steel type shown in Table 1 below are determined by the following formula (2) with reference to the VII-20 formula described on page 273 of "Leslie Steel Materials: 1985, William C. Leslie". It is a calculated value. Further, in Table 1, the column of "-" means that the substance is not added or the value is below the measurement limit.
  • the test material was heated to 1250 ° C. and then rolled into a plate thickness of 2.6 mm by multi-step rolling.
  • the end temperature of hot rolling was set to 920 ° C.
  • it was cooled to 600 ° C. at an average cooling rate of 30 ° C./sec, inserted into a furnace heated to 600 ° C., held for 30 minutes, and then cooled in a furnace to obtain a hot-rolled steel sheet.
  • the hot-rolled steel sheet was pickled to remove surface scale, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.4 mm as a raw sheet.
  • step 1 After reheating and holding in step E, a heat treatment simulating alloyed hot-dip galvanizing consisting of holding at 460 ° C., which corresponds to immersion in a plating bath, and holding at 500 ° C., which corresponds to an alloying furnace, was performed. Further, in Tables 2 and 3, the average cooling rates CR1, CR2, and CR3 are shown as minus in order to distinguish them from the heating rates.
  • the metallographic structure and IQ skewness at the plate thickness / 4 position of the obtained sample were determined by measuring by the above-mentioned method. The results are shown in Table 4 below.
  • VDA bending test Based on the VDA standard (VDA238-100) specified by the German Association of the Automotive Industry, the bending test is performed under the following conditions, and the displacement at the maximum load measured in the bending test is converted into an angle based on the VDA standard, and the bending angle. Asked. Then, the load at a bending angle of 10 ° was evaluated.
  • test No. Reference numeral 5 denotes an example in which the holding time t5 in the step E is shorter than the desired condition, and the skewness of IQ is lower than the desired value. As a result, the desired mechanical properties of TS ⁇ ⁇ and collision safety have not been obtained.
  • FIG. 6 is an example in which the heating temperature in step A is low ( less than the Ac 3 transformation point) and step C is not included.
  • step C soft bainite is not precipitated, and instead, a large amount of ferrite (structure with high IQ) is precipitated in step A, the average value of IQ is increased, and the skewness of IQ is increased. It is declining.
  • the yield ratio YR, TS ⁇ ⁇ and collision safety are lowered, and the desired mechanical properties are not obtained.
  • step 7 does not contain step C, it is expected that soft bainite does not precipitate, and instead, harder martensite (structure with low IQ) increases in step D. As a result, the test No. Contrary to 6, the skewness of IQ is higher than the desired value, and TS ⁇ EL is lowered.
  • the present invention has a wide range of industrial applicability in the technical field related to high-strength steel sheets and methods for manufacturing them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、自動車部品をはじめとする各種の用途で使用可能な高強度鋼板であって、衝突安全性や成形性に優れた高強度鋼板と、その製造方法を提供するものである。 本発明の一局面に係る高強度鋼板は、所定の化学成分組成を満足し、面積割合で、フェライト分率:0~10%、MA分率:0~30%、フェライトおよびMA以外の硬質相:70~100%であり、体積割合で、残留オーステナイト分率:5~30%である金属組織を有し、bcc構造およびbct構造を有する結晶粒を面積0.05μmの領域の集合とした場合に、EBSD法によって解析したときのIQの歪度を、所定の関係式で表したとき、この歪度が-1.2~-0.3になる高強度鋼板である。

Description

高強度鋼板およびその製造方法
 本発明は、自動車部品をはじめとする各種用途に適用される高強度鋼板に関する。
 自動車部品等に供される鋼板には、乗客保護のための衝突安全性確保と、環境負荷の低減のための燃費改善に向けた車体軽量化をともに実現するために、強度の向上が求められている。衝突安全性への影響が大きい機械的特性として、例えば、引張強度、降伏強度などが挙げられる。
 その一方で、複雑な形状の部品用の部材として鋼板を適用するために、優れた成形性も要求されている。成形性への寄与が大きい機械的特性として、例えば、延性、穴広げ性および曲げ性などが挙げられる。しかしながら、衝突安全性の向上および成形性の向上の両立は困難である。
 これまで衝突安全性の向上または成形性の向上に関する技術は、それぞれ別の技術として提案されている(特許文献1、2)。しかしながら、これまで提案されているこれらの技術によっても、衝突安全性の向上および成形性の向上の両立は困難な状況である。これは、衝突安全性を向上させる要件として、鋼板の高強度化(例えば、引張強度の向上)を必要とするが、成形性を向上させる要件(例えば、延性や穴広げ性)とは相反するためと考えられる。
 自動車衝突時に乗客を保護するという観点では、衝突により変形した車体と乗客の接触を防ぐことが重要である。本発明者らは、衝突時の変形初期における荷重(初期変形に要する荷重)を高めることで、部品の変形量を低減し、衝突時における車体と乗客の接触を抑制することが可能と考えた。こうした着想に基づき、本発明者らは、自動車用部品をはじめとする各種用途において、成形性に加えて、初期変形に要する荷重が高い高強度鋼板について様々な角度から検討した。
 上記のような特徴を有する高強度鋼板の要求特性として、具体的には、下記の要件(1)~(5)が挙げられる。
(1)引張強度TS(tensile strength):780MPa以上
(2)引張強度TSに対する降伏強度YS(yield strength)の割合(YS/TS)で表される降伏比YR(yield ratio):0.70以上
(3)引張強度TS×全伸びEL(elongation):13000MPa・%以上
(4)引張強度TS×穴広げ率λ:40000MPa・%以上
(5)ドイツ自動車工業会(VDA)の曲げ試験において、試験片を曲げ角度10°に変形させる荷重/板厚:3.0kN/mm以上
 本発明は、上記のような事情に鑑みてなされたものであって、その目的は、要求特性のいずれも高いレベルにあり、衝突安全性および成形性のいずれにも優れた高強度鋼板、並びにそのような高強度鋼板を製造するための有用な方法を提供することにある。
特許第5610102号公報 特許第5589893号公報
 本発明の一態様に係る高強度鋼板は、
 質量%で、
 C:0.10~0.35%、
 Si+Al:0.5~3.0%、
 Mn:1.0~3.0%、
 P :0%超0.05%以下、および
 S :0%超0.01%以下
を夫々含有し、残部が鉄および不可避不純物であり、
 面積割合で、フェライト分率:0~10%、MA分率:0~30%、フェライトおよびMA以外の硬質相:70~100%であり、
 体積割合で、残留オーステナイト分率:5~30%である金属組織を有し、
 bcc構造およびbct構造を有する結晶粒を面積0.05μm2の領域の集合とした場合に、EBSD法によって解析したときのIQの歪度を、下記式(1)で表したとき、この歪度が-1.2~-0.3であることを特徴とする。
Figure JPOXMLDOC01-appb-M000002
 式(1)における各変数は、以下を表す。
n:bcc構造およびbct構造を有する面積0.05μm2の領域の総数
s:面積0.05μm2の領域のIQの標準偏差
:面積0.05μm2の領域iのIQ
ave:bcc構造およびbct構造を有する面積0.05μm2の領域の平均IQ
 本発明の他の態様として高強度鋼板の製造方法も含まれ、この製造方法は、
 上記のような高強度鋼板の製造方法であって、上記のような化学成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後に冷却して巻取り、次いで酸洗・冷間圧延を施した後、
 鋼のAc3変態点以上、950℃以下の温度T1に加熱し、該温度域で5秒以上1800秒以下の時間t1保持してオーステナイト化する工程と、
 700℃以上の急冷開始温度T2から10℃/秒以上の平均冷却速度CR2で300℃以上500℃以下の温度域の冷却停止温度T3aまで冷却する工程と、
 300℃以上500℃以下の温度域で、平均冷却速度10℃/秒以下で10秒以上300秒未満の時間t3滞留する工程と、
 300℃以上の滞留終点温度T3bから100℃以上300℃以下の温度域の冷却停止温度T4まで10℃/秒以上の平均冷却速度CR3で冷却する工程と、
 前記冷却停止温度T4から、300℃以上500℃以下の温度域で、下記の要件を満足する再加熱温度T5まで加熱し、該再加熱温度T5の温度域において350秒以上1800秒以下の時間t5保持する工程と、
 再加熱温度T5:前記冷却停止温度T3aと滞留終点温度T3bとの平均温度との差が50℃以下である。
 をこの順に含むことを特徴とする。
 上記の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面とから明らかになるだろう。
図1は、原板に対して行う熱処理パターンの一例を示す模式図である。
 本発明者らは、優れた衝突安全性と成形性を両立する高強度鋼板を実現する組織について鋭意検討した。その結果、bcc構造およびbct構造を有する主要な組織である比較的軟質なベイニティックフェライトおよびベイナイトと、硬質なフレッシュマルテンサイトおよび焼戻しマルテンサイトについて、結晶粒を面積0.05μm2の領域の集合とした場合に、EBSD法によって解析したときのIQの分布状態を適切に規定することにより、優れた衝突安全性および成形性を両立できる高強度鋼板が得られることを見出し、本発明を完成した。
 本発明によれば、優れた衝突安全性および成形性を両立する高強度鋼板、並びにこうした高強度鋼板を製造するための有用な方法が提供できる。
 [高強度鋼板]
 本実施形態の高強度鋼板において、化学成分組成を規定した理由は、下記の通りである。なお、下記の化学成分組成において、%表示はいずれも質量%を意味する。
 [C:0.10~0.35%]
 Cは、残留オ-ステナイトなどの所望の組織を得て、(引張強度TS×全伸びEL)などの特性を高く確保するために有効な元素である。こうした効果を発揮させるためには、C量は0.10%以上とする必要がある。C量は、好ましくは0.13%以上であり、より好ましくは0.15%以上、更に好ましくは、0.18%以上である。しかしながら、C量が過剰になって0.35%を超えると、MA(Martensite-Austenite constituent)および残留オーステナイトが粗大となり、深絞り性、穴広げ率λで評価される穴広げ性のいずれも低下する。またC量が過剰になると、溶接性にも悪影響が生じる。よって、C量は0.35%以下とする必要があり、好ましくは0.33%以下、より好ましくは0.30%以下である。
 [Si+Al:0.5~3.0%]
 SiとAlは、いずれもセメンタイトの析出を抑制し、残留オーステナイトの形成を促進する作用を有する。このような作用を有効に発揮させるためには、SiとAlの合計量(Si+Al)は、0.5%以上とする必要がある。Si+Alは、好ましくは0.7%以上、より好ましくは1.0%以上である。しかしながら、Si+Alが3.0%を超えて過剰になると、焼戻しマルテンサイトやベイナイトを確保できなくなるとともに、MAおよび残留オーステナイトが粗大となる。よって、Si+Alは、3.0%以下とする必要がある。Si+Alは、好ましくは2.5%以下であり、より好ましくは2.0%以下である。なお、SiとAlのうち、Alについては、脱酸元素として機能する程度の添加量、すなわち0.1%未満であってもよい。或いは、セメンタイトの形成を抑制し、残留オーステナイト量を増加させる等を目的として、例えばAlを0.6%以上と多く含有させてもよい。
 [Mn:1.0~3.0%]
 Mnは、フェライトの形成を抑制して、フェライト以外の焼戻しマルテンサイトやベイナイト等の確保に必要な元素である。このような作用を有効に発揮させるためには、Mn量を1.0%以上とする。Mn量は、好ましくは1.5%以上、より好ましくは1.7%以上である。しかしながら、Mn量が過剰になって3.0%を超えると、製造過程でベイナイト変態が抑制されて、比較的軟質なベイナイトが十分に得られず、その結果、高い全伸びELを確保できない。よって、Mn量は3.0%以下とする必要があり、好ましくは2.7%以下であり、より好ましくは2.5%以下である。
 [P:0%超0.05%以下]
 Pは、不可避的に混入してくる不純物である。P量が過剰になって0.05%を超えると、全伸びELおよび穴広げ率λが低下する。よって、P量は0.05%以下とする必要がある。P量は、好ましくは0.03%以下である。なお、P量を0%にすることは工業生産上不可能であり、概ね0.001%以上を含有する。
 [S:0%超0.01%以下]
 Sは、不可避的に混入してくる不純物である。S量が過剰になって0.01%を超えると、MnS等の硫化物系介在物が形成され、この介在物が割れの起点となって、穴広げ性が低下する。よって、S量は0.01%以下とする必要がある。S量は、好ましくは0.005%以下である。なお、S量を0%にすることは工業生産上不可能であり、概ね0.0005%以上を含有する。
 本実施形態の高強度鋼板で規定する化学成分組成は上記の通りであり、残部は鉄、および上記P、S以外の不可避不純物である。この不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる元素、例えばAs、Sb、Snなどの微量元素の混入が許容される。なお、例えば上記したPおよびSのように、通常、含有量が少ないほど好ましい不純物であるが、それ以外に、その組成範囲について下記のように別途規定している元素がある。このため、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念を意味する。また、不純物としてはNもあるが、その量は下記のようにすることが好ましい。
 [N:0.01%以下]
 Nは、鋼中に混入してくる不純物であり、このNの量が過剰になると、粗大な窒化物を形成して、曲げ性および穴広げ性を劣化させたり、溶接時のブローホールの発生の原因となったりする。このため、Nは、PやSと同様に少なければ少ないほど好ましく、N量は0.01%以下とすることが好ましい。なお、N量の低減にはコストがかかり、0.0005%未満まで低減しようとすると、コストが著しく増大する。このため、N量の下限は0.0005%以上とすることが好ましい。
 本発明の好ましい実施形態として、本実施形態の高強度鋼板には、上記元素に加えて、必要によって更に、(a)Ti:0%超0.2%以下、Nb:0%超0.2%以下およびV:0%超0.5%以下よりなる群から選択される少なくとも1種、(b)Ni:0%超2%以下、Cr:0%超2%以下およびMo:0%超0.5%以下よりなる群から選択される少なくとも1種、(c)B:0%超0.005%以下、(d)Mg:0%超0.04%以下、REM:0%超0.04%以下およびCa:0%超0.04%以下よりなる群から選択される少なくとも1種、等を含有することも有効であり、含有させる元素の種類に応じて高強度鋼板の特性が更に改善される。
 [Ti:0%超0.2%以下、Nb:0%超0.2%以下およびV:0%超0.5%以下よりなる群から選択される少なくとも1種]
 Tiは、析出強化および組織微細化の効果を発揮させる元素であり、鋼板の強度向上に寄与する。従って、Tiが含有されていてもよい。こうした効果はその含有量が増加するにつれて増大するが、その効果を有効に発揮させるためには、Ti量は0.01%以上とすることが好ましく、より好ましくは0.02%以上である。しかしながら、Ti量が0.2%を超えて過剰になると、Tiの炭窒化物が過剰に析出して鋼板の成形性が低下する。従って、Ti量は0.2%以下とすることが好ましく、より好ましくは0.10%以下であり、更に好ましくは0.06%以下である。
 Nbは、Tiと同様に、析出強化および組織微細化の効果を発揮させる元素であり、鋼板の強度向上に寄与する。従って、Nbが含有されていてもよい。こうした効果はその含有量が増加するにつれて増大するが、その効果を有効に発揮させるためには、Nb量は0.005%以上とすることが好ましく、より好ましくは0.010%以上である。しかしながら、Nb量が0.2%を超えて過剰になると、Nbの炭窒化物が過剰に析出して鋼板の成形性が低下する。従って、Nb量は0.2%以下とすることが好ましく、より好ましくは0.10%以下であり、更に好ましくは0.06%以下である。
 Vは、TiおよびNbと同様に、析出強化および組織微細化の効果を発揮させる元素であり、鋼板の強度向上に寄与する。従って、Vが含有されていてもよい。こうした効果はその含有量が増加するにつれて増大するが、その効果を有効に発揮させるためには、V量は0.01%以上とすることが好ましく、より好ましくは0.02%以上である。しかしながら、V量が0.5%を超えて過剰になると、Vの炭窒化物が過剰に析出して鋼板の成形性が低下する。従って、V量は0.125%以下とすることが好ましく、より好ましくは0.30%以下であり、更に好ましくは0.10%以下である。
 なお、Ti、NbおよびVは、それぞれ単独で含有させてもよいし、2種または3種を併用して含有させてもよい。
 [Ni:0%超2%以下、Cr:0%超2%以下およびMo:0%超0.5%以下よりなる群から選択される少なくとも1種]
 Niは、鋼板の強度上昇に寄与するとともに、残留オーステナイトを安定化し、所望の残留オーステナイト量を確保するために有効な元素である。従って、Niが含有されていてもよい。こうした効果はその含有量が増加するにつれて増大するが、その効果を有効に発揮させるためには、Ni量は0.001%以上とすることが好ましく、より好ましくは0.01%以上である。しかしながら、Ni量が2%を超えて過剰になると、熱間圧延時の製造性が低下する。従って、Ni量は2%以下とすることが好ましく、より好ましくは1.0%以下である。
 Crは、Niと同様に、鋼板の強度上昇に寄与するとともに、残留オーステナイトを安定化し、所望の残留オーステナイト量を確保するために有効な元素である。従って、Crが含有されていてもよい。こうした効果はその含有量が増加するにつれて増大するが、その効果を有効に発揮させるためには、Cr量は0.001%以上とすることが好ましく、より好ましくは0.01%以上である。しかしながら、Cr量が2%を超えて過剰になると、熱間圧延時の製造性が低下する。従って、Cr量は2%以下とすることが好ましく、より好ましくは1.0%以下である。
 Moは、NiおよびCrと同様に、鋼板の強度上昇に寄与するとともに、残留オーステナイトを安定化し、所望の残留オーステナイト量を確保するために有効な元素である。従って、Moが含有されていてもよい。こうした効果はその含有量が増加するにつれて増大するが、その効果を有効に発揮させるためには、Mo量は0.001%以上とすることが好ましく、より好ましくは0.01%以上である。しかしながら、Mo量が0.5%を超えて過剰になると、熱間圧延時の製造性が低下する。従って、Mo量は0.5%以下とすることが好ましく、より好ましくは0.20%以下である。
 なお、Ni、CrおよびMoは、それぞれ単独で含有させてもよいし、2種または3種を併用して含有させてもよい。
 [B:0%超0.005%以下]
 Bは、焼入れ性を高めることで、フェライト変態を抑制するために有効な元素である。従って、Bが含有されていてもよい。こうした効果はその含有量が増加するにつれて増大するが、その効果を有効に発揮させるためには、B量は0.0001%以上であることが好ましく、より好ましくは0.0010%以上である。しかしながら、B量が0.005%を超えて過剰になると、熱間圧延の製造性が低下することがある。従って、B量は0.005%以下とすることが好ましく、より好ましくは0.0030%以下である。
 [Mg:0%超0.04%以下、REM:0%超0.04%以下およびCa:0%超0.04%以下よりなる群から選択される少なくとも1種]
 Mg、REM(希土類元素)およびCaは、微細な酸化物または硫化物を形成し、粗大な酸化物または硫化物による穴広げ性の低下を抑制する。従って、Mg、REMもしくはCaは、これらの任意の組み合わせで含有されていてもよい。こうした効果はそれらの含有量が増加するにつれて増大するが、その効果を十分に得るためには、Mg量、REM量およびCa量は、いずれも0.0005%以上であることが好ましく、より好ましくは0.0010%以上である。しかしながら、Mg量、REM量またはCa量が0.04%を超えて過剰になると、酸化物または硫化物が粗大化することで穴広げ性が低下する。従って、Mg量、REM量およびCa量はいずれも0.04%以下であることが好ましく、より好ましくは0.010%以下である。なお、REMは、Sc、Yの他、La(原子番号57)からLu(原子番号71)までのランタノイド系列希土類元素の合計17種類の元素を含み、REM量はこれら17種類の元素の合計量を意味する。
 次に、本実施形態の高強度鋼板の金属組織について説明する。下記の面積割合および体積割合は、それぞれ全金属組織に占める割合である。
 [面積割合で、フェライト分率:0~10面積%]
 フェライトは、一般的に加工性に優れるものの、強度が低いという問題を有する。その結果、フェライト量が多いと降伏比YRが低下する。このため、フェライト分率を、面積割合で0~10面積%とした。フェライト分率の上限は、好ましくは5面積%以下であり、より好ましくは3面積%以下である。なお、フェライト分率は、ナイタールエッヂングした鋼板を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察し、炭化物を含有しない黒色部を点算法で測定することにより求めることができる。
 [面積割合で、MA分率:0~30面積%]
 MAは、フレッシュマルテンサイトと残留オーステナイトの複合組織である。MAには、残留オーステナイトが含有されるため、MA量を増加させることは全伸びELで示される加工性の向上に有効である。しかしながら、MA中には非常に硬質なフレッシュマルテンサイトも含有されるため、MA分率が増加することで穴広げ率λが低下する。このため、MA分率を、面積割合で0~30面積%とした。MA分率の下限は、好ましくは3面積%以上であり、より好ましくは5面積%以上である。MA分率の上限は、好ましくは25面積%以下であり、より好ましくは20面積%以下である。なお。MA分率は、ナイタールエッヂングした鋼板をSEMで観察し、炭化物を含有しない灰色部を点算法で測定することにより求めることができる。
 [面積割合で、フェライトおよびMA以外の硬質相:70~100面積%]
 硬質相は、所望の引張強度TSおよび降伏比YRを確保するために重要な組織である。本実施形態の高強度鋼板では、硬質相として、例えばベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、フレッシュマルテンサイト等を含有してもよい。本実施形態の高強度鋼板では、所望の引張強度TSおよび降伏比YRを確保するため、フェライトおよびMA以外の硬質相の面積割合を70~100面積%とした。フェライトおよびMA以外の硬質相の面積割合は、75面積%以上が好ましく、より好ましくは80面積%以上である。なお、フェライトおよびMA以外の硬質相の面積割合は、前記のフェライおよびMAを除いた部位の面積割合として求めることができる。
 [体積割合で、残留オーステナイト分率:5~30体積%]
 残留オーステナイトは、プレス加工等においてマルテンサイトに変態するTRIP(transformetion induced plasticity)現象を生じ、大きな全伸びELを得ることができる。形成されるマルテンサイトは高い硬度を有するため、引張強度TS×全伸びEL(以下、TS×ELと略記することがある)を高くすることができる。また残留オーステナイトの降伏比は低いため、所望の高降伏比を確保するためには、残留オーステナイトは過剰に導入しないようにすることが必要である。このため、残留オーステナイトの体積割合は、5~30体積%とした。残留オーステナイト分率は、好ましくは7体積%以上であり、20体積%以下である。
 なお、残留オーステナイト分率は、例えば、X線回折により測定することができる。この方法では、例えば、鋼板表面から当該鋼板の厚さの1/4までの部分を機械研磨および化学研磨により除去し、特性X線としてCo・Kα線を用いることができる。そして、体心立方格子(bcc:body-centered cubic lattice)相と、体心正方格子(bct:body centered tetragonal lattice)および面心立方格子(fcc:face centered cubic lattice)の回折ピークの積分強度比から、残留オーステナイトの体積分率を測定することができる。
 [bcc構造およびbct構造を有する結晶粒を面積0.05μm2の領域の集合とした場合に、EBSD法によって解析したときのIQの歪度を下記式(1)で表したとき、この歪度が-1.2~-0.3である]
Figure JPOXMLDOC01-appb-M000003
 式(1)における各変数は、以下を表す。
n:bcc構造およびbct構造を有する面積0.05μm2の領域の総数
s:面積0.05μm2の領域のIQの標準偏差
:面積0.05μm2の領域iのIQ
ave:bcc構造およびbct構造を有する面積0.05μm2の領域の平均IQ
 上記式(1)は、実験結果に基づいて、解析・規定したパラメータ式である。
 本実施形態の高強度鋼板において、ベイニティックフェライト、ベイナイトと焼戻しマルテンサイト等のbcc構造およびbct構造を有する金属組織は酷似しており、一義的に定義することは困難である。そのため、SEMを用いた結晶解析手法であるEBSD(Electron Back Scatter Diffraction patterns)法を用い、bcc構造およびbct構造を有する結晶粒のIQ(Image Quality)を解析した。
 IQは、EBSDパターンの鮮鋭度を示しており、結晶中の転位量に影響を受けることが一般に知られている。具体的には、IQが小さいほど、結晶中に転位が多く存在する傾向にある。本実施形態の高強度鋼板においては、IQとして、各測定点のIQではなく、測定点間の結晶方位差が3°以上である境界で囲まれた領域を結晶粒と定義し、bcc構造およびbct構造を有する結晶粒ごとの平均IQを採用している。
 なお、IQの解析においては、CI<0.1の測定点は信頼性に欠けると考え、解析から除外した。上記CI(Confidence Index)とは、各測定点で検出されたEBSDパターンが、指定された結晶系(鉄の場合はbccあるいはfcc)のデータベースとどれだけ一致するかを示す指標で、データの信頼度を表すものである。
 比較的軟質なベイニティックフェライトおよびベイナイトと、硬質なフレッシュマルテンサイトおよび焼戻しマルテンサイトは、bcc構造およびbct構造を有する主要な組織である。上記式(1)は、bcc構造およびbct構造を有する結晶粒を、結晶粒と同じIQを有する面積0.05μm2の領域の集合とした場合に、EBSD法によって解析したときのIQの歪度を表す。上記式(1)によれば、ベイニティックフェライトおよびベイナイトと、フレッシュマルテンサイトおよび焼戻しマルテンサイトについて、面積とIQの関係を明らかにすることができる。
 結晶粒の面積は必ずしも0.05μm2の整数倍とはならない。そのため、結晶粒の面積を0.05μm2で除した値の小数点第一位を四捨五入した値を、結晶粒に内包される面積0.05μm2の領域の数と見なした。そして、本発明者らの検討の結果、bcc構造およびbct構造を有する結晶粒における面積0.05μm2の領域の集合について、式(1)で計算されるIQの歪度を-1.2~-0.3に制御することで、優れた衝突安全性と成形性を両立できることが判明した。
 本実施形態の高強度鋼板が優れた衝突安全性および成形性を示す理由については、その全てを解明した訳ではないが、おそらく次のように考えることができた。すなわち、bcc構造およびbct構造を有する組織の面積と、IQの分布の状態を適切に制御することで、硬度の異なる組織からなる複合組織鋼板において、軟質組織による成形性向上効果を活用しながら、変形初期における軟質組織への歪の集中を抑制できると推察される。
 IQの歪度が-1.2を下回ると、所望の分布状態に比べて、IQが高い軟質な組織の割合が高く、平均IQが相対的に高いことを意味している。このとき、軟質組織が増大することで、VDA曲げ試験の曲げ角度10°における荷重/板厚が低下し、所望の衝突安全性が得られない。また、組織間の硬度差が大きく、穴広げ試験で割れ起点となる箇所が増加することで、引張強度TS×穴広げ率λ(以下、TS×λと略記することがある)が40000MPa・%以上を確保できない。
 IQの歪度が-0.3を上回ると、所望の分布状態に比べて、IQが相対的に低い硬質な組織の割合が高いことを表している。このとき、軟質組織の割合が減少することで、成形性、特に全伸びELが低下して、所望のTS×ELが得られない。
 本実施形態の高強度鋼板は、(1)引張強度TS、(2)降伏比YR、(3)TS×EL、(4)TS×λ、(5)ドイツ自動車工業会(VDA)の曲げ試験において、試験片を曲げ角度10°に変形させる荷重/板厚、などの特性がいずれも高いレベルにある。次に、本実施形態の高強度鋼板におけるこれらの特性について説明する。
 (1)引張強度TS:780MPa以上
 本実施形態の高強度鋼板は、引張強度TSが780MPa以上であることが好ましい。引張強度TSは、より好ましくは880MPa以上であり、更に好ましくは980MPa以上である。引張強度TSは高いほど好ましいが、本実施形態の高強度鋼板の化学成分組成や製造条件を考慮すると、引張強度TSの上限は概ね1600MPa以下である。
 (2)降伏比YR:0.70以上
 本実施形態の高強度鋼板において、引張強度TSに対する降伏強度YSの割合(YS/TS)で表される降伏比YRは0.70以上であることが好ましい。これにより、上述の高い引張強度TSと相まって、高い降伏強度が実現できる。その結果、負荷をかけた際の変形を抑制し、衝突安全性を高めることができる。降伏比YRは、より好ましくは0.75以上であり、更に好ましくは0.80以上である。衝突安全性の観点からは、降伏比YRは高いほど好ましいが、本実施形態の高強度鋼板の化学成分組成や製造条件を考慮すると、降伏比YRの上限は概ね0.95以下である。
 (3)TS×EL:13000MPa・%以上
 本実施形態の高強度鋼板は、TS×ELが13000MPa・%以上であることが好ましい。13000MPa・%以上のTS×ELを有することで、優れた強度と優れたプレス成形性等を両立することができる。TS×ELは、より好ましくは14000MPa・%以上であり、更に好ましくは15000MPa・%以上である。TS×ELは高いほど好ましいが、本実施形態の高強度鋼板の化学成分組成や製造条件を考慮すると、TS×ELの上限は概ね25000MPa・%以下である。
 (4)TS×λ:40000MPa・%以上
 本実施形態の高強度鋼板は、TS×λが40000MPa・%以上であることが好ましい。40000MPa・%以上のTS×λを有することで、優れた強度と優れたプレス成形性等を両立することができる。TS×λは、より好ましくは50000MPa・%以上であり、更に好ましくは60000MPa・%以上である。TS×λは高いほど好ましいが、本実施形態の高強度鋼板の化学成分組成や製造条件を考慮すると、TS×λの上限は概ね150000MPa・%以下である。
 (5)ドイツ自動車工業会(VDA)の曲げ試験において、試験片を曲げ角度10°に変形させる荷重/板厚:3.0kN/mm以上
 本実施形態の高強度鋼板は、VDAの曲げ試験において、試験片を曲げ角度10°に変形させる荷重/板厚の値が、3.0kN/mm以上であることが好ましい。VDAの曲げ試験において、試験片を曲げ角度10°に変形させる荷重/板厚の値が、3.0kN/mm以上であることで、衝突等における鋼板の変形量を低減し、衝突安全性を高めることができる。上記荷重/板厚の値は、より好ましくは3.1kN/mm以上であり、更に好ましくは3.2kN/mm以上である。荷重/板厚の値は、高いほど好ましいが、本実施形態の高強度鋼板の化学成分組成や製造条件を考慮すると、VDAの曲げ試験において、試験片を曲げ角度10°に変形させる荷重/板厚の値の上限は、概ね5.0kN/mm以下ある。
 [製造方法]
 本実施形態の高強度鋼板を製造するには、下記の手順に従えばよい。本発明者らは、所定の化学成分組成を有する原板に対し、下記に詳述する熱処理を行うことにより、上述した所望の鋼組織を有し、その結果、上述の所望の機械的特性を有する高強度鋼板が得られることを見出した。
 なお、熱処理を施す原板として、鋼素材を熱間圧延して得られる熱延鋼板や、さらに酸洗、冷間圧延して得られる冷延鋼板が挙げられるが、上記熱間圧延や酸洗、冷間圧延の条件は特に限定されない。
 原板に対して行う熱処理パターンの一例を、模式的に図1に示す。
 [工程A:鋼板をAc3変態点以上、950℃以下の温度T1に加熱し、該温度域で5秒以上1800秒以下の時間t1保持してオーステナイト化する工程]
 図1における工程Aでは、鋼板をAc3変態点以上、950℃以下の温度T1(加熱温度T1)に加熱し、該温度域で5秒以上1800秒以下の時間t1(保持時間t1)保持する。これによって、鋼板組織を十分にオーステナイトへ逆変態させることができる。
 鋼板をAc3変態点以上、950℃以下の加熱温度T1に加熱するときの平均加熱速度HR1(図1の[1])は、特に限定されず、任意の平均加熱速度HR1で昇温すればよい。例えば、室温から上記加熱温度T1まで、平均加熱速度HR1を1℃/秒以上、100℃/秒以下として昇温することが挙げられる。
 加熱温度T1(図1の[2])がAc3変態点を下回ると、オーステナイトへの逆変態が不十分となり、フェライトが残存することで、降伏比YRが低下する。従って、加熱温度T1はAc3変態点以上とするのがよく、好ましくはAc3変態点+5℃以上、より好ましくはAc3変態点+10℃以上である。加熱温度T1が950℃を上回ると、鋼板組織の結晶粒が粗大化し、穴広げ率λが低下するおそれがあるため、加熱温度T1は950℃以下とすることが好ましい。
 加熱温度T1での保持時間t1(図1の[2])が5秒を下回ると、オーステナイトへの逆変態が不十分となり、フェライトが残存することで、降伏比YRが低下する。従って、保持時間t1は5秒以上とするのがよく、好ましくは10秒以上であり、より好ましくは20秒以上である。
 保持時間t1が1800秒を上回ると、生産性が低下することに加え、鋼板組織の結晶粒が粗大化することで穴広げ率λなどの鋼板特性の低下も生じるおそれがある。そのため、保持時間t1は1800秒以下とするのがよく、好ましくは1500秒以下であり、より好ましくは1000秒以下である。
 [工程B:700℃以上の急冷開始温度T2から10℃/秒以上の平均冷却速度で300℃以上500℃以下の温度域の冷却停止温度T3aまで冷却する工程]
 図1における工程Bでは、上記工程Aで加熱、保持した鋼板を700℃以上の急冷開始温度T2から10℃/秒以上の平均冷却速度で300℃以上500℃以下の冷却停止温度T3aまで冷却する。これによって、冷却過程におけるフェライトの析出を抑制することができる。
 本実施形態の製造方法では、加熱温度T1から急冷開始温度T2までの平均冷却速度CR1(図1の[3])は特に限定されない。上記平均冷却速度CR1として、例えば0.1℃/秒以上、5℃/秒以下で冷却することが挙げられる。
 急冷開始温度T2が700℃を下回ると、フェライトが析出し、降伏比YRが低下する。従って、急冷開始温度T2は700℃以上とするのがよく、好ましくは750℃以上であり、より好ましくは800℃以上である。急冷開始温度T2の上限は特に限定されず、工程Aの加熱温度T1以下であればよい。
 急冷開始温度T2から冷却停止温度T3aまでの平均冷却速度CR2(図1の[4])が10℃/秒を下回ると、冷却中にフェライトが析出し、降伏比YRが低下する。従って、平均冷却速度CR2は10℃/秒以上とするのがよく、好ましくは15℃/秒以上であり、より好ましくは20℃/秒以上である。平均冷却速度CR2の上限は特に限定されないが、例えば100℃/秒以下であればよい。
 冷却停止温度T3aは、上記急冷の終点となる温度であり、また後述する工程Cにおける滞留開始温度でもある。この冷却停止温度T3aが300℃を下回ると、後の工程において析出するベイナイトが過度に硬質となることに加えて、炭素濃化部の形成が十分に進行せず残留オーステナイトも減少し、所望のTS×ELが得られない。従って、冷却停止温度T3aは300℃以上とするのがよく、好ましくは320℃以上であり、より好ましくは340℃以上である。
 冷却停止温度T3aが500℃を上回ると、後の工程において析出するベイナイトが過度に軟質となり、所望の降伏比YRが得られない。また、炭素濃化部が粗大化することで、粗大な残留オーステナイトおよびMAが形成され、TS×λも低下する。従って、冷却停止温度T3aは500℃以下とするのがよく、好ましくは480℃以下であり、より好ましくは460℃以下である。
 [工程C:300℃以上500℃以下の温度域で、平均冷却速度10℃/秒以下で10秒以上300秒未満の時間t3滞留する工程]
 図1における工程Cでは、上記工程Bにて冷却した鋼板を、300℃以上500℃以下の温度域において、平均冷却速度10℃/秒以下で10秒以上300秒未満の時間t3(滞留時間t3:図1の[5])滞留する。これによって、部分的にベイナイトを形成させる。このベイナイトはオーステナイトよりも炭素の固溶限が低いため、固溶限を超えた炭素をはき出す。その結果、ベイナイト周囲に炭素の濃化したオーステナイトの領域が形成される。この領域が、後述する工程Dでの冷却、および工程Eでの再加熱を経て、残留オーステナイトとなる。この残留オーステナイトにより、TS×ELを高めることができる。
 この工程Cで滞留するときの温度(滞留温度)が300℃を下回ると、前述の通り、析出するベイナイトが過度に硬質となることに加えて、炭素濃化部の形成が十分に進行せず残留オーステナイトも減少し、所望のTS×ELが得られない。従って、滞留温度は300℃以上とするのがよく、好ましくは320℃以上であり、より好ましくは340℃以上である。
 滞留温度が500℃を上回ると、析出するベイナイトが過度に軟質となり、所望の降伏比YRが得られない。また、炭素濃化部が粗大化することで、粗大な残留オーステナイトおよびMAが形成され、TS×λも低下する。従って、滞留温度は500℃以下とするのがよく、好ましくは480℃以下であり、より好ましくは460℃以下である。
 工程Cでの平均冷却速度が10℃/秒を上回ると、十分なベイナイト変態が起こらず、その結果、十分な炭素濃化領域が形成されず、残留オーステナイトが減少して所望のTS×ELが得られない。従って、工程Cにおける平均冷却速度は10℃/秒以下とするのがよく、好ましくは7℃/秒以下であり、より好ましくは3℃/秒以下である。或いは、0℃/秒、すなわち一定温度に保持してもよい。上記温度範囲内では、冷却速度を変化させてもよいし、冷却と一定温度での保持を組み合わせてもよい。また、工程Cの滞留において、ベイナイト変態に伴う発熱などにより、300℃以上500℃以下の温度内で鋼板温度が昇温してもよい。
 滞留時間t3が10秒を下回ると、十分なベイナイト変態が起こらず、その結果、十分な炭素濃化領域が形成されず、残留オーステナイトが減少して所望のTS×ELが得られない。従って、300℃以上500℃以下での滞留時間t3は、10秒以上とするのがよく、好ましくは20秒以上であり、より好ましくは30秒以上である。
 しかしながら、滞留時間t3が300秒以上となると、工程Cにおけるベイナイト変態が過度に進行する。この場合、炭素濃化部が大きくなりすぎて、焼鈍後の鋼板組織における残留オーステナイトおよびMAが粗大化する。その結果、穴広げ率λが低下し、所望のTS×λが得られない。従って、300℃以上500℃以下での滞留時間t3は、300秒未満とするのがよく、好ましくは200秒以下であり、より好ましくは100秒以下である。
 [工程D:滞留終点温度T3bから100℃以上300℃以下の温度域での冷却停止温度T4までの平均冷却速度を10℃/秒以上として冷却する工程]
 図1における工程Dでは、工程Cで滞留させた鋼板を、300℃以上の滞留終点温度T3b(工程Dにおける冷却開始温度に相当)から、100℃以上300℃以下の温度域での冷却停止温度T4までの平均冷却速度CR3(図1の[6])を10℃/秒以上として冷却する。これにより、未変態のオーステナイトの一部をマルテンサイト変態させるとともに、マルテンサイトに変態しない未変態のオーステナイトを微細化することができる。その結果、微細な残留オーステナイトおよびMAが得られる。また、形成したマルテンサイトが後述の工程を経て焼戻しマルテンサイトになることで、降伏比YRおよび衝突安全性を高めることもできる。
 平均冷却速度CR3が10℃/秒を下回ると、冷却中に炭素濃化領域が必要以上に広がり、MAが粗大となるためTS×λが低下する。従って、平均冷却速度CR3は10℃/秒以上とするのがよく、好ましくは15℃/秒以上であり、より好ましくは20℃/秒以上である。なお、平均冷却速度CR3の上限は特に限定されないが、例えば100℃/秒以下であればよい。
 冷却停止温度T4(図1の[7])が300℃を上回ると、十分なマルテンサイト変態が生じないため、焼鈍後の鋼板組織におけるMAが粗大化して、所望のTS×λが得られない。同時に、焼鈍後の鋼板組織中に十分な量の焼戻しマルテンサイトを導入することもできず、降伏比YRも低下する。従って、冷却停止温度T4は300℃以下とするのがよく、好ましくは280℃以下であり、より好ましくは260℃以下である。
 冷却停止温度T4が100℃を下回ると、マルテンサイト変態が過度に進行するため、焼鈍後の鋼板組織に所望の残留オーステナイト量を確保することができない。その結果、全伸びELが低下し、所望のTS×ELが得られない。従って、冷却停止温度T4は100℃以上とするのがよく、好ましくは120℃以上であり、より好ましくは140℃以上である。
 この工程Dにおいて、冷却停止後は、図1の[7]に示すように、前記冷却停止温度T4で保持してもよいが、保持せずに、後述する再加熱する工程を更に行うことが好ましい。前記冷却停止温度T4で保持する場合は、保持時間t4を1秒以上600秒以下とすることが好ましい。この冷却停止温度T4での保持時間t4が長くても、特性はほとんど影響を受けないが、600秒を超えると生産性が低下する。
 [工程E:前記冷却停止温度T4から、300℃以上500℃以下の温度域での再加熱温度T5まで加熱し、再加熱温度T5の温度域において350秒以上1800秒以下の時間t5保持する工程]
 図1における工程Eでは、工程Dで冷却した鋼板を、300℃以上500℃以下で、下記の要件を満足する再加熱温度T5まで加熱し、再加熱温度T5の温度域において350秒以上1800秒以下の時間(保持時間t5)保持する(図1の[9])。この再加熱温度T5は、工程Bにおける冷却停止温度T3a(工程Cにおける滞留開始温度にも相当)と滞留終点温度T3bとの平均温度[(T3a-T3b)/2]との差が50℃以下であるという要件を満足させる必要がある。
 この工程Eにより、未変態のオーステナイトの一部がベイナイト変態すると同時に、工程Dで析出したマルテンサイトが焼戻しされる。これにより、bcc構造およびbct構造を有する組織のIQの歪度を所望の値に制御することができる。同時に、ベイナイトおよびマルテンサイト中の炭素が排出されて周囲のオーステナイトへの炭素濃化が促進され、オーステナイトを安定化させることができる。その結果、最終的に得られる残留オーステナイト量を増大させることができる。
 再加熱温度T5までの加熱速度HR2(図1の[8])は特に限定されず、例えば1℃/秒以上、50℃/秒以下が挙げられる。
 再加熱温度T5が300℃を下回ると、マルテンサイトを十分に焼戻しすることができず、IQの歪度が-0.3を上回り、所望のTS×ELが得られない。従って、再加熱温度T5は300℃以上とするのがよく、好ましくは320℃以上であり、より好ましくは340℃以上である。
 再加熱温度T5が500℃を上回ると、炭素がセメンタイトとして析出し、十分な量の残留オーステナイトを確保できなくなる。その結果、全伸びELが低下し、所望のTS×ELが得られない。従って、再加熱温度T5は500℃以下とするのがよく、好ましくは480℃以下、より好ましくは460℃以下である。
 再加熱温度T5が、冷却停止温度T3aと滞留終点温度T3bの平均温度との差が50℃よりも高温となると、この工程Eで析出するベイナイトが過度に軟質となり、IQの歪度が-1.2を下回る。その結果、所望の衝突安全性を得られない。
 再加熱温度T5が、冷却停止温度T3aと滞留終点温度T3bの平均温度との差が50℃よりも低温となると、工程Cで析出するベイナイトと工程Eで析出するベイナイトおよび焼戻しマルテンサイトの硬度差が大きくなり、穴広げ率λが低下する。このため、再加熱温度T5は、冷却停止温度T3aと滞留終点温度T3bの平均温度の差が50℃以下であるのがよく、好ましくは40℃以下であり、より好ましくは30℃以下である。
 この工程Eでの再加熱後の保持時間t5(図1の[9])が350秒を下回ると、マルテンサイト等の硬質組織について所望の焼戻し状態が得られず、bcc構造およびbct構造を有する結晶粒のIQの歪度が-1.2を下回る。その結果、所望の衝突安全性が得られない。従って、再加熱後の保持時間t5は350秒以上とするのがよく、好ましくは380秒以上であり、より好ましくは400秒以上である。再加熱後の保持時間t5が1800秒を上回ると、機械的特性にはほとんど影響を及ぼさないが、生産性の低下が生じる。従って、保持時間t5は1800秒以下とするのがよく、好ましくは1200秒以下であり、より好ましくは600秒以下である。
 再加熱温度T5で保持した後は冷却されるが、このときの平均冷却速度CR4(図1の[10])は特に限定されず、例えば、平均冷却速度CR4は1℃/秒以上、50℃/秒以下が挙げられる。
 本実施形態の高強度鋼板では、鋼板に電気めっき処理、蒸着めっき処理等のめっき処理を行ってもよく、更にめっき処理後に合金化処理を行ってもよい。鋼板に、有機皮膜の形成、フィルムラミネート、有機塩類処理、無機塩類処理、ノンクロム処理等の表面処理を行ってもよい。
 めっき処理として鋼板に溶融亜鉛めっき処理を行う場合、例えば、鋼板の温度を亜鉛めっき浴の温度より40℃低い温度以上、且つ亜鉛めっき浴の温度より50℃高い温度以下の温度に加熱または冷却し、亜鉛めっき浴中を通板する。この溶融亜鉛めっき処理により、表面に溶融亜鉛めっき層を備えた鋼板、すなわち溶融亜鉛めっき鋼板が得られる。
 溶融亜鉛めっき処理後に合金化処理を行う場合、例えば、溶融亜鉛めっき鋼板を460℃以上600℃以下の温度に加熱する。加熱温度が460℃未満では、合金化が不足することがある。加熱温度が600℃超では、合金化が過剰となって、耐食性が劣化することがある。合金化処理により、表面に合金化溶融亜鉛めっき層を有する鋼板、すなわち合金化溶融亜鉛めっき鋼板が得られる。
 なお、上記実施形態は、いずれも本発明を実施するにあたっての具体例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下にまとめる。
 本発明の一態様に係る高強度鋼板は、
 質量%で、
 C:0.10~0.35%、
 Si+Al:0.5~3.0%、
 Mn:1.0~3.0%、
 P :0%超0.05%以下、および
 S :0%超0.01%以下
を夫々含有し、残部が鉄および不可避不純物であり、
 面積割合で、フェライト分率:0~10%、MA分率:0~30%、フェライトおよびMA以外の硬質相:70~100%であり、
 体積割合で、残留オーステナイト分率:5~30%である金属組織を有し、
 bcc構造およびbct構造を有する結晶粒を面積0.05μm2の領域の集合とした場合に、EBSD法によって解析したときのIQの歪度を、下記式(1)で表したとき、この歪度が-1.2~-0.3であることを特徴とする。
Figure JPOXMLDOC01-appb-M000004
 式(1)における各変数は、以下を表す。
n:bcc構造およびbct構造を有する面積0.05μm2の領域の総数
s:面積0.05μm2の領域のIQの標準偏差
:面積0.05μm2の領域iのIQ
ave:bcc構造およびbct構造を有する面積0.05μm2の領域の平均IQ
 このような構成により、衝突安全性および成形性のいずれも優れた高強度鋼板を提供することができる。
 本発明の好ましい実施形態として、上記高強度鋼板には、必要によって更に、(a)Ti:0%超0.2%以下、Nb:0%超0.2%以下およびV:0%超0.5%以下よりなる群から選択される少なくとも1種、(b)Ni:0%超2%以下、Cr:0%超2%以下およびMo:0%超0.5%以下よりなる群から選択される少なくとも1種、(c)B:0%超0.005%以下、(d)Mg:0%超0.04%以下、REM:0%超0.04%以下およびCa:0%超0.04%以下よりなる群から選択される少なくとも1種、等を含有することも有効であり、含有させる元素の種類に応じて高強度鋼板の特性が更に改善される。
 本発明の他の好ましい実施形態として、鋼板表面にめっき層を有する高強度鋼板も含まれる。
 本発明の他の態様として高強度鋼板の製造方法も含まれ、この製造方法は、上記のような化学成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後に冷却して巻取り、次いで酸洗・冷間圧延を施した後、
 鋼のAc3変態点以上、950℃以下の温度T1に加熱し、該温度域で5秒以上1800秒以下の時間t1保持してオーステナイト化する工程と、
 700℃以上の急冷開始温度T2から10℃/秒以上の平均冷却速度CR2で300℃以上500℃以下の温度域の冷却停止温度T3aまで冷却する工程と、
 300℃以上500℃以下の温度域で、平均冷却速度10℃/秒以下で10秒以上300秒未満の時間t3滞留する工程と、
 300℃以上の滞留終点温度T3bから100℃以上300℃以下の温度域の冷却停止温度T4まで10℃/秒以上の平均冷却速度CR3で冷却する工程と、
 前記冷却停止温度T4から、300℃以上500℃以下の温度域で、下記の要件を満足する再加熱温度T5まで加熱し、該再加熱温度T5の温度域において350秒以上1800秒以下の時間t5保持する工程と、
 再加熱温度T5:前記冷却停止温度T3aと滞留終点温度T3bとの平均温度との差が50℃以下である。
 をこの順に含むことを特徴とする。
 こうした構成により、上記したような優れた衝突安全性および成形性を両立する高強度鋼板を製造することができる。
 上記のような鋼板表面にめっき層を有する高強度鋼板を製造する場合には、上記の製造方法において、更に鋼板表面にめっき層を施す工程を有するようにすればよい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示した化学成分組成(残部:鉄、およびP、S以外の不可避不純物)を有する鋳造材(鋼種A~E)を真空溶製で製造した後、この鋳造材を熱間圧延で板厚30mmとし、さらに熱間圧延を施した。下記表1に示した各鋼種のAc3変態点は、「レスリー鉄鋼材料学:1985年、William C.Leslie」の第273頁に記載されたVII-20式を参照した下記式(2)により計算した値である。また表1中、「-」の欄は添加していないこと、または測定限界未満であることを意味する。
 Ac3変態点(℃)=910-203×[C]1/2-15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]-30×[Mn]-11×[Cr]+700×[P]+400×[Al]+400×[Ti]・・・式(2)
 ただし、上記[C]、[Ni]、[Si]、[V]、[Mo]、[Mn]、[Cr]、[P]、[Al]および[Ti]は、夫々C、Ni、Si、V、Mo、Mn、Cr、P、AlおよびTiの鋼板中の質量%を意味し、含まれない元素は「0質量%」として算出される。
Figure JPOXMLDOC01-appb-T000005
 前記熱間圧延では、1250℃に供試材を加熱した後、多段圧延で板厚2.6mmに圧延した。このとき、熱間圧延の終了温度は920℃とした。その後、600℃まで30℃/秒の平均冷却速度で冷却し、600℃に加熱した炉に挿入後、30分保持し、その後、炉冷して熱延鋼板を得た。この熱延鋼板に対し、酸洗を施して表面のスケールを除去した後、冷間圧延を施して厚さ1.4mmの冷延鋼板を原板として得た。
 得られた原板に対し、下記表2(図1に示した工程A~C)および表3(図1に示した工程D~E)に示す熱処理を行ってサンプルを得た。なお、表2、3の試験No.1では、工程Eの再加熱保持後に、めっき浴への浸漬に相当する460℃における保持と合金化炉に相当する500℃における保持からなる合金化溶融亜鉛めっきを模擬した熱処理を施した。また表2、3において、平均冷却速度CR1、CR2、CR3は、加熱速度と区別するため、マイナス表示とした。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 得られたサンプルの板厚/4位置における金属組織およびIQの歪度を、前述の手法にて測定することで求めた。その結果を、下記表4に示す。
 また得られたサンプルを用い、下記の各方法によって、引張試験、穴広げ試験、VDA曲げ試験を行い、鋼板の機械的特性を測定した。その結果を下記表5に示す。
 [引張試験]
 上記サンプルから、鋼板の圧延方向に垂直な方向が長手方向となるように、JIS5号引張試験片を鋼板から採取し、JIS Z 2241:2011に規定の方法に従って、測定し、降伏強度YP、引張強度TSおよび全伸びELを測定した。
 [穴広げ試験]
 上記サンプルを、JFS T1001で規定される穴広げ試験に供し、穴広げ率λを測定した。
 [VDA曲げ試験]
 ドイツ自動車工業会で規定されたVDA基準(VDA238-100)に基づいて、以下の条件で曲げ試験を行い、曲げ試験で測定される最大荷重時の変位をVDA基準で角度に変換し、曲げ角度を求めた。そして、曲げ角度10°における荷重を評価した。
 (測定条件)
 試験方法:ロール支持、ポンチ押し込み
 ロール径:φ30mm
 ポンチ形状:先端R=0.4mm
 ロール間距離:2.9mm
 ポンチ押し込み速度:20mm/分
 試験片寸法:60mm×60mm
 曲げ方向:圧延方向に対して直角方向
 試験機:SHIMADZU AUTOGRAPH(最大荷重:20kN)
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 これらの結果から、次のように考察できる。まず試験No.1~4、いずれも本実施形態の高強度鋼板で規定する化学成分組成を満足し(表1の鋼種A~D)、且つ本実施形態の製造方法で規定する製造条件で製造して所望の鋼組織が得られたため、高い引張強度TS、降伏比YRと成形性(TS×EL、TS×λ)に加えて、優れた衝突安全性(VDA曲げ試験の曲げ角度10°における荷重/板厚)を示している。
 これに対し、試験No.5~7は、本実施形態の製造方法で規定する製造条件を満たさないため、所望の鋼組織が得られず、その結果、機械的特性のいずれかが劣る結果となった。
 具体的には、試験No.5は、工程Eにおける保持時間t5が所望の条件より短時間であり、IQの歪度が所望の値より低くなった例である。その結果、TS×λおよび衝突安全性について、所望の機械的特性が得られていない。
 試験No.6は、工程Aにおける加熱温度が低温(Ac3変態点未満)であり、且つ工程Cを含まない例である。工程Cを含まないことによって、軟質なベイナイトが析出せず、その代わりに上記工程Aで多量のフェライト(IQの高い組織)が析出し、IQの平均値が上昇して、IQの歪度が低下している。その結果、フェライト量およびIQの歪度が所望の範囲を外れることで、降伏比YR、TS×λおよび衝突安全性が低下し、所望の機械的特性が得られていない。
 試験No.7は、工程Cを含まないため、軟質なベイナイトが析出せず、その代わりに工程Dでより硬質なマルテンサイト(IQの低い組織)が増加していることが予想される。その結果、試験No.6とは逆にIQの歪度が所望の値より高くなり、TS×ELが低下している。
 この出願は、2019年9月17日に出願された日本国特許出願特願2019-168392を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、高強度鋼板およびその製造方法に関する技術分野において、広範な産業上の利用可能性を有する。

Claims (8)

  1.  質量%で、
     C:0.10~0.35%、
     Si+Al:0.5~3.0%、
     Mn:1.0~3.0%、
     P :0%超0.05%以下、および
     S :0%超0.01%以下
    を夫々含有し、残部が鉄および不可避不純物であり、
     面積割合で、フェライト分率:0~10%、MA分率:0~30%、フェライトおよびMA以外の硬質相:70~100%であり、
     体積割合で、残留オーステナイト分率:5~30%である金属組織を有し、
     bcc構造およびbct構造を有する結晶粒を面積0.05μm2の領域の集合とした場合に、EBSD法によって解析したときのIQの歪度を、下記式(1)で表したとき、この歪度が-1.2~-0.3であることを特徴とする高強度鋼板。
    Figure JPOXMLDOC01-appb-M000001
     式(1)における各変数は、以下を表す。
    n:bcc構造およびbct構造を有する面積0.05μm2の領域の総数
    s:面積0.05μm2の領域のIQの標準偏差
    :面積0.05μm2の領域iのIQ
    ave:bcc構造およびbct構造を有する面積0.05μm2の領域の平均IQ
  2.  更に、Ti:0%超0.2%以下、Nb:0%超0.2%以下およびV:0%超0.5%以下よりなる群から選択される少なくとも1種を含有する請求項1に記載の高強度鋼板。
  3.  更に、Ni:0%超2%以下、Cr:0%超2%以下およびMo:0%超0.5%以下よりなる群から選択される少なくとも1種を含有する請求項1に記載の高強度鋼板。
  4.  更に、B:0%超0.005%以下を含有する請求項1に記載の高強度鋼板。
  5.  更に、Mg:0%超0.04%以下、REM:0%超0.04%以下およびCa:0%超0.04%以下よりなる群から選択される少なくとも1種を含有する請求項1に記載の高強度鋼板。
  6.  鋼板表面にめっき層を有する請求項1に記載の高強度鋼板。
  7.  請求項1~5のいずれかに記載の高強度鋼板の製造方法であって、
     請求項1~5のいずれかに記載の化学成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後に冷却して巻取り、次いで酸洗・冷間圧延を施した後、
     鋼のAc3変態点以上、950℃以下の温度T1に加熱し、該温度域で5秒以上1800秒以下の時間t1保持してオーステナイト化する工程と、
     700℃以上の急冷開始温度T2から10℃/秒以上の平均冷却速度CR2で300℃以上500℃以下の温度域の冷却停止温度T3aまで冷却する工程と、
     300℃以上500℃以下の温度域で、平均冷却速度10℃/秒以下で10秒以上300秒未満の時間t3滞留する工程と、
     300℃以上の滞留終点温度T3bから100℃以上300℃以下の温度域の冷却停止温度T4まで10℃/秒以上の平均冷却速度CR3で冷却する工程と、
     前記冷却停止温度T4から、300℃以上500℃以下の温度域で、下記の要件を満足する再加熱温度T5まで加熱し、該再加熱温度T5の温度域において350秒以上1800秒以下の時間t5保持する工程と、
     再加熱温度T5:前記冷却停止温度T3aと滞留終点温度T3bとの平均温度との差が50℃以下である。
     をこの順に含むことを特徴とする高強度鋼板の製造方法。
  8.  請求項6に記載の高強度鋼板を製造する方法であって、更に鋼板表面にめっき層を施す工程を有する請求項7に記載の製造方法。
PCT/JP2020/034736 2019-09-17 2020-09-14 高強度鋼板およびその製造方法 WO2021054290A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/760,969 US11913088B2 (en) 2019-09-17 2020-09-14 High-strength steel sheet and method for producing same
MX2022003162A MX2022003162A (es) 2019-09-17 2020-09-14 Lamina de acero de alta resistencia y metodo para producir la misma.
KR1020227009046A KR20220047846A (ko) 2019-09-17 2020-09-14 고강도 강판 및 그의 제조 방법
CN202080064385.1A CN114375343B (zh) 2019-09-17 2020-09-14 高强度钢板及其制造方法
EP20865435.0A EP4012056A4 (en) 2019-09-17 2020-09-14 HIGH STRENGTH STEEL SHEET AND METHOD FOR PRODUCTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168392A JP7191796B2 (ja) 2019-09-17 2019-09-17 高強度鋼板およびその製造方法
JP2019-168392 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021054290A1 true WO2021054290A1 (ja) 2021-03-25

Family

ID=74877867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034736 WO2021054290A1 (ja) 2019-09-17 2020-09-14 高強度鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US11913088B2 (ja)
EP (1) EP4012056A4 (ja)
JP (1) JP7191796B2 (ja)
KR (1) KR20220047846A (ja)
CN (1) CN114375343B (ja)
MX (1) MX2022003162A (ja)
WO (1) WO2021054290A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL444315A1 (pl) * 2023-04-04 2024-10-07 Politechnika Wrocławska Stal bainityczna umacniana fazą międzymetaliczną oraz sposób jej wytwarzania

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589893B2 (ja) 2010-02-26 2014-09-17 新日鐵住金株式会社 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法
JP5610102B2 (ja) 2012-08-21 2014-10-22 新日鐵住金株式会社 鋼材
JP2015517029A (ja) * 2012-03-30 2015-06-18 フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテルハフツングVoestalpinestahl Gmbh 高強度冷間圧延鋼板およびそのような鋼板を作製する方法
WO2017138504A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2017169837A1 (ja) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 高強度冷延鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
WO2017179372A1 (ja) * 2016-04-14 2017-10-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2017208759A1 (ja) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2018221307A1 (ja) * 2017-05-31 2018-12-06 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP2019505694A (ja) * 2015-12-21 2019-02-28 アルセロールミタル 強度及び成形性が改善された高強度鋼板の製造方法、及び得られた高強度鋼板
JP2019168392A (ja) 2018-03-26 2019-10-03 ラピスセミコンダクタ株式会社 半導体装置及び電子機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396347B2 (ja) * 2004-03-25 2010-01-13 Jfeスチール株式会社 延性および伸びフランジ性に優れる高張力鋼板の製造方法
JP5667472B2 (ja) * 2011-03-02 2015-02-12 株式会社神戸製鋼所 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
US9745639B2 (en) * 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
JP5860308B2 (ja) * 2012-02-29 2016-02-16 株式会社神戸製鋼所 温間成形性に優れた高強度鋼板およびその製造方法
JP6079726B2 (ja) * 2013-09-04 2017-02-15 Jfeスチール株式会社 高強度鋼板の製造方法
JP5728115B1 (ja) * 2013-09-27 2015-06-03 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
JP5728108B2 (ja) * 2013-09-27 2015-06-03 株式会社神戸製鋼所 加工性および低温靭性に優れた高強度鋼板、並びにその製造方法
JP6554396B2 (ja) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法
JP2017145485A (ja) * 2016-02-19 2017-08-24 株式会社神戸製鋼所 高強度高延性鋼板の製造方法
US11326234B2 (en) * 2017-03-31 2022-05-10 Nippon Steel Corporation Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet
WO2018189950A1 (ja) 2017-04-14 2018-10-18 Jfeスチール株式会社 鋼板およびその製造方法
KR102517187B1 (ko) 2018-10-17 2023-04-03 제이에프이 스틸 가부시키가이샤 박강판 및 그의 제조 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589893B2 (ja) 2010-02-26 2014-09-17 新日鐵住金株式会社 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法
JP2015517029A (ja) * 2012-03-30 2015-06-18 フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテルハフツングVoestalpinestahl Gmbh 高強度冷間圧延鋼板およびそのような鋼板を作製する方法
JP5610102B2 (ja) 2012-08-21 2014-10-22 新日鐵住金株式会社 鋼材
JP2019505694A (ja) * 2015-12-21 2019-02-28 アルセロールミタル 強度及び成形性が改善された高強度鋼板の製造方法、及び得られた高強度鋼板
WO2017138504A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2017169837A1 (ja) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 高強度冷延鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
WO2017179372A1 (ja) * 2016-04-14 2017-10-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2017208759A1 (ja) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2018221307A1 (ja) * 2017-05-31 2018-12-06 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP2019168392A (ja) 2018-03-26 2019-10-03 ラピスセミコンダクタ株式会社 半導体装置及び電子機器

Also Published As

Publication number Publication date
US20220349020A1 (en) 2022-11-03
EP4012056A1 (en) 2022-06-15
CN114375343A (zh) 2022-04-19
EP4012056A4 (en) 2022-07-13
KR20220047846A (ko) 2022-04-19
MX2022003162A (es) 2022-04-06
JP2021046571A (ja) 2021-03-25
JP7191796B2 (ja) 2022-12-19
US11913088B2 (en) 2024-02-27
CN114375343B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN112074620B (zh) 镀锌钢板及其制造方法
CN112041475B (zh) 镀锌钢板及其制造方法
KR102121415B1 (ko) 고강도 강판 및 그의 제조 방법
US10156005B2 (en) High-yield-ratio, high-strength cold rolled steel sheet and production method therefor
KR101130837B1 (ko) 구멍 확장성과 연성의 균형이 극히 양호하고, 피로 내구성도 우수한 고강도 강판과 아연 도금 강판 및 이 강판들의 제조 방법
JP7087078B2 (ja) 衝突特性及び成形性に優れた高強度鋼板及びその製造方法
JP5418047B2 (ja) 高強度鋼板およびその製造方法
JP4860784B2 (ja) 成形性に優れた高強度鋼板及びその製造方法
JP5182386B2 (ja) 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法
WO2012063969A1 (ja) 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2019186989A1 (ja) 鋼板
US20170107591A1 (en) High-yield-ratio, high-strength cold-rolled steel sheet and production method therefor
WO2017168957A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
EP2792762A1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
CN108713066B (zh) 高强度钢板及其制造方法
WO2019097600A1 (ja) 高強度冷延鋼板
KR20230016210A (ko) 강판 및 강판의 제조 방법
JP7136335B2 (ja) 高強度鋼板及びその製造方法
WO2021054290A1 (ja) 高強度鋼板およびその製造方法
JP4396347B2 (ja) 延性および伸びフランジ性に優れる高張力鋼板の製造方法
WO2022075072A1 (ja) 高強度冷延鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板、ならびにこれらの製造方法
CN117677726A (zh) 高强度钢板
KR20210080664A (ko) 연성 및 가공성이 우수한 강판 및 이의 제조방법
JP7303460B2 (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227009046

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865435

Country of ref document: EP

Effective date: 20220310