WO2008072595A1 - ドーピング酸化チタンの製造方法、ドーピング酸化チタン及びこれを用いる可視光応答型光触媒 - Google Patents

ドーピング酸化チタンの製造方法、ドーピング酸化チタン及びこれを用いる可視光応答型光触媒 Download PDF

Info

Publication number
WO2008072595A1
WO2008072595A1 PCT/JP2007/073773 JP2007073773W WO2008072595A1 WO 2008072595 A1 WO2008072595 A1 WO 2008072595A1 JP 2007073773 W JP2007073773 W JP 2007073773W WO 2008072595 A1 WO2008072595 A1 WO 2008072595A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
doped
doped titanium
polymer
amino group
Prior art date
Application number
PCT/JP2007/073773
Other languages
English (en)
French (fr)
Inventor
Ren-Hua Jin
Pei-Xin Zhu
Norimasa Fukazawa
Original Assignee
Kawamura Institute Of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute Of Chemical Research filed Critical Kawamura Institute Of Chemical Research
Priority to EP07850347A priority Critical patent/EP2116304A4/en
Priority to JP2008508995A priority patent/JP4142092B2/ja
Priority to CN200780046135XA priority patent/CN101563161B/zh
Priority to US12/518,957 priority patent/US8017542B2/en
Publication of WO2008072595A1 publication Critical patent/WO2008072595A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3676Treatment with macro-molecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a doped titanium oxide doped with carbon atoms and the like, useful as a visible light responsive photocatalyst, a semiconductor for a solar cell and a fuel cell catalyst, a production method thereof, and a visible light using the doped titanium oxide.
  • the present invention relates to a photoresponsive photocatalyst.
  • titanium oxide is attracting more and more attention because it exhibits different physical properties from conventional white pigments and high refractive index materials (see Non-Patent Document 1, for example).
  • Non-Patent Document 1 Japanese Patent Document 1
  • titanium oxide is an outstanding catalyst material, and is highly expected in the field of application to next-generation photocatalytic devices and solar cells.
  • electrode layers in which platinum nanoparticles are embedded in titanium oxide are also in the limelight for fuel cells that are attracting a great deal of attention in the energy problem.
  • Hydrogen production is required for the practical use of fuel cells, but titanium oxide / platinum composites are also promising candidates for hydrogen production catalysts.
  • titanium oxide has attracted a great deal of attention as a photocatalytic function for spontaneously decomposing and detoxifying dirt and harmful substances. Its application fields extend to housing, cars, medical care, land treatment, etc., and are positioned as essential technologies for building a recycling-oriented society.
  • ultraviolet light As a light source. Considering that natural light (sunlight) does not contain power, about 3% UV power, and most of it is visible light, photocatalysts that absorb only ultraviolet light use solar radiation. Is almost meaningless.
  • titanium oxide in order to use titanium oxide as an effective photocatalyst, it is most important to convert the absorption range of titanium oxide itself into visible light. Therefore, in many studies, atomic doping, which is also called an impurity in titanium oxide, such as doping of anion (nitrogen atom, carbon atom, sulfur atom, phosphorus atom), or cation (transition metal, rare earth metal, metalloid, etc.) Metal ion) doping has been studied. [0004] Several typical methods are known for performing these dopings on titanium oxide.
  • Patent Document 1 metal ions are doped into the titanium oxide crystal surface by injecting metal ions into the titanium oxide crystal surface with acceleration energy. This method is effective as a method of controlling the doping reaction according to the purpose, as well as the ability to control the amount and type of implanted ions.
  • the doped titanium oxide obtained by this method absorbs in the visible light region of 400 to 500 nm and is confirmed to function as a visible light responsive photocatalyst.
  • titanium oxide doped with nitrogen atoms has attracted much attention in recent years as having a visible light responsive photocatalytic function.
  • ammonia water is added dropwise to the hydrolysis reaction of titanium tetrachloride, and the resulting hydrolyzate is heated to a yellow color.
  • It has been proposed to produce colored titanium oxide powder see, for example, Patent Document 3).
  • titanium oxide that functions as a visible light responsive photocatalyst is derived from radicals under visible light irradiation in an electron spin resonance (hereinafter abbreviated as ESR) spectrum measured at room temperature.
  • ESR electron spin resonance
  • titanium tetrachloride is hydrolyzed in the presence of tetraptylammonium hydroxide, and the precipitate obtained thereby is heat-treated, so that visible light containing titanium oxide doped with carbon atoms can be obtained. It has also been reported that a photoresponsive photocatalyst can be obtained (for example, see Non-Patent Document 5).
  • the photocatalyst has a carbon-based precipitate on the surface of titanium oxide, and in the ESR spectrum measured at room temperature in the absence of light, the g value attributed to the carbon-based precipitate or sodium is 2. It has also been reported that the 03 signal is observed (for example, see Patent Document 4).
  • the titanium oxide obtained in Patent Document 3 and Non-Patent Document 5 is yellow, so it is said to be a visible light responsive type, but only visible light of 600 nm or less can be effectively used at most.
  • the function as a responsive photocatalyst is low.
  • the carbon atom-doped titanium oxide production method proposed in Non-Patent Document 5 is a method in which a precipitate formed from a system in which a strongly basic compound such as quaternized ammonium hydroxide and titanium tetrachloride are mixed is calcined. It is.
  • the method is not reproducible as described above, which is essentially different from the conventional method of calcining precipitates generated from the sol-gel reaction of alkoxy titanium. Further, no detailed study has been made on the bonding state of doped carbon atoms. In other words, the structural analysis of doped titanium oxide has not been performed, and the discussion is focused on only the visible light photocatalytic function depending on the carbon content. In addition, the photocatalyst proposed in Patent Document 4 observes a peak derived from sodium that is not clearly used as a raw material and measures its abundance, thereby controlling the structure of the obtained titanium oxide. Please say! /, Say! /, Gata! /. The manufacturing method is based on the aforementioned plasma method. Therefore, when viewed from the viewpoint of reproducibility and industrial production methods, practicality cannot be expected.
  • titanium oxide which is industrially useful as a visible light responsive photocatalyst, have not yet been sufficiently specified, and various parameters have been used and standardized by researchers. Absent. Therefore, a reproducible and simple method for producing doped titanium oxide, a method for identifying the structure of the doped titanium oxide (analytical means), a structure of the obtained doped titanium oxide, a photocatalyst, etc. The association with the function of is currently the most important technical issue.
  • Non-Patent Document 1 A. L. Linsebiger et al., Chem. Rev. 1995, 95, 735
  • Non-Patent Document 2 ⁇ Borgarello et al., J. Am. Chem. Soc., 1982, 104, 2996
  • Non-Patent Document 3 L. Zang et al., J. Phys. Chem. B 1998, 102, 10765
  • Non-Patent Document 4 H. Kisch et al., Angew. Chem. Int. Ed., 1998, 37, 3034
  • Non-Patent Document 5 S. Sakthivel et al., Angew. Chem.. Int. Ed., 2003, Vol. 42, 4908
  • Patent Document 1 JP-A-9 262482
  • Patent Document 2 JP 2003 300730
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-190953
  • Patent Document 4 Japanese Patent Laid-Open No. 11 333304
  • the problem to be solved by the present invention is a simple and industrially effective manufacturing method of doping carbon atoms and the like into titanium oxide, from all visible light castle to 200 Onm in the near infrared region.
  • Doping titanium oxide that shows strong absorption of light has excellent photocatalytic function, and has specified structure and physical properties, and visible light responsive photocatalyst containing the doped titanium oxide Is to provide.
  • the present inventor has an anatase crystalline or rutile crystalline size of 5 to 20 nm doped with carbon atoms, nitrogen atoms, and metal ions. Resonance signal can be observed when the g value in the electron spin resonance spectrum measured at 20-30 ° C under dark black is in the range of 1.5-2.5.
  • the vibration wave numbers derived from amorphous carbon and graphitic carbon are 1200-1700 cm—
  • the titanium oxide that can be observed in the range of 1 and absorbs in the range of 400 to 200 Onm is excellent in performance as a photocatalyst and the like, and is water-soluble in the presence of a basic polymer having an amino group.
  • Water titanium compound A layered structure composite of polymer / Chitayua obtained by solution reaction by thermally baking, and Heading that doping titanium oxide having the physical properties can be obtained easily and reproducibly, and completed the present invention.
  • a feature of the present invention is to provide a method for producing titanium oxide doped with at least carbon atoms and nitrogen atoms.
  • the present invention also provides a method for producing titanium oxide doped with at least carbon atoms, nitrogen atoms, and metal ions.
  • the present invention comprises anatase crystalline or rutile crystalline titanium oxide crystal having a size of 5 to 20 nm having a carbon atom, a nitrogen atom, and a metal ion. Resonance signals can be observed when the g value in the electron spin resonance spectrum measured at 20-30 ° C is in the range of 1.5-2.5, and in the nuclear magnetic resonance spectrum ( 13 C), the carbon atom has sp 2 bonds.
  • the Raman spectrum can be used to observe vibrational wavenumbers derived from amorphous carbon and graphite in the lZOO l YOOcnT 1 range, and in the 400 to 2000 nm range.
  • the present invention provides a doped titanium oxide, and a visible light responsive photocatalyst using the same.
  • the structure of the doped titanium oxide of the present invention can be identified by various analytical methods. And if it is the titanium oxide identified by them, it is clear that it has the outstanding performance as a photocatalyst. Therefore, it is possible to provide industrially useful (reliable) high V doped titanium oxide.
  • the production method of the present invention includes a step of interposing a compound containing atoms or ions to be doped in advance between titania nanocrystals at a nanospace distance (a step of obtaining a composite having a layered structure). For this reason, by thermally baking the obtained composite, atoms or ions confined in the nanospace can be effectively doped into titanium oxide.
  • a doped titanium oxide having a wide absorption range from the visible light to the near infrared region can be obtained. Therefore, the doped titanium oxide obtained by the production method of the present invention is natural.
  • the doped titanium oxide of the present invention can be used as a solar cell member, a hydrogen generation catalyst, a hydrogen or alcohol source fuel cell member. It can also be used in many areas such as antibacterial agents, bactericides, antiviruses, and cosmetics. Furthermore, since the doped titanium oxide of the present invention exhibits absorption even in the near infrared region, it can be applied to applications such as electronic materials, conductive materials, and thermoelectric materials.
  • the visible light responsive photocatalyst of the present invention does not sufficiently receive light in the ultraviolet to near-infrared region because it contains the highly photoresponsive titanium oxide of the present invention! / Is also highly useful in that its action can be expressed.
  • FIG. 1.1 is an XRD measurement result of the layered composite (P1) obtained in Synthesis Example 1.
  • FIG. 1.2 shows a Raman spectroscopic measurement result of the layered composite (P1) obtained in Synthesis Example 1.
  • FIG. 1.3 shows 13 C-NMR measurement results of the layered composite (P1) obtained in Synthesis Example 1 (upper figure).
  • FIG. 2.3 shows 13 C-NMR measurement results of the layered composite (PFe-20) obtained in Synthesis Example 2.
  • FIG. 3.1 is a high-resolution transmission electron microscope (TEM) photograph of doped titanium oxide (T 01) obtained in Example 1.
  • FIG. 3.2 is an XRD measurement result of doped titanium oxide (T 01) obtained in Example 1.
  • FIG. 3.6 is an ESR spectrum of doped titanium oxide ( ⁇ 01) obtained in Example 1.
  • (Sen 4.1) This is a high-resolution transmission electron microscope (TEM) photograph of the doped titanium oxide (TFe-20) obtained in Example 2.
  • FIG. 4.3 is a UV-Vis reflection spectrum of doped titanium oxide (TFe-20, TFe-50, TFe-100, TFe-200) obtained in Example 2.
  • FIG. 4.4 is a 13 C-NMR measurement result of doped titanium oxide (TFe-20) obtained in Example 2.
  • FIG. 5.1 is an XRD measurement result of doped titanium oxide (TZn-20, TMn-20, TCu-20, TCo-20, TNi-20) obtained in Example 3.
  • FIG. 5.2 is a UV-Vis reflection spectrum of doped titanium oxide (TZn-20, TMn-20, TCu-20, TCo-20, TNi-20) obtained in Example 3.
  • FIG. 6.2 is an ESR spectrum of doped titanium oxide (TCr-25, TCr-50, TCr-100, TCr-200) obtained in Example 4.
  • FIG. 6.3 is a Raman spectroscopic measurement result of the doped titanium oxide (TCr-25, TCr-50, TCr-100, TCr-200, TCr-500) obtained in Example 4.
  • FIG. 7.4 is a graph showing changes in the concentration of the reaction solution using the natural light simulator in Test Example 1 and Comparative Test Example 1.
  • FIG. 8.1 is an absorption spectrum in Test Example 2 (decolorization reaction of methylene blue under visible light irradiation using doped titanium oxide TFe-20).
  • FIG. 8.2 is a graph showing changes in the concentration of the reaction solution in Test Example 2 and Comparative Test Example 1
  • FIG. 8.3 is a graph showing changes in the concentration of the reaction solution using the natural light simulator in Test Example 2 and Comparative Test Example 1.
  • FIG. 9.1 is a graph showing changes in irradiation time and methylene blue reaction solution concentration when the catalyst is repeatedly used under visible light irradiation in Test Example 3.
  • the doped titanium oxide of the present invention is composed of anatase crystalline or rutile crystalline titanium oxide having a size of 5 to 20 nm having at least carbon atoms, nitrogen atoms, and metal ions.
  • Resonance signals can be observed when the g value in the electron spin resonance spectrum measured at 20 to 30 ° C under dark black is in the range of 1.5 to 2.5, and carbon in the nuclear magnetic resonance spectrum ( 13C ).
  • the doped titanium oxide of the present invention has the ability to absorb in the range of 400 to 2000 nm, and also has the ultraviolet absorbing ability of conventional titanium oxide.
  • Doped titanium oxide having full wavelength absorption in the range of 400 to 2000 nm is excellent in terms of effective use of natural light (sunlight).
  • unsunlight natural light
  • doped titanium oxide that absorbs only a specific range of wavelengths from the visible light to the near-infrared region it is preferable depending on the intended use and usage environment. Use according to performance Is possible.
  • ESR spectrum under black and at normal temperature (20-30 ° C). In Kuttle, there is no clear signal based on the conduction electrons of titanium oxide.
  • the ESR spectrum is a phenomenon in which unpaired electrons present in a measurement sample (compound) undergo a transition between adjacent energy levels, and are observed based on the absorption state of electromagnetic energy. Therefore, the reason why the signal cannot be observed is thought to be because it was difficult to hold a stable unpaired electron in the titanium atom of the doped titanium oxide.
  • the ESR of doped titanium oxide is measured at extremely low temperatures (around 77K to 173K) to slow down the transition between energy levels, and the energy for generating unpaired electrons. Therefore, the measurement is limited to irradiation with light having a wavelength that can be absorbed by the doped titanium oxide. Therefore, it can be said that it is common knowledge of those skilled in the art that no substantial peak is observed in the ESR measurement at room temperature under the darkness of the doped titanium oxide. In fact, it is considered that the peak observed in the aforementioned Patent Document 4 in the absence of light at room temperature is derived from carbon-based precipitates covering a part of the surface of titanium oxide or sodium electrons.
  • the peak with a g value of 1.97 which is a signal attributed to conduction electrons in a substance considered to have photocatalysis, is not observed at room temperature, but only at liquid nitrogen temperature. Therefore, the doped titanium oxide of the present invention is completely different from the previously proposed doped titanium oxide in that a clear signal can be observed even at room temperature or in the dark, and it has excellent performance such as photocatalytic function. I think that this is the reason.
  • the doped titanium oxide of the present invention can observe a signal indicating that a carbon atomic force Ssp 2 bond is formed in the nuclear magnetic resonance spectrum ( 13 C).
  • the vibration wave number derived from amorphous carbon and graphite carbon can be observed in the range of 1200 to 1700cm- 1 . It is considered that by including such a carbon atom in titanium oxide, various visible light and / or near infrared light response functions such as a photocatalyst function can be effectively expressed.
  • What is doped in the doped titanium oxide of the present invention is at least a carbon atom A nitrogen atom and a metal ion. At this time, it may be doped with a single kind of metal ion or may be doped with two or more kinds of metal ions. Various selections may be made according to the application and use environment of the doping titanium oxide, and they may be used alone or in combination.
  • the doped titanium oxide of the present invention may contain other non-metal atoms.
  • a sulfur atom and a phosphorus atom are preferable because the catalytic action of the resulting doped titanium oxide is further enhanced.
  • other nonmetallic atoms only a single atom may be doped, or two or more kinds of atoms may be doped.
  • titanium oxide doped with two or more kinds of non-metal atoms is preferable because it has a large absorption in a wide range from the visible light to the near-infrared region, and the visible light response is enhanced.
  • the doping ratio of carbon atoms and nitrogen atoms, and other non-metallic atoms used as necessary, is excellent in the visible light response of the obtained doped titanium oxide, and the crystal structure of titanium oxide is From the standpoint of! /,
  • the total amount of carbon atoms and nitrogen atoms is preferably 20% by mass or less, particularly preferably 10% by mass or less, based on the total amount of doped titanium oxide.
  • the total of carbon atoms, nitrogen atoms and other nonmetallic atoms is preferably 20% by mass or less based on the total amount of doped titanium oxide! /.
  • the metal ions can be doped with various ions such as alkaline earth metals, transition metals, metalloids, lanthanum metals, and the like, which are not particularly limited, and include only a single metal ion. May contain two or more types of metal ions! /.
  • titanium oxide doped with two or more metal ions is preferable because it has a large absorption in a wide range from the visible light to the near infrared region, and the visible light responsiveness is enhanced.
  • transition metal ions such as iron, manganese, nickel, cobalt, copper, vanadium, zinc, platinum, silver, and radium ions are easily used in the manufacturing method of the doped titanium oxide of the present invention described later. Titanium oxide is preferred because it can be doped, and the resulting doped titanium oxide has excellent visible light response.
  • the doping ratio of the metal ions visible light of the obtained doped titanium oxide From the viewpoint of excellent responsiveness and not impairing the crystal structure of titanium oxide, it is preferably 10% by mass or less based on the total amount of doped titanium oxide.
  • the doped titanium oxide of the present invention is made of anatase-type crystal or rutile-type crystal having a size of 5 to 20 nm.
  • the size and type of crystal can be clarified by observation with a high-resolution transmission electron microscope (TEM) or analysis by X-ray crystal structure diffraction (XRD).
  • TEM transmission electron microscope
  • XRD X-ray crystal structure diffraction
  • the XRD analysis results show that the scattering pattern varies depending on the type of crystal such as anatase-type crystallinity and rutile-type crystallinity, so that it can be easily analyzed, and the crystal size can also be calculated from the half-value width.
  • those having anatase type crystallinity are preferred because of their excellent photocatalytic function.
  • the doped titanium oxide of the present invention has the above-described structure / physical properties (spectrum), and such a structure / physical property can be efficiently used in applications such as a visible light responsive photocatalyst. Its function can be expressed.
  • the method for obtaining such doped titanium oxide is not particularly limited. However, industrial production is easy and excellent in reproducibility, the ability to adjust the kind of introduction of carbon atoms, nitrogen atoms, metal ions to be doped, etc.
  • the most preferable method is a method in which a polymer / titania layered structure complex formed by hydrolyzing a water-soluble titanium compound in the presence of a basic polymer having an amino group is thermally fired.
  • the method for producing doped titanium oxide of the present invention uses a composite in which a polymer or a polymer metal complex and a titania nanocrystal are layered while having an interlayer distance on the nanometer order, preferably an interlayer distance of 1 to 3 nm, as a precursor. It is characterized in that it is converted into titanium oxide doped with impurities by baking it. By using such a manufacturing method, the crystal size can be controlled to around lOnm.
  • nanostructures such as nanocrystals and nanospaces have many possibilities for the synthesis of new functional materials as new nanoreaction fields.
  • the various processes can be used to convert the semiconductor crystal surface into a substance that exists between the layers. Can cause academic reactions. That is, the layered nanospace can be a very advantageous nanoreaction field.
  • the present invention pays attention to such a point of view and devised an optimal process comprising a two-stage method of synthesizing a precursor material and performing thermal firing of the material for doping in a nano-reaction field.
  • inorganic oxides in biological systems are complex in the form of biopolymers, for example, basic polypeptides, proteins, or polyamine tissue (aggregates) containing these biopolymers. It is known to form a complex having a precise pattern or to construct a layered structure in which inorganic layers and organic layers are alternately arranged in the complex.
  • the present invention mimics such a biological process, and uses a basic polymer (x) having an amino group or a complex (y) of a basic polymer (X) having an amino group and a metal ion as a template.
  • the complex (y) was completed by obtaining a polymer / titaure layered structure composite sandwiched between titania.
  • a basic polymer (X) having an amino group or a complex (y) of a basic polymer (X) having an amino group and a metal ion is a hydrolytic condensation reaction of a water-soluble titanium compound (z). It functions as a catalyst. At the same time, depositing the titania sol is induced while forming an ion complex with the titania sol resulting from the reaction. As a result, a polymer / titania layered structure composite in which the polymer and the titania are alternately laminated is formed.
  • Carbon atom, nitrogen atom, and metal ion in complex (y) of conductive polymer (X) and metal ion cause doping reaction on titania crystal surface.
  • carbon atoms, nitrogen atoms, and metal ions are doped into the titania structure, resulting in an anatase-type crystal or rutile-type crystal having a size of 5 to 20 nm.
  • g value of an electron spin resonance spectrum as measured in. 20 to 30 ° C is from 1.5 to 2.
  • the vibration wave number derived from amorphous carbon and graphitic carbon can be observed in the range of 1200 to 1700 cm- 1 , and the absorption is in the range of 400 to 2000 nm. Converted to doped titanium oxide.
  • the doped titanium oxide obtained by the above production method includes a basic polymer having an amino group.
  • the carbon atom content can be adjusted between 1 and 20% by mass in the doped titanium oxide. This adjustment is performed according to the firing temperature, firing time, and gas atmosphere during firing in the process of thermally firing the precursor composite.
  • the carbon atom content decreases as the temperature increases, but the presence of sp 2 bonds of carbon atoms remains unchanged.
  • the carbon content increases as the atmosphere is in an inert gas, and the carbon content decreases as the atmosphere is closer to / from the air.
  • Typical thermal firing temperatures are in the range of 300 to 1000 ° C, and a doped titanium oxide with high visible light response can be obtained.
  • the gas atmosphere during the thermal firing include nitrogen gas, air, argon gas, and a mixed gas thereof, and it is particularly preferable to carry out in a mixed gas atmosphere of nitrogen gas and air.
  • the precursor composite is first fired at 400 ° C in an air atmosphere for a predetermined time (10 to 60 minutes), and then the furnace temperature is raised to 600 to 1000 ° C in a nitrogen atmosphere. It is possible to obtain doped titanium oxide by holding it at that temperature for a predetermined time (10 to 180 minutes).
  • the precursor complex is fired at 600 to 1000 ° C for a predetermined time (20 to 120 minutes) in a nitrogen atmosphere, and then once again at 350 to 450 ° C for a predetermined time in an air atmosphere. (3-60 minutes) Doping titanium oxide can also be obtained by baking.
  • non-metallic atoms other than carbon atoms and nitrogen atoms for example, acidic compounds containing sulfur atoms (sulfuric acid, toluenesulfonic acid, methylsulfonic acid, ethylsulfonic acid, etc.) and / or phosphorus atoms
  • acidic compounds containing sulfur atoms sulfuric acid, toluenesulfonic acid, methylsulfonic acid, ethylsulfonic acid, etc.
  • phosphorus atoms examples thereof include a method using a mixture of an acidic compound (phosphoric acid, methylphosphonic acid, ethinorephosphonic acid, phenylphosphonic acid, etc.) and a basic polymer (X) having an amino group.
  • a sulfur-based acidic compound or a phosphorus-based acidic compound bonded to the amino group of the polymer is generated and can be incorporated into the layered structure. Or assembled into a layered structure
  • a method of mixing the woven polymer / tita complex in the acidic compound solution and bonding the acidic compound to the polymer (X) may be used.
  • Non-metallic atoms such as sulfur atoms or phosphorus atoms can be easily doped by thermally firing the layered composite thus obtained.
  • doping can also be performed by using a basic polymer (X) structure having an amino group having a nonmetallic atom other than a carbon atom or a nitrogen atom.
  • the content of metal ions in the resulting doped titanium oxide can be adjusted in the range of 0.2 to 5 mass 0/0.
  • the content ratio is determined by using a complex (y) of a basic polymer (X) having an amino group and a metal ion in the preparation stage of the complex as a precursor, and the metal ion in the complex (y). It is possible to adjust by the content rate. That is, if the content is increased, the amount of doped metal ions can be increased, and if the content is decreased, it can be decreased. Further, by using a polymer complex having different metal ions in combination, the resulting titanium oxide can be doped with a plurality of types of metal ions.
  • the basic polymer (X) having an amino group used in the present invention is not particularly limited, and usual water-soluble polyamines and the like can be used.
  • Examples of the polymer (X) include, for example, synthetic polyamines such as polybulamine, polyallylamine, polyethyleneimine (branched and linear), polypropyleneimine, poly (4-bulupyridine), poly ( Examples thereof include synthetic polyamines containing amino groups in the side chain or main chain, such as aminoethyl methacrylate and poly [4- (N, N-dimethylaminomethylstyrene)].
  • synthetic polyamines such as polybulamine, polyallylamine, polyethyleneimine (branched and linear), polypropyleneimine, poly (4-bulupyridine), poly
  • Examples thereof include synthetic polyamines containing amino groups in the side chain or main chain, such as aminoethyl methacrylate and poly [4- (N, N-dimethylaminomethylstyrene)].
  • polyethyleneimine is particularly preferred because it is easily available and can easily form a layered structure with titanium oxide sol!
  • biological polyamine for example, chitosan, spenolemidine, bis (3-aminopropyl) amine, homospermidine, spermine, etc., or a biopolymer having many basic amino acid residues, for example, Examples thereof include biological polyamines including synthetic polypeptides such as polylysine, polyhistine, and polyarginine.
  • the polymer (X) a part of the amino groups in the polyamine is a non-amine polymer. It may be a modified polyamine bonded to one skeleton or a copolymer of a polyamine skeleton and a non-amine polymer skeleton.
  • the amino group of the basic polymer (X) having an amino group is reacted with a compound having a functional group that can easily react with an amine such as an epoxy group, a halogen, a tosyl group, or an ester group. Can be easily obtained.
  • the non-amine polymer skeleton may be hydrophilic or hydrophobic! / Or may be misaligned! /.
  • hydrophilic polymer skeleton include a skeleton composed of polyethylene glycol, polymethyloxazoline, polyethyloxazoline, polyacrylamide and the like.
  • hydrophobic polymer skeleton include skeletons made of epoxy resin, urethane resin, polymetatalylate resin, and the like.
  • the non-amine polymer skeleton is preferably 50% by mass or less compared to the total structural unit of the polymer (X). 20% by mass It is particularly preferable that the content is 10% by mass or less.
  • the molecular weight of the polymer (X) is not particularly limited.
  • the weight average molecular weight as a polystyrene conversion value determined by gel permeation chromatography (GPC) is usually 300 to 100, 100, 000, preferably 500 to 80,000, and more preferably 1,000 to 50,000.
  • the complex (y) of an amino group-containing basic polymer (X) and a metal ion used in the production method of the present invention can be obtained by adding a metal ion to the above-mentioned basic polymer (X) having an amino group.
  • the complex (y) is formed by the coordinate bond between the metal ion and the amino group in the polymer (X).
  • the metal ions used here are the same as the metal ions in the target doped titanium oxide, and all metal ions capable of coordinating with the amino group can be used.
  • the metal ion valence may be a monovalent to tetravalent metal salt, or may be preferably used even in a complex ion state.
  • the amount of the metal ion used is that of the amino group in the basic polymer (X) having an amino group. It is preferably 1/10 to 1/200 equivalent as an ion with respect to the number of moles.
  • the titanium compound used in the present invention is preferably a non-halogenated titanium compound that is water-soluble and does not hydrolyze when dissolved in water, that is, is stable in pure water.
  • aqueous solution of titanium bis (ammonium lactate) dihydroxide an aqueous solution of titanium bis (latate), propanol / water of titanium bis (latate)
  • the layered structure composite of polymer / titaure is composed of a water-soluble titanium in an aqueous solution of a basic polymer (x) having an amino group or a complex of a basic polymer (X) having an amino group and a metal ion (y).
  • the force S can be obtained by mixing the compound (z).
  • the basic polymer (X) having an amino group or the amine unit in the complex (y) of the basic polymer (X) having an amino group and a metal ion is a water source that is a titanium source. If the amount of the titanium compound (z) is excessive, a complex can be suitably formed. Specifically, the water-soluble titanium compound (z) is 2 to 1000 times equivalent to the amine unit, It is preferable to be in the range of 4 to 700 times equivalent! / ,.
  • the concentration of the aqueous solution of the complex (X) and the metal ion (y) is preferably 0. !! to 30% by mass based on the amount of polyamine contained in the polymer (X).
  • the time of the hydrolytic condensation reaction of the water-soluble titanium compound (z) varies from 1 minute to several hours, but it is more preferable to set the reaction time to 30 minutes to 5 hours in order to increase the reaction efficiency. It is.
  • the pH value of the aqueous solution in the hydrolytic condensation reaction is preferably set between 5 and 11; S is preferable, and the value is particularly preferably 7 to 10;
  • a complex (precursor) obtained by a hydrolytic condensation reaction is a complex of a basic polymer (X) having an amino group and a metal ion, which is a white precipitate in the absence of a metal ion (y)
  • the complex obtained in the presence of is a colored precipitate reflecting the color of the metal ions.
  • the content of titaure in the complex (precursor) obtained by the hydrolytic condensation reaction can be adjusted according to the reaction conditions and the like, and a product in the range of 20 to 90% by mass of the whole complex should be obtained.
  • Power S can be.
  • the doped titanium oxide of the present invention can be obtained by thermally firing the composite obtained here by the method described above.
  • the doped titanium oxide of the present invention can be used in various applications where titanium oxide has been conventionally used, for example, a dye-sensitized solar cell member, a non-dye sensitized dye without using a dye. It can be used as a solar cell member, a hydrogen generation catalyst, a hydrogen or alcohol source fuel cell member, and can be used in many fields such as antibacterial agents, bactericides, antiviruses, and cosmetics. Furthermore, since the doped titanium oxide of the present invention exhibits absorption even in the near infrared region, it can be applied to applications such as electronic materials, conductive materials, and thermoelectric materials.
  • a visible light responsive photocatalyst that spontaneously decomposes and detoxifies dirt and harmful substances from the point that it can exert its action even in places where light in the ultraviolet to near infrared region does not reach sufficiently, It can be suitably used in fields such as housing, cars, medical care, and land treatment.
  • the shape when used as a visible light responsive photocatalyst is not limited, and for example, it can be used in the form of powder, particles, pellets, membranes, etc., and it is preferably selected as appropriate according to the environment to be used. Moreover, it can be used as a coating film having a photocatalytic function by mixing with a coating agent.
  • the Raman spectrum of the sample powder was measured using a Raman G99013 manufactured by RENISHAW (UK).
  • the isolated and dried sample was placed on a glass slide and observed with a surface observation apparatus VE-8100 manufactured by Keyence Corporation. (Drying conditions: 25 ° C x 24 hours)
  • the isolated and dried sample was placed on a carbon-deposited copper grid and observed with a transmission electron microscope (JEM-2200FS (manufactured by JEOL Ltd.)). (Drying conditions: 25 ° C x 24 hours)
  • the ESR spectrum was measured with an electron spin resonance apparatus (JEOL JES-FA200 (X—Band) (manufactured by JEOL Ltd.)).
  • the UV-Vis reflection spectrum was measured by setting a sample on an integrating sphere using a Hitachi U-3500 spectrophotometer.
  • a certain amount of doped titanium oxide powder is mixed with a certain amount of methylene blue aqueous solution (constant concentration), irradiated with light for a certain period of time with a light irradiation device, the supernatant of the reaction solution is taken out, and the change in absorbance is measured by UV-Vis. The progress of the decolorization reaction was examined.
  • Fluorescent lamp light irradiation device configuration Four 8W fluorescent lamps in an assembled box with light shuttered
  • the sample was set under it.
  • the distance between the fluorescent lamp and the sample is adjustable.
  • a certain amount of doped titanium oxide powder is mixed with a certain amount of methylene blue aqueous solution (constant concentration), irradiated with light for a certain period of time with a light irradiation device, the supernatant of the reaction solution is taken out, and the change in absorbance is measured by UV-Vis. The progress of the decolorization reaction was examined.
  • Solar simulator irradiation device configuration A solar simulator lamp (manufactured by Celic Co., Ltd.) was fixed to the ceiling in an assembling box with light shuttered. A sample bottle was set under it. The distance between the lamp and the sample is adjustable.
  • 20 ml of an aqueous solution of 2 wt% polyethylenimine product name “Epomin SP-200”, manufactured by Nippon Shokubai Co., Ltd.
  • the mixture was stirred for 30 minutes to obtain a white precipitate.
  • the precipitate was filtered, washed with distilled water, and dried overnight at 50 ° C in a vacuum dryer. The yield was 1.2g.
  • the layered composite precursor P1 powder lg obtained in Synthesis Example 1 was put in an alumina crucible, heated to 400 ° C. in an electric furnace, and pre-fired at that temperature for 1 hour. After that, nitrogen gas (N
  • T-01 has a sp 2 bonded carbon atom.
  • the weight loss (disappearance of carbon species) in the 200-500 ° C interval was 10.22 wt% ( Figure 3.5).
  • the powder sample was measured at room temperature (25 ° C) ESR, a strong peak with a g value of 1 ⁇ 9943 appeared (Fig. 3.6).
  • Synthesis Example 12 ⁇ The precursor obtained in 16 was introduced into the furnace, first heated to 400 ° C in an air atmosphere, calcined at that temperature for 30 minutes, and then heated to 900 ° C while introducing nitrogen gas And kept at that temperature for 60 minutes. Thereafter, the temperature was lowered to room temperature under a nitrogen atmosphere. As a result, black powders (TCr-25, TCr-50, TCr-100, TCr-200, and TCr-500, respectively) were obtained. From these XRD measurements, it was confirmed to be rutile titanium oxide (Figure 6.1). ESR measurements showed radical peaks in all cases (Fig. 6.2).
  • methylene blue aqueous solution 10 ppm
  • 200 mg of T-01 powder sample were added, and the mixture was stirred at a certain place for 10 minutes and then allowed to stand for 4 hours. Thereafter, the absorbance of the supernatant was measured and used as the initial concentration of methylene blue before light irradiation (0 hour). While irradiating the sample bottle with a 5001x fluorescent light irradiation device (420 nm or less light cut off), 0.2 ml of liquid was taken out at regular intervals, and the absorbance was measured.
  • Fig. 7.1 shows the absorption spectrum
  • Fig. 7.3 shows the time variation of the methylene blue concentration in the solution.
  • the titanium oxide “AEROXIDE P25” manufactured by deggusa (Degussa) used as a comparison is an ultraviolet-responsive photocatalyst, and the g value is in the range of 1.5 to 2.5 at room temperature ESR in the dark.
  • the resonance signal cannot be observed with, and the peak cannot be observed with 13 C-NMR.
  • Visible light absorbing titanium oxide powder MPT-623 manufactured by Ishihara Sangyo Co., Ltd.
  • the absorption range was from UV to 500 nm.
  • methylene blue aqueous solution 10 ppm
  • 200 mg of TFe-20 powder sample were added, and the mixture was stirred at a certain place for 10 minutes and then allowed to stand for 4 hours. Thereafter, the absorbance of the supernatant was measured and used as the initial concentration of methylene blue before light irradiation (0 hour).
  • a fluorescent lamp light irradiation device light of 420 nm or less
  • a light quantity of 5001x 0.2 ml of liquid was taken out at regular intervals and the absorbance was measured.
  • Fig. 8.1 shows the absorption spectrum
  • Fig. 8.2 shows the time variation of the reaction solution concentration.
  • the structure of the doped titanium oxide of the present invention can be identified by various analytical methods, and it is clear that the titanium oxide identified by these has excellent performance as a photocatalyst. is there. Therefore, the present invention provides doped titanium oxide with high industrial utility.
  • the visible light responsive photocatalyst of the present invention does not sufficiently receive light in the ultraviolet to near-infrared region because it contains the doped titanium oxide of the present invention! This is also highly useful.
  • the doping has a wide absorption range from the visible light to the near infrared region.
  • titanium oxide Provide titanium oxide. Therefore, the kind of doping atoms can be easily adjusted according to the application field and usage environment of the doped titanium oxide. It is useful.
  • the doped titanium oxide of the present invention in combination with various materials, it can be used as a solar cell member, a hydrogen generation catalyst, a hydrogen or alcohol source fuel cell member, an antibacterial agent, a bactericide, and an antivirus. It can also be used in many areas such as cosmetics. Furthermore, since the doped titanium oxide of the present invention exhibits absorption even in the near infrared region, it can be applied to applications such as electronic materials, conductive materials, and thermoelectric materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 本発明は、可視光応答性を有する、構造等が特定されたドーピング酸化チタンとその簡便な製造方法を提供する。アミノ基を有する塩基性ポリマーと、水溶性チタン化合物とを用いて得られる、ポリマーと該チタニアが交互に積層したポリマー/チタニアの層状構造複合体を熱焼成することにより、該ポリマー中の炭素原子と、窒素原子とを酸化チタン結晶表面にドーピングする。該ポリマーを予め金属イオンとの錯体とすることで、金属イオンを酸化チタンにドーピングすることもできる。

Description

明 細 書
ドーピング酸化チタンの製造方法、ドーピング酸化チタン及びこれを用い る可視光応答型光触媒
技術分野
[0001] 本発明は、可視光応答型光触媒、太陽電池用半導体や燃料電池触媒として有用 な、炭素原子等がドーピングされているドーピング酸化チタン、その製造方法、及び 該ドーピング酸化チタンを用いた可視光応答型光触媒に関するものである。
背景技術
[0002] 先端材料において、酸化チタンは従来の白色顔料、高屈折率材料と異なる応用物 性を示すことで、ますます注目を集めている (例えば、非特許文献 1参照。)。例えば
、光触媒又は色素増感電荷分離機能では、酸化チタンは群を抜いた触媒材料であ り、次世代型光触媒デバイス、太陽電池への応用分野での期待が大きい。また、ェ ネルギー問題で大きな注目を集める燃料電池でも、酸化チタンに白金ナノ粒子を埋 め込んだ電極層研究開発が脚光を浴びている。燃料電池の実用化には、水素製造 が要求されるが、その水素製造用触媒でも、酸化チタン'白金のコンポジットが有力 な候補となっている。
[0003] 近年、酸化チタンは、汚れや有害物質等を自発分解し無害化する光触媒機能が非 常に注目されている。その応用分野は、住宅、車、医療、土地処理などへと広がり、 循環型社会構築の不可欠技術として位置付けられている。しかしながら、酸化チタン の該光触媒機能を発現させるためには、紫外線を光源とすることが前提条件である。 自然光(太陽光)にはわず力、 3%程度の紫外線し力、含まれておらず、その大部分は 可視光であることを鑑みると、紫外線のみを吸収する光触媒では、太陽光線の利用 はほとんど無意味となる。即ち、酸化チタンを有効な光触媒として用いるためには、 酸化チタンそのものの吸収範囲を可視光へ変換させることが最も重要である。従って 、多くの研究では、酸化チタン中に不純物ともいわれるほどの原子ドーピング、例え ばァニオン(窒素原子、炭素原子、硫黄原子、リン原子)ドーピング、またはカチオン( 遷移金属、希土類金属、半金属等の金属イオン)ドーピング等が検討されてきた。 [0004] 酸化チタンにこれらのドーピングを行うには、いくつかの代表的な方法が知られて いる。例えば、チタン化合物のゾルゲル反応で酸化チタンを調製する際に、金属ィォ ン化合物を同時に加え、得られた加水分解物を熱焼成することで着色酸化チタンを 製造する方法が挙げられる(例えば、非特許文献 2〜4参照。)。このような方法はも つとも簡易なゾルゲル反応であるので、多くの研究者に安易に利用されて来た力 実 験条件により全く異なる結果になることが多ぐ再現性はほとんど保証できないと認識 されている。即ち、単純なゾルゲル反応に金属イオン化合物を混合しながらの製造 方法では、ドーピングという高度な反応を制御することは不可能である。また、どのよ うなものが得られているのか(ドーピングされた異種原子の含有率 ·存在位置 ·異種原 子の種類など)を分析することも困難である。したがって、その光触媒作用にも再現 性が得られず、工業的な利用に用いるドーピング酸化チタンの製造方法とは言!/、が たいものであった。
[0005] このような状況から脱皮するため、加速電圧によるイオン注入法を用いることが開発 されている(例えば、特許文献 1参照)。前記特許文献 1では、加速エネルギーにて 金属イオンを酸化チタン結晶面に注入することで、酸化チタン結晶面に金属イオンを ドーピングするものである。この手法は、注入イオンの量、種類などをコントロールでき ること力、ら、ドーピング反応を目的にあわせて制御する方法としては確かに有効であ る。また、該手法にて得られるドーピング酸化チタンは可視光領域である 400〜500 nmの領域に吸収を示し、可視光応答型光触媒として機能することも確認されてレ、る
[0006] また、超高温ガスプラズマ法を用い、酸化チタン結晶格子中に鉄やアルミニウムな どの不純物準位の比較的高い原子をドーピングさせることも提案されている(例えば 、特許文献 2参照。)。し力、しながら、これらの加速エネルギーイオン注入法、超高温 プラズマ法はそのプロセス自体の生産コストが高ぐ循環型社会へ可視光応答型光 触媒を供給することには全く不向きであるといっても過言ではない。
[0007] 一方、窒素原子をドーピングした酸化チタンは可視光応答型の光触媒機能を有す るものとしてここ数年多くの注目を集めている。例えば、四塩化チタンの加水分解反 応にアンモニア水を滴下し、それで得られた加水分解物を熱焼成することで黄色に 着色した酸化チタン粉末を製造することが提案されている(例えば、特許文献 3参照 。)。前記特許文献 3では、可視光応答型光触媒として機能する酸化チタンには、室 温で測定した電子スピン共鳴 (以下、 ESRと略記する。)スペクトルにおいて、可視光 照射下で、ラジカル由来とされるシグナルを g値が 1. 930-2. 030の間に観測でき ること力 S記載されている。
[0008] 更に、水酸化テトラプチルアンモニゥムの存在下で四塩化チタンを加水分解し、そ れで得た沈殿物を加熱処理することで、炭素原子がドーピングされた酸化チタンを含 有する可視光応答型光触媒が得られることも報告されている (例えば、非特許文献 5 参照。)。
[0009] 更にまた、酸化チタンの表面に炭素系析出物を有する光触媒であって、光不存在 下、室温にて測定した ESRスペクトルにおいて、該炭素系析出物或いはナトリウムに 帰属される g値が 2. 03のシグナルが観測されることも報告されている(例えば、特許 文献 4参照。)。
[0010] しかしながら、前記特許文献 3及び非特許文献 5で得られる酸化チタンは黄色であ ることから可視光応答型と謳っているものの高々 600nm以下の可視光しか有効活用 できるものではなぐ可視光応答型光触媒としての機能は低い。更に、 ESRを暗黒下 で測定した場合には、そのシグナルを実質的に観測できるのではなぐしたがって、 十分な可視光が得られない場所での応用には限界があった。また、前記非特許文献 5で提案された炭素原子ドーピング酸化チタンの製造方法は 4級化アンモニゥムヒド ロキシのような強塩基性化合物と 4塩化チタンとを混合した系から生成する沈殿物を 焼成するものである。その方法は従来のアルコキシチタンのゾルゲル反応から生成 する沈殿物の熱焼成法と本質的な違いはなぐ前記したように再現性に乏しい。更に ドーピングされた炭素原子についてその結合状態等について詳細な検討はされてい ない。つまり、ドーピング酸化チタンの構造解析は行なわれておらず、炭素含有率に 依存した可視光光触媒機能のみに注目して論議されている。また、前記特許文献 4 に提案されている光触媒では、原料として明確に使用していないナトリウムに由来す るピークを観測し、且つその存在量を測定しており、得られる酸化チタンの構造を制 御して!/、るとは言!/、がた!/、。その製造方法としては前述のプラズマ法に基づくもので あって、再現性 ·工業的な製造方法等の視点から見た場合、実用性に期待できない ものである。
[0011] 可視光応答型光触媒として工業的に有用な酸化チタンのその構造 ·物性について は未だに十分に特定されておらず、研究者によって千差万別なパラメーターが使用 されており、標準化されていない。したがって、再現性があり且つ簡便なドーピング酸 化チタンの製造方法、該ドーピング酸化チタンの構造の同定方法 (分析手段)の確 立、更には得られた該ドーピング酸化チタンの構造等と光触媒等としての機能との関 連づけは、現在最も重要な技術的課題である。
[0012] 非特許文献 1 : A. L. Linsebiger et al.、 Chem. Rev. 1995年、第 95巻、 735 頁
非特許文献 2 : Ε· Borgarello et al.、 J. Am. Chem. Soc. , 1982年、第 104巻 、 2996頁
非特許文献 3 : L. Zang et al.、 J. Phys. Chem. B 1998年、第 102巻、 10765 頁
非特許文献 4 : H. Kisch et al.、 Angew. Chem. Int. Ed. , 1998年、第 37巻、 3034頁
非特許文献 5 : S . Sakthivel et al.、 Angew. Chem. . Int. Ed.、 2003年、第 4 2巻, 4908頁
特許文献 1 :特開平 9 262482号公報
特許文献 2:特開 2003 300730号公報
特許文献 3:特開 2001— 190953号公報
特許文献 4:特開平 11 333304号公報
発明の開示
発明が解決しょうとする課題
[0013] 上記実情を鑑み、本発明が解決しょうとする課題は、簡便かつ工業的に有効な炭 素原子等を酸化チタンへドーピングする製造方法、全可視光城から近赤外域の 200 Onmまでの強い吸収を示し、光触媒機能にも優れ、構造 ·物性が特定されているド 一ビング酸化チタン、及び該ドーピング酸化チタンを含有する可視光応答型光触媒 を提供することにある。
課題を解決するための手段
[0014] 本発明者は、前記課題を解決するために鋭意検討を重ねた結果、炭素原子、窒素 原子および金属イオンをドーピングしたアナターゼ型結晶性又はルチル型結晶性の 5〜20nmの大きさの結晶力、らなるドーピング酸化チタンであって、喑黒下 20〜30°C で測定した電子スピン共鳴スペクトルでの g値が 1. 5〜2. 5の範囲で共鳴シグナル を観測でき、また核磁気共鳴スぺ外ル (13C)では炭素原子力 SSp2結合を形成してい ることを示すシグナルを観測でき、ラマンスペクトルでは、アモルファス炭素とグラファ イト炭素由来の振動波数を 1200〜1700cm— 1の範囲で観測でき、且つ 400〜200 Onmの範囲で吸収を示す該酸化チタンは、光触媒等としての性能に優れていること 、また、アミノ基を有する塩基性ポリマーの存在下で、水溶性チタン化合物を加水分 解反応させて得られるポリマー/チタユアの層状構造複合体を熱焼成させることで、 前記物性を有するドーピング酸化チタンが容易に且つ再現性良く得られることを見出 し、本発明を完成した。
[0015] 即ち本発明は、
(I)アミノ基を有する塩基性ポリマー(X)を水性媒体中に分散又は溶解させる工程、
(II) (I)で得られた水性分散体又は水性溶液と、水溶性チタン化合物 (z)とを水性媒 体中、 50°C以下の温度条件下で混合し加水分解反応を行うことによって、アミノ基を 有する塩基性ポリマー(X)がチタニアに挟まれた、ポリマー/チタユアの層状構造複 合体を得る工程、
(III)前記層状構造複合体を熱焼成することにより、アミノ基を有する塩基性ポリマー (X)中の炭素原子と、窒素原子とが酸化チタン結晶表面にドーピングされる工程、 とを有することを特徴とする少なくても炭素原子と窒素原子とがドーピングされた酸化 チタンの製造方法を提供するものである。
[0016] 更に本発明は、
(I)アミノ基を有する塩基性ポリマー (X)と金属イオンとの錯体 (y)を水性媒体中に分 散又は溶解させる工程、
(II) (I)で得られた水性分散体又は水性溶液と、水溶性チタン化合物 (z)とを水性媒 体中、 50°C以下の温度条件下で混合し加水分解反応を行うことによって、アミノ基を 有する塩基性ポリマー(X)と金属イオンとの錯体 (y)がチタニアに挟まれた、ポリマー /チタニアの層状構造複合体を得る工程、
(III)前記層状構造複合体を熱焼成することにより、アミノ基を有する塩基性ポリマー (X)と金属イオンとの錯体 (y)中の炭素原子と、窒素原子と、金属イオンとが酸化チタ ン結晶表面にドーピングされる工程、
とを有することを特徴とする少なくても炭素原子と窒素原子と金属イオンとがドーピン グされた酸化チタンの製造方法をも提供するものである。
[0017] 更にまた、本発明は、炭素原子と、窒素原子と、金属イオンとを有するアナターゼ型 結晶性又はルチル型結晶性の 5〜20nmの大きさの酸化チタンの結晶からなり、喑 黒下 20〜30°Cで測定した電子スピン共鳴スペクトルでの g値が 1. 5〜2. 5の範囲で 共鳴シグナルを観測でき、また核磁気共鳴スペクトル(13C)では炭素原子が sp2結合 を形成していることを示すシグナルを観測でき、さらにラマンスペクトルでは、ァモル ファス炭素とグラフアイト由来の振動波数を lZOO l YOOcnT1の範囲で観測できる ものであって、且つ 400〜2000nmの範囲で吸収を示すことを特徴とするドーピング 酸化チタン、およびこれを用いる可視光応答型光触媒を提供するものである。
発明の効果
[0018] 本発明のドーピング酸化チタンは、その構造を種々の分析方法によって同定するこ とが可能である。そして、それらによって同定された酸化チタンであれば、光触媒とし て優れた性能を有することが明確である。したがって、工業的有用性 (信頼性)の高 V、ドーピング酸化チタンを提供できる。
[0019] また、本発明の製造方法では、ドーピングする原子又はイオンを含有する化合物を あらかじめチタニアのナノ結晶間にナノ空間距離で挟む工程 (層状構造を有する複 合体を得る工程)を有する。このため、得られた複合体を熱焼成することにより、ナノ 空間に閉じ込められた原子又はイオンが有効に酸化チタンにドーピングされうる。こ の方法では、単一種類の原子に限らず、複数種の原子を同時にドーピングすることも 可能であり、可視光〜近赤外領域までの広い吸収範囲を有するドーピング酸化チタ ンが得られる。従って、本発明の製造方法で得られるドーピング酸化チタンは、自然 光(太陽光)の有効利用の面から非常に有用性が高い。ここで、前駆体である層状構 造の複合体の原料の種類の選択やその使用割合を調節することで、 目的とする範囲 で光吸収をするドーピング酸化チタンを選択して合成することも可能である。ゆえに、 ドーピング酸化チタンの応用分野や使用環境に応じた調整ができる点においても、 本発明の製造方法が従来技術を凌駕するものであることが明白である。
[0020] また、本発明のドーピング酸化チタンを各種材料と組み合わせて用いることで、太 陽電池部材、水素発生触媒、水素またはアルコールソース系燃料電池部材として用 いることできる。また、防菌剤、殺菌剤、抗ウィルス、化粧品など多くの領域での利用 も可能である。更に、本発明のドーピング酸化チタンは、近赤外線域でも吸収を示す ことから、電子材料、導電材料、熱電材料などの用途にも応用できる。
[0021] 特に、本発明の可視光応答型光触媒は、本発明の光応答性の高いドーピング酸 化チタンを含有する点から、紫外線〜近赤外線領域の光が十分に届かな!/、場所で もその作用を発現させることが可能である点においても有用性が高い。
図面の簡単な説明
[0022] [図 1.1]合成例 1で得られた層状複合体 (P1)の XRD測定結果である。
[図 1.2]合成例 1で得られた層状複合体 (P1)のラーマン分光測定結果である。
[図 1.3]合成例 1で得られた層状複合体 (P1)の13 C— NMR測定結果である(上図)。
[図 2.1]合成例 2で得られた層状複合体 (PFe— 20)の XRD測定結果である。
[図 2.2]合成例 2で得られた層状複合体 (PFe— 20)のラーマン分光測定結果である
[図 2.3]合成例 2で得られた層状複合体 (PFe— 20)の13 C— NMR測定結果である。
[図 3.1]実施例 1で得られたドーピング酸化チタン (T 01)の高分解能透過型電子 顕微鏡 (TEM)写真である。
[図 3.2]実施例 1で得られたドーピング酸化チタン (T 01)の XRD測定結果である。
[図 3.3]実施例 1で得られたドーピング酸化チタン (T— 01)の UV— Vis反射スぺタト ルである。
[図 3.4]実施例 1で得られたドーピング酸化チタン (T 01)の13 C— NMR測定結果 である(下図)。 園 3.5]実施例 1で得られたドーピング酸化チタン (T— 01)の熱重量分析チャートで ある。
[図 3.6]実施例 1で得られたドーピング酸化チタン (Τ 01)の ESRスペクトルである。 園 4.1]実施例 2で得られたドーピング酸化チタン (TFe - 20)の高分解能透過型電 子顕微鏡 (TEM)写真である。
[図 4.2]実施例 2で得られたドーピング酸化チタン (TFe— 20、 TFe— 50、 TFe— 10 0、 TFe— 200)の XRD測定結果である。
[図 4.3]実施例 2で得られたドーピング酸化チタン (TFe— 20、 TFe— 50、 TFe— 10 0、 TFe— 200)の UV— Vis反射スペクトルである。
[図 4.4]実施例 2で得られたドーピング酸化チタン (TFe— 20)の13 C— NMR測定結 果である。
園 4.5]実施例 2で得られたドーピング酸化チタン (TFe— 20)の熱重量分析チャート である。
[図 4.6]実施例 2で得られたドーピング酸化チタン (TFe— 20)の ESRスペクトルであ
[図 5.1]実施例 3で得られたドーピング酸化チタン (TZn— 20, TMn— 20, TCu— 2 0, TCo- 20, TNi— 20)の XRD測定結果である。
[図 5.2]実施例 3で得られたドーピング酸化チタン (TZn— 20, TMn— 20, TCu— 2 0, TCo- 20, TNi— 20)の UV— Vis反射スペクトルである。
[図 6.1]実施例 4で得られたドーピング酸化チタン (TCr— 25, TCr—50, TCr- 100 , TCr- 200, TCr— 500)の XRD測定結果である。
[図 6.2]実施例 4で得られたドーピング酸化チタン(TCr— 25, TCr— 50, TCr- 100 , TCr— 200)の ESRスペクトルである。
[図 6.3]実施例 4で得られたドーピング酸化チタン(TCr— 25, TCr— 50, TCr- 100 , TCr- 200, TCr— 500)のラーマン分光測定結果である。
園 7.1]試験例 1 (ドーピング酸化チタン T— 01を用いた可視光照射下でのメチレンブ ルーの脱色反応)における吸収スペクトルである。
園 7.2]試験例 1及び比較試験例 1における反応溶液の濃度変化を示すグラフである [図 7.3]比較試験例 1 (AEROXIDE P25を用いた可視光照射下でのメチレンブル 一の脱色反応)における吸収スペクトルである。
[図 7.4]試験例 1及び比較試験例 1における自然光シミュレータを用いた反応溶液の 濃度変化を示すグラフである。
[図 8.1]試験例 2 (ドーピング酸化チタン TFe— 20を用いた可視光照射下でのメチレ ンブルーの脱色反応)における吸収スペクトルである。
[図 8.2]試験例 2及び比較試験例 1における反応溶液の濃度変化を示すグラフである
[図 8.3]試験例 2及び比較試験例 1における自然光シミュレータを用いた反応溶液の 濃度変化を示すグラフである。
[図 9.1]試験例 3における可視光照射下で触媒を繰り返し使用際、照射時間とメチレ ンブルー反応溶液の濃度変化を示すグラフである。
発明を実施するための最良の形態
[0023] 本発明のドーピング酸化チタンは、少なくても炭素原子と、窒素原子と、金属イオン とを有するアナターゼ型結晶性又はルチル型結晶性の 5〜20nmの大きさの酸化チ タンの結晶からなり、喑黒下 20〜30°Cで測定した電子スピン共鳴スペクトルでの g値 が 1. 5〜2. 5の範囲で共鳴シグナルを観測でき、また核磁気共鳴スペクトル(13C)で は炭素原子力 p2結合を形成して!/、ることを示すシグナルを観測でき、ラマンスぺタト ルでは、アモルファス炭素とグラフアイト炭素由来の振動波数を 1200〜 1700cm_ 1 範囲で観測できるものであって、且つ 400〜2000nmの範囲で吸収を示すことを特 徴とし、可視光から近赤外線領域で優れた光応答性を有する。
[0024] 本発明のドーピング酸化チタンは、 400〜2000nmの範囲で吸収を示すものであ る力 従来の酸化チタンが有する紫外線吸収能をも有する。 400〜2000nmの範囲 で全波長吸収を有しているドーピング酸化チタンは、自然光(太陽光)の有効利用と いう面では優れたものである。し力、しながら、可視光〜近赤外領域の特定の範囲の 波長のみを吸収するドーピング酸化チタンの場合には、使用する用途や使用環境に よっては好ましいものであり、ドーピング酸化チタンの要求性能に応じて使い分けるこ とが可能である。
[0025] 従来、種々の異種原子を酸化チタンにドーピングすることによって、可視光応答性 を付与できることは広く知られている力 喑黒下で且つ常温(20〜30°C)での ESRス ぺクトルにおいて、明確な酸化チタンの伝導電子に基づくシグナルを観測できるもの はない。 ESRスペクトルは、測定試料 (化合物)中に存在する不対電子が隣接するェ ネルギー準位間で遷移を起こす現象を電磁エネルギーの吸収状況によって観測す るものである。従って、シグナルを観測できない理由は、ドーピング酸化チタンのチタ ン原子に安定な不対電子を保持させることが困難であったためと考えられる。ドーピ ング酸化チタンの ESRは、エネルギー準位間の遷移を観測できる程度に遅くするた めに極低温下(77K〜173K程度)で測定されており、且つ、不対電子を生じさせる ためのエネルギーを与えるために、該ドーピング酸化チタンが吸収することができる 波長の光を照射しながらの測定に限られている。従って、ドーピング酸化チタンの喑 黒下、常温での ESR測定では実質的にピークが観測されないと言うのが、当業者の 常識とも言うべきものである。現に、前述の特許文献 4で室温'光不存在下で観測さ れるピークは、酸化チタンの表面の一部を被覆する炭素系析出物またはナトリウムの 電子に由来するものと考えている。光触媒作用を有すると考えられる物質中の伝導 電子に帰属されるシグナルとする g値が 1. 97のピークは室温では観測しておらず、 液体窒素温度でのみ観測している。従って、本発明のドーピング酸化チタンは、室温 •暗黒下でも明確なシグナルを観測できる点から、従来提案されてレ、たドーピング酸 化チタンとは全く異なるものであり、光触媒機能等の性能に優れている要因であると 考える。
[0026] 更に、本発明のドーピング酸化チタンは、核磁気共鳴スペクトル(13C)で炭素原子 力 Ssp2結合を形成していることを示すシグナルを観測することができ、また、ラマンスぺ タトルでは、アモルファス炭素とグラフアイト炭素由来の振動波数を 1200〜 1700cm —1の範囲で観測できる。この様な炭素原子が酸化チタンに含まれることにより、光触 媒機能等の種々の可視光および/または近赤外光応答機能を効果的に発現しうる と考免られる。
[0027] 本発明のドーピング酸化チタンにドーピングされているものは少なくとも炭素原子と 、窒素原子と、金属イオンである。この時、単一種類の金属イオンがドーピングされた ものであっても、 2種以上の金属イオンがドーピングされたものであっても良い。ドーピ ング酸化チタンの用途や使用環境等によって種々選択し、単独で使用しても、混合 して使用しても良い。
[0028] 更に、本発明のドーピング酸化チタンには、その他の非金属原子を含有させること も可能である。その他の非金属原子としては、得られるドーピング酸化チタンの触媒 作用がより高められる点から、硫黄原子、りん原子が好ましい。その他の非金属原子 として、単一の原子のみがドーピングされていても、 2種以上の原子がドーピングされ ていても良い。特に 2種以上の非金属原子がドーピングされた酸化チタンは、可視光 〜近赤外領域の広い範囲で大きな吸収があり、可視光応答性が高まるために好まし い。
[0029] 炭素原子と窒素原子、また必要に応じて用いられるその他の非金属原子のドーピ ング割合としては、得られるドーピング酸化チタンの可視光応答性に優れ、且つ、酸 化チタンの結晶構造を損なわな!/、点から、ドーピング酸化チタン全体の量に対して、 炭素原子と窒素原子との合計として 20質量%以下であることが好ましぐ特に 10質 量%以下であることが好ましい。その他の非金属原子をも併有する場合には、炭素 原子と窒素原子とその他の非金属原子の合計としてドーピング酸化チタン全体の量 に対して 20質量%以下であることが好まし!/、。
[0030] 前記金属イオンとしては、特に限定されるものではなぐアルカリ土類金属、遷移金 属、半金属、ランタン系金属等の種々のイオンをドーピングすることができ、単一の金 属イオンのみを含有するものであっても、 2種以上の金属イオンを含有して!/、ても良 い。特に 2種以上の金属イオンがドーピングされた酸化チタンは、可視光〜近赤外領 域の広い範囲での大きな吸収があり、可視光応答性が高まるために好ましい。これら の中でも、遷移金属イオン、例えば、鉄、マンガン、ニッケル、コバルト、銅、バナジゥ ム、亜鉛、白金、銀、ノ ラジウムのイオンは、後述する本発明のドーピング酸化チタン の製造方法において、容易に酸化チタンへのドーピングが可能である点、得られるド 一ビング酸化チタンの可視光応答性に優れる点から好ましいものである。
[0031] 前記金属イオンのドーピング割合としては、得られるドーピング酸化チタンの可視光 応答性に優れ、且つ、酸化チタンの結晶構造を損なわない点から、ドーピング酸化 チタン全体の量に対して 10質量%以下であることが好ましい。
[0032] 本発明のドーピング酸化チタンは、アナターゼ型結晶性又はルチル型結晶性の 5 〜20nmの大きさの結晶からなるものである。結晶の大きさやその種類については、 高分解能透過型電子顕微鏡 (TEM)による観察や X線結晶構造回折 (XRD)による 解析によって明確にすることができる。特に XRDによる解析結果ではアナターゼ型 結晶性、ルチル型結晶性等の結晶の種類によって散乱パターンが異なるため、容易 に分析することが可能で、且つその半値幅から結晶の大きさも算出することができる 。特にアナターゼ型結晶性を有するものは、光触媒機能に優れるため好ましい。
[0033] 本発明のドーピング酸化チタンは、上述の構造 ·物性 (スペクトル)を有するものであ り、この様な構造 ·物性であることが、可視光応答型光触媒等の用途において、効率 的にその機能を発現することができる。この様なドーピング酸化チタンを得る方法とし ては、特に限定されるものではない。し力もながら、工業的生産が容易で、且つ再現 性に優れ、ドーピングする炭素原子、窒素原子、金属イオンの導入量'種類等を調節 すること力 Sできる点力 、本発明の製造方法、即ち、アミノ基を有する塩基性ポリマー の存在下で、水溶性チタン化合物を加水分解反応させることで形成するポリマー/ チタニアの層状構造複合体を熱焼成させる方法が最も好ましい方法である。
[0034] 以下、本発明の製造方法について詳述する。
本発明のドーピング酸化チタンの製造方法は、ポリマーまたはポリマー金属錯体と チタニアナノ結晶とがナノメートルオーダーの層間距離、好ましくは l〜3nmの層間 距離を持ちながら層状化された複合体を前駆体として用い、それを熱焼成することに より、不純物がドーピングされた酸化チタンへ変換させることを特徴とする。この様な 製造方法を用いることによって、結晶の大きさを lOnm前後に制御することが可能と なる。
[0035] ナノ結晶、ナノ空間のようなナノ構造体は構造そのものの機能以外に、新しいナノ 反応場として、新規機能材料の合成には多くの可能性を秘めている。特に、半導体 結晶の結晶間に第 2成分の物質がナノ距離の層間に閉じ込まれたナノ層状構造を 形成した場合、その各種処理法により、半導体結晶面と層間に存在する物質との化 学反応を引き起こすことができる。即ち、層状のナノ空間は極めて有利なナノ反応場 になりうる。本発明はこのような視点に着目し、ナノ反応場でのドーピングを行うため の前駆体物質の合成とその物質の熱焼成との二段法からなる最適なプロセスを考案 した。
[0036] ここで重要なのは第一段階でのナノ層状複合体の構築である。生体系での無機酸 化物の多くは、生体ポリマー、例えば、塩基性ポリぺプチト、タンパク質、又はポリアミ ンの組織体(会合体)をテンプレートとし、それらの生体ポリマーが含まれた形で複雑 かつ精密なパターンを有する複合体を形成したり、その複合体中に無機層と有機層 とを交互に配列した層状構造を構築したりすることが知られている。本発明は、生物 のこの様なプロセスを模倣し、アミノ基を有する塩基性ポリマー(x)、またはアミノ基を 有する塩基性ポリマー(X)と金属イオンとの錯体 (y)をテンプレートとして用い、それ の存在下で水溶性チタン化合物(z)の加水分解と縮合反応を行うことで、アミノ基を 有する塩基性ポリマー(X)、又はアミノ基を有する塩基性ポリマー(X)と金属イオンと の錯体 (y)がチタニアに挟まれた、ポリマー/チタユアの層状構造複合体を得たこと により完成したものである。
[0037] アミノ基を有する塩基性ポリマー(X)、またはアミノ基を有する塩基性ポリマー(X)と 金属イオンとの錯体 (y)は、水溶性チタン化合物 (z)の加水分解的な縮合反応の触 媒として機能する。これと同時に、該反応から生じるチタニアゾルとイオンコンプレック スを形成しながら、該チタニアゾルのデポジットを誘導する。この結果、該ポリマーと 該チタニアが交互に積層したポリマー/チタユアの層状構造複合体を生成する。
[0038] 前記層状構造に組織化されたポリマー/チタユア複合体を熱焼成することで、チタ ユアの結晶層間に含まれたアミノ基を有する塩基性ポリマー(X)、又はアミノ基を有 する塩基性ポリマー (X)と金属イオンとの錯体 (y)中の炭素原子、窒素原子、金属ィ オンがチタニア結晶表面でのドーピング反応を引き起こす。この反応により、炭素原 子、窒素原子、金属イオンが該チタニアの構造にドーピングされ、結果的にアナター ゼ型結晶性又はルチル型結晶性の 5〜20nmの大きさの結晶からなり、喑黒下 20〜 30°Cで測定した電子スピン共鳴スペクトルでの g値が 1. 5〜2. 5の範囲で共鳴シグ ナルを観測でき、核磁気共鳴スぺ外ル (13C)では炭素原子力 SSp2結合を形成してい ることを示すシグナルを観測でき、ラマンスペクトルでは、アモルファス炭素とグラファ イト炭素由来の振動波数を 1200〜 1700cm— 1の範囲で観測できるものであって、且 つ 400〜2000nmの範囲で吸収を示すドーピング酸化チタンに変換される。
[0039] 前記製法で得られるドーピング酸化チタン中には、アミノ基を有する塩基性ポリマー
(X)由来の炭素原子と窒素原子とを含有するものである。炭素原子の含有率としては ドーピング酸化チタン中で 1〜20質量%の間で調整することができる。この調整は前 駆体である複合体を熱焼成する過程での焼成温度、焼成時間、焼成中のガス雰囲 気により行なう。炭素原子の含有率は他の条件を一定にした場合、温度が高いほど 低下するが、炭素原子の sp2結合の存在には変わりがない。また、一定温度では、不 活性ガス雰囲気下であるほど炭素含有率は増大し、空気雰囲気下に近!/、ほど炭素 含有率は低下する。一般的な熱焼成の温度は 300〜; 1000°Cの範囲であり、可視光 応答性の高いドーピング酸化チタンが得られる。熱焼成中のガス雰囲気としては、窒 素ガス、空気、アルゴンガス及びこれらの混合ガスが挙げられ、特に窒素ガスと空気 との混合ガス雰囲気下で行うことが好ましレ、。
[0040] 例えば、前駆体の複合体をまずは空気雰囲気下 400°Cにて所定時間(10〜60分 )焼成し、その後窒素雰囲気下炉内温度を 600〜; 1000°Cまで上昇し、窒素雰囲気 下その温度で所定時間(10〜 180分)保持することでドーピング酸化チタンを得るこ と力 Sできる。
[0041] また、例えば、前駆体の複合体を窒素雰囲気下 600〜; 1000°Cで所定時間(20〜 120分)焼成した後、もう一回空気雰囲気下 350〜450°Cにて所定時間(3〜60分) 焼成することでもドーピング酸化チタンを得ることができる。
[0042] 炭素原子、窒素原子以外の非金属原子をドーピングする場合には、例えば、硫黄 原子を含む酸性化合物(硫酸、トルエンスルホン酸、メチルスルホン酸、ェチルスル ホン酸など)及び/又はリン原子を含む酸性化合物(リン酸、メチルホスホン酸、ェチ ノレホスホン酸、フエニルホスホン酸など)とアミノ基を有する塩基性ポリマー(X)との混 合物を用いる方法が挙げられる。この混合物の存在下で水溶性チタン化合物を加水 分解させることで、ポリマーのァミノ基に結合した硫黄系酸性化合物またはリン系酸 性化合物が生成され、層状構造に取り込ませることができる。または、層状構造に組 織化されたポリマー/チタユア複合体を上記酸性化合物溶液中で混合し、該酸性化 合物を前記ポリマー(X)と結合させる方法でも良い。このようにして得られた層状複合 体を熱焼成することにより硫黄原子またはリン原子のような非金属原子を容易にドー ビングさせることが可能である。また、アミノ基を有する塩基性ポリマー(X)構造中に、 炭素原子、窒素原子以外の非金属原子を有するものを用いることによつても、ドーピ ング可能である。
[0043] また、得られるドーピング酸化チタン中の金属イオンの含有率は 0. 2〜5質量0 /0の 範囲で調整することができる。その含有率は、前駆体である複合体の作製段階にお いて、アミノ基を有する塩基性ポリマー (X)と金属イオンとの錯体 (y)を用い、該錯体( y)中の金属イオンの含有率により調整することが可能である。即ち、該含有率を高く すればドーピングされる金属イオン量が増大し、含有率を低くすれば低下させること 力できる。更に異なる金属イオンを有するポリマー錯体を併用することによって、得ら れる酸化チタンに複数種の金属イオンをドーピングすることができる。
[0044] 以下、本発明の製造方法で用いる原料について記載する。
〔ポリマー(x)〕
本発明にお!/、て使用するアミノ基を有する塩基性ポリマー(X)は特に限定されるも のではなく、通常の水溶性のポリアミン類等を用いることができる。
[0045] 前記ポリマー(X)としては、例えば、合成ポリアミンの例として、ポリビュルァミン、ポ リアリルァミン、ポリエチレンィミン(分岐状および直鎖状)、ポリプロピレンィミン、ポリ( 4—ビュルピリジン)、ポリ(アミノエチルメタタリレート)、ポリ〔4— (N, N—ジメチルアミ ノメチルスチレン)〕などの側鎖または主鎖にアミノ基を含有する合成ポリアミンが挙げ られる。なかでも、ポリエチレンイミンは、入手が容易であることと、酸化チタンゾルとの 層状構造を形成しやすレ、点で特に好まし!/、。
[0046] また、生体系ポリアミンとして、例えば、キトサン、スぺノレミジン、ビス(3—ァミノプロピ ル)ァミン、ホモスペルミジン、スペルミンなど、または塩基性アミノ酸残基を多く有す る生体ポリマーとして、例えば、ポリリシン、ポリヒスチン、ポリアルギニンなどの合成ポ リペプチドをはじめとする生体系ポリアミンが挙げられる。
[0047] また、前記ポリマー(X)としては、ポリアミン中の一部分のァミノ基が非アミン類ポリマ 一骨格と結合してなる変性ポリアミンや、ポリアミン骨格と非ァミン類ポリマー骨格との 共重合体であっても良い。前記変性ポリアミンや共重合体は、アミノ基を有する塩基 性ポリマー(X)のァミノ基に、エポキシ基、ハロゲン、トシル基、エステル基などァミンと 容易に反応できる官能基を持つ化合物を反応させることで簡単に得ることができる。
[0048] 前記非ァミン類ポリマー骨格は、親水性または疎水性の!/、ずれでも良!/、。親水性ポ リマー骨格としては、例えば、ポリエチレングリコール、ポリメチルォキサゾリン、ポリエ チルォキサゾリン、ポリアクリルアミドなどからなる骨格を挙げることができる。また、疎 水性ポリマー骨格としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリメタタリレート 樹脂などからなる骨格を挙げることができる。ポリマー(X)が、これらアミノ基を有さな い構造単位を含有する場合には、該ポリマー (X)が水中で良好な分散状態を有し、 かつ後述する水溶性チタン化合物 (z)の加水分解又は脱水縮合反応を有効に促進 させることなどの点から、非ァミン類ポリマー骨格がポリマー(X)の全構造単位に比し て、 50質量%以下であることが好ましぐ 20質量%以下であることがより好ましぐ 10 質量%以下であることが特に好ましレ、。
[0049] また、前記ポリマー(X)の分子量としては、特に限定されるものではなぐゲルパーミ エーシヨンクロマトグラフィー(GPC)で求められるポリスチレン換算値としての重量平 均分子量として、通常 300〜; 100, 000の範囲であり、好ましくは 500〜80, 000の 範囲であり、さらに好ましくは 1 , 000-50, 000の範囲である。
[0050] 〔ポリマー/金属イオンからなる錯体 (y)〕
本発明の製造方法で用いる、アミノ基を有する塩基性ポリマー(X)と金属イオンとの 錯体 (y)は、前述のアミノ基を有する塩基性ポリマー(X)に、金属イオンを加えること で得られ、金属イオンと前記ポリマー(X)中のアミノ基との配位結合によって錯体 (y) を形成するものである。
[0051] ここで用いる金属イオンとしては、 目的とするドーピング酸化チタン中の金属イオン と同一のものであり、ァミノ基と配位結合可能な全ての金属のイオンを用いることがで きる。金属イオン価数としては、 1価から 4価までの金属塩類であってもよぐまた、そ れらが錯化イオン状態でも好ましく用いることができる。
[0052] 用いる金属イオンの量としては、アミノ基を有する塩基性ポリマー(X)中のアミノ基の モル数に対し、イオンとして 1/10〜1/200当量であることが好ましい。
[0053] 〔水溶性チタン化合物(z)〕
本発明で用いるチタン化合物は水溶性であり、水中溶解された状態では加水分解 しない、即ち、純水中で安定な非ハロゲン類チタン化合物であることが好ましい。具 体的には、例えば、チタニウムビス(アンモニゥムラクテート)ジヒドロキシド水溶液、チ タニゥムビス(ラタテート)の水溶液、チタニウムビス(ラタテート)のプロパノール/水
[0054] 〔ポリマー/チタユアの層状構造複合体〕
ポリマー/チタユアの層状構造複合体は、アミノ基を有する塩基性ポリマー(x)、ま たはアミノ基を有する塩基性ポリマー(X)と金属イオンとの錯体 (y)の水溶液中、水溶 性チタン化合物(z)を混合することで得ること力 Sできる。
[0055] このとき、アミノ基を有する塩基性ポリマー(X)、またはアミノ基を有する塩基性ポリ マー(X)と金属イオンとの錯体 (y)中のアミン単位に対し、チタンソースである水溶性 チタン化合物(z)の量を過剰とすれば好適に複合体を形成することができ、具体的に は、ァミン単位に対して水溶性チタン化合物(z)が 2〜; 1000倍当量、特に 4〜700倍 当量の範囲であることが好まし!/、。
[0056] また、アミノ基を有する塩基性ポリマー(X)、またはアミノ基を有する塩基性ポリマー
(X)と金属イオンとの錯体 (y)の水溶液の濃度としては、そのポリマー(X)中に含まれ るポリアミンの量を基準に、 0. ;!〜 30質量%にすることが好ましい。
[0057] 水溶性チタン化合物(z)の加水分解的縮合反応の時間は 1分から数時間まで様々 であるが、反応効率を上げることから、反応時間を 30分〜 5時間に設定すればさらに 好適である。
[0058] また、加水分解的縮合反応における、水溶液の pH値は 5〜; 11の間に設定されるこ と力 S好ましく、特にその値が 7〜; 10であることが好ましい。
[0059] 加水分解的縮合反応によって得られる複合体 (前駆体)は、金属イオンがない状態 では白色沈殿物である力 アミノ基を有する塩基性ポリマー(X)と金属イオンとの錯体 (y)の存在下で得た複合体は金属イオンの色を反映した着色沈殿物となる。 [0060] 加水分解的縮合反応によって得られる複合体(前駆体)中のチタユアの含有率は、 反応条件などにより調整可能であり、複合体全体の 20〜90質量%の範囲のものを 得ること力 Sできる。ここで得られた複合体を前述の方法で熱焼成することにより、本発 明のドーピング酸化チタンを得ることができる。
[0061] 本発明のドーピング酸化チタンの用途としては、従来酸化チタンが使用されている 様々な用途において使用することができ、例えば、色素増感型太陽電池部材、色素 を使わない非色素増感太陽電池部材、水素発生触媒、水素またはアルコールソース 系燃料電池部材として用いることでき、防菌剤、殺菌剤、抗ウィルス、化粧品など多く の領域での利用も可能である。更に、本発明のドーピング酸化チタンは、近赤外線 域でも吸収を示すことから、電子材料、導電材料、熱電材料などの用途にも応用でき る。特に、紫外線〜近赤外線領域の光が十分に届かない場所でもその作用を発現さ せることが可能である点から、汚れや有害物質等を自発分解し無害化する可視光応 答型光触媒として、住宅、車、医療、土地処理等の分野において好適に用いることが できる。
[0062] 特に可視光応答型光触媒として用いる際には、本発明のドーピング酸化チタンを 用いること以外になんら制限されるものではなぐその他の光触媒と併用しても、様々 な基材等を含有していても良い。また、可視光応答型光触媒として用いるときの形状 としても制限されず、例えば、粉末、粒子、ペレット、膜などの形状で用いることができ 、使用する環境下に応じて適宜選択することが好ましい。また、コーティング剤に混合 して用いることにより、光触媒機能を有する塗膜とすることも可能である。
実施例
[0063] 以下、実施例および参考例によって本発明をさらに具体的に説明するが、本発明 はこれらに限定されるものではない。特に断らない限り、「%」は「質量%」を表す。
[0064] 〔X線回折法 (XRD)による分析〕
単離乾燥した試料を測定試料用ホルダーにのせ、それを株式会社リガク製広角 X 線回折装置「: int— UltmaJにセットし、 Cu/Κ α線、 40kV/30mA、スキャンスピ ード 1. 0° /分、走査範囲 0〜40° の条件で測定を行った。 (乾燥条件: 25°C X 24 時間)。 [0065] 〔熱重量 (TG) /示差熱分析 (DTA)による分析〕
粉末測定パッチにより秤量し、それを SII Nano Technology Inc社製の TG/ DTA6300装置にセットし、昇温速度を 10°C/分として、 20°Cから 800°Cの温度範 囲にて測定を行った。
[0066] 〔ラマン分光法(Raman)による分析〕
試料の粉末を RENISHAW社製 (UK) Raman G99013にてラマンスペクトルを 測定した。
[0067] 〔走査電子顕微鏡(SEM)による形状分析〕
単離乾燥した試料をガラススライドに乗せ、それを株式会社キーエンス製表面観察 装置 VE— 8100にて観察した。 (乾燥条件: 25°C X 24時間)
[0068] 〔透過電子顕微鏡 (TEM)による観察〕
単離乾燥した試料を炭素蒸着された銅グリッドに乗せ、それを JEM— 2200FS (株 式会社日本電子製)透過型電子顕微鏡にて観察した。 (乾燥条件: 25°C X 24時間)
[0069] 〔ESRスペクトル〕
ESRスペクトルは JEOL JES -FA200 (X— Band) (株式会社日本電子製)電 子スピン共鳴装置にて測定した。サンプルは粉末状態のまま、窒素置換のグローブ ボックス中、測定用チューブに詰め入れ、常温下、 frequency= 9193MHz、 Powe r = 2. 61mW、 modulation, Fq= 100kHz条件で測定した。
[0070] 〔UV— Vis反射スペクトル〕
UV— Vis反射スペクトルは日立製作所製の U— 3500分光光度計にて、積分球に サンプルセットすることにより測定した。
[0071] 〔蛍光灯下でのメチレンブルーの脱色反応〕
一定量のドーピング酸化チタン粉末を一定量のメチレンブルーの水溶液(濃度一 定)と混合し、光照射装置にて一定時間光照射し、反応液の上澄みを取り出し、それ の吸光度の変化を UV— Visにて測定し、脱色反応の進行状態を調べた。
[0072] 蛍光灯光照射装置構成:光をシャッターした組み立て式の喑箱に 4本の 8W蛍光灯
(筒状の光フィルターで蛍光灯をカーバーし、 420nm以下の光を cutoff)を釣り下げ 、その下にサンプルをセットした。蛍光灯とサンプル間距離は調整可能である。
[0073] 〔太陽光シミュレータランプ下でのメチレンブルーの脱色反応〕
一定量のドーピング酸化チタン粉末を一定量のメチレンブルーの水溶液(濃度一 定)と混合し、光照射装置にて一定時間光照射し、反応液の上澄みを取り出し、それ の吸光度の変化を UV— Visにて測定し、脱色反応の進行状態を調べた。
[0074] 太陽光シミュレータ照射装置構成:光をシャッターした組み立て式の喑箱に天井に 太陽光シミュレータランプ (セリック株式会社製)を固定した。その下にサンプル瓶を セットした。ランプとサンプル間距離は調整可能である。
[0075] <前駆体合成例 1〉
[ポリエチレンィミンとチタニアとの層状複合体 (P1) ]
水溶性チタン化合物オルガチックス TC 310 (松本製薬工業株式会社製チタン ラタテート)を 25%アンモニア水と混合し、 28vol%濃度(pH = 9)の TC— 310水溶 液を調製した。該溶液 20ml中に、室温(25°C)下、撹拌しながら、 20mlの 2wt%ポリ エチレンィミン (製品名「ェポミン SP— 200」、 日本触媒株式会社製)の水溶液を滴下 した。この混合液を 30分間撹拌し、白い沈殿物を得た。この沈殿物を濾過、蒸留水 洗浄後、真空乾燥器中 50°Cで一晩乾燥した。収量は 1. 2gであった。 XRD測定結 果、 2 Θ角が 3〜5° 間に強い散乱ピークが現れた。この小角域のピークは粉末中の 周期的な層状構造の存在を強く示唆する(図 1. D o同時に、ラマン分光測定から、 チタニアのアナターゼ結晶由来のスペクトルパターン(145, 394, 513, 636cm—1) が明確に現れた(図 1 · 2)。また、 13C— NMRでは、 25ppm当たりにエチレンイミン( -NHCH CH一)炭素由来のピーク、 85と190 111では丁じー310原料カ、ら脱離し
2 2
た乳酸残基由来のピークが現れた(図 1. 3上)。これらの結果は、該粉末サンプルに は、有機物とチタニアのアナターゼ結晶からなる層状構造の存在 (層間距離 2· 86η m)を強く示唆するものである。
[0076] <前駆体合成例 2〉
[鉄イオン含有ポリエチレンィミンとチタニアとの層状複合体 (PFe— 20) ]
水溶性チタン化合物 TC— 310を 25%アンモニア水と混合し、 28vol%濃度(pH = 9)の TC— 310水溶液を調製した。一方、ポリエチレンィミン(SP200)と硝酸鉄 Fe ( NO ) が含まれ、かつエチレンィミンユニットと Feイオンとのモル比が 20/1となり、
3 3
ポリエチレンィミン濃度が 2wt%となる水溶液を調製した。撹拌下、 20mlの上記チタ ン水溶液を 20mlの上記ポリエチレンィミン水溶液中に滴下した。この混合液を 30分 間撹拌し、茶色の沈殿物を得た。該沈殿物を濾過、蒸留水洗浄後、真空乾燥器中 5 0°Cでー晚乾燥した。収量は 1. 12gであった。 XRD測定結果、 2 Θ角が 3〜5° 間に 強い散乱ピークが現れた。この小角域のピークは粉末中の周期的な層状構造の存 在を強く示唆する(図 2. 1)。同時に、ラマン分光測定から、チタニアのアナターゼ結 晶由来のスペクトルパターン(145, 394, 513, 636cm— が明確に現れた(図 2· 2 )。また、 13C— NMRでは、 25ppm当たりにエチレンィミン炭素由来のピーク、 85と 1 90ppmでは TC— 310原料から脱離した乳酸残基由来のピークが現れた(図 2. 3)。 これらの結果は、該粉末サンプルには、有機物とチタニアのアナターゼ結晶からなる 層状構造の存在を強く示唆するものである。
[0077] <前駆体合成例 3〜6 >
[鉄イオン含有量が異なるポリエチレンィミンとチタニアとの層状複合体]
2wt%ポリエチレンィミン水溶液中、エチレンィミンユニットと鉄イオンとのモル比が 10/1、 50/1、 100/1、 200/1となる水溶液を用いた以外、上記合成例 2と同様 な方法で、複合体 PFe— 10, PFe- 50, PFe— 100, PFe— 200を合成した。表 1 にそれらの結果をまとめた。
[0078] [表 1]
Figure imgf000023_0001
[0079] <前駆体合成例 7〜; 11 >
[亜鉛、マンガン、銅、コバルト、ニッケルを含むポリエチレンィミンとチタニアとの層状 複合体] 2wt%ポリエチレンィミン水溶液中、エチレンィミンユニットと金属硝酸塩の金属ィォ ンとのモル比が 20/1となる、亜鉛、マンガン、銅、コバルト、ニッケル金属イオン含 む水溶液を用いた以外、上記合成例 2と同様な方法で、複合体 PZn— 20, PMn- 20, PCu- 20, PCo- 20, PNi— 20を合成した。表 2にそれらの結果をまとめた。
[表 2]
Figure imgf000024_0001
[0081] <前駆体合成例 12〜; 16〉
[クロムとチタニアとの層状複合体]
2wt%ポリエチレンィミン水溶液中、エチレンィミンユニットとクロムイオンとのモル比 力 ¾5/1、 50/1、 100/1、 200/1、 500/1となる水溶液を用いた以外、上記合 成例 2と同様な方法で、複合体 PCr— 10, PCr- 50, PCr- 100, PCr— 200を合 成した。表 1にそれらの結果をまとめた。
[0082] [表 3]
Figure imgf000024_0002
[0083] 実施例 1
[ドーピング酸化チタン (T 01)の合成]
合成例 1で得た層状複合前駆体 P1粉末 lgをアルミナ坩堝中に入れ、電気炉中に て 400°Cまで加熱し、その温度下 1時間予備焼成した。その後、炉内に窒素ガス(N
2 ガスの流量約 200ml/min)を導入しながら、炉内温度を 500°Cまで上昇させ、その 条件下で 3時間保持した後、温度を室温まで自然降下させた。この熱焼成により灰色 の粉末 (T— 01)が得られた。収量は 0. 5gであった。
[0084] T 01粉末サンプルの高分解能透過型電子顕微鏡観察では、結晶体が 5〜; 10η m範囲に収まる結晶ドメインがはっきり見られる(図 3. 1) 0同時に、 XRD測定からは 、アナターゼ型結晶を支持する散乱パターン(図 3. 2)が明確で、その散乱ピーク(2 Θ = 25. 7° )の半値幅から計算された結晶大きさは約 9nmであった。また、反射ス ベクトルでは、可視光全域に吸収が強ぐそれは近赤外域まで広がった(図 3. 3)。さ らに、 13C— NMRでは、 130ppm当たりに炭素原子の sp2結合の存在を示すピーク が顕著に現れた(図 3. 4下)。即ち、 T— 01には sp2結合状態の炭素原子が存在する 。熱重量分析から、 200〜500°C区間でのウェートロース(炭素種の消失)が 10. 22 wt%であった(図 3. 5)。特に、この粉末サンプルの常温(25°C) ESRの測定では、 g 値が 1 · 9943の強いピークが現れた(図 3· 6)。
[0085] 実施例 2
[ド、一ビング酸化チタン(TFe— 10, TFe- 20, TFe— 50, TFe— 100, TFe— 200
)の合成]
合成例 2〜6で得た層状複合前駆体 PFe— 10, PFe— 20, PFe— 50, PFe— 10 0, PFe— 200を用いた以外、実施例 1と同様な方法と条件下で熱焼成を行い、茶色 の粉末(それぞれ、 TFe— 10、 TFe— 20、 TFe— 50、 TFe— 100、 TFe— 200と称 す。)を得た。
[0086] TFe— 20粉末サンプルの高分解能透過型電子顕微鏡観察では、結晶体が 5〜; 10 nm範囲に収まる結晶ドメインがはっきり見られる(図 4. 1)。同時に、 XRD測定からは 、アナターゼ型結晶を支持する散乱パターン(図 4. 2)が明確に現れた。また、反射 スペクトルでは、可視光全域に吸収が強ぐそれは近赤外域まで広がった(図 4. 3)。 さらに、 13C— NMRでは、 130ppm当たりに炭素の sp2結合の存在を示すピークが顕 著に現れた(図 4. 4)。即ち、 TFe— 20粉末には sp2結合状態の炭素種が存在する。 熱重量分析から、 200〜500°C区間でのウェートロース(炭素種の消失)が 10. 22w t%であった(図 4. 5)。特に、この粉末サンプルの常温(25°C) ESRの測定では、 g 値が 1 · 9943の強いピークが現れた(図 4· 6)。 [0087] 実施例 3
[ドーピング酸化チタン(TZn— 20, TMn- 20, TCu— 20, TCo— 20, TNi— 20
)の合成]
合成例 7〜; 11で得た前駆体 PZn— 20, PMn- 20, PCu— 20, PCo— 20, PNi 20を用いた以外、実施例 1と同様な方法と条件下で熱焼成を行い、それぞれの着 色粉末(それぞれ、 TZn— 20、 TMn- 20, TCu— 20、 TCo— 20と称す。)を得た。 図 5· 1にそれらの XRD結果、図 5. 2には拡散反射 UV— VISスペクトルを示した。
[0088] 実施例 4
[ドーピング酸化チタン(TCr— 25, TCr- 50, TCr 100, TCr— 200, TCr— 50 0)の合成]
合成例 12〜; 16で得た前駆体を炉内に取り入れ、まずは空気雰囲気下 400°Cまで 加熱し、その温度で 30分焼成した後、窒素ガスを導入しながら、 900°Cまで温度上 昇し、その温度にて 60分保持した。その後、窒素雰囲気下で室温まで温度を下げた 。これにより、黒色の粉末(それぞれ TCr— 25, TCr- 50, TCr- 100, TCr— 200 , TCr— 500)を得た。これらの XRD測定から、ルチル型酸化チタンであることが確 認された(図 6. 1)。 ESR測定からは、いずれもラジカルピークが現れた(図 6. 2)。ラ マン分光測定からは、 lZOO l YOOcnT1範囲でアモルファス炭素とグラフアイト炭素 由来の振動が観測された(図 6. 3)。熱重量分析から、 TCr50粉末の 200〜500°C 区間でのウェートロース(炭素種の消失) 13. 3%であった。
[0089] 試験例 1及び比較試験例;!〜 2
[T 01を用いた可視光照射下でのメチレンブルーの脱色反応]
50mLの透明ガラス瓶に 20mlのメチレンブルー水溶液(lOppm)と 200mgの T— 01粉末サンプル加え、その混合物を喑所にて 10分間撹拌した後、 4時間静置した。 その後、上澄み液の吸光度を測定し、それを光照射前(0時間)のメチレンブルーの 初期濃度とした。サンプル瓶を光量が 5001xの蛍光灯光照射装置 (420nm以下の 光を cutoff)下にて照射しながら、一定時間毎に 0. 2mlの液体を取り出し、吸光度を 測定した。図 7. 1の吸収スペクトル、図 7. 3に溶液中メチレンブルー濃度の時間変 化を示した。脱色は光照射時間とともに進行し、わずか 1時間でメチレンブルーの 90 %が分解した。比較試験例 1として、 deggusa (デダサ社)製の酸化チタン「AEROXI DE P25」を用いた系では、脱色がわずかしか進行しなかった(図 7. 2、図 7. 3)。ま た、比較試験例 2として、可視光吸収性酸化チタン粉末 MPT— 623 (石原産業株式 会社製)を用いて同様な実験を行ったが、 3時間経過後も脱色度合いは 67%以下に はならなかった。
[0090] なお、比較として用いた deggusa (デグサ社)製の酸化チタン「AEROXIDE P25 」は、紫外線応答型光触媒であり、暗黒下常温 ESRにおいては、 g値が 1. 5〜2. 5 の範囲で共鳴シグナルを観測できず、また、 13C— NMRではピークを観測できない ものである。また、可視光吸収性酸化チタン粉末 MPT— 623 (石原産業株式会社製 )は、白金ナノ粒子を吸着させた酸化チタンであって、暗黒下常温 ESRにおいては、 g値が 1. 5〜2. 5の範囲で共鳴シグナルを実質的に観測できず、また、13 C— NMR ではピークを観測できないものであり、その吸収範囲は紫外線〜 500nmの範囲であ つた。
[0091] 同様な反応を自然光シミュレータランプ付の光照射装置にて行ったところ、反応速 度はもつと早ぐ約 30分でメチレンブルーの 85%が消失した。比較例で用いた、 P25 の場合は、 30分で 50%以下しか脱色しなかった(図 7. 4)。また、 MPT— 623を用 V、た系では脱色が 80%であった。
[0092] 試験例 2
[ドーピング酸化チタン TFe— 20を用いた可視光照射下でのメチレンブルーの脱色 反応]
50mlの透明ガラス瓶に 20mlのメチレンブルー水溶液(lOppm)と 200mgの TFe —20粉末サンプル加え、その混合物を喑所にて 10分間撹拌した後、 4時間静置し た。その後、上澄み液の吸光度を測定し、それを光照射前(0時間)のメチレンブルー の初期濃度とした。サンプル瓶を光量が 5001xの蛍光灯光照射装置 (420nm以下 の光を cutoff)下にて照射しながら、一定時間毎に 0. 2mlの液体を取り出し、吸光 度を測定した。図 8. 1の吸収スペクトル、図 8. 2に反応溶液濃度の時間変化を示し た。脱色は光照射時間とともに進行し、わずか 1時間でメチレンブルーの 90%は分 解した。図中には、比較として、 P25のデータを並べて記載している。 [0093] 同様な反応を自然光シミュレータランプ付の光照射装置にて行ったところ、反応速 度はもつと早ぐ約 30分でメチレンブルーの 90%が消失した(図 8. 3)。図中には、 比較として P25のデータを並べて記載して!/、る。
[0094] 試験例 3
[ドーピング酸化チタン TCr— 50を用いた可視光照射下でのメチレンブルーの脱 色反応及び触媒繰り返し使用]
50mlの透明ガラス瓶に 20mlのメチレンブルー水溶液(lOppm)と 200mgの TCr —50粉末サンプル加え、その混合物を喑所にて 10分間撹拌した後、 4時間静置し た。その後、上澄み液の吸光度を測定し、それを光照射前(0時間)のメチレンブルー の初期濃度とした。サンプル瓶を光量が 5001xの蛍光灯光照射装置 (420nm以下 の光を cutoff)下にて照射しながら、 3時間の間、一時間毎に 0. 2mlの液体を取り出 し、吸光度を測定した。その後、 24時間まで照射し、メチレンブルーの完全分解を確 認した後、反応液を取り出し、新しくメチレンブルー液 20mLを加え、前述の方法で 光照射し、吸光度を測定により反応を追跡した。この作業を繰り返し、 5回反応を行な つた。図 9. 1に反応溶液中メチレンブルー濃度の時間変化を示した。脱色は光照射 時間とともに進行し、 24時間でメチレンブルーは完全分解した。繰り返し使用におい て、触媒活性の低下はあるものの、 24時間照射での失活はなかった。
産業上の利用可能性
[0095] 本発明のドーピング酸化チタンは、その構造を種々の分析方法によって同定するこ とが可能であり、それらによって同定された酸化チタンであれば、光触媒として優れた 性能を有することが明確である。したがって、工業的有用性の高いドーピング酸化チ タンを提供するものである。特に、本発明の可視光応答型光触媒は、本発明のドー ビング酸化チタンを含有する点から、紫外線〜近赤外線領域の光が十分に届かな!/、 場所でもその作用を発現させることが可能である点においても有用性が高い。
[0096] また、本発明の製造方法では、単一種類の原子に限らず、複数種の原子を同時に ドーピングすることも可能であり、可視光〜近赤外領域までの広い吸収範囲を有する ドーピング酸化チタンを提供する。従って、ドーピング酸化チタンの応用分野や使用 環境に応じてドーピングする原子の種類'ドーピング量を容易に調整ができる点にお いて有用である。
また、本発明のドーピング酸化チタンを各種材料と組み合わせて用いることで、太 陽電池部材、水素発生触媒、水素またはアルコールソース系燃料電池部材として用 いることでき、防菌剤、殺菌剤、抗ウィルス、化粧品など多くの領域での利用も可能で ある。更に、本発明のドーピング酸化チタンは、近赤外線域でも吸収を示すことから、 電子材料、導電材料、熱電材料などの用途にも応用できる。

Claims

請求の範囲
[1] (I)アミノ基を有する塩基性ポリマー(X)を水性媒体中に分散又は溶解させる工程、
(II) (I)で得られた水性分散体又は水性溶液と、水溶性チタン化合物 (z)とを水性媒 体中、 50°C以下の温度条件下で混合し加水分解反応を行うことによって、アミノ基を 有する塩基性ポリマー(X)がチタニアに挟まれた、ポリマー/チタユアの層状構造複 合体を得る工程、
(III)前記層状構造複合体を熱焼成することにより、アミノ基を有する塩基性ポリマー (X)中の炭素原子と、窒素原子とが酸化チタン結晶表面にドーピングされる工程、 とを有することを特徴とする少なくとも炭素原子と窒素原子とがドーピングされた酸化 チタンの製造方法。
[2] (I)アミノ基を有する塩基性ポリマー (X)と金属イオンとの錯体 (y)を水性媒体中に分 散又は溶解させる工程、
(II) (I)で得られた水性分散体又は水性溶液と、水溶性チタン化合物 (z)とを水性媒 体中、 50°C以下の温度条件下で混合し加水分解反応を行うことによって、アミノ基を 有する塩基性ポリマー(X)と金属イオンとの錯体 (y)がチタニアに挟まれた、ポリマー /チタニアの層状構造複合体を得る工程、
(III)前記層状構造複合体を熱焼成することにより、アミノ基を有する塩基性ポリマー (X)と金属イオンとの錯体 (y)中の炭素原子と、窒素原子と、金属イオンとが酸化チタ ン結晶表面にドーピングされる工程、
とを有することを特徴とする少なくとも炭素原子と窒素原子と金属イオンとがドーピン グされた酸化チタンの製造方法。
[3] 炭素原子と、窒素原子と、金属イオンとを含有する、アナターゼ型結晶性又はルチル 型結晶性の 5〜20nmの大きさの酸化チタンの結晶からなり、喑黒下 20〜30°Cで測 定した電子スピン共鳴スペクトルでの g値が 1. 5〜2. 5の範囲で共鳴シグナルを観 測でき、また核磁気共鳴スぺ外ル (13C)では炭素原子力 SSp2結合を形成していること を示すシグナルを観測でき、ラマンスペクトルでは、アモルファス炭素とグラフアイト炭 素由来の振動波数を 1200〜1700cm— 1の範囲で観測できるものであって、且つ 40 0〜2000nmの範囲で吸収を示すことを特徴とするドーピング酸化チタン。
[4] 前記ドーピング酸化チタン力 00〜2000nmの範囲で全波長吸収を有するものであ る請求項 3記載のドーピング酸化チタン。
[5] 炭素原子と、窒素原子との合計の含有率が 20質量%以下である請求項 3又は 4記 載のドーピング酸化チタン。
[6] 金属イオンの含有率が 0. 2〜5質量%である請求項 3〜5の何れか 1項記載のドーピ ング酸化チタン。
[7] 請求項 3〜6の何れ力、 1項記載のドーピング酸化チタンを含有することを特徴とする 可視光応答型光触媒。
PCT/JP2007/073773 2006-12-13 2007-12-10 ドーピング酸化チタンの製造方法、ドーピング酸化チタン及びこれを用いる可視光応答型光触媒 WO2008072595A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07850347A EP2116304A4 (en) 2006-12-13 2007-12-10 PROCESS FOR PRODUCING DOPED TITANIUM OXIDE, DOPED TITANIUM OXIDE AND PHOTOCATALYST RESPONSIBLE FOR VISIBLE LIGHT COMPRISING DOPED TITANIUM OXIDE
JP2008508995A JP4142092B2 (ja) 2006-12-13 2007-12-10 ドーピング酸化チタンの製造方法、ドーピング酸化チタン及びこれを用いる可視光応答型光触媒
CN200780046135XA CN101563161B (zh) 2006-12-13 2007-12-10 掺杂氧化钛的制备方法、掺杂氧化钛及使用该掺杂氧化钛的可见光响应型光催化剂
US12/518,957 US8017542B2 (en) 2006-12-13 2007-12-10 Method for production of doped titanium oxide, doped titanium oxide, and visible light-responsive photocatalyst comprising the doped titanium oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-335659 2006-12-13
JP2006335659 2006-12-13

Publications (1)

Publication Number Publication Date
WO2008072595A1 true WO2008072595A1 (ja) 2008-06-19

Family

ID=39511615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073773 WO2008072595A1 (ja) 2006-12-13 2007-12-10 ドーピング酸化チタンの製造方法、ドーピング酸化チタン及びこれを用いる可視光応答型光触媒

Country Status (5)

Country Link
US (1) US8017542B2 (ja)
EP (1) EP2116304A4 (ja)
JP (1) JP4142092B2 (ja)
CN (1) CN101563161B (ja)
WO (1) WO2008072595A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083734A (ja) * 2008-10-02 2010-04-15 Kao Corp 異種金属元素ドープチタン酸ナノシート分散液
WO2010140499A1 (ja) * 2009-06-01 2010-12-09 財団法人川村理化学研究所 ルチル型酸化チタン結晶及びこれを用いる中間赤外線フィルター
WO2011135974A1 (ja) * 2010-04-26 2011-11-03 一般財団法人川村理化学研究所 ルチル型酸化チタン結晶を含有する赤外線吸収薄膜及びその製造方法
JP2013051214A (ja) * 2010-12-22 2013-03-14 Showa Denko Kk 燃料電池用電極触媒およびその用途
JP2013159496A (ja) * 2012-02-02 2013-08-19 Ishihara Sangyo Kaisha Ltd 有彩色ルチル型二酸化チタン顔料及びその製造方法
JP2013189407A (ja) * 2012-03-15 2013-09-26 Shinshu Univ 化粧品組成物およびその製造方法
JP2018022161A (ja) * 2012-08-29 2018-02-08 エルジー・ケム・リミテッド 偏光紫外線分離素子

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844084B (zh) * 2010-05-18 2011-09-21 华中师范大学 高活性碳-氯共掺杂二氧化钛可见光催化剂的低温非水溶胶凝胶制备方法
CN102614940B (zh) * 2012-02-29 2014-03-26 北京科技大学 一种可见光响应水性光催化喷涂浆料的制备方法
WO2013134690A1 (en) * 2012-03-09 2013-09-12 Nitto Denko Corporation High surface area photocatalyst material and method of manufacture
CN102600881B (zh) * 2012-04-01 2013-08-21 河南理工大学 氮、碳共掺杂的纳米二氧化钛可见光光催化剂的制备方法
WO2014071366A1 (en) 2012-11-05 2014-05-08 University Of Rochester Methods for producing hydrogen using nanoparticle-catalyst mixtures
EP2941409B1 (en) 2013-01-07 2023-03-08 Nitto Denko Corporation Method for forming an oxide coated substrate
US8604115B1 (en) * 2013-03-07 2013-12-10 King Fahd University Of Petroleum And Minerals Ethylene/propylene copolymer nanocomposite
US20140256540A1 (en) * 2013-03-08 2014-09-11 Nitto Denko Corporation High surface area photocatalyst material and method of manufacture
EP2837296A1 (de) * 2013-08-12 2015-02-18 Solvay Acetow GmbH Katalytisch abbaubarer Kunststoff sowie dessen Verwendung
CN103489935B (zh) * 2013-09-26 2016-01-20 四川农业大学 响应可见光和红外光的氮掺杂二氧化钛光电极及其制备方法
KR101817837B1 (ko) * 2015-10-14 2018-01-11 울산대학교 산학협력단 탄소 및 질소가 도핑된 이산화티타늄, 이의 제조방법 및 이를 이용한 광촉매
US10710883B2 (en) * 2017-12-07 2020-07-14 The King Abdulaziz City For Science And Technology Graphite-titanium-nanocomposite complex and method of preparation thereof
CN112191275A (zh) * 2019-07-08 2021-01-08 天津工业大学 一种基于LMCT效应和N掺杂的纤维螯合TiO2可见光催化剂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262482A (ja) 1996-01-22 1997-10-07 Sekiyu Sangyo Kasseika Center 光触媒、光触媒の製造方法および光触媒反応方法
JPH11333304A (ja) 1998-05-22 1999-12-07 Kankyo Device Kenkyusho:Kk 光触媒及びその利用
JP2001190953A (ja) 1999-10-29 2001-07-17 Sumitomo Chem Co Ltd 酸化チタン、それを用いてなる光触媒体及び光触媒体コーティング剤
JP2003300730A (ja) 2002-04-05 2003-10-21 Isi:Kk アトミックドーピング酸化チタンおよびその製造方法
JP2005047787A (ja) * 2002-09-18 2005-02-24 Toshiba Ceramics Co Ltd 二酸化チタン微粒子およびその製造方法
JP2005103471A (ja) * 2003-09-30 2005-04-21 Mitsuboshi Belting Ltd 酸化チタン薄膜の製造方法
JP2006075794A (ja) * 2004-09-13 2006-03-23 National Institute For Materials Science 可視光を吸収する薄片状酸化チタンの製造方法
JP2006187677A (ja) * 2004-12-28 2006-07-20 Matsushita Electric Works Ltd 可視光応答型の光触媒とその製造方法
JP2007238406A (ja) * 2006-03-10 2007-09-20 Shinshu Univ 可視光で光触媒能を発現する薄片状窒素ドープ型酸化チタン

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524750B1 (en) * 2000-06-17 2003-02-25 Eveready Battery Company, Inc. Doped titanium oxide additives
EP1400491A3 (en) * 2002-09-18 2005-01-19 Toshiba Ceramics Co., Ltd. Titanium dioxide fine particles and method for producing the same, and method for producing visible light activatable photocatalyst
JP4523344B2 (ja) 2004-06-16 2010-08-11 東邦チタニウム株式会社 酸化チタン分散体の製造方法
JP4806564B2 (ja) 2004-12-27 2011-11-02 花王株式会社 層状チタン酸ナノシート有機溶媒分散液
KR100620076B1 (ko) * 2005-04-27 2006-09-06 한국과학기술연구원 C와 n으로 도핑된 박막형 이산화티탄계 광촉매 및 자성물질과 그 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262482A (ja) 1996-01-22 1997-10-07 Sekiyu Sangyo Kasseika Center 光触媒、光触媒の製造方法および光触媒反応方法
JPH11333304A (ja) 1998-05-22 1999-12-07 Kankyo Device Kenkyusho:Kk 光触媒及びその利用
JP2001190953A (ja) 1999-10-29 2001-07-17 Sumitomo Chem Co Ltd 酸化チタン、それを用いてなる光触媒体及び光触媒体コーティング剤
JP2003300730A (ja) 2002-04-05 2003-10-21 Isi:Kk アトミックドーピング酸化チタンおよびその製造方法
JP2005047787A (ja) * 2002-09-18 2005-02-24 Toshiba Ceramics Co Ltd 二酸化チタン微粒子およびその製造方法
JP2005103471A (ja) * 2003-09-30 2005-04-21 Mitsuboshi Belting Ltd 酸化チタン薄膜の製造方法
JP2006075794A (ja) * 2004-09-13 2006-03-23 National Institute For Materials Science 可視光を吸収する薄片状酸化チタンの製造方法
JP2006187677A (ja) * 2004-12-28 2006-07-20 Matsushita Electric Works Ltd 可視光応答型の光触媒とその製造方法
JP2007238406A (ja) * 2006-03-10 2007-09-20 Shinshu Univ 可視光で光触媒能を発現する薄片状窒素ドープ型酸化チタン

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A.L.LINSEBIGER ET AL., CHEM.REV., vol. 95, 1995, pages 735
E.BORGARELLO ET AL., J.AM.CHEM.SOC., vol. 104, 1982, pages 2996
H.KISCH ET AL., ANGEW.CHEM.INT.ED., vol. 37, 1998, pages 3034
L.ZANG ET AL., J.PHYS.CHEM.B, vol. 102, 1998, pages 10765
S.SAKTHIVEL ET AL., ANGEW.CHEM..INT.ED., vol. 42, 2003, pages 4908
See also references of EP2116304A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083734A (ja) * 2008-10-02 2010-04-15 Kao Corp 異種金属元素ドープチタン酸ナノシート分散液
WO2010140499A1 (ja) * 2009-06-01 2010-12-09 財団法人川村理化学研究所 ルチル型酸化チタン結晶及びこれを用いる中間赤外線フィルター
KR101279492B1 (ko) * 2009-06-01 2013-06-27 디아이씨 가부시끼가이샤 루틸형 산화티탄 결정 및 이것을 사용하는 중간적외선 필터
CN102448887A (zh) * 2009-06-01 2012-05-09 Dic株式会社 金红石型氧化钛晶体及使用其的中红外线滤波器
DE112011101441T5 (de) 2010-04-26 2013-04-11 Dic Corp. Infrarotabsorbierende Dünnschicht, die Titanoxidkristalle vom Rutiltyp enthält und ein Verfahren zur Herstellung derselben
CN102712496A (zh) * 2010-04-26 2012-10-03 Dic株式会社 含有金红石型氧化钛晶体的红外线吸收薄膜及其制造方法
WO2011135974A1 (ja) * 2010-04-26 2011-11-03 一般財団法人川村理化学研究所 ルチル型酸化チタン結晶を含有する赤外線吸収薄膜及びその製造方法
KR101290707B1 (ko) * 2010-04-26 2013-08-07 잇판자이단호진 가와무라 리카가쿠 겐큐쇼 루틸형 산화티탄 결정을 함유하는 적외선 흡수 박막 및 그 제조 방법
US8618232B2 (en) 2010-04-26 2013-12-31 Dic Corporation Infrared absorbing thin film containing rutile-type titanium oxide crystal and method for producing the same
JP2013051214A (ja) * 2010-12-22 2013-03-14 Showa Denko Kk 燃料電池用電極触媒およびその用途
US9570755B2 (en) 2010-12-22 2017-02-14 Showa Denko K.K. Production process for electrode catalyst for fuel cell and uses thereof
JP2013159496A (ja) * 2012-02-02 2013-08-19 Ishihara Sangyo Kaisha Ltd 有彩色ルチル型二酸化チタン顔料及びその製造方法
JP2013189407A (ja) * 2012-03-15 2013-09-26 Shinshu Univ 化粧品組成物およびその製造方法
JP2018022161A (ja) * 2012-08-29 2018-02-08 エルジー・ケム・リミテッド 偏光紫外線分離素子

Also Published As

Publication number Publication date
JPWO2008072595A1 (ja) 2010-03-25
US8017542B2 (en) 2011-09-13
EP2116304A4 (en) 2011-11-30
JP4142092B2 (ja) 2008-08-27
CN101563161A (zh) 2009-10-21
CN101563161B (zh) 2011-08-31
EP2116304A1 (en) 2009-11-11
US20100062928A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4142092B2 (ja) ドーピング酸化チタンの製造方法、ドーピング酸化チタン及びこれを用いる可視光応答型光触媒
You et al. Z-Scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production
Monsef et al. Sonochemical synthesis, characterization and application of PrVO4 nanostructures as an effective photocatalyst for discoloration of organic dye contaminants in wastewater
Parangusan et al. Nanoflower‐like yttrium‐doped ZnO photocatalyst for the degradation of methylene blue dye
Wang et al. Z-scheme LaCoO3/g-C3N4 for efficient full-spectrum light-simulated solar photocatalytic hydrogen generation
Dom et al. Solar hydrogen generation from spinel ZnFe2O4 photocatalyst: effect of synthesis methods
Ferreira et al. Visible-light-responsive photocatalytic activity significantly enhanced by active [V Zn+ VO+] defects in self-assembled ZnO nanoparticles
Simon et al. N-doped titanium monoxide nanoparticles with TiO rock-salt structure, low energy band gap, and visible light activity
JP4812912B1 (ja) ルチル型酸化チタン結晶を含有する赤外線吸収薄膜及びその製造方法
Shahini et al. Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst
Goodall et al. Structure–property–composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants
Guo et al. S-Doped ZnSnO3 nanoparticles with narrow band gaps for photocatalytic wastewater treatment
Ahmad et al. Application of KZnF3 as a single source precursor for the synthesis of nanocrystals of ZnO2: F and ZnO: F; synthesis, characterization, optical, and photocatalytic properties
Yasin et al. Influence of TixZr (1− x) O2 nanofibers composition on the photocatalytic activity toward organic pollutants degradation and water splitting
Ma et al. Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light
Karami et al. Green fabrication of graphene quantum dots from cotton with CaSiO3 nanostructure and enhanced photocatalytic performance for water treatment
Huan et al. Enhanced ferro-photocatalytic performance for ANbO3 (A= Na, K) nanoparticles
Luo et al. Facile synthesis of Ag/Zn1-xCuxO nanoparticle compound photocatalyst for high-efficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag
Harun-Ur-Rashid et al. Hybrid nanocomposite fabrication of nanocatalyst with enhanced and stable photocatalytic activity
Xiao et al. Bandgap-engineered ferroelectric single-crystalline NBT-BT based nanocomposites with excellent visible light-ultrasound catalytic performance
Jang et al. Synthesis of nanocrystalline ZnFe2O4 by polymerized complex method for its visible light photocatalytic application: an efficient photo-oxidant
Tan et al. Growth of crystallized titania from the cores of amorphous tetrabutyl titanate@ PVDF nanowires
Shen et al. Synthesis of Mn-doped ErFeO 3 with enhanced photo and vibration catalytic activities
Li et al. Preparation and characterization of polypyrrole/TiO2 nanocomposite and its photocatalytic activity under visible light irradiation
Tinoco Navarro et al. Effect of MCAA Synthesis and Calcination Temperature on Heterojunction Formation and Photocatalytic Activity of Biphasic TiO2 (B/A)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046135.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008508995

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12518957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007850347

Country of ref document: EP